1
|
Ito M, Liu J, Fukasawa M, Tsutsumi K, Kanegae Y, Setou M, Kohara M, Suzuki T. Induction of phospholipase A2 group 4C by HCV infection regulates lipid droplet formation. JHEP Rep 2025; 7:101225. [PMID: 39802806 PMCID: PMC11719340 DOI: 10.1016/j.jhepr.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background & Aims Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis. Methods The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry. Triglyceride accumulation and lipid droplet formation were studied in phospholipase A2 group 4C (PLA2G4C) knockout or overexpressing cells. Results Imaging mass spectrometry of the infected mouse model revealed increased lysophosphatidylcholine levels and decreased phosphatidylcholine levels in HCV-positive regions of the liver. Among the transcripts associated with phosphatidylcholine biosynthesis, upregulation of PLA2G4C mRNA was most pronounced following HCV infection. Activation of the transcription factor NF-κB and upregulation of c-Myc were important for activation of PLA2G4C transcription by HCV infection and expression of the viral proteins Core-NS2. The amount and size of lipid droplets were reduced in PLA2G4C-knockout cells. Inhibition of NF-κB or c-Myc activity suppressed lipid droplet formation in HCV-infected cells. HCV infection promoted the stabilization of lipid droplets, but this stability was reduced in PLA2G4C-knockout cells. Overexpression of PLA2G4C decreased the levels of phosphatidylcholine species in the lipid droplet fraction and led to lower levels of key factors involved in lipolysis (breakdown of triglycerides into glycerol and free fatty acids), such as ATGL, PLIN1 and ABHD5 on the lipid droplets. Conclusions HCV infection markedly increases PLA2G4C expression. This may alter the phospholipid composition of the lipid droplet membrane, leading to stabilization and enlargement of the droplets. Impact and implications The involvement of phospholipid metabolism pathways in the pathogenesis of hepatitis C virus (HCV)-related liver diseases remains unclear. We found that PLA2G4C expression is upregulated through NF-κB and c-Myc activation upon HCV infection, and this upregulation is associated with a decrease in phosphatidylcholine species. The increased expression of PLA2G4C resulted in changes in the phospholipid composition of lipid droplets, led to the dissociation of lipolysis-related factors from the lipid droplet surface and the accumulation of lipid content within the droplets. These findings suggest that the disruption of the phospholipid metabolism pathway caused by HCV infection may contribute to the development of HCV-associated fatty liver. It would be interesting to determine whether alcohol- and/or metabolic dysfunction-associated steatohepatitis are also associated with increased PLA2 activity, altered phospholipid composition and decreased levels of ATGL and its cofactors in lipid droplet membranes.
Collapse
Affiliation(s)
- Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jie Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Tsutsumi
- Department of Biosciences, Kitasato University, Sagamihara, Japan
| | - Yumi Kanegae
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Alqahtani LS, Abd-Elhakim YM, Mohamed AAR, Khalifa NE, Khamis T, Alotaibi BS, Alosaimi M, El-Kholy SS, Abuzahrah SS, ElAshmouny N, Eskandrani AA, Gaber RA. Curcumin-loaded chitosan nanoparticles alleviate fenpropathrin-induced hepatotoxicity by regulating lipogenesis and pyroptosis in rats. Food Chem Toxicol 2023; 180:114036. [PMID: 37714448 DOI: 10.1016/j.fct.2023.114036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this study, the probable alleviative role of curcumin (CMN) (50 mg/kg b.wt) or curcumin-loaded chitosan nanoparticle (CLC-NP) (50 mg/kg b.wt) was assessed against the hepatotoxic effect of a widely used pyrethroid insecticide, fenpropathrin (FEN) (15 mg/kg b.wt) in rats in a 60-day experiment. The results revealed that CMN and CLC-NP significantly suppressed the FEN-induced increment in serum hepatic enzyme activities (ALT, AST, and ALP) and hyperbilirubinemia. Moreover, FEN-associated dyslipidemia, hepatic oxidative stress, and altered hepatic histology were significantly rescued by CMN and CLC-NP. Furthermore, the increased TNF-α and Caspase-3 immunoexpression in hepatic tissues of FEN-exposed rats was significantly reduced in CMN and CLC-NP-treated ones. FEN exposure significantly upregulated the pyroptosis-related genes, including GSDMD, Casp-1, Casp-3, Casp-8, IL-18, TNF-α, IL-1β, and NF-κB and altered the expression of lipogenesis-related genes including SREBP-1c, PPAR-α, MCP1, and FAS in the hepatic tissues. Nevertheless, the earlier disturbances in gene expression were corrected in CMN and CLC-NP-treated groups. Of note, compared to CMN, CLC-NP was more effective at inhibiting oxidative damage and controlling lipogenesis and pyroptosis in the hepatic tissues of FEN-exposed rats. Conclusively, the current study findings proved the superior and useful role of CLC-NP in combating pollutants associated with hepatic dysfunction.
Collapse
Affiliation(s)
- Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, 21959, Saudi Arabia
| | - Naira ElAshmouny
- Histology and Cell biology, Faculty of Medicine, Kafr Elsheikh University, Egypt
| | - Areej Adeeb Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, 30002, Saudi Arabia
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
3
|
Campbell O, Monje-Galvan V. Protein-driven membrane remodeling: Molecular perspectives from Flaviviridae infections. Biophys J 2023; 122:1890-1899. [PMID: 36369756 PMCID: PMC10257083 DOI: 10.1016/j.bpj.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cell membrane consists of thousands of different lipid species, and this variety is critical for biological function. Alterations to this balance can be dangerous as they can lead to permanent disruption of lipid metabolism, a hallmark in several viral diseases. The Flaviviridae family is made up of positive single-stranded RNA viruses that assemble at or near the location of lipid droplet formation in the endoplasmic reticulum. These viruses are known to interfere with lipid metabolism during the onset of liver disease, albeit to different extents. Pathogenesis of these infections involves specific protein-lipid interactions that alter lipid sorting and metabolism to sustain propagation of the viral infection. Recent experimental studies identify a correlation between viral proteins and lipid content or location in the cell, but these do not assess membrane-embedded interactions. Molecular modeling, specifically molecular dynamics simulations, can provide molecular-level spatial and temporal resolution for characterization of biomolecular interactions. This review focuses on recent advancements and current knowledge gaps in the molecular mechanisms of lipid-mediated liver disease preceded by viral infection. We discuss three viruses from the Flaviviridae family: dengue, zika, and hepatitis C, with a particular focus on lipid interactions with their respective ion channels, known as viroporins.
Collapse
Affiliation(s)
- Oluwatoyin Campbell
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.
| |
Collapse
|
4
|
Gong Z, Yan Z, Liu W, Luo B. Oncogenic viruses and host lipid metabolism: a new perspective. J Gen Virol 2023; 104. [PMID: 37279154 DOI: 10.1099/jgv.0.001861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
As noncellular organisms, viruses do not have their own metabolism and rely on the metabolism of host cells to provide energy and metabolic substances for their life cycles. Increasing evidence suggests that host cells infected with oncogenic viruses have dramatically altered metabolic requirements and that oncogenic viruses produce substances used for viral replication and virion production by altering host cell metabolism. We focused on the processes by which oncogenic viruses manipulate host lipid metabolism and the lipid metabolism disorders that occur in oncogenic virus-associated diseases. A deeper understanding of viral infections that cause changes in host lipid metabolism could help with the development of new antiviral agents as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Zhiyong Yan
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
5
|
Abomughaid M, Tay ESE, Pickford R, Malladi C, Read SA, Coorssen JR, Gloss BS, George J, Douglas MW. PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication. Int J Mol Sci 2023; 24:ijms24108781. [PMID: 37240132 DOI: 10.3390/ijms24108781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis.
Collapse
Affiliation(s)
- Mosleh Abomughaid
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chandra Malladi
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Blacktown Clinical School, Western Sydney University and Blacktown Hospital, Sydney, NSW 2751, Australia
| | - Jens R Coorssen
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
6
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Sularea VM, Sugrue JA, O'Farrelly C. Innate antiviral immunity and immunometabolism in hepatocytes. Curr Opin Immunol 2023; 80:102267. [PMID: 36462263 DOI: 10.1016/j.coi.2022.102267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
The human liver mediates whole-body metabolism, systemic inflammation and responses to hepatotropic pathogens. Hepatocytes, the most abundant cell type of the liver, have critical roles in each of these activities. The regulation of metabolic pathways, such as glucose metabolism, lipid biosynthesis and oxidation, influences whole-organism functionality. However, the immune potential of the liver in general and hepatocytes in particular is also determined by metabolic ability. The major shifts in cellular metabolism required to drive activity in immune cells are now well-described. Given the unique functions of hepatocytes in systemic metabolism and inflammation, and their ability to mediate local antiviral innate immunity, the metabolic shifts required to facilitate these activities are likely to be complex and challenging to define. In this review, we explore what is known about the complex metabolic rewiring required for hepatocytes to respond appropriately to viral infection. We also discuss how viruses can manipulate hepatocyte metabolism to facilitate infection.
Collapse
Affiliation(s)
- Vasile Mihai Sularea
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jamie A Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Casorla-Perez LA, Guennoun R, Cubillas C, Peng B, Kornfeld K, Wang D. Orsay Virus Infection of Caenorhabditis elegans Is Modulated by Zinc and Dependent on Lipids. J Virol 2022; 96:e0121122. [PMID: 36342299 PMCID: PMC9682997 DOI: 10.1128/jvi.01211-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.
Collapse
Affiliation(s)
| | - Ranya Guennoun
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ciro Cubillas
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bo Peng
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kerry Kornfeld
- Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Zou X, Yang Y, Lin F, Chen J, Zhang H, Li L, Ouyang H, Pang D, Ren L, Tang X. Lactate facilitates classical swine fever virus replication by enhancing cholesterol biosynthesis. iScience 2022; 25:105353. [PMID: 36339254 PMCID: PMC9626675 DOI: 10.1016/j.isci.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
An emerging topic in virology is that viral replication is closely linked with the metabolic reprogramming of host cells. Understanding the effects of reprogramming host cell metabolism due to classical swine fever virus (CSFV) infection and the underling mechanisms would facilitate controlling the spread of classical swine fever (CSF). In the current study, we found that CSFV infection enhanced aerobic glycolysis in PK-15 cells. Blocking glycolysis with 2-deoxy-d-glycose or disrupting the enzymes PFKL and LDHA decreased CSFV replication. Lactate was identified as an important molecule in CSFV replication, independent of the pentose phosphate pathway and tricarboxylic acid cycle. Further analysis demonstrated that the accumulated lactate in cells promoted cholesterol biosynthesis, which facilitated CSFV replication and disrupted the type I interferon response during CSFV replication, and the disruption of cholesterol synthesis abolished the lactate effects on CSFV replication. The results provided more insights into the complex pathological mechanisms of CSFV.
Collapse
Affiliation(s)
- Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yang Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Feng Lin
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| |
Collapse
|
10
|
Siphepho PY, Liu YT, Shabangu CS, Huang JF, Huang CF, Yeh ML, Yu ML, Wang SC. The Impact of Steatosis on Chronic Hepatitis C Progression and Response to Antiviral Treatments. Biomedicines 2021; 9:1491. [PMID: 34680608 PMCID: PMC8533513 DOI: 10.3390/biomedicines9101491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic derangement is characteristic in patients with hepatitis C virus (HCV) infection. Aside from established liver injury, various extrahepatic metabolic disorders impact the natural history of the disease, clinical outcomes, and the efficacy of antiviral therapy. The presence of steatosis, recently redefined as metabolic-associated fatty liver disease (MAFLD), is a common feature in HCV-infected patients, induced by host and/or viral factors. Most chronic HCV-infected (CHC) patients have mild steatosis within the periportal region of the liver with an estimated prevalence of 40% to 86%. Indeed, this is higher than the 19% to 50% prevalence observed in patients with other chronic liver diseases such as chronic hepatitis B (CHB). The histological manifestations of HCV infection are frequently observed in genotype 3 (G-3), where relative to other genotypes, the prevalence and severity of steatosis is also increased. Steatosis may independently influence the treatment efficacy of either interferon-based or interferon-free antiviral regimens. This review aimed to provide updated evidence of the prevalence and risk factors behind HCV-associated steatosis, as well as explore the impact of steatosis on HCV-related outcomes.
Collapse
Affiliation(s)
- Phumelele Yvonne Siphepho
- Program in Tropical Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.Y.S.); (M.-L.Y.)
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
| | - Yi-Ting Liu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ciniso Sylvester Shabangu
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Program in Tropical Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (P.Y.S.); (M.-L.Y.)
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-F.H.); (M.-L.Y.)
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Center for Cancer Research, Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.S.S.); (J.-F.H.)
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Bhutta MS, Gallo ES, Borenstein R. Multifaceted Role of AMPK in Viral Infections. Cells 2021; 10:1118. [PMID: 34066434 PMCID: PMC8148118 DOI: 10.3390/cells10051118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral pathogens often exploit host cell regulatory and signaling pathways to ensure an optimal environment for growth and survival. Several studies have suggested that 5'-adenosine monophosphate-activated protein kinase (AMPK), an intracellular serine/threonine kinase, plays a significant role in the modulation of infection. Traditionally, AMPK is a key energy regulator of cell growth and proliferation, host autophagy, stress responses, metabolic reprogramming, mitochondrial homeostasis, fatty acid β-oxidation and host immune function. In this review, we highlight the modulation of host AMPK by various viruses under physiological conditions. These intracellular pathogens trigger metabolic changes altering AMPK signaling activity that then facilitates or inhibits viral replication. Considering the COVID-19 pandemic, understanding the regulation of AMPK signaling following infection can shed light on the development of more effective therapeutic strategies against viral infectious diseases.
Collapse
Affiliation(s)
- Maimoona Shahid Bhutta
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Elisa S. Gallo
- Board-Certified Dermatologist and Independent Researcher, Norfolk, VA 23507, USA;
| | - Ronen Borenstein
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| |
Collapse
|
12
|
Fowl Adenovirus Serotype 4 Induces Hepatic Steatosis via Activation of Liver X Receptor-α. J Virol 2021; 95:JVI.01938-20. [PMID: 33361420 DOI: 10.1128/jvi.01938-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is a hepatotropic virus that causes severe hepatic damage characterized by basophilic intranuclear inclusion bodies, vacuolar degeneration, and multifocal necrosis in hepatocytes. Many aspects of FAdV-4 infection and pathogenesis, however, remain unknown. Here, we found that FAdV-4-induced hepatic injury is accompanied by the accumulation of oil droplets (triglycerides) in the cytoplasm of hepatocytes, a typical indicator of steatosis, in FAdV-4-infected chickens. Significant upregulation of adipose synthesis-related genes, such as liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), and sterol regulatory element-binding protein-1c (SREBP-1c), and significant downregulation of low-density lipoprotein secretion-related genes and lipid oxidation- and lipid decomposition-related genes were observed in the infected chickens. FAdV-4 infection in cultured leghorn male hepatoma (LMH) cells caused similar signs of steatosis, with alterations in various lipogenesis-related genes. We eliminated the effect of LXR-α activation on FAdV-4-induced steatosis and found that treatment with an LXR-α antagonist (SR9243) and RNA interference (small interfering RNA targeting LXR-α [Si-LXR-α]) decreased the number of oil droplets and the accumulation of lipogenic genes, but treatment with an LXR-α agonist (T0901317) increased the number of oil droplets and the accumulation of lipogenic genes in the cells. Additionally, SR9243 treatment or Si-LXR-α transfection led to significant reductions in viral DNA level, protein expression, and virus production, whereas T0901317 treatment caused significant increases in viral DNA level, protein expression, and virus production. However, inhibition of SREBP-1c activity had no significant effect on virus production. Collectively, these results indicated that FAdV-4-induced steatosis involves activation of the LXR-α signaling pathway, which might be a molecular mechanism underlying the hepatic injury associated with FAdV-4 infection.IMPORTANCE Fowl adenovirus serotype 4 (FAdV-4) is an important hepatotropic adenovirus in chicken, but the underlying mechanism of FAdV-4-induced hepatic injury remains unclear. We report here that infection with FAdV-4 induced the accumulation of oil droplets (triglycerides) in the cytoplasm of hepatocytes, a typical indicator of steatosis, in the livers of chickens. FAdV-4-induced steatosis might be caused by a disrupted balance of fat metabolism, as evidenced by differential regulation of various lipase genes. The significant upregulation of liver X receptor-α (LXR-α) prompted us to investigate the interplay between LXR-α activation and FAdV-4-induced steatosis. Treatment with an agonist, an antagonist, or RNA interference targeting LXR-α in cultured leghorn male hepatoma (LMH) cells indicated that FAdV-4-induced steatosis was dependent upon LXR-α activation, which contributed to virus replication. These results provide important mechanistic insights, revealing that FAdV-4 induces hepatic steatosis by activating the LXR-α signaling pathway and highlighting the therapeutic potential of strategies targeting the LXR-α pathway for the treatment of FAdV-4 infection.
Collapse
|
13
|
Wang CC, Cheng PN, Kao JH. Systematic review: chronic viral hepatitis and metabolic derangement. Aliment Pharmacol Ther 2020; 51:216-230. [PMID: 31746482 DOI: 10.1111/apt.15575] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The liver has a critical role in the metabolism of glucose and lipids. Chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection leads to a spectrum of liver disease including chronic hepatitis, cirrhosis and hepatocellular carcinoma. Metabolic syndrome (MetS) has a rising incidence owing to an epidemic of type 2 diabetes mellitus (T2DM) and obesity. Non-alcoholic fatty liver disease is a liver manifestation of MetS and has become the most common cause of chronic liver disease worldwide. AIM To summarise the interplay among hepatitis viruses, MetS and its components. METHODS We searched the literature about HBV, HCV infection, MetS, fatty liver and its components from PubMed. RESULTS With respect to the viral replication cycle, lipids are important mediators between viral entry and hepatocyte in HCV infection, but not in HBV infection. Thus, HCV infection is inversely associated with hyperlipidaemia and lipid rebound occurs following sustained viral response induced by interferon-based therapy or direct antiviral agents. In addition, HCV infection is positively associated with insulin resistance, hepatic steatosis, MetS and the risk of T2DM and atherosclerosis. In contrast, HBV infection may protect infected subjects from the development of MetS and hepatic steatosis. Accumulating evidence suggests that HBV infection is inversely associated with lipid metabolism, and exhibits no conclusive association with insulin resistance or the risk of T2DM and arteriosclerosis. CONCLUSIONS In patients with viral hepatitis and concurrent metabolic diseases, a multidisciplinary approach should be given rather than simply antiviral treatment.
Collapse
Affiliation(s)
- Chia-Chi Wang
- Department of Gastroenterology and Hepatology, Buddhist Tzu Chi Medical Foundation and School of Medicine, Taipei Tzu Chi Hospital, Tzu Chi University, Hualien, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, Department of Medical Research and Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Borah AK, Singh A, Yasmin R, Doley R, Mattaparthi VSK, Saha S. 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:338. [PMID: 31783835 PMCID: PMC6883588 DOI: 10.1186/s12906-019-2754-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND To investigate the potential of Catharanthus roseus leaf aqueous crude extract (CRACE) as a regulator of adipocyte development and function. METHODS 3T3-L1 adipogenesis model was used to investigate the effect of CRACE on adipogenesis. 3T3-L1 preadipocytes (for adipogenic differentiation) and mature 3T3-L1 adipocytes (for adipocyte function) were treated with non-toxic doses of CRACE. The outcomes were corroborated by intracellular lipid accumulation, expression of pro-and anti-adipogenic effector molecules. To investigate CRACE mediated lipolysis, cAMP accumulation, glycerol release and phosphorylation of key effector molecules were tested in treated mature adipocytes. Finally, the extract was fractionated to identify the active molecule/s in the extract. RESULTS CRACE significantly reduced adipocyte differentiation by modulating PPARγ expression. At early stage CRACE directly targeted Lipin1 expression and consequently impacted KLF7, subsequently expression of GATA2, CEBPα, SREBP1c were targeted, with PPARγ expression, particularly curtailed. While CRACE significantly reduced several lipogenic genes like FAS and GPD1 in mature adipocytes, concomitantly, it greatly increased lipolysis resulting in decreased lipid accumulation in mature adipocytes. The increase in lipolysis was due to decreased Akt activation, increased cAMP level, and PKA activity. The fractionation of CRACE allowed identification of two fractions with potent anti-adipogenic activity. Both the fractions contained 1α, 25-dihydroxy Vitamin D3 as major component. CONCLUSIONS 1α, 25-dihydroxy Vitamin D3 containing CRACE can be developed into an effective anti-obesity formulation that decreases adipogenesis and increases lipid catabolism.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Archana Singh
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Rafika Yasmin
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam 784028 India
| | | | - Sougata Saha
- Department of Biotechnology, National Institute of Technology, Durgapur, West Bengal 713209 India
| |
Collapse
|
15
|
Abstract
This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.
Collapse
Affiliation(s)
- Shivani K Thaker
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - James Ch'ng
- Department of Pediatrics, Division of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
The hepatic-targeted, resveratrol loaded nanoparticles for relief of high fat diet-induced nonalcoholic fatty liver disease. J Control Release 2019; 307:139-149. [PMID: 31233775 DOI: 10.1016/j.jconrel.2019.06.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the early stage of many metabolic syndromes. The intervention of NAFLD can prevent its further development into severe metabolic syndromes. Given the inefficiency and side effects of chemical drugs for treating NAFLD, the hepatic-targeted nanocarriers loaded with bioactive compounds may offer a more effective and acceptable strategy for eliminating NAFLD. Here we developed hepatic-targeted oxidized starch-lysozyme (OSL) nanocarriers to specifically deliver resveratrol (Res) to liver tissue in order to maximize its therapeutic efficiency. The hepatic targeting was achieved using covalently conjugated galactose (Gal), which is recognized by the asialoglycoprotein receptors specifically expressed in hepatocytes. In steatotic HepG2 cell model, treatment with hepatic-targeted Gal-OSL/Res nanocarriers enhanced the cellular Res uptake and anti-lipogenesis capabilities, and effectively decreased triglyceride accumulation by modulating AMP-activated protein kinase (AMPK)/silent information regulation 2 homolog 1(SIRT1)/fatty acid synthase (FAS)/sterol regulatory element-binding protein-1c (SREBP1c) signaling pathway. In mice, Gal-OSL increased Res delivery into liver tissues and increased their hepatic effective concentration in liver. Most importantly, Gal-OSL/Res nanocarriers effectively reversed NAFLD and recovered hepatic insulin sensitivity of NAFLD mice to the healthy state. Furthermore, Gal-OSL/Res efficiently ameliorated lipid deposition and insulin resistance by modulating AMPK/SIRT1/FAS/SREBP1c signaling pathway and downregulated insulin receptor substrate-1 (IRS-1) phosphorylation at serine 307 in liver. These findings suggested that the hepatic-targeted Gal-OSL nanocarriers delivering Res could potentially serve as a safe and promising platform for NAFLD and other liver related diseases.
Collapse
|
17
|
Replication of Marek's Disease Virus Is Dependent on Synthesis of De Novo Fatty Acid and Prostaglandin E 2. J Virol 2019; 93:JVI.00352-19. [PMID: 30971474 PMCID: PMC6580946 DOI: 10.1128/jvi.00352-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Disturbances of the lipid metabolism in chickens infected with MDV contribute to the pathogenesis of disease. However, the role of lipid metabolism in MDV replication remained unknown. Here, we demonstrate that MDV infection activates FAS and induces LD formation. Moreover, our results demonstrate that MDV replication is highly dependent on the FAS pathway and the downstream metabolites. Finally, our results reveal that MDV also activates the COX-2/PGE2 pathway, which supports MDV replication by activating PGE2/EP2 and PGE2/EP4 signaling pathways. Marek’s disease virus (MDV) causes deadly lymphoma and induces an imbalance of the lipid metabolism in infected chickens. Here, we discovered that MDV activates the fatty acid synthesis (FAS) pathway in primary chicken embryo fibroblasts (CEFs). In addition, MDV-infected cells contained high levels of fatty acids and showed increased numbers of lipid droplets (LDs). Chemical inhibitors of the FAS pathway (TOFA and C75) reduced MDV titers by approximately 30-fold. Addition of the downstream metabolites, including malonyl-coenzyme A and palmitic acid, completely restored the inhibitory effects of the FAS inhibitors. Furthermore, we could demonstrate that MDV infection activates the COX-2/prostaglandin E2 (PGE2) pathway, as evident by increased levels of arachidonic acid, COX-2 expression, and PGE2 synthesis. Inhibition of the COX-2/PGE2 pathway by chemical inhibitors or knockdown of COX2 using short hairpin RNA reduced MDV titers, suggesting that COX-2 promotes virus replication. Exogenous PGE2 completely restored the inhibition of the COX-2/PGE2 pathway in MDV replication. Unexpectedly, exogenous PGE2 also partially rescued the inhibitory effects of FAS inhibitors on MDV replication, suggesting that there is a link between these two pathways in MDV infection. Taken together, our data demonstrate that the FAS and COX-2/PGE2 pathways play an important role in the replication of this deadly pathogen. IMPORTANCE Disturbances of the lipid metabolism in chickens infected with MDV contribute to the pathogenesis of disease. However, the role of lipid metabolism in MDV replication remained unknown. Here, we demonstrate that MDV infection activates FAS and induces LD formation. Moreover, our results demonstrate that MDV replication is highly dependent on the FAS pathway and the downstream metabolites. Finally, our results reveal that MDV also activates the COX-2/PGE2 pathway, which supports MDV replication by activating PGE2/EP2 and PGE2/EP4 signaling pathways.
Collapse
|
18
|
Meal for Two: Human Cytomegalovirus-Induced Activation of Cellular Metabolism. Viruses 2019; 11:v11030273. [PMID: 30893762 PMCID: PMC6466105 DOI: 10.3390/v11030273] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Viruses are parasites that depend on the host cell’s metabolic resources to provide the energy and molecular building blocks necessary for the production of viral progeny. It has become increasingly clear that viruses extensively modulate the cellular metabolic network to support productive infection. Here, we review the numerous ways through which human cytomegalovirus (HCMV) modulates cellular metabolism, highlighting known mechanisms of HCMV-mediated metabolic manipulation and identifying key outstanding questions that remain to be addressed.
Collapse
|
19
|
ITRAQ-Based Quantitative Proteomics Reveals the Proteome Profiles of Primary Duck Embryo Fibroblast Cells Infected with Duck Tembusu Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1582709. [PMID: 30809531 PMCID: PMC6369498 DOI: 10.1155/2019/1582709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022]
Abstract
Outbreaks of duck Tembusu virus (DTMUV) have caused substantial economic losses in the major duck-producing regions of China since 2010. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in duck embryo fibroblast cells (DEFs) infected and mock-infected with DTMUV. In total, 434 cellular proteins were differentially expressed, among which 116, 76, and 339 proteins were differentially expressed in the DTMUV-infected DEFs at 12, 24, and 42 hours postinfection, respectively. The Gene Ontology analysis indicated that the biological processes of the differentially expressed proteins were primarily related to cellular processes, metabolic processes, biological regulation, response to stimulus, and cellular organismal processes and that the molecular functions in which the differentially expressed proteins were mainly involved were binding and catalytic activity. Some selected proteins that were found to be differentially expressed in DTMUV-infected DEFs were further confirmed by real-time PCR. The results of this study provide valuable insight into DTMUV-host interactions. This could lead to a better understanding of DTMUV infection mechanisms.
Collapse
|
20
|
Zhou Y, Ren H, Dai B, Li J, Shang L, Huang J, Shi X. Hepatocellular carcinoma-derived exosomal miRNA-21 contributes to tumor progression by converting hepatocyte stellate cells to cancer-associated fibroblasts. J Exp Clin Cancer Res 2018; 37:324. [PMID: 30591064 PMCID: PMC6307162 DOI: 10.1186/s13046-018-0965-2] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a global challenge due to its high morbidity and mortality rates as well as poor response to treatment. The communication between tumor-derived elements and stroma plays a critical role in facilitating cancer progression of HCC. Exosomes are small extracellular vesicles (EVs) that are released from the cells upon fusion of multivesicular bodies with the plasma membrane. There is emerging evidence indicating that exosomes play a central role in cell-to-cell communication. Much attention has been paid to exosomes since they are found to transport bioactive proteins, messenger RNA (mRNAs) and microRNA (miRNAs) that can be transferred in active form to adjacent cells or to distant organs. However, the mechanisms underlying such cancer progression remain largely unexplored. METHODS Exosomes were isolated by differential ultracentrifugation from conditioned medium of HCC cells and identified by electron microscopy and Western blotting analysis. Hepatic stellate cells (HSCs) were treated with different concentrations of exosomes, and the activation of HSCs was analyzed by Western blotting analysis, wound healing, migration assay, Edu assay, CCK-8 assay and flow cytometry. Moreover, the different miRNA levels of exosomes were tested by real-time quantitative PCR (RT-PCR). The angiogenic ability of activated HSCs was analyzed by qRT-PCR, CCK-8 assay and tube formation assay. In addition, the abnormal lipid metabolism of activated HSCs was analyzed by Western blotting analysis and Oil Red staining. Finally, the relationship between serum exosomal miRNA-21 and prognosis of HCC patients was evaluated. RESULTS We showed that HCC cells exhibited a great capacity to convert normal HSCs to cancer-associated fibroblasts (CAFs). Moreover, our data revealed that HCC cells secreted exosomal miRNA-21 that directly targeted PTEN, leading to activation of PDK1/AKT signaling in HSCs. Activated CAFs further promoted cancer progression by secreting angiogenic cytokines, including VEGF, MMP2, MMP9, bFGF and TGF-β. Clinical data indicated that high level of serum exosomal miRNA-21 was correlated with greater activation of CAFs and higher vessel density in HCC patients. CONCLUSIONS Intercellular crosstalk between tumor cells and HSCs was mediated by tumor-derived exosomes that controlled progression of HCC. Our findings provided potential targets for prevention and treatment of live cancer.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing, 210008 Jiangsu Province China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing, 210008 Jiangsu Province China
| | - Bo Dai
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing, 210008 Jiangsu Province China
| | - Jun Li
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing, 210008 Jiangsu Province China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing, 210008 Jiangsu Province China
| | - Jianfei Huang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, 20, Xisi Road, Nantong, 226001 Jiangsu Province China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing, 210008 Jiangsu Province China
| |
Collapse
|
21
|
Wang L, Xie W, Zhang L, Li D, Yu H, Xiong J, Peng J, Qiu J, Sheng H, He X, Zhang K. CVB3 Nonstructural 2A Protein Modulates SREBP1a Signaling via the MEK/ERK Pathway. J Virol 2018; 92:e01060-18. [PMID: 30258014 PMCID: PMC6258932 DOI: 10.1128/jvi.01060-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 01/11/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is the predominant pathogen of viral myocarditis. In our previous study, we found that CVB3 caused abnormal lipid accumulation in host cells. However, the underlying mechanisms by which CVB3 disrupts and exploits the host lipid metabolism are not well understood. Sterol regulatory element binding protein 1 (SREBP1) is the major transcriptional factor in lipogenic genes expression. In this study, we demonstrated that CVB3 infection and nonstructural 2A protein upregulated and activated SREBP1a at the transcriptional level. Deletion analysis of SREBP1a promoter revealed that two regions, -1821/-1490 and -312/+217, in this promoter were both required for its activation by 2A. These promoter regions possessed several binding motifs for transcription factor SP1. Next, we used SP1-specific small interfering RNAs (siRNAs) to confirm that SP1 might be the essential factor in SREBP1a upregulation by 2A. Furthermore, we showed that MEK/ERK pathway was involved in the activation of SREBP1a by 2A and that blocking this signaling pathway with the specific inhibitor U0126 attenuated SREBP1a activation and lipid accumulation by 2A. Finally, we showed that inhibition of SREBP1 with siRNAs attenuated lipid accumulation induced by CVB3 infection and reduced virus replication. Moreover, inhibition of the MEK/ERK pathway also led to reduction of SREBP1a activation, lipid accumulation, and virus replication during CVB3 infection. Taken together, these data demonstrate that CVB3 nonstructural 2A protein activates SREBP1a at the transcription level through a mechanism involving MEK/ERK signaling pathway and SP1 transcription factor, which promotes cellular lipid accumulation and benefits virus replication.IMPORTANCE Coxsackievirus B3 (CVB3) infection is the leading cause of viral myocarditis, but effective vaccines and antiviral therapies against CVB3 infection are still lacking. It is important to understand the precise interactions between host and virus for the rational design of effective therapies. During infection, CVB3 disrupts and exploits host lipid metabolism to promote excessive lipid accumulation, which benefits virus replication. SREBP1 is the master regulator of cellular lipid metabolism. Here, we report that one of the viral nonstructural proteins, 2A, upregulates and activates SREBP1a. Furthermore, we find that inhibition of SREBP1 decreases CVB3 virus replication. These results reveal the regulation of SREBP1a expression by 2A and the roles of SREBP1 in lipid accumulation and viral replication during CVB3 infection. Our findings provide a new insight into CVB3 host interactions and inform a potential novel therapeutic target for this important pathogen.
Collapse
Affiliation(s)
- Lei Wang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Le Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Defeng Li
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua Yu
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jin Peng
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
22
|
Koletzko L, Mahli A, Hellerbrand C. Development of an in vitro model to study hepatitis C virus effects on hepatocellular lipotoxicity and lipid metabolism. Pathol Res Pract 2018; 214:1700-1706. [PMID: 30201523 DOI: 10.1016/j.prp.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/29/2022]
Abstract
Hepatic steatosis is common in patients infected with hepatitis C virus (HCV). Particularly in patients infected with non-genotype 3 HCV, hepatic steatosis is closely related to factors of the metabolic syndrome such as hyperlipidemia. However, the molecular mechanisms involved in this "metabolic" steatosis in non-3 genotype HCV infections are not well understood. Here, we aimed to develop an in vitro model to study the effect of genotype 1 HCV infection on hepatic lipotoxicity and lipid metabolism. Cellular lipid accumulation was induced in Huh-7 hepatoma cells transfected with HCV genotype 1b replicon (HCV+) by incubation with increasing doses of palmitic acid (C16:0) or oleic acid (C18:1 n-9) complexed to albumin mimicking hyperlipidemic conditions. Mock transfected hepatoma cells (HCV-) were used as controls. Incubation with oleic acid concentrations as high as 0.5 mM did not induce toxic effects in HCV+ or HCV- cells. In contrast, incubation with palmitic acid caused dose-dependently cytotoxic effects which were more pronounced in HCV+ compared to HCV- cells. Further analysis with subtoxic palmitic and oleic acid concentrations revealed a higher uptake of fatty acids and intracellular triglyceride accumulation in HCV+ compared to HCV- cells. Carnitine palmitoyltransferase I (CPT1) expression, indicative of mitochondrial beta-oxidation, was markedly stimulated by lipid exposure in HCV+ but not in HCV- cells. Furthermore, heme oxygenase 1 (HMOX1) expression levels increased in FA stimulated cells, and this increase was significantly higher in HCV+ compared to HCV- cells. In contrast, expression of the key enzymes of hepatic de novo lipogenesis fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD-1) was significantly reduced upon oleate exposure in HCV- but not in HCV+ cells. In summary, our newly developed cell culture model revealed effects of HCV genotype 1b infection on metabolic susceptibility to lipid accumulation and toxicity particularly to saturated lipids. These results may indicate that HCV (genotype 1b) infected individuals with hyperlipidemia may benefit from dietary or pharmacological intervention.
Collapse
Affiliation(s)
- Leandra Koletzko
- Department of Medicine II, University Hospital, LMU Munich, Germany; Department of Internal Medicine I, University Hospital Regensburg, Germany
| | - Abdo Mahli
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Germany; Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Germany.
| |
Collapse
|
23
|
Pombo JP, Sanyal S. Perturbation of Intracellular Cholesterol and Fatty Acid Homeostasis During Flavivirus Infections. Front Immunol 2018; 9:1276. [PMID: 29915602 PMCID: PMC5994796 DOI: 10.3389/fimmu.2018.01276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Cellular lipid homeostasis is maintained through an intricately linked array of anabolic and catabolic pathways. Upon flavivirus infections, these are significantly altered: on the one hand, these viruses can co-opt lipid metabolic pathways to generate ATP to facilitate replication, or to synthesize membrane components to generate replication sites; on the other hand, more recent evidence suggests counter strategies employed by host cells, which actively modulate several of these networks in response to infection, enhancing interferon signaling by doing so, and thus creating an antiviral environment. In this review, we discuss recent data on mechanisms of alteration of lipid metabolic pathways during infection by flaviviruses, with a focus on cholesterol and fatty acid biosynthesis, which can be manipulated by the invading viruses to support replication, but can also be modulated by the host immune system itself, as a means to fight infection.
Collapse
Affiliation(s)
- Joao Palma Pombo
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
24
|
Wu Q, Li Z, Liu Q. An important role of SREBP-1 in HBV and HCV co-replication inhibition by PTEN. Virology 2018; 520:94-102. [PMID: 29803738 DOI: 10.1016/j.virol.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
HBV HCV co-infection leads to more severe liver diseases including liver cancer than mono-infections. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor, inhibits sterol regulatory element binding protein-1 (SREBP-1). In this study, we characterized the effect of the PTEN - SREBP-1 pathway on HBV HCV co-replication in a cellular model. We found that HBV and HCV can co-replicate in Huh-7 cells with no interference. Overexpression of PTEN inhibits, whereas PTEN knockdown enhances, HBV replication as well as HBV and HCV co-replication. Knocking down SREBP-1 decreases HBV replication in an HBx-dependent manner. SREBP-1 knockdown also decreases HCV replication. PTEN knockdown is concomitant with increased nuclear SREBP-1 levels. PTEN and SREBP-1 double knockdown results in intermediate levels of HBV and HCV replication in mono- and co-replication scenarios. Taken together, we demonstrated, for the first time, that the PTEN - SREBP-1 pathway can regulate HBV HCV co-replication.
Collapse
Affiliation(s)
- Qi Wu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Department of Veterinary Microbiology, University of Saskatchewan, Canada
| | - Zhubing Li
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; School of Public Health Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3; Department of Veterinary Microbiology, University of Saskatchewan, Canada; School of Public Health Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
25
|
Hickson SE, Margineantu D, Hockenbery DM, Simon JA, Geballe AP. Inhibition of vaccinia virus replication by nitazoxanide. Virology 2018; 518:398-405. [PMID: 29625403 DOI: 10.1016/j.virol.2018.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/27/2022]
Abstract
Nitazoxanide (NTZ) is an FDA-approved anti-protozoal drug that inhibits several bacteria and viruses as well. However, its effect on poxviruses is unknown. Therefore, we investigated the impact of NTZ on vaccinia virus (VACV). We found that NTZ inhibits VACV production with an EC50 of ~2 μM, a potency comparable to that reported for several other viruses. The inhibitory block occurs early during the viral life cycle, prior to viral DNA replication. The mechanism of viral inhibition is likely not due to activation of intracellular innate immune pathways, such as protein kinase R (PKR) or interferon signaling, contrary to what has been suggested to mediate the effects of NTZ against some other viruses. Rather, our finding that addition of exogenous palmitate partially rescues VACV production from the inhibitory effect of NTZ suggests that NTZ impedes adaptations in cellular metabolism that are needed for efficient completion of the VACV replication cycle.
Collapse
Affiliation(s)
- Sarah E Hickson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Microbiology, University of Washington, Seattle, WA 98115, United States
| | - Daciana Margineantu
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - David M Hockenbery
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Medicine, University of Washington, Seattle, WA 98115, United States
| | - Julian A Simon
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Adam P Geballe
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Department of Microbiology, University of Washington, Seattle, WA 98115, United States; Department of Medicine, University of Washington, Seattle, WA 98115, United States.
| |
Collapse
|
26
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
27
|
Li Z, Liu Q. Hepatitis C virus regulates proprotein convertase subtilisin/kexin type 9 promoter activity. Biochem Biophys Res Commun 2018; 496:1229-1235. [PMID: 29397939 DOI: 10.1016/j.bbrc.2018.01.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease mainly expressed in liver. Although PCSK9 has been shown to inhibit hepatitis C virus (HCV) entry and replication, whether HCV regulates PCSK9 transcription has not been well studied. PCSK9 promoter activity is modulated by numerous transcription factors including sterol-regulatory element binding protein (SREBP)-1a, -1c, -2, hepatocyte nuclear factor-1 (HNF-1), and forkhead box O3 (FoxO3). Since they are differently regulated by HCV, we studied the effects of these transcription factors on PCSK9 promoter activity in the context of HCV infection and replication. We demonstrated that PCSK9 promoter activity was up-regulated after HCV infection and in HCV genomic replicon cells. We also studied the effects of HCV proteins on the PCSK9 promoter activity. While HCV structural proteins core, E1, and E2 had no effect, NS2, NS3, NS3-4A, NS5A and NS5B enhanced, and p7 and NS4B decreased PCSK9 promoter activity. Furthermore, we showed that transcription factors SREBP-1c, HNF-1α and specificity protein 1 increased PCSK9 promoter activity in HCV replicon cells, whereas SREBP-1a, HNF-1β and FoxO3 had an inhibitory effect. These results demonstrated the molecular mechanisms of how HCV modulates PCSK9 promoter activity and advanced our understanding on the mutual interactions between HCV and PCSK9.
Collapse
Affiliation(s)
- Zhubing Li
- VIDO-InterVac, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
28
|
Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ, Lee SH, Han HJ. BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol 2017; 13:426-443. [PMID: 28704726 PMCID: PMC5508529 DOI: 10.1016/j.redox.2017.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023] Open
Abstract
Mitophagy under hypoxia is an important factor for maintaining and regulating stem cell functions. We previously demonstrated that fatty acid synthase (FASN) induced by hypoxia is a critical lipid metabolic factor determining the therapeutic efficacy of umbilical cord blood-derived human mesenchymal stem cells (UCB-hMSCs). Therefore, we investigated the mechanism of a major mitophagy regulator controlling lipid metabolism and therapeutic potential of UCB-hMSCs. This study revealed that Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-dependent mitophagy is important for reducing mitochondrial reactive oxygen species accumulation, anti-apoptosis, and migration under hypoxia. And, BNIP3 expression was regulated by CREB binding protein-mediated transcriptional actions of HIF-1α and FOXO3. Silencing of BNIP3 suppressed free fatty acid (FFA) synthesis regulated by SREBP1/FASN pathway, which is involved in UCB-hMSC apoptosis via caspases cleavage and migration via cofilin-1-mediated F-actin reorganization in hypoxia. Moreover, reduced mouse skin wound-healing capacity of UCB-hMSC with hypoxia pretreatment by BNIP3 silencing was recovered by palmitic acid. Collectively, our findings suggest that BNIP3-mediated mitophagy under hypoxia leads to FASN-induced FFA synthesis, which is critical for therapeutic potential of UCB-hMSCs with hypoxia pretreatment. BNIP3 induction by hypoxia mainly controls mitophagy and mitochondrial ROS production in UCB-hMSCs. BNIP3 silencing impairs UCB-hMSC functions such as survival, migration and free fatty acid production under hypoxia. BNIP3 silencing suppresses SREBP1/FASN-mediated free fatty acid production via ROS regulation under hypoxia. BNIP3 silencing decreased skin wound healing potential of hypoxia-pretreated UCB-hMSCs. Palmitic acid addition recovers decreased therapeutic potential of UCB-hMSCs by BNIP3 silencing.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea; Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
29
|
Orsi E, Grancini V, Menini S, Aghemo A, Pugliese G. Hepatogenous diabetes: Is it time to separate it from type 2 diabetes? Liver Int 2017; 37:950-962. [PMID: 27943508 DOI: 10.1111/liv.13337] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
By definition, hepatogenous diabetes is directly caused by loss of liver function, implying that it develops after cirrhosis onset. Therefore, it should be distinguished from type 2 diabetes developing before cirrhosis onset, in which specific causes of liver disease play a major role, in addition to traditional risk factors. Currently, although hepatogenous diabetes shows distinct pathophysiological and clinical features, it is not considered as an autonomous entity. Recent evidence suggests that the failing liver exerts an independent "toxic" effect on pancreatic islets resulting in β-cell dysfunction. Moreover, patients with hepatogenous diabetes usually present with normal fasting glucose and haemoglobin A1c levels and abnormal response to an oral glucose tolerance test, which is therefore required for diagnosis. This article discusses the need to separate hepatogenous diabetes from type 2 diabetes occurring in subjects with chronic liver disease and to identify individuals suffering from this condition for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Emanuela Orsi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda-Ospedale Maggiore Policlinico" Foundation, University of Milan, Milan, Italy.,Department of Medical Sciences, University of Milan, Milan, Italy
| | - Valeria Grancini
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda-Ospedale Maggiore Policlinico" Foundation, University of Milan, Milan, Italy.,Department of Medical Sciences, University of Milan, Milan, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy.,Diabetes Unit, Sant'Andrea Hospital, Rome, Italy
| | - Alessio Aghemo
- Division of Gastroenterology and Hepatology, A.M. and A. Migliavacca Center for Liver Disease, IRCCS "Cà Granda-Ospedale Maggiore Policlinico" Foundation, University of Milan, Milan, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy.,Diabetes Unit, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Direct-acting antiviral agents (DAAs) have markedly improved the prognosis of hepatitis C virus (HCV)-genotype 3 (GT3), a highly prevalent infection worldwide. However, in patients with hepatic fibrosis, cirrhosis, or hepatocellular carcinoma (HCC), GT3 infection presents a treatment challenge compared with other genotypes. The dependence of the HCV life cycle on host lipid metabolism suggests the possible utility of targeting host cellular factors for combination anti-HCV therapy. We discuss current and emergent DAA regimens for HCV-GT3 treatment. We then summarize recent research findings on the reliance of HCV entry, replication, and virion assembly on host lipid metabolism. RECENT FINDINGS Current HCV treatment guidelines recommend the use of daclatasvir plus sofosbuvir (DCV/SOF) or sofosbuvir plus velpatasvir (SOF/VEL) for the management of GT3 based upon clinical efficacy [≥88% overall sustained virological response (SVR)] and tolerability. Potential future DAA options, such as SOF/VEL co-formulated with GS-9857, also look promising in treating cirrhotic GT3 patients. However, HCV resistance to DAAs will likely continue to impact the therapeutic efficacy of interferon-free treatment regimens. Disruption of HCV entry by targeting required host cellular receptors shows potential in minimizing HCV resistance and broadening therapeutic options for certain subpopulations of GT3 patients. The use of cholesterol biosynthesis and transport inhibitors may also improve health outcomes for GT3 patients when used synergistically with DAAs. Due to the morbidity and mortality associated with HCV-GT3 infection compared to other genotypes, efforts should be made to address current limitations in the therapeutic prevention and management of HCV-GT3 infection.
Collapse
|
31
|
Manickam C, Wachtman L, Martinot AJ, Giavedoni LD, Reeves RK. Metabolic Dysregulation in Hepacivirus Infection of Common Marmosets (Callithrix jacchus). PLoS One 2017; 12:e0170240. [PMID: 28085952 PMCID: PMC5234844 DOI: 10.1371/journal.pone.0170240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C has been associated with metabolic syndrome that includes insulin resistance, hepatic steatosis and obesity. These metabolic aberrations are risk factors for disease severity and treatment outcome in infected patients. Experimental infection of marmosets with GBV-B serves as a tangible, small animal model for human HCV infection, and while virology and pathology are well described, a full investigation of clinical disease and the metabolic milieu is lacking. In this study six marmosets were infected intravenously with GBV-B and changes in hematologic, serum biochemical and plasma metabolic measures were investigated over the duration of infection. Infected animals exhibited signs of lymphocytopenia, but platelet and RBC counts were generally stable or even increased. Although most animals showed a transient decline in blood glucose, infection resulted in several fold increases in plasma insulin, glucagon and glucagon-like peptide 1 (GLP-1). All infected animals experienced transient weight loss within the first 28 days of infection, but also became hypertriglyceridemic and had up to 10-fold increases in adipocytokines such as resistin and plasminogen activator inhibitor 1 (PAI-1). In liver, moderate to severe cytoplasmic changes associated with steatotic changes was observed microscopically at 168 days post infection. Collectively, these results suggest that GBV-B infection is accompanied by hematologic, biochemical and metabolic abnormalities that could lead to obesity, diabetes, thrombosis and atherosclerosis, even after virus has been cleared. Our findings mirror those found in HCV patients, suggesting that metabolic syndrome could be conserved among hepaciviruses, and both mechanistic and interventional studies for treating HCV-induced metabolic complications could be evaluated in this animal model.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lynn Wachtman
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| | - Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Luis D. Giavedoni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- New England Primate Research Center, Harvard Medical School, Southborough Campus, Southborough, Massachusetts, United States of America
| |
Collapse
|
32
|
Mahdy MM, El-Ekiaby NM, Hashish RM, Salah RA, Hanafi RS, El-Said Azzazy HM, Abdelaziz AI. miR-29a Promotes Lipid Droplet and Triglyceride Formation in HCV Infection by Inducing Expression of SREBP-1c and CAV1. J Clin Transl Hepatol 2016; 4:293-299. [PMID: 28097097 PMCID: PMC5225148 DOI: 10.14218/jcth.2016.00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 01/18/2023] Open
Abstract
Aims: To examine the regulation of SREBP-1c and CAV1 by microRNA-29a (miR-29a) in cells infected with hepatitis C virus (HCV) in an attempt to control HCV-induced non-alcoholic fatty liver disease. Methods: In order to examine the manipulation of SREBP-1c and CAV1 by miR-29a, oleic acid (OA)-treated JFH-I-infected Huh-7 cells were used. OA was added 24 h post-transfection and gene expression was investigated by qRT-PCR at 48 h post treatment. The functional impact of the observed alteration in SREBP-1c and CAV1 expression was analyzed by examining lipid droplet (LD) and triglyceride (TG) content at 72 h post-OA treatment using light microscopy and spectrophotometry, respectively. Viral load was quantified by qRT-PCR at 72 h post-transfection. Results: OA treatment induced the expression of miR-29a and SREBP-1c, as compared to untreated cells. Forced miR-29a expression led to a significant up-regulation of SREBP-1c as well as CAV1 compared to mock untransfected cells. Ectopic expression of miR-29a resulted in a marked increase in LDs and their respective TGs, while miR-29a antagomirs decreased both the LD and TG content compared to mock untransfected cells. Moreover, forcing the expression of miR-29a in JFH-1 HCV-infected Huh-7 cells resulted in 53% reduction in viral titers compared to mock untransfected Huh-7 cells. Conclusion: Inducing miR-29a expression significantly induces SREBP-1c and CAV1 expression, thereby increasing LDs as well as their respective TGs. Nonetheless, forcing the expression of miR-29a resulted in reduction of HCV RNA levels in Huh-7 cells.
Collapse
Affiliation(s)
| | - Nada Magdy El-Ekiaby
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Egypt
- School of Medicine, NewGiza University, Cairo, Egypt
| | - Rana Mahmoud Hashish
- Department of Pharmaceutical Biology, German University in Cairo, New Cairo City, Egypt
| | - Radwa Ayman Salah
- Department of Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Rasha Sayed Hanafi
- Department of Pharmaceutical Chemistry, German University in Cairo, New Cairo City, Egypt
| | | | - Ahmed Ihab Abdelaziz
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Egypt
- School of Medicine, NewGiza University, Cairo, Egypt
- *Correspondence to: Ahmed Ihab Abdelaziz, Department of Molecular Medicine, School of Medicine, Newgiza University, Cairo 11431, Egypt. Tel: +20-238277847, E-mail:
| |
Collapse
|
33
|
Adinolfi LE, Rinaldi L, Guerrera B, Restivo L, Marrone A, Giordano M, Zampino R. NAFLD and NASH in HCV Infection: Prevalence and Significance in Hepatic and Extrahepatic Manifestations. Int J Mol Sci 2016; 17:ijms17060803. [PMID: 27231906 PMCID: PMC4926337 DOI: 10.3390/ijms17060803] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of this paper is to review and up to date the prevalence of hepatitis C virus (HCV)-associated non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) and their significance in both accelerating progression of HCV-related liver disease and development of HCV-associated extrahepatic diseases. The reported mean prevalence of HCV-related NAFLD was 55%, whereas NASH was reported in 4%–10% of cases. HCV genotype 3 directly induces fatty liver deposition, namely “viral steatosis” and it is associated with the highest prevalence and degree of severity, whereas, HCV non-3 genotype infection showed lower prevalence of steatosis, which is associated with metabolic factors and insulin resistance. The host’s genetic background predisposes him or her to the development of steatosis. HCV’s impairment of lipid and glucose metabolism causes fatty liver accumulation; this seems to be a viral strategy to optimize its life cycle. Irrespective of insulin resistance, HCV-associated NAFLD, in a degree-dependent manner, contributes towards accelerating the liver fibrosis progression and development of hepatocellular carcinoma by inducing liver inflammation and oxidative stress. Furthermore, NAFLD is associated with the presence of metabolic syndrome, type 2 diabetes, and atherosclerosis. In addition, HCV-related “metabolic steatosis” impairs the response rate to interferon-based treatment, whereas it seems that “viral steatosis” may harm the response rate to new oral direct antiviral agents. In conclusion, a high prevalence of NAFLD occurs in HCV infections, which is, at least in part, induced by the virus, and that NAFLD significantly impacts progression of the liver disease, therapeutic response, and some extrahepatic diseases.
Collapse
Affiliation(s)
- Luigi Elio Adinolfi
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples 80100, Italy.
| | - Luca Rinaldi
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples 80100, Italy.
| | - Barbara Guerrera
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples 80100, Italy.
| | - Luciano Restivo
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples 80100, Italy.
| | - Aldo Marrone
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples 80100, Italy.
| | - Mauro Giordano
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples 80100, Italy.
| | - Rosa Zampino
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples 80100, Italy.
| |
Collapse
|
34
|
Oxysterols: An emerging class of broad spectrum antiviral effectors. Mol Aspects Med 2016; 49:23-30. [PMID: 27086126 DOI: 10.1016/j.mam.2016.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 01/26/2023]
Abstract
Oxysterols are a family of cholesterol oxidation derivatives that contain an additional hydroxyl, epoxide or ketone group in the sterol nucleus and/or a hydroxyl group in the side chain. The majority of oxysterols in the blood are of endogenous origin, derived from cholesterol via either enzymatic or non-enzymatic mechanisms. A large number of reports demonstrate multiple physiological roles of specific oxysterols. One such role is the inhibition of viral replication. This biochemical/biological property was first characterised against a number of viruses endowed with an external lipid membrane (enveloped viruses), although antiviral activity has since been observed in relation to several non-enveloped viruses. In the present paper, we review the recent findings about the broad antiviral activity of oxysterols against enveloped and non-enveloped human viral pathogens, and provide an overview of their putative antiviral mechnism(s).
Collapse
|
35
|
Shi Q, Hoffman B, Liu Q. PI3K-Akt signaling pathway upregulates hepatitis C virus RNA translation through the activation of SREBPs. Virology 2016; 490:99-108. [PMID: 26855332 DOI: 10.1016/j.virol.2016.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) activates PI3K-Akt signaling to enhance entry and replication. Here, we found that this pathway also increased HCV translation. Knocking down the three Akt isoforms significantly decreased, whereas ectopic expression increased HCV translation. HCV translation upregulation by Akt required their kinase activities because Akt kinase-dead mutants downregulated HCV translation; and was dependent on PI3K activity since it was sensitive to PI3K inhibitor wortmannin. The viral 3'UTR was not involved in translation upregulation by Akt. HCV NS5A increased Akt phosphorylation/activity and HCV translation in the absence of the viral 3'UTR. Sterol regulatory element-binding proteins (SREBPs) were the downstream effectors of the PI3K-Akt pathway in regulating HCV translation because Akt1 and Akt2 activated both SREBP-1 and SREBP-2, whereas Akt3 upregulated SREBP-1. Knocking down SREBPs significantly decreased, while ectopic expression of SREBPs increased HCV translation. Taken together, we showed that the PI3K-Akt signaling pathway positively regulates HCV translation through SREBPs.
Collapse
Affiliation(s)
| | - Brett Hoffman
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
36
|
Wu Q, Liu Q. HBx truncation mutants differentially modulate SREBP-1a and -1c transcription and HBV replication. Virus Res 2015; 210:46-53. [DOI: 10.1016/j.virusres.2015.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/25/2022]
|
37
|
Butt AA, Yan P, Simon TG, Chung RT, Abou-Samra AB. Changes in circulating lipids level over time after acquiring HCV infection: results from ERCHIVES. BMC Infect Dis 2015; 15:510. [PMID: 26558512 PMCID: PMC4642733 DOI: 10.1186/s12879-015-1268-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Changes in lipid levels over time after acquiring HCV infection, and how they differ from HCV-uninfected persons are unknown. METHODS We used ERCHIVES to identify those with a known HCV seroconversion window and persistently negative controls. We excluded subjects with HIV and hepatitis B and those who received lipid lowering agents. Total Cholesterol (TC), low-density lipoproteins (LDL), high-density lipoproteins (HDL), triglycerides (TG) and non-HDL cholesterol were retrieved at yearly intervals and plotted over time. RESULTS Among 1,270 HCV+ and 5,070 HCV- subjects, median age [IQR] was 47[37,53] for HCV+ and 52[47,57] for the HCV- group; 69% were White and 91% were males in each group. Mean BMI [SD] was 26.94[6.73] in the HCV+ and 28.15 [5.98] in the HCV- group (P < 0.001). Over a 10-year follow-up period among HCV+ persons, TC decreased by (mean (SD) mg/dL) 12.06(36.95), LDL by 9.22(31.44), TG by 13.58(87.01) and non-HDL-C by 12.55(35.14). Among HCV- persons, TC cholesterol decreased by 4.15(31.21), LDL by 4.16(26.51); TG by 4.42(82.34) and non-HDL-C by 5.78(30.17). CONCLUSIONS After HCV acquisition, TC, LDL, TG and non-HDL-C progressively decline over time independent of BMI and liver fibrosis. Consequences of lipid changes and the need and optimal timing of lipid lowering therapy in HCV+ persons require further study.
Collapse
Affiliation(s)
- Adeel A Butt
- VA Pittsburgh Healthcare System, 3601 Fifth Avenue, Suite 3A, Pittsburgh, PA, 15213, USA. .,University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Hamad Healthcare Quality Institute, Doha, Qatar. .,Hamad Medical Corporation, Doha, Qatar.
| | - Peng Yan
- VA Pittsburgh Healthcare System, 3601 Fifth Avenue, Suite 3A, Pittsburgh, PA, 15213, USA.
| | | | | | | | | |
Collapse
|
38
|
Freire TO, Boulhosa RSSB, Oliveira LPM, de Jesus RP, Cavalcante LN, Lemaire DC, Toralles MBP, Lyra LGC, Lyra AC. n-3 polyunsaturated fatty acid supplementation reduces insulin resistance in hepatitis C virus infected patients: a randomised controlled trial. J Hum Nutr Diet 2015. [PMID: 26216648 DOI: 10.1111/jhn.12327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Insulin resistance promotes liver disease progression and may be associated with a lower response rate in treated hepatitis C virus (HCV) infected patients. n-3 polyunsaturated fatty acid (PUFA) supplementation may reduce insulin resistance. The present study aimed to evaluate the effect of n-3 PUFA supplementation on insulin resistance in these patients. METHODS In a randomised, double-blind clinical trial, 154 patients were screened. After applying inclusion criteria, 52 patients [homeostasis model assessment index of insulin resistance (HOMA-IR ≥2.5)] were randomly divided into two groups: n-3 PUFA (n = 25/6000 mg day(-1) of fish oil) or control (n = 27/6000 mg day(-1) of soybean oil). Both groups were supplemented for 12 weeks and underwent monthly nutritional consultation. Biochemical tests were performed at baseline and after intervention. Statistical analysis was performed using the Wilcoxon Mann-Whitney test for comparisons and the Wilcoxon test for paired data. Statistical package r, version 3.02 (The R Project for Statistical Computing) was used and P < 0.05 (two-tailed) was considered statistically significant. RESULTS Comparisons between groups showed that n-3 PUFA supplementation was more effective than the control for reducing HOMA-IR (P = 0.015) and serum insulin (P = 0.016). The n-3 PUFA group not only showed a significant reduction in HOMA-IR 3.8 (3.2-5.0) versus 2.4 (1.8-3.3) (P = 0.002); serum insulin 17.1 (13.8-20.6) μIU mL(-1) versus 10.9 (8.6-14.6) μIU mL(-1) (P = 0.001); and glycated haemoglobin 5.4% (5.0-5.7%) versus 5.1% (4.8-5.6%) (P = 0.011), but also presented an increase in interleukin-1 97.5 (0.0-199.8) pg mL(-1) versus 192.4 (102.2-266.8) pg mL(-1) (P = 0.003) and tumour necrosis factor 121.2 (0.0-171.3) pg mL(-1) versus 185.7 (98.0-246.9) pg mL(-1) (P = 0.003). CONCLUSIONS n-3 PUFA supplementation reduces insulin resistance in genotype 1 HCV infected patients.
Collapse
Affiliation(s)
- T O Freire
- Postgraduate Course in Medicine and Health, Federal University of Bahia, Bahia, Brazil.,Nutrition Science Department, Federal University of Bahia, Bahia, Brazil
| | - R S S B Boulhosa
- Nutrition Science Department, Federal University of Bahia, Bahia, Brazil
| | - L P M Oliveira
- Nutrition Science Department, Federal University of Bahia, Bahia, Brazil
| | - R P de Jesus
- Nutrition Science Department, Federal University of Bahia, Bahia, Brazil
| | - L N Cavalcante
- Department of Medicine, Division of Gastroenterology and Hepatology, Federal University of Bahia, Bahia, Brazil
| | - D C Lemaire
- Laboratory of Immunology, Health Science Institute, Federal University of Bahia, Bahia, Brazil
| | - M B P Toralles
- Pediatric Department, Federal University of Bahia, Bahia, Brazil
| | - L G C Lyra
- Postgraduate Course in Medicine and Health, Federal University of Bahia, Bahia, Brazil.,Gastro-Hepatology Unit, Hospital São Rafael of Bahia, Bahia, Brazil
| | - A C Lyra
- Postgraduate Course in Medicine and Health, Federal University of Bahia, Bahia, Brazil.,Department of Medicine, Division of Gastroenterology and Hepatology, Federal University of Bahia, Bahia, Brazil.,Gastro-Hepatology Unit, Hospital São Rafael of Bahia, Bahia, Brazil
| |
Collapse
|
39
|
Identification of Cholesterol 25-Hydroxylase as a Novel Host Restriction Factor and a Part of the Primary Innate Immune Responses against Hepatitis C Virus Infection. J Virol 2015; 89:6805-16. [PMID: 25903345 DOI: 10.1128/jvi.00587-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV), a single-stranded positive-sense RNA virus of the Flaviviridae family, causes chronic liver diseases, including hepatitis, cirrhosis, and cancer. HCV infection is critically dependent on host lipid metabolism, which contributes to all stages of the viral life cycle, including virus entry, replication, assembly, and release. 25-Hydroxycholesterol (25HC) plays a critical role in regulating lipid metabolism, modulating immune responses, and suppressing viral pathogens. In this study, we showed that 25HC and its synthesizing enzyme cholesterol 25-hydroxylase (CH25H) efficiently inhibit HCV infection at a postentry stage. CH25H inhibits HCV infection by suppressing the maturation of SREBPs, critical transcription factors for host lipid biosynthesis. Interestingly, CH25H is upregulated upon poly(I · C) treatment or HCV infection in hepatocytes, which triggers type I and III interferon responses, suggesting that the CH25H induction constitutes a part of host innate immune response. To our surprise, in contrast to studies in mice, CH25H is not induced by interferons in human cells and knockdown of STAT-1 has no effect on the induction of CH25H, suggesting CH25H is not an interferon-stimulated gene in humans but rather represents a primary and direct host response to viral infection. Finally, knockdown of CH25H in human hepatocytes significantly increases HCV infection. In summary, our results demonstrate that CH25H constitutes a primary innate response against HCV infection through regulating host lipid metabolism. Manipulation of CH25H expression and function should provide a new strategy for anti-HCV therapeutics. IMPORTANCE Recent studies have expanded the critical roles of oxysterols in regulating immune response and antagonizing viral pathogens. Here, we showed that one of the oxysterols, 25HC and its synthesizing enzyme CH25H efficiently inhibit HCV infection at a postentry stage via suppressing the maturation of transcription factor SREBPs that regulate lipid biosynthesis. Furthermore, we found that CH25H expression is upregulated upon poly(I·C) stimulation or HCV infection, suggesting CH25H induction constitutes a part of host innate immune response. Interestingly, in contrast to studies in mice showing that ch25h is an interferon-stimulated gene, CH25H cannot be induced by interferons in human cells but rather represents a primary and direct host response to viral infection. Our studies demonstrate that the induction of CH25H represents an important host innate response against virus infection and highlight the role of lipid effectors in host antiviral strategy.
Collapse
|
40
|
Li L, Yun JH, Ryoo JE, Lee KJ, Choi BC, Baek KH. 54G/C polymorphism of SREBF-1 gene is associated with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 2015; 188:95-9. [PMID: 25801724 DOI: 10.1016/j.ejogrb.2015.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE A sterol regulatory element-binding protein (SREBF-1) transcription factor is a major regulator of lipid metabolism, carbohydrate, and plays a key role in energy homeostasis. The 54(G/C) polymorphism of SREBF-1 gene was reported that it is related with metabolic diseases including obesity, type 2 diabetes, and dyslipidemia. Among these, polycystic ovary syndrome (PCOS) is known as a common metabolic-endocrine disorder of women in reproductive ages. STUDY DESIGN Here, we performed a comparative study of 54(G/C) polymorphism of SREBF-1 gene with PCOS. The 54(G/C) polymorphism of SREBF-1 gene was analyzed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of total 286 PCOS patients and 149 matched controls of healthy women. Statistical analysis was performed using HapAnalyzer. A p-value under 0.05 was considered statistically significant. RESULTS There was a strong association between the 54(G/C) polymorphism of SREBF-1 gene and PCOS (OR: 0.65, 95% CI: 0.46-0.90, p: 0.0129). The genotype and allelic frequencies were in Hardy-Weinberg equilibrium (HWE). CONCLUSION This is the first study on the genetic variation of SREBF-1 gene and PCOS. We concluded that 54(G/C) polymorphism of SREBF-1 gene is associated with PCOS. Therefore, our results suggest that SREBF-1 gene may play a role in genetic predisposition to PCOS, which is helpful in understanding the etiology of PCOS.
Collapse
Affiliation(s)
- Lan Li
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea
| | - Ji-Hyun Yun
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea
| | - Ji Eun Ryoo
- Hankuk Academy of Foreign Studies, Yongin 449-854, Gyeonggi-Do, Republic of Korea
| | - Kyung-Ju Lee
- Department of Gynecology and Obstetrics, CHA University, CHA General Hospital, Seoul 135-081, Republic of Korea
| | - Bum-Chae Choi
- Department of Obstetrics and Gynecology, CL Women's Hospital, Gwangju 502-800, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Seongnam 463-840, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
41
|
Singaravelu R, Desrochers GF, Srinivasan P, O’Hara S, Lyn RK, Müller R, Jones DM, Russell RS, Pezacki JP. Soraphen A: A Probe for Investigating the Role of de Novo Lipogenesis during Viral Infection. ACS Infect Dis 2015; 1:130-4. [PMID: 27622463 DOI: 10.1021/acsinfecdis.5b00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many viruses including the hepatitis C virus (HCV) induce changes to the infected host cell metabolism that include the up-regulation of lipogenesis to create a favorable environment for the virus to propagate. The enzyme acetyl-CoA carboxylase (ACC) polymerizes to form a supramolecular complex that catalyzes the rate-limiting step of de novo lipogenesis. The small molecule natural product Soraphen A (SorA) acts as a nanomolar inhibitor of acetyl-CoA carboxylase activity through disruption of the formation of long highly active ACC polymers from less active ACC dimers. We have shown that SorA inhibits HCV replication in HCV cell culture models expressing subgenomic and full-length replicons (IC50 = 5 nM) as well as a cell culture adapted virus. Using coherent anti-Stokes Raman scattering (CARS) microscopy, we have shown that SorA lowers the total cellular lipid volume in hepatoma cells, consistent with a reduction in de novo lipogenesis. Furthermore, SorA treatment was found to depolymerize the ACC complexes into less active dimers. Taken together, our results suggest that SorA treatment reverses HCV-induced lipid accumulation and demonstrate that SorA is a valuable probe to study the roles of ACC polymerization and enzymatic activity in viral pathogenesis.
Collapse
Affiliation(s)
- Ragunath Singaravelu
- Life
Sciences Division, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Geneviève F. Desrochers
- Life
Sciences Division, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Prashanth Srinivasan
- Life
Sciences Division, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Shifawn O’Hara
- Life
Sciences Division, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Rodney K. Lyn
- Life
Sciences Division, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Rolf Müller
- Institute
of Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
| | - Daniel M. Jones
- Immunology
and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3V6
| | - Rodney S. Russell
- Immunology
and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1B 3V6
| | - John Paul Pezacki
- Life
Sciences Division, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|
42
|
Song R, Yang B, Gao X, Zhang J, Sun L, Wang P, Meng Y, Wang Q, Liu S, Cheng J. Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma. Mol Med Rep 2015; 11:4053-62. [PMID: 25625293 PMCID: PMC4394931 DOI: 10.3892/mmr.2015.3256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 12/11/2014] [Indexed: 01/30/2023] Open
Abstract
The function of the novel cell migration-promoting factor, coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) in liver cancer remains to be elucidated. The aim of the present study was to elucidate the role of CHCHD2 in liver carcinogenesis. Immunohistochemistry was performed on patients with hepatocellular carcinoma (HCC) and suppression subtractive hybridization (SSH) was used for screening differentially expressed genes in the HepG2 cell cDNA library. Chronic hepatitis C virus (HCV) infection frequently leads to liver cancer. The HCV NS2 protein is a hydrophobic transmembrane protein that is associated with certain cellular proteins. Detailed characterization of the nonstructural protein 2 (NS2) of the HCV was performed with respect to its role in transregulatory activity in the HepG2 cell lines. A gel electrophoresis mobility shift assay and a chromatin immunoprecipitation assay were used to confirm the presence of cyclic adenosine monophosphate response element-binding protein (CREB), a transcriptional factor, which specifically interacts with the CHCHD2 promoter. CHCHD2 was highly expressed in the HCC specimens and was consistent with tumor markers of HCC. CHCHD2 was identified by SSH in the HepG2 cells. NS2 upregulated the expression of CHCHD2 by monitoring its promoter activities. The promoter of CHCHD2 contained 350 bp between nucleotides −257 and +93 and was positively regulated by CREB. In conclusion, the results of the present study indicated that CHCHD2 may be a novel biomarker for HCC and that CREB is important in the transcriptional activation of CHCHD2 by HCV NS2.
Collapse
Affiliation(s)
- Rui Song
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Biao Yang
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Xuesong Gao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jinqian Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Lei Sun
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Peng Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Yixing Meng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
43
|
Loizides-Mangold U, Clément S, Alfonso-Garcia A, Branche E, Conzelmann S, Parisot C, Potma EO, Riezman H, Negro F. HCV 3a core protein increases lipid droplet cholesteryl ester content via a mechanism dependent on sphingolipid biosynthesis. PLoS One 2014; 9:e115309. [PMID: 25522003 PMCID: PMC4270764 DOI: 10.1371/journal.pone.0115309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) infected patients often develop steatosis and the HCV core protein alone can induce this phenomenon. To gain new insights into the pathways leading to steatosis, we performed lipidomic profiling of HCV core protein expressing-Huh-7 cells and also assessed the lipid profile of purified lipid droplets isolated from HCV 3a core expressing cells. Cholesteryl esters, ceramides and glycosylceramides, but not triglycerides, increased specifically in cells expressing the steatogenic HCV 3a core protein. Accordingly, inhibitors of cholesteryl ester biosynthesis such as statins and acyl-CoA cholesterol acyl transferase inhibitors prevented the increase of cholesteryl ester production and the formation of large lipid droplets in HCV core 3a-expressing cells. Furthermore, inhibition of de novo sphingolipid biosynthesis by myriocin - but not of glycosphingolipid biosynthesis by miglustat - affected both lipid droplet size and cholesteryl ester level. The lipid profile of purified lipid droplets, isolated from HCV 3a core-expressing cells, confirmed the particular increase of cholesteryl ester. Thus, both sphingolipid and cholesteryl ester biosynthesis are affected by the steatogenic core protein of HCV genotype 3a. These results may explain the peculiar lipid profile of HCV-infected patients with steatosis.
Collapse
Affiliation(s)
- Ursula Loizides-Mangold
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Alba Alfonso-Garcia
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States of America
| | - Emilie Branche
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stéphanie Conzelmann
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Clotilde Parisot
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
| | - Eric O. Potma
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States of America
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Francesco Negro
- Division of Clinical Pathology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
- Divisions of Gastroenterology and Hepatology, University Hospital, University of Geneva School of Medicine, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Negro F. Facts and fictions of HCV and comorbidities: steatosis, diabetes mellitus, and cardiovascular diseases. J Hepatol 2014; 61:S69-78. [PMID: 25443347 DOI: 10.1016/j.jhep.2014.08.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/16/2014] [Accepted: 08/01/2014] [Indexed: 12/16/2022]
Abstract
The hepatitis C virus (HCV) is a major cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma worldwide. A significant portion of the morbidity and mortality associated with HCV is a consequence of numerous HCV-associated comorbidities. Type 2 diabetes and atherosclerosis, two known complications of the metabolic syndrome, are noteworthy, because HCV has been suggested to play a role in their pathogenesis. In addition, HCV also causes steatosis, which may increase the risk of cardiovascular events. This review summarizes the evidence supporting the association between HCV and steatosis, insulin resistance/type 2 diabetes and cardiovascular morbidity and mortality. Their diagnostic, prognostic and management aspects are discussed.
Collapse
Affiliation(s)
- Francesco Negro
- Divisions of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, University Hospitals, Geneva, Switzerland.
| |
Collapse
|
45
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
46
|
Lonardo A, Adinolfi LE, Restivo L, Ballestri S, Romagnoli D, Baldelli E, Nascimbeni F, Loria P. Pathogenesis and significance of hepatitis C virus steatosis: an update on survival strategy of a successful pathogen. World J Gastroenterol 2014; 20:7089-7103. [PMID: 24966582 PMCID: PMC4064057 DOI: 10.3748/wjg.v20.i23.7089] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/17/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a successful pathogen on the grounds that it exploits its host's metabolism to build up viral particles; moreover it favours its own survival by inducing chronic disease and the development of specific anatomic changes in the infected organ. Steatosis, therefore, is associated with HCV infection by necessity rather than by chance alone. Approximately 6% of HCV patients have steatohepatitis. Interestingly, HCV steatosis occurs in the setting of multiple metabolic abnormalities (hyperuricemia, reversible hypocholesterolemia, insulin resistance, arterial hypertension and expansion of visceral adipose tissue) collectively referred to as "hepatitis C-associated dysmetabolic syndrome" (HCADS). General, nonalcoholic fatty liver disease (NAFLD)-like, mechanisms of steatogenesis (including increased availability of lipogenic substrates and de novo lipogenesis; decreased oxidation of fatty substrates and export of fatty substrates) are shared by all HCV genotypes. However, genotype 3 seemingly amplifies such steatogenic molecular mechanisms reported to occur in NAFLD via more profound changes in microsomal triglyceride transfer protein; peroxisome proliferator-activated receptor alpha; sterol regulatory element-binding proteins and phosphatase and tensin homologue. HCV steatosis has a remarkable clinical impact in as much as it is an acknowledged risk factor for accelerated fibrogenesis; for impaired treatment response to interferon and ribavirin; and development of hepatocellular carcinoma. Recent data, moreover, suggest that HCV-steatosis contributes to premature atherogenesis via both direct and indirect mechanisms. In conclusion, HCV steatosis fulfills all expected requirements necessary to perpetuate the HCV life cycle. A better understanding of the physiology of HCADS will likely result in a more successful handling of disease with improved antiviral success rates.
Collapse
|
47
|
Ke PY, Chen SSL. Autophagy in hepatitis C virus-host interactions: potential roles and therapeutic targets for liver-associated diseases. World J Gastroenterol 2014; 20:5773-93. [PMID: 24914338 PMCID: PMC4024787 DOI: 10.3748/wjg.v20.i19.5773] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a lysosome-associated, degradative process that catabolizes cytosolic components to recycle nutrients for further use and maintain cell homeostasis. Hepatitis C virus (HCV) is a major cause of chronic hepatitis, which often leads to end-stage liver-associated diseases and is a significant burden on worldwide public health. Emerging lines of evidence indicate that autophagy plays an important role in promoting the HCV life cycle in host cells. Moreover, the diverse impacts of autophagy on a variety of signaling pathways in HCV-infected cells suggest that the autophagic process is required for balancing HCV-host cell interactions and involved in the pathogenesis of HCV-related liver diseases. However, the detailed molecular mechanism underlying how HCV activates autophagy to benefit viral growth is still enigmatic. Additionally, how the autophagic response contributes to disease progression in HCV-infected cells remains largely unknown. Hence, in this review, we overview the interplay between autophagy and the HCV life cycle and propose possible mechanisms by which autophagy may promote the pathogenesis of HCV-associated chronic liver diseases. Moreover, we outline the related studies on how autophagy interplays with HCV replication and discuss the possible implications of autophagy and viral replication in the progression of HCV-induced liver diseases, e.g., steatosis and hepatocellular carcinoma. Finally, we explore the potential therapeutics that target autophagy to cure HCV infection and its related liver diseases.
Collapse
|
48
|
Fierro NA, Gonzalez-Aldaco K, Torres-Valadez R, Martinez-Lopez E, Roman S, Panduro A. Immunologic, metabolic and genetic factors in hepatitis C virus infection. World J Gastroenterol 2014; 20:3443-3456. [PMID: 24707127 PMCID: PMC3974511 DOI: 10.3748/wjg.v20.i13.3443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/16/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that regulate disease progression during hepatitis C virus (HCV) infection and the response to treatment are not clearly identified. Numerous studies have demonstrated that a strong host immune response against HCV favors HCV clearance. In addition, genetic factors and metabolic machinery, particularly cholesterol modulation, are involved in HCV infection. It is likely that the interplay between all of these factors contributes to the outcome of HCV infection. In recent years, the world has experienced its largest epidemic of obesity. Mexico and the United States are the leading sufferers from this epidemic at the global level. Obesity is associated with the development of numerous pathologies including hypercholesterolemia which is one of the eight most important risk factors for mortality in Mexico. This may be related to the course of HCV infection in this population. Here, we focus on the urgent need to study the progression of HCV infection in relation to ethnic characteristics. Discoveries are discussed that hold promise in identifying immune, metabolic and genetic factors that, in conjunction, could be therapeutic targets or predictors of the progression of HCV infection.
Collapse
|
49
|
De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. PLoS Pathog 2014; 10:e1004021. [PMID: 24651651 PMCID: PMC3961357 DOI: 10.1371/journal.ppat.1004021] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/06/2014] [Indexed: 12/17/2022] Open
Abstract
The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production. Vaccinia virus, the prototypic poxvirus, is closely related to variola virus, the etiological agent of smallpox. A full understanding of the poxviral life cycle is imperative for the development of novel antiviral therapies, the design of new vaccines, and the effective and safe use of these viruses as oncolytic agents. Metabolomic studies have shed light on the novel mechanisms used by viruses to replicate efficiently within their hosts. de novo fatty acid biosynthesis has been shown to be of relevance for numerous viral infections as well as for the development of cancer. Here we describe an important role for de novo fatty acid biosynthesis during vaccinia infection. Ongoing synthesis of palmitate is needed to fuel the production of energy within mitochondria. The biochemical events of viral DNA replication and protein synthesis are minimally affected by inhibition of this pathway, but viral assembly is disrupted more dramatically. Further exploration of this pathway will provide additional insight into the infectious cycle and inform new therapeutic strategies for this important class of pathogen.
Collapse
|
50
|
Forkhead box transcription factor regulation and lipid accumulation by hepatitis C virus. J Virol 2014; 88:4195-203. [PMID: 24478438 DOI: 10.1128/jvi.03327-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED We have previously shown that hepatitis C virus (HCV) infection modulates the expression of forkhead box transcription factors, including FoxO1 and FoxA2, which play key roles in gluconeogenesis and β-oxidation of fatty acid, respectively. The aim of the present study was to determine the role of forkhead box transcription factors in modulating lipid metabolism. HCV infection or core protein expression alone in transfected Huh7.5 cells increased expression of sterol regulatory element binding protein 1c (SREBP-1c) and its downstream target, fatty acid synthase (FASN), which are key proteins involved in lipid synthesis. Knockdown of FoxO1 by small interfering RNA in HCV-infected cells significantly decreased SREBP-1c and FASN expression. Further, HCV infection or core protein expression in Huh7.5 cells significantly decreased the expression of medium-chain acyl coenzyme A dehydrogenase (MCAD) and short-chain acyl coenzyme A dehydrogenase (SCAD), involved in the regulation of β-oxidation of fatty acids. Ectopic expression of FoxA2 in HCV-infected cells rescued the expression of MCAD and SCAD. Oil red O and neutral lipid staining indicated that HCV infection significantly increases lipid accumulation compared to that in the mock-infected control. This was further verified by the increased expression of perilipin-2 and decreased activity of hormone-sensitive lipase (HSL) in HCV-infected hepatocytes, implying increased accumulation of neutral lipids. Knockdown of FoxO1 and ectopic expression of FoxA2 significantly decreased HCV replication. Taken together, these results suggest that HCV modulates forkhead box transcription factors which together increase lipid accumulation and promote viral replication. IMPORTANCE Hepatic steatosis is a frequent complication associated with chronic HCV infection. Its presence is a key prognostic indicator associated with the progression to hepatic fibrosis and hepatocellular carcinoma. Several mechanisms have been proposed to account for the development of steatosis and fatty liver during HCV infection. We observed that HCV infection increases expression of both SREBP-1c and FASN. Further investigation suggested that the expression of SREBP-1c and FASN is controlled by the transcription factor FoxO1 during HCV infection. In addition, HCV infection significantly decreased both MCAD and SCAD expression, which is controlled by FoxA2. HCV infection also increased lipid droplet accumulation, increased perilipin-2 expression, and decreased HSL activity. Thus, knockdown of FoxO1 (decreased lipogenesis) and overexpression of FoxA2 (increased β-oxidation) resulted in a significant disruption of the platform and, hence, a decrease in HCV genome replication. Thus, targeting of FoxO1 and FoxA2 might be useful in developing a therapeutic approach against HCV infection.
Collapse
|