1
|
Dadhich P, Pal P, Dogra N, Srivas PK, Das B, Das S, Datta P, Saha B, Su B, Dhara S. Calcium Phosphate Apatite Filament Co-Wrapped With Perforated Electrospun Sheet of Phosphorylated Chitosan-A Bioinspired Approach Toward Bone Graft Substitute. J Biomed Mater Res B Appl Biomater 2025; 113:e35589. [PMID: 40371991 DOI: 10.1002/jbm.b.35589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Bioinspired bone graft substitutes hold incredible opportunities in tissue engineering, potentiating the healing aspect. Here we have fabricated stacks of glutaraldehyde-genipin crosslinked, microporous nanofibrous N-methyl phosphonic chitosan sheets (NMPC) with impregnated eggshell-derived CaP fibers to mimic osteonal architecture. This composite 3D rolled eggshell-derived calcium phosphate (ESCAP) scaffold (RCS), with density and modulus variation from the center to the periphery, has superior mechanical strength. The zwitterionic nature of NMPC, following the surface modulus of the CaP fibers, upgraded the biological performance. The low modulus of the flexible micro-perforated nanofibrous sheet increases along the ceramic phase, which prompts migration and distribution of proliferated MSCs from the outer polymeric surface to the inner ceramic region through micro-perforations. This movement stimulates endochondral ossification, observed by a gradual increment of collagen II expression alongside a decrement of collagen I expression. In vivo assessment of rabbit tibia bone defects revealed prominent healing in the presence of a scaffold by Day 60, accompanied by scaffold resorption. The cellular activity during healing revealed osteoblasts, osteocytes, blood vessels, and chondroblast cells at the boundary of the scaffolds, indicating neotissue and hypertrophic cartilage formation. Thus, the RCS bone grafts promote faster bone healing by osteogenesis and bone remodeling.
Collapse
Affiliation(s)
- Prabhash Dadhich
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Pallabi Pal
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Nantu Dogra
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Pavan K Srivas
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, IIT Ropar, Rupnagar, India
| | - Samir Das
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Pallab Datta
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Baisakhee Saha
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Santanu Dhara
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| |
Collapse
|
2
|
Lan A, Gong Y, Li X, Wang Y, Zheng D, Tang H, Wang S, Tang W, Huang C, Guan Z, Lou D. The correlation between fluoride-induced bone damage and reduced DLAV formation in Zebrafish Larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117366. [PMID: 39561566 DOI: 10.1016/j.ecoenv.2024.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
In this study, we aimed to investigate the mechanism by which fluoride exposure causes bone damage and the relationship with the loss of dorsal longitudinal anastomotic vessel (DLAV) formation in zebrafish larvae to further understanding of skeletal fluorosis. We assessed the development of chondrogenesis, osteogenesis, and DLAV angiogenesis, and reactive oxygen species (ROS) in zebrafish larvae subjected to blank control group (Con), low-fluoride group (LF), and high-fluoride group (HF). Abnormal development of the cartilage area, bone mineralization accompanied with abnormal mRNA expression of osteoblast-related OC, ALP, and Runx2b genes and osteoclast-related OPG and RANKL genes, and abnormal DLAV angiogenesis and ROS levels in zebrafish larvae were affected to varying degrees with the increase of fluoride exposure. We concluded that exposure of zebrafish embryos to fluoride can affect bone development process of chondrogenesis and osteogenesis, and that bone damage might be related to the loss of DLAV angiogenesis.
Collapse
Affiliation(s)
- Ailin Lan
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Yi Gong
- Guiyang Healthcare Vocational University, Guiyang, Guizhou 550000, PR China
| | - Xiaofen Li
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Yifan Wang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Dan Zheng
- Guiyang Matemal and Child Health Care Hospital, Guiyang, Guizhou 550000, PR China
| | - Haiming Tang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Siqi Wang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Wenchao Tang
- Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Chunhua Huang
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China
| | - Zhizhong Guan
- Guizhou Medical University, Guiyang, Guizhou 550000, PR China.
| | - Didong Lou
- Judicial Appraisal Center, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, PR China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, Guizhou 550000, PR China.
| |
Collapse
|
3
|
Schwab A, Pap T, Krenn V, Rüther W, Lohmann C, Bertrand J. Loose Bodies Found in the Human Intra-Articular Space Showed Characteristics Similar to Endochondral Bone Formation. Cartilage 2024; 15:353-362. [PMID: 38041252 PMCID: PMC11519999 DOI: 10.1177/19476035231212608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVE Loose bodies are free-floating tissues of cartilage and bone that can cause pain, swelling, the inability to straighten the knee, or intermittent locking of the knee. Loose bodies can arise from degenerative joint disease, flake fractures, osteochondritis dissecans, or chondromatosis. We hypothesized that loose bodies can be classified in stages with tissue characteristics similar to endochondral ossification. DESIGN Loose bodies were harvested from patients undergoing joint replacement. Samples were processed for histology, gene expression analysis, and micro-computed tomography (µCT). Cartilage- and bone-related genes and proteins were selected for immunofluorescence stainings (collagen type I, II, and X, SOX9 [SRY-box transcription factor 9], and MMP13 [matrix metalloproteinase 13]) and gene expression analysis (FN [fibronectin], COL1A1, COL2A1, COL10A1, SOX9, MMP13, and aggrecan [ACAN]). RESULTS Loose bodies were grouped in 4 stages: fibrous, (mineralized) cartilaginous, cartilage and bone, and bone. Hyaline-like cartilage tissue with Benninghoff arcades was present in stages 2 and 3. A transition from cartilaginous to mineralized tissue and bone trabecula was defined by an increase in COL1A1 and COL10A1 (stage 3 vs. 4: p = 0.047) positive area. Stage 4 showed typical trabecular bone tissue. The relative volume of calcified tissue (mineralized cartilage and bone tissue) decreased with stages (stages 1-2 vs. 3: p = 0.002; stage 1-2 vs. 4: p = 0.012). COL2A1 expression and stained area decreased from stages 1-2 to 4 (p = 0.010 and p = 0.004). ACAN expression decreased from stage 1-2 to stage 3 (p = 0.049) and stage 4 (p = 0.002). CONCLUSION Loose bodies show tissue characteristics similar to endochondral ossification. They are probably a relevant substrate for regenerative therapeutic interventions in joint disease.
Collapse
Affiliation(s)
- Andrea Schwab
- Department of Orthopaedics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Department of Orthopaedics and Sports Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, Medical Faculty, Westphalian Wilhelm University, Münster, Germany
| | - Veit Krenn
- MVZ-Zentrum für Histologie, Zytologie und Molekulare Diagnostik GmbH, Trier, Germany
| | - Wolfgang Rüther
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Lohmann
- Department of Orthopaedics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedics, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
4
|
Tian B, Zhang L, Zheng J, Kang X. The role of NF-κB-SOX9 signalling pathway in osteoarthritis. Heliyon 2024; 10:e37191. [PMID: 39319133 PMCID: PMC11419907 DOI: 10.1016/j.heliyon.2024.e37191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The nuclear factor-κB (NF-κB) signalling pathway exists in a variety of cells and is involved in the gene regulation of various physiological and pathological processes such as inflammation, immunity, cell proliferation and apoptosis. It has been shown that this signaling pathway is also involved in numerous events associated with osteoarthritis, including chondrocyte catabolism, chondrocyte survival, and synovial inflammation. SRY-related high mobility group-box 9(SOX9) is the "master regulator" of chondrocytes and one of the key transcription factors that maintain chondrocyte phenotype and cartilage homeostasis. NF-κB can positively regulate the expression of SOX9 by directly binding to its promoter region, and play a role in the formation and development of chondrocytes. This article reviews the regulatory effect of the NF-κB-SOX9 signaling axis on osteoarthritis.
Collapse
Affiliation(s)
- Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
- Department of Orthopedics, the First Afffliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Jiang Zheng
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, Shaanxi, 710054, PR China
| |
Collapse
|
5
|
Liu F, Zhao Y, Pei Y, Lian F, Lin H. Role of the NF-kB signalling pathway in heterotopic ossification: biological and therapeutic significance. Cell Commun Signal 2024; 22:159. [PMID: 38439078 PMCID: PMC10910758 DOI: 10.1186/s12964-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process in which ectopic bone develops in soft tissues within the skeletal system. Endochondral ossification can be divided into the following types of acquired and inherited ossification: traumatic HO (tHO) and fibrodysplasia ossificans progressiva (FOP). Nuclear transcription factor kappa B (NF-κB) signalling is essential during HO. NF-κB signalling can drive initial inflammation through interactions with the NOD-like receptor protein 3 (NLRP3) inflammasome, Sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK). In the chondrogenesis stage, NF-κB signalling can promote chondrogenesis through interactions with mechanistic target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K)/AKT (protein kinase B, PKB) and other molecules, including R-spondin 2 (Rspo2) and SRY-box 9 (Sox9). NF-κB expression can modulate osteoblast differentiation by upregulating secreted protein acidic and rich in cysteine (SPARC) and interacting with mTOR signalling, bone morphogenetic protein (BMP) signalling or integrin-mediated signalling under stretch stimulation in the final osteogenic stage. In FOP, mutated ACVR1-induced NF-κB signalling exacerbates inflammation in macrophages and can promote chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs) through interactions with smad signalling and mTOR signalling. This review summarizes the molecular mechanism of NF-κB signalling during HO and highlights potential therapeutics for treating HO.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
6
|
Alsafy MAM, El-Sharnobey NKA, El-Gendy SAA, Abumandour MA, Hanafy BG, Elarab SME, Rashwan AM. The tongue of the red-eared slider (Trachemys scripta elegans): morphological characterization through gross, light, scanning electron, and immunofluorescence microscopic examination. BMC Vet Res 2024; 20:45. [PMID: 38310245 PMCID: PMC10837996 DOI: 10.1186/s12917-024-03879-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024] Open
Abstract
The red-eared slider (Trachemys scripta elegans) is renowned for its remarkable adaptations, yet much of its complex biology remains unknown. In this pioneering study, we utilized a combination of gross anatomy, scanning electron microscopy (SEM), light microscopy, and immunofluorescence techniques to examine the tongue's omnivorous adaptation in this species. This research bridges a critical knowledge gap, enhancing our understanding of this intriguing reptile. Gross examination revealed a unique arrowhead-shaped tongue with a median lingual fissure and puzzle-piece-shaped tongue papillae. SEM unveiled rectangular filiform, conical, and fungiform papillae, with taste pores predominantly on the dorsal surface and mucous cells on the lateral surface of the papillae. Histologically, the tongue's apex featured short rectangular filiform and fungiform papillae, while the body exhibited varying filiform shapes and multiple taste buds on fungiform papillae. The tongue's root contained lymphatic tissue with numerous lymphocytes surrounding the central crypt, alongside lingual skeletal musculature, blood and lymph vessels, and Raffin corpuscles in the submucosa. The lingual striated muscle bundles had different orientations, and the lingual hyaline cartilage displayed a bluish coloration of the ground substance, along with a characteristic isogenous group of chondrocytes. Our research represents the first comprehensive application of immunofluorescence techniques to investigate the cellular intricacies of the red-eared slider's tongue by employing seven distinct antibodies, revealing a wide array of compelling and significant findings. Vimentin revealed the presence of taste bud cells, while synaptophysin provided insights into taste bud and nerve bundle characteristics. CD34 and PDGFRα illuminated lingual stromal cells, and SOX9 and PDGFRα shed light on chondrocytes within the tongue's cartilage. CD20 mapped B-cell lymphocyte distribution in the lingual tonsil, while alpha smooth actin (α-SMA) exposed the intricate myofibroblast and smooth muscle network surrounding the lingual blood vessels and salivary glands. In conclusion, our comprehensive study advances our knowledge of the red-eared slider's tongue anatomy and physiology, addressing a significant research gap. These findings not only contribute to the field of turtle biology but also deepen our appreciation for the species' remarkable adaptations in their specific ecological niches.
Collapse
Affiliation(s)
- Mohamed A M Alsafy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, 21944, Egypt.
| | - Nermin K A El-Sharnobey
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, 21944, Egypt
| | - Samir A A El-Gendy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, 21944, Egypt
| | - Mohamed A Abumandour
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, 21944, Egypt
| | - Basma G Hanafy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, 21944, Egypt
| | - Samar M Ez Elarab
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, 21944, Egypt
| | - Ahmed M Rashwan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
- Laboratory of Life science frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Zhu J, Zhang S, Jin S, Huang C, Shi B, Chen Z, Ji W. Endochondral Repair of Jawbone Defects Using Periosteal Cell Spheroids. J Dent Res 2024; 103:31-41. [PMID: 37968792 DOI: 10.1177/00220345231205273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Recapitulation of the natural healing process is receiving increasing recognition as a strategy to induce robust tissue regeneration. Endochondral ossification has been recognized as an essential reparative approach in natural jawbone defect healing. However, such an approach has been overlooked in the recent development of cell-based therapeutics for jawbone repair. Therefore, this study aimed to explore a bioinspired stem cell-based strategy for jawbone repair by mimicking the mesenchymal condensation of progenitor cells during the early endochondral ossification process. For this purpose, passage 3 of jawbone periosteum-derived cells (jb-PDCs) was cultured in our previously reported nonadherent microwells (200 µm in diameter, 148 µm in depth, and 100 µm space in between) and self-assembled into spheroids with a diameter of 96.4 ± 5.8 µm after 48 h. Compared to monolayer culture, the jb-PDC spheroids showed a significant reduction of stemness marker expression evidenced by flow cytometry. Furthermore, a significant upregulation of chondrogenic transcription factor SOX9 in both gene and protein levels was observed in the jb-PDC spheroids after 48 h of chondrogenic induction. RNA sequencing and Western blotting analysis further suggested that the enhanced SOX9-mediated chondrogenic differentiation in jb-PDC spheroids was attributed to the activation of the p38 MAPK pathway. Impressively, inhibition of p38 kinase activity significantly attenuated chondrogenic differentiation jb-PDC spheroids, evidenced by a significant decline of SOX9 in both gene and protein levels. Strikingly, the jb-PDC spheroids implanted in 6- to 8-wk-old male C57BL/6 mice with critical-size jawbone defects (1.8 mm in diameter) showed an evident contribution to cartilaginous callus formation after 1 wk, evidenced by histological analysis. Furthermore, micro-computed tomography analysis showed that the jb-PDC spheroids significantly accelerated bone healing after 2 wk in the absence of exogenous growth factors. In sum, the presented findings represent the successful development of cell-based therapeutics to reengineer the endochondral bone repair process and illustrate the potential application to improve bone repair and regeneration in the craniofacial skeleton.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - S Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - S Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - B Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Z Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - W Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Kadoya K, Hara ES, Okada M, Jiao YY, Nakano T, Sasaki A, Matsumoto T. Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments. Regen Biomater 2022; 10:rbac088. [PMID: 36683756 PMCID: PMC9845518 DOI: 10.1093/rb/rbac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/19/2023] Open
Abstract
The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (i) partial rupture of hypertrophic chondrocytes; (ii) calcospherite formation on cell membrane nano fragments (CNFs) derived from the ruptured cells; and (iii) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites.
Collapse
Affiliation(s)
- Koichi Kadoya
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan,Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yu Yang Jiao
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takayoshi Nakano
- Division of Materials & Manufacturing Science, Osaka University, Osaka 565-0871, Japan
| | - Akira Sasaki
- Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | |
Collapse
|
9
|
Tang W, Li ZW, Miao GQ, Li ZP, Gui T, Wu CJ, Li ZY, Yang J, Zhao XD, Liu N, Zha ZG, Yao LT, Zhang HT. Single-Cell RNA Sequencing Reveals Transcriptional Changes in the Cartilage of Subchondral Insufficiency Fracture of the Knee. J Inflamm Res 2022; 15:6105-6112. [PMID: 36386577 PMCID: PMC9645121 DOI: 10.2147/jir.s385648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose Subchondral insufficiency fracture of the knee (SIFK) is a common cause of knee joint pain that mainly afflicts the elderly. Until now, how a sudden insufficiency fracture of subchondral bone affects the transcriptomic profiles of cartilage in SIFK and OA patients are largely unknown. Methods Single-cell RNA sequencing (scRNA-seq) was used to identify various cell subsets and evaluate transcriptomic differences in cartilage of SIFK and OA patients. In addition, the above findings were confirmed by histological evaluation and immunohistochemical (IHC) staining. Results We found that the transcriptomic profiles of cartilage in the SIFK patient was completely different from those of normal and OA patients. Accordingly, several novel cell clusters with activation of hypoxia and endochondral ossification signaling were identified in the SIFK cartilage. Chondrocyte trajectories analysis and IHC staining revealed that transcription factors including TCF4 were found to be highly up-regulated during the occurrence of SIFK, which might drive the reactive formation of cartilage and fibrous tissue and the activation of endochondral ossification. Conclusion This is the first report to elucidate the transcriptomic alterations and distinct cell type subpopulations in the cartilage of SIFK and OA by the use of scRNA-seq, which provides a new insight in the understanding of the initiation and progression of SIFK.
Collapse
Affiliation(s)
- Wang Tang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Zhen-Wei Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Gui-Qiang Miao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan, 528010, People’s Republic of China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Tao Gui
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Chong-Jie Wu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Jie Yang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Xiao-Dong Zhao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan, 528010, People’s Republic of China
| | - Ning Liu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| | - Lu-Tian Yao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, People’s Republic of China
- Correspondence: Lu-Tian Yao; Huan-Tian Zhang, Email ;
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
10
|
MPSI Manifestations and Treatment Outcome: Skeletal Focus. Int J Mol Sci 2022; 23:ijms231911168. [PMID: 36232472 PMCID: PMC9569890 DOI: 10.3390/ijms231911168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
Collapse
|
11
|
Oct4 facilitates chondrogenic differentiation of mesenchymal stem cells by mediating CIP2A expression. Cell Tissue Res 2022; 389:11-21. [PMID: 35435493 DOI: 10.1007/s00441-022-03619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Bone development and cartilage formation require strict modulation of gene expression for mesenchymal stem cells (MSCs) to progress through their differentiation stages. Octamer-binding transcription factor 4 (Oct4) expression is generally restricted to developing embryonic pluripotent cells, but its role in chondrogenic differentiation (CD) of MSCs remains unclear. We therefore investigated the role of Oct4 in CD using a microarray, quantitative real-time polymerase chain reaction, and western blotting. The expression of Oct4 was elevated when the CD of cultured MSCs was induced. Silencing Oct4 damaged MSC growth and proliferation and decreased CD, indicated by decreased cartilage matrix formation and the expression of Col2a1, Col10a1, Acan, and Sox9. We found a positive correlation between the expression of CIP2A, a natural inhibitor of protein phosphatase 2A (PP2A) and that of Oct4. Cellular inhibitor of PP2A (CIP2A) expression gradually increased after CD. Overexpression of CIP2A in MSCs with Oct4 depletion promoted cartilage matrix deposition as well as Col2a1, Col10a1, Acan, and Sox9 expression. The chondrogenic induction triggered c-Myc, Akt, ERK, and MEK phosphorylation and upregulated c-Myc and mTOR expression, which was downregulated upon Oct4 knockdown and restored by CIP2A overexpression. These findings indicated that Oct4 functions as an essential chondrogenesis regulator, partly via the CIP2A/PP2A pathway.
Collapse
|
12
|
Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ 2022; 29:874-887. [PMID: 35094018 PMCID: PMC8991200 DOI: 10.1038/s41418-021-00919-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022] Open
Abstract
The circadian clock is a master regulator in coordinating daily oscillations of physiology and behaviors. Nevertheless, how the circadian rhythm affects endochondral ossification is poorly understood. Here we showed that endochondral bone formation exhibits circadian rhythms, manifested as fast DNA replication in the daytime, active cell mitosis, and matrix synthesis at night. Circadian rhythm disruption led to endochondral ossification deformities. The mechanistic dissection revealed that melatonin receptor 1 (MTR1) periodically activates the AMPKβ1 phosphorylation, which then orchestrates the rhythms of cell proliferation and matrix synthesis via destabilizing the clock component CRY1 and triggering BMAL1 expression. Accordingly, the AMPKβ1 agonist is capable of alleviating the abnormity of endochondral ossification caused by circadian dysrhythmias. Taken together, these findings indicated that the central circadian clock could control endochondral bone formation via the MTR1/AMPKβ1/BMAL1 signaling axis in chondrocytes. Also, our results suggested that the AMPKβ1 signaling activators are promising medications toward endochondral ossification deformities.
Collapse
|
13
|
Garcia-Ruiz A, Sánchez-Domínguez CN, Moncada-Saucedo NK, Pérez-Silos V, Lara-Arias J, Marino-Martínez IA, Camacho-Morales A, Romero-Diaz VJ, Peña-Martinez V, Ramos-Payán R, Castro-Govea Y, Tuan RS, Lin H, Fuentes-Mera L, Rivas-Estilla AM. Sequential growth factor exposure of human Ad-MSCs improves chondrogenic differentiation in an osteochondral biphasic implant. Exp Ther Med 2021; 22:1282. [PMID: 34630637 PMCID: PMC8461520 DOI: 10.3892/etm.2021.10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Joint cartilage damage affects 10-12% of the world's population. Medical treatments improve the short-term quality of life of affected individuals but lack a long-term effect due to injury progression into fibrocartilage. The use of mesenchymal stem cells (MSCs) is one of the most promising strategies for tissue regeneration due to their ability to be isolated, expanded and differentiated into metabolically active chondrocytes to achieve long-term restoration. For this purpose, human adipose-derived MSCs (Ad-MSCs) were isolated from lipectomy and grown in xeno-free conditions. To establish the best differentiation potential towards a stable chondrocyte phenotype, isolated Ad-MSCs were sequentially exposed to five differentiation schemes of growth factors in previously designed three-dimensional biphasic scaffolds with incorporation of a decellularized cartilage matrix as a bioactive ingredient, silk fibroin and bone matrix, to generate a system capable of being loaded with pre-differentiated Ad-MSCs, to be used as a clinical implant in cartilage lesions for tissue regeneration. Chondrogenic and osteogenic markers were analyzed by reverse transcription-quantitative PCR and cartilage matrix generation by histology techniques at different time points over 40 days. All groups had an increased expression of chondrogenic markers; however, the use of fibroblast growth factor 2 (10 ng/ml) followed by a combination of insulin-like growth factor 1 (100 ng/ml)/TGFβ1 (10 ng/ml) and a final step of exposure to TGFβ1 alone (10 ng/ml) resulted in the most optimal chondrogenic signature towards chondrocyte differentiation and the lowest levels of osteogenic expression, while maintaining stable collagen matrix deposition until day 33. This encourages their possible use in osteochondral lesions, with appropriate properties for use in clinical patients.
Collapse
Affiliation(s)
- Alejandro Garcia-Ruiz
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Celia N Sánchez-Domínguez
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Nidia K Moncada-Saucedo
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Vanessa Pérez-Silos
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Jorge Lara-Arias
- Orthopedics and Traumatology Service, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Iván A Marino-Martínez
- Pathology Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico.,Experimental Therapies Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Alberto Camacho-Morales
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Víktor J Romero-Diaz
- Histology Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Víctor Peña-Martinez
- Orthopedics and Traumatology Service, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Rosalío Ramos-Payán
- Microbiology Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa 80040, Mexico
| | - Yanko Castro-Govea
- Plastic Surgery Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hang Lin
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lizeth Fuentes-Mera
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Ana María Rivas-Estilla
- Biochemistry and Molecular Medicine Department, Faculty of Medicine and University Hospital 'Dr José E. González', Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|
14
|
Keltz E, Mora AJ, Wulsten D, Rußow G, Märdian S, Duda GN, Heyland M. Is initial interfragmentary compression made to last? An ovine bone in vitro study. Injury 2021; 52:1263-1270. [PMID: 33423769 DOI: 10.1016/j.injury.2020.11.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 02/02/2023]
Abstract
Interfragmentary compression, a major principle of fracture treatment, is clinically not quantified and might be lost quickly even without functional loads. We designed an experimental study hypothesizing that (1) compression can be controlled using either lag screw or compression plate, and expecting similar initial compression, (2) loss of interfragmentary compression through relaxation within one hour is reduced with neutralization locking plate next to lag screw compared to compression plate. Twelve ovine femora (N=6) and humeri (N=6) were assigned into groups: Group 1 received a 45° oblique osteotomy at mid-diaphysis and was fixated using a 3.5 mm interfragmentary lag screw and locking compression plate (3.5 mm LCP, DePuy Synthes) as neutralization plate. Group 2 received a transverse osteotomy and was fixated with dynamic compression using compression plate (LCP). Interfragmentary pressure and relative bone fragment displacements were recorded over one hour. Median loss of compression over one hour time (relaxation) were 0.52% in Group 1, and 0.17% in Group 2 (p>0.05). Median rotational displacements amounted to 0.46° for Group 1, and 0.31° for Group 2, and axial displacement to a median of -20 μm in Group 1 and 25 μm in Group 2. Ovine bone interfragmentary stress relaxation maintains compression over the first hour for lag screw with neutralization plate for an oblique fracture line or compression plate for a transverse fracture line. Measured compression forces around 100 N could be overcome by physiological tension loading in bending or torsion, necessitating for instance tension band plating, additional lag screws or absolutive stability.
Collapse
Affiliation(s)
- Eran Keltz
- Division of Orthopedic Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Alberto Jorge Mora
- Division of Trauma, Santiago University Clinical Hospital, Musculoskeletal Pathology Group, Laboratory 18, Institute IDIS, Servicio Galego de Saúde, Santiago de Compostela, Spain
| | - Dag Wulsten
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Germany
| | - Gabriele Rußow
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Germany; Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Sven Märdian
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Germany
| | - Mark Heyland
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Germany.
| |
Collapse
|
15
|
Kronemberger GS, Beatrici A, Dalmônico GML, Rossi AL, Miranda GASC, Boldrini LC, Mauro Granjeiro J, Baptista LS. The hypertrophic cartilage induction influences the building-block capacity of human adipose stem/stromal cell spheroids for biofabrication. Artif Organs 2021; 45:1208-1218. [PMID: 34036603 DOI: 10.1111/aor.14000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
As an alternative to the classical tissue engineering approach, bottom-up tissue engineering emerges using building blocks in bioassembly technologies. Spheroids can be used as building blocks to reach a highly complex ordered tissue by their fusion (bioassembly), representing the foundation of biofabrication. In this study, we analyzed the biomechanical properties and the fusion capacity of human adipose stem/stromal cell (ASC) we spheroids during an in vitro model of hypertrophic cartilage established by our research group. Hypertrophic induced-ASC spheroids showed a statistically significant higher Young's modulus at weeks 2 (P < .001) and 3 (P < .0005) compared with non-induced. After fusion, non-induced and induced-ASC spheroids increased the contact area and decreased their pairs' total length. At weeks 3 and 5, induced-ASC spheroids did not fuse completely, and the cells migrate preferentially in the fusion contact region. Alizarin red O staining showed the highest intensity of staining in the fused induced-ASC spheroids at week 5, together with intense staining for collagen type I and osteocalcin. Transmission electron microscopy and element content analysis (X-ray Energy Dispersive Spectroscopy) revealed in the fused quartet at week 3 a crystal-like structure. Hypertrophic induction interferes with the intrinsic capacity of spheroids to fuse. The measurements of contact between spheroids during the fusion process, together with the change in viscoelastic profile to the plastic, will impact the establishment of bioassembly protocols using hypertrophic induced-ASC spheroids as building blocks in biofabrication.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | | | | | - Guilherme A S C Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leonardo C Boldrini
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Inmetro and Uezo, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
16
|
Ultra-processed food targets bone quality via endochondral ossification. Bone Res 2021; 9:14. [PMID: 33637698 PMCID: PMC7910299 DOI: 10.1038/s41413-020-00127-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 01/31/2023] Open
Abstract
Ultra-processed foods have known negative implications for health; however, their effect on skeletal development has never been explored. Here, we show that young rats fed ultra-processed food rich in fat and sugar suffer from growth retardation due to lesions in their tibial growth plates. The bone mineral density decreases significantly, and the structural parameters of the bone deteriorate, presenting a sieve-like appearance in the cortices and poor trabecular parameters in long bones and vertebrae. This results in inferior mechanical performance of the entire bone with a high fracture risk. RNA sequence analysis of the growth plates demonstrated an imbalance in extracellular matrix formation and degradation and impairment of proliferation, differentiation and mineralization processes. Our findings highlight, for the first time, the severe impact of consuming ultra-processed foods on the growing skeleton. This pathology extends far beyond that explained by the known metabolic effects, highlighting bone as a new target for studies of modern diets.
Collapse
|
17
|
Zhang X, Weng M, Chen Z. Fibroblast Growth Factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. PLoS One 2021; 16:e0241281. [PMID: 33529250 PMCID: PMC7853451 DOI: 10.1371/journal.pone.0241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Fibroblast growth factor signaling is essential for mammalian bone morphogenesis and growth, involving membranous ossification and endochondral ossification. FGF9 has been shown to be an important regulator of endochondral ossification; however, its role in the early differentiation of chondrocytes remains unknown. Therefore, in this study, we aimed to determine the role of FGF9 in the early differentiation of chondrogenesis. We found an increase in FGF9 expression during proliferating chondrocyte hypertrophy in the mouse growth plate. Silencing of FGF9 promotes the growth of ATDC5 cells and promotes insulin-induced differentiation of ATDC5 chondrocytes, which is due to increased cartilage matrix formation and type II collagen (col2a1) and X (col10a1), Acan, Ihh, Mmp13 gene expression. Then, we evaluated the effects of AKT, GSK-3β, and mTOR. Inhibition of FGF9 significantly inhibits phosphorylation of AKT and GSK-3β, but does not affected the activation of mTOR. Furthermore, phosphorylation of inhibited AKT and GSK-3β was compensated using the AKT activator SC79, and differentiation of ATDC5 cells was inhibited. In conclusion, our results indicate that FGF9 acts as an important regulator of early chondrogenesis partly through the AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Tongji University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjia Weng
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Chen
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
Schlesinger PH, Braddock DT, Larrouture QC, Ray EC, Riazanski V, Nelson DJ, Tourkova IL, Blair HC. Phylogeny and chemistry of biological mineral transport. Bone 2020; 141:115621. [PMID: 32858255 PMCID: PMC7771281 DOI: 10.1016/j.bone.2020.115621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Three physiologically mineralizing tissues - teeth, cartilage and bone - have critical common elements and important evolutionary relationships. Phylogenetically the most ancient densely mineralized tissue is teeth. In jawless fishes without skeletons, tooth formation included epithelial transport of phosphates, a process echoed later in bone physiology. Cartilage and mineralized cartilage are skeletal elements separate from bone, but with metabolic features common to bone. Cartilage mineralization is coordinated with high expression of tissue nonspecific alkaline phosphatase and PHOSPHO1 to harvest available phosphate esters and support mineralization of collagen secreted locally. Mineralization in true bone results from stochastic nucleation of hydroxyapatite crystals within the cross-linked collagen fibrils. Mineral accumulation in dense collagen is, at least in major part, mediated by amorphous aggregates - often called Posner clusters - of calcium and phosphate that are small enough to diffuse into collagen fibrils. Mineral accumulation in membrane vesicles is widely suggested, but does not correlate with a definitive stage of mineralization. Conversely mineral deposition at non-physiologic sites where calcium and phosphate are adequate has been shown to be regulated in large part by pyrophosphate. All of these elements are present in vertebrate bone metabolism. A key biological element of bone formation is an epithelial-like cellular organization which allows control of phosphate, calcium and pH during mineralization.
Collapse
Affiliation(s)
- Paul H Schlesinger
- Dept of Cell Biology, Washington University, Saint Louis, MO, United States of America
| | - Demetrios T Braddock
- Dept. of Pathology, Yale New Haven Hospital, 310 Cedar Street, New Haven, CT, United States of America
| | - Quitterie C Larrouture
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| | - Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Vladimir Riazanski
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago, IL, United States of America
| | - Irina L Tourkova
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Harry C Blair
- Veteran's Affairs Medical Center, Pittsburgh PA and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
19
|
Dai G, Xiao H, Zhao C, Chen H, Liao J, Huang W. LncRNA H19 Regulates BMP2-Induced Hypertrophic Differentiation of Mesenchymal Stem Cells by Promoting Runx2 Phosphorylation. Front Cell Dev Biol 2020; 8:580. [PMID: 32903671 PMCID: PMC7438821 DOI: 10.3389/fcell.2020.00580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Bone morphogenetic protein 2 (BMP2) triggers hypertrophic differentiation after chondrogenic differentiation of mesenchymal stem cells (MSCs), which blocked the further application of BMP2-mediated cartilage tissue engineering. Here, we investigated the underlying mechanisms of BMP2-mediated hypertrophic differentiation of MSCs. Materials and Methods In vitro and in vivo chondrogenic differentiation models of MSCs were constructed. The expression of H19 in mouse limb was detected by fluorescence in situ hybridization (FISH) analysis. Transgenes BMP2, H19 silencing, and overexpression were expressed by adenoviral vectors. Gene expression was determined by reverse transcription and quantitative real-time PCR (RT-qPCR), Western blot, and immunohistochemistry. Correlations between H19 expressions and other parameters were calculated with Spearman’s correlation coefficients. The combination of H19 and Runx2 was identified by RNA immunoprecipitation (RIP) analysis. Results We identified that H19 expression level was highest in proliferative zone and decreased gradually from prehypertrophic zone to hypertrophic zone in mouse limbs. With the stimulation of BMP2, the highest expression level of H19 was followed after the peak expression level of Sox9; meanwhile, H19 expression levels were positively correlated with chondrogenic differentiation markers, especially in the late stage of BMP2 stimulation, and negatively correlated with hypertrophic differentiation markers. Our further experiments found that silencing H19 promoted BMP2-triggered hypertrophic differentiation through in vitro and in vivo tests, which indicated the essential role of H19 for maintaining the phenotype of BMP2-induced chondrocytes. In mechanism, we characterized that H19 regulated BMP2-mediated hypertrophic differentiation of MSCs by promoting the phosphorylation of Runx2. Conclusion These findings suggested that H19 regulates BMP2-induced hypertrophic differentiation of MSCs by promoting the phosphorylation of Runx2.
Collapse
Affiliation(s)
- Guangming Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haozhuo Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Kim HS, Mandakhbayar N, Kim HW, Leong KW, Yoo HS. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials 2020; 269:120214. [PMID: 32736808 DOI: 10.1016/j.biomaterials.2020.120214] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Cartilage defect is difficult to heal due to its avascular properties. Implantation of mesenchymal stem cell is one of the most promising approach for regenerating cartilage defects. Here we prepared polymeric nanofibrils decorated with cartilage-derived decellularized extracellular matrix (dECM) as a chondroinductive scaffold material for cartilage repair. To fabricate nanofibrils, eletrospun PCL nanofibers were fragmented by subsequent mechanical and chemical process. The nanofibrils were surface-modified with poly(glycidyl methacrylate) (PGMA@NF) via surface-initiated atom transfer radical polymerization (SI-ATRP). The epoxy groups of PGMA@NF were subsequently reacted with dECM prepared from bovine articular cartilage. Therefore, the cartilage-dECM-decorated nanofibrils structurally and biochemically mimic cartilage-specific microenvironment. Once adipose-derived stem cells (ADSCs) were self-assembled with the cartilage-dECM-decorated nanofibrils by cell-directed association, they exhibited differentiation hallmarks of chondrogenesis without additional biologic additives. ADSCs in the nanofibril composites significantly increased expression of chondrogenic gene markers in comparison to those in pellet culture. Furthermore, ADSC-laden nanofibril composites filled the osteochondral defects compactly due to their clay-like texture. Thus, the ADSC-laden nanofibril composites supported the long-term regeneration of 12 weeks without matrix loss during joint movement. The defects treated with the ADSC-laden PGMA@NF significantly facilitated reconstruction of their cartilage and subchondral bone ECM matrices compared to those with ADSC-laden nanofibrils, non-specifically adsorbing cartilage-dECM without surface decoration of PGMA.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomateials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea; Institute of Molecular Science and Fusion Technology, Kangwon National University, Republic of Korea.
| |
Collapse
|
21
|
Leitch VD, Bassett JHD, Williams GR. Role of thyroid hormones in craniofacial development. Nat Rev Endocrinol 2020; 16:147-164. [PMID: 31974498 DOI: 10.1038/s41574-019-0304-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The development of the craniofacial skeleton relies on complex temporospatial organization of diverse cell types by key signalling molecules. Even minor disruptions to these processes can result in deleterious consequences for the structure and function of the skull. Thyroid hormone deficiency causes delayed craniofacial and tooth development, dysplastic facial features and delayed development of the ossicles in the middle ear. Thyroid hormone excess, by contrast, accelerates development of the skull and, in severe cases, might lead to craniosynostosis with neurological sequelae and facial hypoplasia. The pathogenesis of these important abnormalities remains poorly understood and underinvestigated. The orchestration of craniofacial development and regulation of suture and synchondrosis growth is dependent on several critical signalling pathways. The underlying mechanisms by which these key pathways regulate craniofacial growth and maturation are largely unclear, but studies of single-gene disorders resulting in craniofacial malformations have identified a number of critical signalling molecules and receptors. The craniofacial consequences resulting from gain-of-function and loss-of-function mutations affecting insulin-like growth factor 1, fibroblast growth factor receptor and WNT signalling are similar to the effects of altered thyroid status and mutations affecting thyroid hormone action, suggesting that these critical pathways interact in the regulation of craniofacial development.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Royal Melbourne Institute of Technology (RMIT) Centre for Additive Manufacturing, RMIT University, Melbourne, VIC, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
22
|
Kronemberger GS, Dalmônico GML, Rossi AL, Leite PEC, Saraiva AM, Beatrici A, Silva KR, Granjeiro JM, Baptista LS. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artif Organs 2020; 44:E288-E299. [PMID: 31950507 DOI: 10.1111/aor.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | | | | | - Paulo Emílio Correa Leite
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Antonio M Saraiva
- Laboratory of Macromolecules, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
23
|
NF-κB Signaling Regulates Physiological and Pathological Chondrogenesis. Int J Mol Sci 2019; 20:ijms20246275. [PMID: 31842396 PMCID: PMC6941088 DOI: 10.3390/ijms20246275] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
The nuclear factor-κB (NF-κB) is a transcription factor that regulates the expression of genes that control cell proliferation and apoptosis, as well as genes that respond to inflammation and immune responses. There are two means of NF-κB activation: the classical pathway, which involves the degradation of the inhibitor of κBα (IκBα), and the alternative pathway, which involves the NF-κB-inducing kinase (NIK, also known as MAP3K14). The mouse growth plate consists of the resting zone, proliferative zone, prehypertrophic zone, and hypertrophic zone. The p65 (RelA), which plays a central role in the classical pathway, is expressed throughout the cartilage layer, from the resting zone to the hypertrophic zone. Inhibiting the classical NF-κB signaling pathway blocks growth hormone (GH) or insulin-like growth factor (IGF-1) signaling, suppresses cell proliferation, and suppresses bone morphogenetic protein 2 (BMP2) expression, thereby promoting apoptosis. Since the production of autoantibodies and inflammatory cytokines, such as tumor necrosis factor-α (TNFα), interleukin (IL)-1β, IL-6, and IL-17, are regulated by the classical pathways and are increased in rheumatoid arthritis (RA), NF-κB inhibitors are used to suppress inflammation and joint destruction in RA models. In osteoarthritis (OA) models, the strength of NF-κB-activation is found to regulate the facilitation or suppression of OA. On the other hand, RelB is involved in the alternative pathway, and is expressed in the periarticular zone during the embryonic period of development. The alternative pathway is involved in the generation of chondrocytes in the proliferative zone during physiological conditions, and in the development of RA and OA during pathological conditions. Thus, NF-κB is an important molecule that controls normal development and the pathological destruction of cartilage.
Collapse
|
24
|
4-Phenylbutyric Acid Reduces Endoplasmic Reticulum Stress in Chondrocytes That Is Caused by Loss of the Protein Disulfide Isomerase ERp57. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6404035. [PMID: 31781343 PMCID: PMC6875354 DOI: 10.1155/2019/6404035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/01/2019] [Indexed: 01/30/2023]
Abstract
Objective The integrity of cartilage depends on the correct synthesis of extracellular matrix (ECM) components. In case of insufficient folding of proteins in the endoplasmic reticulum (ER) of chondrocytes, ECM proteins aggregate, ER stress evolves, and the unfolded protein response (UPR) is initiated. By this mechanism, chondrocytes relieve the stress condition or initiate cell death by apoptosis. Especially persistent ER stress has emerged as a pathogenic mechanism in cartilage diseases, such as chondrodysplasias and osteoarthritis. As pharmacological intervention is not available yet, it is of great interest to understand cartilage ER stress in detail and to develop therapeutics to intervene. Methods ERp57-deficient chondrocytes were generated by CRISPR/Cas9-induced KO. ER stress and autophagy were studied on mRNA and protein level as well as by transmission electron microscopy (TEM) in chondrocyte micromass or cartilage explant cultures of ERp57 KO mice. Thapsigargin (Tg), an inhibitor of the ER-residing Ca2+-ATPase, and 4-Phenylbutyric acid (4-PBA), a small molecular chemical chaperone, were applied to induce or inhibit ER stress. Results Our data reveal that the loss of the protein disulfide isomerase ERp57 is sufficient to induce ER stress in chondrocytes. 4-PBA efficiently diffuses into cartilage explant cultures and diminishes excessive ER stress in chondrocytes dose dependently, no matter if it is induced by ERp57 KO or stimulation with Tg. Conclusion ER-stress-related diseases have different sources; therefore, various targets for therapeutic treatment exist. In the future, 4-PBA may be used alone or in combination with other drugs for the treatment of ER-stress-related skeletal disorders in patients.
Collapse
|
25
|
Schlesinger PH, Blair HC, Beer Stolz D, Riazanski V, Ray EC, Tourkova IL, Nelson DJ. Cellular and extracellular matrix of bone, with principles of synthesis and dependency of mineral deposition on cell membrane transport. Am J Physiol Cell Physiol 2019; 318:C111-C124. [PMID: 31532718 DOI: 10.1152/ajpcell.00120.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone differs from other connective tissues; it is isolated by a layer of osteoblasts that are connected by tight and gap junctions. This allows bone to create dense lamellar type I collagen, control pH, mineral deposition, and regulate water content forming a compact and strong structure. New woven bone formed after degradation of mineralized cartilage is rapidly degraded and resynthesized to impart structural order for local bone strength. Ossification is regulated by thickness of bone units and by patterning via bone morphogenetic receptors including activin, other bone morphogenetic protein receptors, transforming growth factor-β receptors, all part of a receptor superfamily. This superfamily interacts with receptors for additional signals in bone differentiation. Important features of the osteoblast environment were established using recent tools including osteoblast differentiation in vitro. Osteoblasts deposit matrix protein, over 90% type I collagen, in lamellae with orientation alternating parallel or orthogonal to the main stress axis of the bone. Into this organic matrix, mineral is deposited as hydroxyapatite. Mineral matrix matures from amorphous to crystalline hydroxyapatite. This process includes at least two-phase changes of the calcium-phosphate mineral as well as intermediates involving tropocollagen fibrils to form the bone composite. Beginning with initiation of mineral deposition, there is uncertainty regarding cardinal processes, but the driving force is not merely exceeding the calcium-phosphate solubility product. It occurs behind a epithelial-like layer of osteoblasts, which generate phosphate and remove protons liberated during calcium-phosphate salt deposition. The forming bone matrix is discontinuous from the general extracellular fluid. Required adjustment of ionic concentrations and water removal from bone matrix are important details remaining to be addressed.
Collapse
Affiliation(s)
| | - Harry C Blair
- Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna Beer Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vladimir Riazanski
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois
| | - Evan C Ray
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Irina L Tourkova
- Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Deborah J Nelson
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
26
|
Tirone M, Giovenzana A, Vallone A, Zordan P, Sormani M, Nicolosi PA, Meneveri R, Gigliotti CR, Spinelli AE, Bocciardi R, Ravazzolo R, Cifola I, Brunelli S. Severe Heterotopic Ossification in the Skeletal Muscle and Endothelial Cells Recruitment to Chondrogenesis Are Enhanced by Monocyte/Macrophage Depletion. Front Immunol 2019; 10:1640. [PMID: 31396210 PMCID: PMC6662553 DOI: 10.3389/fimmu.2019.01640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Altered macrophage infiltration upon tissue damage results in inadequate healing due to inappropriate remodeling and stem cell recruitment and differentiation. We investigated in vivo whether cells of endothelial origin phenotypically change upon heterotopic ossification induction and whether infiltration of innate immunity cells influences their commitment and alters the ectopic bone formation. Liposome-encapsulated clodronate was used to assess macrophage impact on endothelial cells in the skeletal muscle upon acute damage in the ECs specific lineage-tracing Cdh5CreERT2:R26REYFP/dtTomato transgenic mice. Macrophage depletion in the injured skeletal muscle partially shifts the fate of ECs toward endochondral differentiation. Upon ectopic stimulation of BMP signaling, monocyte depletion leads to an enhanced contribution of ECs chondrogenesis and to ectopic bone formation, with increased bone volume and density, that is reversed by ACVR1/SMAD pathway inhibitor dipyridamole. This suggests that macrophages contribute to preserve endothelial fate and to limit the bone lesion in a BMP/injury-induced mouse model of heterotopic ossification. Therefore, alterations of the macrophage-endothelial axis may represent a novel target for molecular intervention in heterotopic ossification.
Collapse
Affiliation(s)
- Mario Tirone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Vallone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Zordan
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Martina Sormani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Raffaela Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonello E Spinelli
- Centre for Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
27
|
Endo K, Fujita N, Nakagawa T, Nishimura R. Comparison of the effect of growth factors on chondrogenesis of canine mesenchymal stem cells. J Vet Med Sci 2019; 81:1211-1218. [PMID: 31167981 PMCID: PMC6715918 DOI: 10.1292/jvms.18-0551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are proposed to be useful in cartilage regenerative
medicine, however, canine MSCs have been reported to show poor chondrogenic capacity.
Therefore, optimal conditions for chondrogenic differentiation should be determined by
mimicking the developmental process. We have previously established novel and superior
canine MSCs named bone marrow peri-adipocyte cells (BM-PACs) and the objective of this
study was to evaluate the effects of growth factors required for in vivo
chondrogenesis using canine BM-PACs. Spheroids of BM-PACs were cultured in chondrogenic
medium containing 10 ng/ml transforming growth factor-β1
(TGF-β1) with or without 100 ng/ml bone morphogenetic
protein-2 (BMP-2), 100 ng/ml growth differentiation
factor-5 (GDF-5) or 100 ng/ml insulin-like growth
factor-1 (IGF-1). Chondrogenic differentiation was evaluated by the quantification of
glycosaminoglycan and Safranin O staining for proteoglycan production. The expression of
cartilage matrix or hypertrophic gene/protein was also evaluated by qPCR and
immunohistochemistry. Spheroids in all groups were strongly stained with Safranin O.
Although BMP-2 significantly increased glycosaminoglycan production, Safranin O-negative
outer layer was formed and the mRNA expression of COL10 relating to cartilage hypertrophy
was also significantly upregulated (P<0.05). GDF-5 promoted the
production of glycosaminoglycan and type II collagen without increasing COL10 mRNA
expression. The supplementation of IGF-1 did not significantly affect cartilaginous and
hypertrophic differentiation. Our results indicate that GDF-5 is a useful growth factor
for the generation of articular cartilage from canine MSCs.
Collapse
Affiliation(s)
- Kentaro Endo
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Ehnert S, Aspera-Werz RH, Ruoß M, Dooley S, Hengstler JG, Nadalin S, Relja B, Badke A, Nussler AK. Hepatic Osteodystrophy-Molecular Mechanisms Proposed to Favor Its Development. Int J Mol Sci 2019; 20:2555. [PMID: 31137669 PMCID: PMC6566554 DOI: 10.3390/ijms20102555] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)-osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Romina H Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Marc Ruoß
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, 44139 Dortmund, Germany.
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany.
| | - Andreas Badke
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
29
|
Guran T, Yesil G, Turan S, Atay Z, Bozkurtlar E, Aghayev A, Gul S, Tinay I, Aru B, Arslan S, Koroglu MK, Ercan F, Demirel GY, Eren FS, Karademir B, Bereket A. PPP2R3C gene variants cause syndromic 46,XY gonadal dysgenesis and impaired spermatogenesis in humans. Eur J Endocrinol 2019; 180:291-309. [PMID: 30893644 DOI: 10.1530/eje-19-0067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/20/2019] [Indexed: 12/29/2022]
Abstract
Context Most of the knowledge on the factors involved in human sexual development stems from studies of rare cases with disorders of sex development. Here, we have described a novel 46, XY complete gonadal dysgenesis syndrome caused by homozygous variants in PPP2R3C gene. This gene encodes B″gamma regulatory subunit of the protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase involved in the phospho-regulation processes of most mammalian cell types. PPP2R3C gene is most abundantly expressed in testis in humans, while its function was hitherto unknown. Patients and methods Four girls from four unrelated families with 46, XY complete gonadal dysgenesis were studied using exome or Sanger sequencing of PPP2R3C gene. In total, four patients and their heterozygous parents were investigated for clinical, laboratory, immunohistochemical and molecular characteristics. Results We have identified three different homozygous PPP2R3C variants, c.308T>C (p.L103P), c.578T>C (p.L193S) and c.1049T>C (p.F350S), in four girls with 46, XY complete gonadal dysgenesis. Patients also manifested a unique syndrome of extragonadal anomalies, including typical facial gestalt, low birth weight, myopathy, rod and cone dystrophy, anal atresia, omphalocele, sensorineural hearing loss, dry and scaly skin, skeletal abnormalities, renal agenesis and neuromotor delay. We have shown a decreased SOX9-Phospho protein expression in the dysgenetic gonads of the patients with homozygous PPP2R3C variants suggesting impaired SOX9 signaling in the pathogenesis of gonadal dysgenesis. Heterozygous males presented with abnormal sperm morphology and impaired fertility. Conclusion Our findings suggest that PPP2R3C protein is involved in the ontogeny of multiple organs, especially critical for testis development and spermatogenesis. PPPR3C provides insight into pathophysiology, as well as emerging as a potential therapeutic target for male infertility.
Collapse
Affiliation(s)
- Tulay Guran
- Department of Paediatric Endocrinology and Diabetes, Marmara University
| | - Gozde Yesil
- Department of Genetics, Bezm-i Alem University
| | - Serap Turan
- Department of Paediatric Endocrinology and Diabetes, Marmara University
| | - Zeynep Atay
- Department of Paediatric Endocrinology and Diabetes, Medipol University
| | - Emine Bozkurtlar
- Department of Pathology, Marmara University, School of Medicine, Istanbul, Turkey
| | - AghaRza Aghayev
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sinem Gul
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Ilker Tinay
- Department of Urology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Basak Aru
- Department of Immunology, Yeditepe University, Faculty of Medicine, Istanbul, Turkey
| | - Sema Arslan
- Department of Biochemistry, Genetic and Metabolic Diseases Research and Investigation Center
| | - M Kutay Koroglu
- Department of Histology and Embryology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Gulderen Y Demirel
- Department of Immunology, Yeditepe University, Faculty of Medicine, Istanbul, Turkey
| | - Funda S Eren
- Department of Pathology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Genetic and Metabolic Diseases Research and Investigation Center
| | - Abdullah Bereket
- Department of Paediatric Endocrinology and Diabetes, Marmara University
| |
Collapse
|
30
|
Nakatomi C, Nakatomi M, Matsubara T, Komori T, Doi-Inoue T, Ishimaru N, Weih F, Iwamoto T, Matsuda M, Kokabu S, Jimi E. Constitutive activation of the alternative NF-κB pathway disturbs endochondral ossification. Bone 2019; 121:29-41. [PMID: 30611922 DOI: 10.1016/j.bone.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 01/29/2023]
Abstract
Endochondral ossification is important for skeletal development. Recent findings indicate that the p65 (RelA) subunit, a main subunit of the classical nuclear factor-κB (NF-κB) pathway, plays essential roles in chondrocyte differentiation. Although several groups have reported that the alternative NF-κB pathway also regulates bone homeostasis, the role of the alternative NF-κB pathway in chondrocyte development is still unclear. Here, we analyzed the in vivo function of the alternative pathway on endochondral ossification using p100-deficient (p100-/-) mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. The alternative pathway was activated during the periarticular stage in wild-type mice. p100-/- mice exhibited dwarfism, and histological analysis of the growth plate revealed abnormal arrangement of chondrocyte columns and a narrowed hypertrophic zone. Consistent with these observations, the expression of hypertrophic chondrocyte markers, type X collagen (ColX) or matrix metalloproteinase 13, but not early chondrogenic markers, such as Col II or aggrecan, was suppressed in p100-/- mice. An in vivo BrdU tracing assay clearly demonstrated less proliferative activity in chondrocytes in p100-/- mice. These defects were partly rescued when the RelB gene was deleted in p100-/- mice. Taken together, the alternative NF-κB pathway may regulate chondrocyte proliferation and differentiation to maintain endochondral ossification.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Falk Weih
- Research Group Immunology, Leibniz-Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, Jena 07745, Germany
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Eijiro Jimi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan; Laboratory of Molecular and Cellular Biochemistry, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
31
|
Yao B, Zhang M, Liu M, Lu B, Leng X, Hu Y, Zhao D, Zhao YU. Identification of the miRNA-mRNA regulatory network of antler growth centers. J Biosci 2019; 44:11. [PMID: 30837362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antler growth is a unique event compared to other growth and development processes in mammals. Antlers grow extremely fast during the rapid growth stage when growth rate peaks at 2 cm per day. Antler growth is driven by a specific endochondral ossification process in the growth center that is in the distal region of the antler tip. In this study, we used state-of-art RNA-seq technology to analyze the expression profiles of mRNAs and miRNAs during antler growth. Our results indicated that the expression levels of multiple genes involved in chondrogenesis and endochondral ossification, including Fn1, Sox9, Col2a1, Acan, Col9a1, Col11a1, Hapln1, Wwp2, Fgfr3, Comp, Sp7 and Ihh, were significantly increased at the rapid growth stage. Our results also indicated that there were multiple differentially expressed miRNAs interacting with differentially expressed genes with opposite expression patterns. Furthermore, some of the miRNAs, including miR-3072-5p, miR-1600, miR-34-5p, miR-6889-5p and miR-6729-5p, simultaneously interacted with and controlled multiple genes involved in the process of chondrogenesis and endochondral ossification. Therefore, we established a miRNA-mRNA regulatory network by identifying miRNAs and their target genes that were differentially expressed in the antler growth centers by comparing the rapid growth stage and the initial growth stage.
Collapse
Affiliation(s)
- Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Allas L, Boumédiene K, Baugé C. Epigenetic dynamic during endochondral ossification and articular cartilage development. Bone 2019; 120:523-532. [PMID: 30296494 DOI: 10.1016/j.bone.2018.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022]
Abstract
Within the last decade epigenetics has emerged as fundamental regulator of numerous cellular processes, including those orchestrating embryonic and fetal development. As such, epigenetic factors play especially crucial roles in endochondral ossification, the process by which bone tissue is created, as well during articular cartilage formation. In this review, we summarize the recent discoveries that characterize how DNA methylation, histone post-translational modifications and non-coding RNA (e.g., miRNA and lcnRNA) epigenetically regulate endochondral ossification and chondrogenesis.
Collapse
Affiliation(s)
- Lyess Allas
- Normandie Univ, UNICAEN, EA7451 BioConnecT, Caen, France
| | | | | |
Collapse
|
33
|
Abstract
SOX transcription factors participate in the specification, differentiation and activities of many cell types in development and beyond. The 20 mammalian family members are distributed into eight groups based on sequence identity, and while co-expressed same-group proteins often have redundant functions, different-group proteins typically have distinct functions. More than a handful of SOX proteins have pivotal roles in skeletogenesis. Heterozygous mutations in their genes cause human diseases, in which skeletal dysmorphism is a major feature, such as campomelic dysplasia (SOX9), or a minor feature, such as LAMSHF syndrome (SOX5) and Coffin-Siris-like syndromes (SOX4 and SOX11). Loss- and gain-of-function experiments in animal models have revealed that SOX4 and SOX11 (SOXC group) promote skeletal progenitor survival and control skeleton patterning and growth; SOX8 (SOXE group) delays the differentiation of osteoblast progenitors; SOX9 (SOXE group) is essential for chondrocyte fate maintenance and differentiation, and works in cooperation with SOX5 and SOX6 (SOXD group) and other types of transcription factors. These and other SOX proteins have also been proposed, mainly through in vitro experiments, to have key roles in other aspects of skeletogenesis, such as SOX2 in osteoblast stem cell self-renewal. We here review current knowledge of well-established and proposed skeletogenic roles of SOX proteins, their transcriptional and non-transcriptional actions, and their modes of regulation at the gene, RNA and protein levels. We also discuss gaps in knowledge and directions for future research to further decipher mechanisms underlying skeletogenesis in health and diseases and identify treatment options for skeletal malformation and degeneration diseases.
Collapse
Affiliation(s)
- Véronique Lefebvre
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
34
|
|
35
|
Different Forms of ER Stress in Chondrocytes Result in Short Stature Disorders and Degenerative Cartilage Diseases: New Insights by Cartilage-Specific ERp57 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8421394. [PMID: 30647818 PMCID: PMC6311764 DOI: 10.1155/2018/8421394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Cartilage is essential for skeletal development by endochondral ossification. The only cell type within the tissue, the chondrocyte, is responsible for the production of macromolecules for the extracellular matrix (ECM). Before proteins and proteoglycans are secreted, they undergo posttranslational modification and folding in the endoplasmic reticulum (ER). However, the ER folding capacity in the chondrocytes has to be balanced with physiological parameters like energy and oxygen levels. Specific cellular conditions, e.g., a high protein demand, or pathologic situations disrupt ER homeostasis and lead to the accumulation of poorly folded or misfolded proteins. This state is called ER stress and induces a cellular quality control system, the unfolded protein response (UPR), to restore homeostasis. Different mouse models with ER stress in chondrocytes display comparable skeletal phenotypes representing chondrodysplasias. Therefore, ER stress itself seems to be involved in the pathogenesis of these diseases. It is remarkable that chondrodysplasias with a comparable phenotype arise independent from the sources of ER stress, which are as follows: (1) mutations in ECM proteins leading to aggregation, (2) deficiencies in ER chaperones, (3) mutations in UPR signaling factors, or (4) deficiencies in the degradation of aggregated proteins. In any case, the resulting UPR substantially impairs ECM protein synthesis, chondrocyte proliferation, and/or differentiation or regulation of autophagy and apoptosis. Notably, chondrodysplasias arise no matter if single or multiple events are affected. We analyzed cartilage-specific ERp57 knockout mice and demonstrated that the deficiency of this single protein disulfide isomerase, which is responsible for formation of disulfide bridges in ECM glycoproteins, is sufficient to induce ER stress and to cause an ER stress-related bone phenotype. These mice therefore qualify as a novel model for the analysis of ER stress in chondrocytes. They give new insights in ER stress-related short stature disorders and enable the analysis of ER stress in other cartilage diseases, such as osteoarthritis.
Collapse
|
36
|
Fu R, Wang X, Xia L, Tan Y, Liu J, Yuan L, Yang Z, Fang B. ADAM10 modulates SOX9 expression via N1ICD during chondrogenesis at the cranial base. RSC Adv 2018; 8:38315-38323. [PMID: 35559110 PMCID: PMC9089825 DOI: 10.1039/c8ra05609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/25/2018] [Indexed: 11/21/2022] Open
Abstract
The cranial base is the foundation of the craniofacial structure, and any interruption of the cranial base can lead to facial deformity. The cranial base develops from two synchondroses via endochondral ossification. Chondrogenesis is an important step in endochondral ossification. A disintegrin and metalloprotease (ADAM) 10 participates in the Notch1 signalling pathway, which has been reported to regulate chondrogenesis via a SOX9-dependent mechanism. However, little is known about the function of ADAM10 in chondrogenesis. In this study, adam10-conditional-knockout (cKO) mice exhibited sharper naso-labial angles and flatter skulls than wild-type (WT) mice. In the sagittal plane, SOX9 was more widespread in the cranial base in Adam10-cKO mice than in WT mice. For in vitro experiments, we used the ATDC5 cell line as a model to investigate the role of ADAM10 in chondrogenesis. Plasmid 129 was designed to decrease the expression of Adam10; the resulting downregulation of Adam10 reduced the production of N1ICD. Plasmid 129 increased the expression of SOX9 under chondrogenic induction, and this increase could be inhibited by transfection with exogenous N1ICD. Collectively, these results show that ADAM10 participates in chondrogenesis by negatively regulating SOX9 expression in an N1ICD-dependent manner during cranial base development.
Collapse
Affiliation(s)
- Runqing Fu
- Department of Orthodontics, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University 500 Quxi Road Shanghai 200011 China
| | - Xiaoting Wang
- Department of Orthodontics, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University 500 Quxi Road Shanghai 200011 China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University 500 Quxi Road Shanghai 200011 China
| | - Yu Tan
- The Second Dental Center, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University 280 Mohe Road Shanghai 200011 China
| | - Jiaqiang Liu
- Department of Oral & Cranio-Maxillofacial Science, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University 500 Quxi Road Shanghai 200011 China
| | - Lingjun Yuan
- Department of Orthodontics, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University 500 Quxi Road Shanghai 200011 China
| | - Zhi Yang
- Department of Oral & Cranio-Maxillofacial Science, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University 500 Quxi Road Shanghai 200011 China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University 500 Quxi Road Shanghai 200011 China
| |
Collapse
|
37
|
Lesage R, Kerkhofs J, Geris L. Computational Modeling and Reverse Engineering to Reveal Dominant Regulatory Interactions Controlling Osteochondral Differentiation: Potential for Regenerative Medicine. Front Bioeng Biotechnol 2018; 6:165. [PMID: 30483498 PMCID: PMC6243751 DOI: 10.3389/fbioe.2018.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023] Open
Abstract
The specialization of cartilage cells, or chondrogenic differentiation, is an intricate and meticulously regulated process that plays a vital role in both bone formation and cartilage regeneration. Understanding the molecular regulation of this process might help to identify key regulatory factors that can serve as potential therapeutic targets, or that might improve the development of qualitative and robust skeletal tissue engineering approaches. However, each gene involved in this process is influenced by a myriad of feedback mechanisms that keep its expression in a desirable range, making the prediction of what will happen if one of these genes defaults or is targeted with drugs, challenging. Computer modeling provides a tool to simulate this intricate interplay from a network perspective. This paper aims to give an overview of the current methodologies employed to analyze cell differentiation in the context of skeletal tissue engineering in general and osteochondral differentiation in particular. In network modeling, a network can either be derived from mechanisms and pathways that have been reported in the literature (knowledge-based approach) or it can be inferred directly from the data (data-driven approach). Combinatory approaches allow further optimization of the network. Once a network is established, several modeling technologies are available to interpret dynamically the relationships that have been put forward in the network graph (implication of the activation or inhibition of certain pathways on the evolution of the system over time) and to simulate the possible outcomes of the established network such as a given cell state. This review provides for each of the aforementioned steps (building, optimizing, and modeling the network) a brief theoretical perspective, followed by a concise overview of published works, focusing solely on applications related to cell fate decisions, cartilage differentiation and growth plate biology. Particular attention is paid to an in-house developed example of gene regulatory network modeling of growth plate chondrocyte differentiation as all the aforementioned steps can be illustrated. In summary, this paper discusses and explores a series of tools that form a first step toward a rigorous and systems-level modeling of osteochondral differentiation in the context of regenerative medicine.
Collapse
Affiliation(s)
- Raphaelle Lesage
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Johan Kerkhofs
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
38
|
Mya N, Furutera T, Okuhara S, Kume T, Takechi M, Iseki S. Transcription factor Foxc1 is involved in anterior part of cranial base formation. Congenit Anom (Kyoto) 2018; 58:158-166. [PMID: 29322554 DOI: 10.1111/cga.12268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/31/2017] [Accepted: 01/06/2018] [Indexed: 01/12/2023]
Abstract
The cranial base is a structure mainly formed through endochondral ossification and integrated into the craniofacial complex, which acts as an underlying platform for the developing brain. Foxc1 is an indispensable regulator during intramembranous and endochondral ossification. In this study, we found that the spontaneous loss of Foxc1 function in a mouse (congenital hydrocephalous), Foxc1ch/ch , demonstrated the anterior cranial base defects, including unossified presphenoid and lack of middle part of the basisphenoid bone. Hypoplastic presphenoid primordial cartilage (basal portion of the trabecular cartilage [bTB]) and a lack of the middle part of basisphenoid primordial cartilage (the hypophyseal cartilage) were consistently observed at earlier developmental stage. Foxc1 was expressed robustly and ubiquitously in undifferentiated mesenchyme of the cranial base-forming area in E11.0 wild-type fetuses. Once chondrogenesis commenced, the expression was downregulated and later limited to the perichondrium. Detection of transcripts of Collagen type2 A1 (Col2a1) revealed that both bTB and the anterior part of the hypophyseal cartilage developing anterior to the persistent epithelial stalk of the anterior lobe of the pituitary gland were suppressed in the Foxc1ch/ch . Proliferation activity of chondrocyte precursor cells was higher in the Foxc1ch/ch . Loss of Foxc1 function only in the neural crest cell lineage (Wnt1-cre;Foxc1ch/flox ) showed ossification of the posterior part of the hypophyseal cartilage derived from the mesoderm. These findings suggest that Foxc1 is an important regulator to further chondrogenesis and initiate the ossification of the presphenoid and basisphenoid bones.
Collapse
Affiliation(s)
- Nandar Mya
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiko Furutera
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Okuhara
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Masaki Takechi
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
39
|
Novel Bionanocellulose/κ-Carrageenan Composites for Tissue Engineering. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, novel bacterial cellulose/κ-carrageenan (BNC/κ-Car) composites, being potential scaffolds for tissue engineering (TE), and outperforming the two polymers when used as scaffolds separately, were for the first time obtained using an in situ method, based on the stationary culture of bacteria Komagateibacter xylinus E25. The composites were compared with native BNC in terms of the morphology of fibers, chemical composition, crystallinity, tensile and compression strength, water holding capacity, water retention ratio and swelling properties. Murine chondrogenic ATDC5 cells were applied to assess the utility of the BNC/κ-Car composites as potential scaffolds. The impact of the composites on the cells viability, chondrogenic differentiation, and expression patterns of Col1α1, Col2α1, Runx2, and Sox9, which are indicative of ATDC5 chondrogenic differentiation, was determined. None of the composites obtained in this study caused the chondrocyte hypertrophy. All of them supported the differentiation of ATDC5 cells to more chondrogenic phenotype.
Collapse
|
40
|
Yoon BH, Park IK, Sung YB. Ankylosing Neurogenic Myositis Ossificans of the Hip: A Case Series and Review of Literature. Hip Pelvis 2018; 30:86-91. [PMID: 29896457 PMCID: PMC5990535 DOI: 10.5371/hp.2018.30.2.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose Neurogenic myositis ossificans (NMO) in patients with traumatic spinal cord or brain injuries can cause severe joint ankylosis or compromise neurovascularture. The purpose of this study was to evaluate the clinical and radiological outcomes of and review considerations relevant to surgical resection of NMO of the hip joint. Materials and Methods Six patients (9 hips) underwent periarticular NMO resection between 2015 and 2017. The medical records of these patients were retrospectively reviewed. Preoperative computed tomography including angiography was performed to determine osteoma location and size. Improvement in hip motion allowing sitting was considered the sole indicator of a successful surgery. The anterior approach was used in all patients. The ranges of motion (ROM) before and after surgery were compared. Results The mean time from accident to surgery was 3.6 years. Average ROM improved from 24.3°(flexion and extension) to 98.5°(flexion and extension) after surgery, and improvement was maintained at the last follow-up. No commom complications (e.g., deep infection, severe hematoma, deep vein thrombosis) occurred in any patient. Improvement in ROM in one hip in which surgical resection was performed 10 years after the accident was not satisfactory owing to the pathologic changes in the joint. Conclusion Surgical excision of periarticular NMO of the hip joint can yield satisfactory results, provided that appropriate preoperative evaluation is performed. Early surgical intervention yields satisfactory results and may prevent the development of intra-articular pathology.
Collapse
Affiliation(s)
- Byung-Ho Yoon
- Department of Orthopaedic Surgery, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - In Keun Park
- Department of Orthopaedic Surgery, Inje University Seoul Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Yerl-Bo Sung
- Department of Orthopaedic Surgery, Inje University Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Nishimura R, Hata K, Takahata Y, Murakami T, Nakamura E, Yagi H. Regulation of Cartilage Development and Diseases by Transcription Factors. J Bone Metab 2017; 24:147-153. [PMID: 28955690 PMCID: PMC5613019 DOI: 10.11005/jbm.2017.24.3.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 01/06/2023] Open
Abstract
Genetic studies and molecular cloning approaches have been successfully used to identify several transcription factors that regulate the numerous stages of cartilage development. Sex-determining region Y (SRY)-box 9 (Sox9) is an essential transcription factor for the initial stage of cartilage development. Sox5 and Sox6 play an important role in the chondrogenic action of Sox9, presumably by defining its cartilage specificity. Several transcription factors have been identified as transcriptional partners for Sox9 during cartilage development. Runt-related transcription factor 2 (Runx2) and Runx3 are necessary for hypertrophy of chondrocytes. CCAAT/enhancer-binding protein β (C/EBPβ) and activating transcription factor 4 (ATF4) function as co-activators for Runx2 during hypertrophy of chondrocytes. In addition, myocyte-enhancer factor 2C (Mef2C) is required for initiation of chondrocyte hypertrophy, presumably by functioning upstream of Runx2. Importantly, the pathogenic roles of several transcription factors in osteoarthritis have been demonstrated based on the similarity of pathological phenomena seen in osteoarthritis with chondrocyte hypertrophy. We discuss the importance of investigating cellular and molecular properties of articular chondrocytes and degradation mechanisms in osteoarthritis, one of the most common cartilage diseases.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroko Yagi
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|