1
|
Harashchenko TA, Umanets TR, Kaminska TM, Gorodna OV, Krasnienkov DS, Antypkin YG, Livshits LA. Distribution of Genotypes for the rs12979860 Polymorphism of the IFNL Gene among Children with COVID-19 in Ukraine. CYTOL GENET+ 2023; 57:579-586. [DOI: 10.3103/s0095452723060038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 01/02/2025]
|
2
|
Kaur R, Tada T, Landau NR. Restriction of SARS-CoV-2 replication by receptor transporter protein 4 (RTP4). mBio 2023; 14:e0109023. [PMID: 37382452 PMCID: PMC10470548 DOI: 10.1128/mbio.01090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is subject to restriction by several interferon-inducible host proteins. To identify novel factors that limit replication of the virus, we tested a panel of genes that we found were induced by interferon treatment of primary human monocytes by RNA sequencing. Further analysis showed that one of the several candidates genes tested, receptor transporter protein 4 (RTP4), that had previously been shown to restrict flavivirus replication, prevented the replication of the human coronavirus HCoV-OC43. Human RTP4 blocked the replication of SARS-CoV-2 in susceptible ACE2.CHME3 cells and was active against SARS-CoV-2 Omicron variants. The protein prevented the synthesis of viral RNA, resulting in the absence of detectable viral protein synthesis. RTP4 bound the viral genomic RNA and the binding was dependent on the conserved zinc fingers in the amino-terminal domain. Expression of the protein was strongly induced in SARS-CoV-2-infected mice although the mouse homolog was inactive against the virus, suggesting that the protein is active against another virus that remains to be identified. IMPORTANCE The rapid spread of a pathogen of human coronavirus (HCoV) family member, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), around the world has led to a coronavirus disease 2019 (COVID-19) pandemic. The COVID-19 pandemic spread highlights the need for rapid identification of new broad-spectrum anti-coronavirus drugs and screening of antiviral host factors capable of inhibiting coronavirus infection. In the present work, we identify and characterize receptor transporter protein 4 (RTP4) as a host restriction factor that restricts coronavirus infection. We examined the antiviral role of hRTP4 toward the coronavirus family members including HCoV-OC43, SARS-CoV-2, Omicron BA.1, and BA.2. Molecular and biochemical analysis showed that hRTP4 binds to the viral RNA and targets the replication phase of viral infection and is associated with reduction of nucleocapsid protein. Significant higher levels of ISGs were observed in SARS-CoV-2 mouse model, suggesting the role of RTP4 in innate immune regulation in coronavirus infection. The identification of RTP4 reveals a potential target for therapy against coronavirus infection.
Collapse
Affiliation(s)
- Ramanjit Kaur
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Nathaniel Roy Landau
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Phase separation and other forms of α-Synuclein self-assemblies. Essays Biochem 2022; 66:987-1000. [DOI: 10.1042/ebc20220055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Abstract
α-Synuclein (α-Syn) is a natively unstructured protein, which self-assembles into higher-order aggregates possessing serious pathophysiological implications. α-Syn aberrantly self-assembles into protein aggregates, which have been widely implicated in Parkinson’s disease (PD) pathogenesis and other synucleinopathies. The self-assembly of α-Syn involves the structural conversion of soluble monomeric protein into oligomeric intermediates and eventually fibrillar aggregates of amyloids with cross-β-sheet rich conformation. These aggregated α-Syn species majorly constitute the intraneuronal inclusions, which is a hallmark of PD neuropathology. Self-assembly/aggregation of α-Syn is not a single-state conversion process as unfolded protein can access multiple conformational states through the formation of metastable, transient pre-fibrillar intermediate species. Recent studies have indicated that soluble oligomers are the potential neurotoxic species responsible for cell death in PD pathogenesis. The heterogeneous and transient nature of oligomers formed during the early stage of aggregation pathway limit their detailed study in understanding the structure–toxicity relationship. Moreover, the precise molecular events occurring in the early stage of α-Syn aggregation process majorly remain unsolved. Recently, liquid–liquid phase separation (LLPS) of α-Syn has been designated as an alternate nucleation mechanism, which occurs in the early lag phase of the aggregation pathway leading to the formation of dynamic supramolecular assemblies. The stronger self-association among the protein molecules triggers the irreversible liquid-to-solid transition of these supramolecular assemblies into the amyloid-like hydrogel, which may serve as a reservoir entrapping toxic oligomeric intermediates and fibrils. This review strives to provide insights into different modes of α-Syn self-assemblies including LLPS-mediated self-assembly and its recent advancements.
Collapse
|
4
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Shi G, Chiramel AI, Li T, Lai KK, Kenney AD, Zani A, Eddy A, Majdoul S, Zhang L, Dempsey T, Beare PA, Kar S, Yewdell JW, Best SM, Yount JS, Compton AA. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.04.15.440067. [PMID: 33880473 PMCID: PMC8057238 DOI: 10.1101/2021.04.15.440067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Adrian Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Saliha Majdoul
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Tirhas Dempsey
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Paul A. Beare
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | | | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Alex A. Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
6
|
Tarutani A, Adachi T, Akatsu H, Hashizume Y, Hasegawa K, Saito Y, Robinson AC, Mann DMA, Yoshida M, Murayama S, Hasegawa M. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol 2022; 143:613-640. [PMID: 35513543 PMCID: PMC9107452 DOI: 10.1007/s00401-022-02426-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 12/20/2022]
Abstract
Intracellular accumulation of abnormal proteins with conformational changes is the defining neuropathological feature of neurodegenerative diseases. The pathogenic proteins that accumulate in patients' brains adopt an amyloid-like fibrous structure and exhibit various ultrastructural features. The biochemical analysis of pathogenic proteins in sarkosyl-insoluble fractions extracted from patients' brains also shows disease-specific features. Intriguingly, these ultrastructural and biochemical features are common within the same disease group. These differences among the pathogenic proteins extracted from patients' brains have important implications for definitive diagnosis of the disease, and also suggest the existence of pathogenic protein strains that contribute to the heterogeneity of pathogenesis in neurodegenerative diseases. Recent experimental evidence has shown that prion-like propagation of these pathogenic proteins from host cells to recipient cells underlies the onset and progression of neurodegenerative diseases. The reproduction of the pathological features that characterize each disease in cellular and animal models of prion-like propagation also implies that the structural differences in the pathogenic proteins are inherited in a prion-like manner. In this review, we summarize the ultrastructural and biochemical features of pathogenic proteins extracted from the brains of patients with neurodegenerative diseases that accumulate abnormal forms of tau, α-synuclein, and TDP-43, and we discuss how these disease-specific properties are maintained in the brain, based on recent experimental insights.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, 683-8503, Japan
| | - Hiroyasu Akatsu
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Aichi, 441-8124, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, 252-0392, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Salford Royal Hospital, The University of Manchester, Salford, M6 8HD, UK
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, 480-1195, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, 565-0871, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
7
|
Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection. Nat Commun 2022; 13:1018. [PMID: 35197461 PMCID: PMC8866527 DOI: 10.1038/s41467-022-28508-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies. Infection with SARS-COV-2 can result in self-limited upper airway infection or progress to a more systemic inflammatory condition including pneumonic COVID-19. Here the authors utilise a multi-omics approach to interrogate the immune response of patients with self-limiting upper respiratory SARS-CoV-2 infection and reveal a temporal immune trajectory they associate with viral containment and restriction from pneumonic progressive disease.
Collapse
|
8
|
Spiering AE, de Vries TJ. Why Females Do Better: The X Chromosomal TLR7 Gene-Dose Effect in COVID-19. Front Immunol 2021; 12:756262. [PMID: 34858409 PMCID: PMC8632002 DOI: 10.3389/fimmu.2021.756262] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
A male sex bias has emerged in the COVID-19 pandemic, fitting to the sex-biased pattern in other viral infections. Males are 2.84 times more often admitted to the ICU and mortality is 1.39 times higher as a result of COVID-19. Various factors play a role in this, and novel studies suggest that the gene-dose of Toll-Like Receptor (TLR) 7 could contribute to the sex-skewed severity. TLR7 is one of the crucial pattern recognition receptors for SARS-CoV-2 ssRNA and the gene-dose effect is caused by X chromosome inactivation (XCI) escape. Female immune cells with TLR7 XCI escape have biallelic TLR7 expression and produce more type 1 interferon (IFN) upon TLR7 stimulation. In COVID-19, TLR7 in plasmacytoid dendritic cells is one of the pattern recognition receptors responsible for IFN production and a delayed IFN response has been associated with immunopathogenesis and mortality. Here, we provide a hypothesis that females may be protected to some extend against severe COVID-19, due to the biallelic TLR7 expression, allowing them to mount a stronger and more protective IFN response early after infection. Studies exploring COVID-19 treatment via the TLR7-mediated IFN pathway should consider this sex difference. Various factors such as age, sex hormones and escape modulation remain to be investigated concerning the TLR7 gene-dose effect.
Collapse
Affiliation(s)
- Anna E. Spiering
- Amsterdam University College, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J. de Vries
- Amsterdam University College, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Sfikakis PP, Verrou KM, Ampatziadis-Michailidis G, Tsitsilonis O, Paraskevis D, Kastritis E, Lianidou E, Moutsatsou P, Terpos E, Trougakos I, Chini V, Manoloukos M, Moulos P, Pavlopoulos GA, Kollias G, Hatzis P, Dimopoulos MA. Blood Transcriptomes of Anti-SARS-CoV-2 Antibody-Positive Healthy Individuals Who Experienced Asymptomatic Versus Clinical Infection. Front Immunol 2021; 12:746203. [PMID: 34675930 PMCID: PMC8523987 DOI: 10.3389/fimmu.2021.746203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
The reasons behind the clinical variability of SARS-CoV-2 infection, ranging from asymptomatic infection to lethal disease, are still unclear. We performed genome-wide transcriptional whole-blood RNA sequencing, bioinformatics analysis and PCR validation to test the hypothesis that immune response-related gene signatures reflecting baseline may differ between healthy individuals, with an equally robust antibody response, who experienced an entirely asymptomatic (n=17) versus clinical SARS-CoV-2 infection (n=15) in the past months (mean of 14 weeks). Among 12.789 protein-coding genes analysed, we identified six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection relatively to those with clinical infection. All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, ALOX15), are involved in innate immune response while the first two are interferon-induced proteins. Among genes with increased expression six are involved in immune response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by interferons. Our results suggest that subtle differences at baseline expression of innate immunity-related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a certain gene signature predicts, or not, those who will develop a more efficient immune response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, warrant further study.
Collapse
Affiliation(s)
- Petros P. Sfikakis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kleio-Maria Verrou
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Giannis Ampatziadis-Michailidis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ourania Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, School of Medicine, University General Hospital Attikon, NKUA, Haidari, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Chini
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Menelaos Manoloukos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Moulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Georgios A. Pavlopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - George Kollias
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Pantelis Hatzis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Meletios A. Dimopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Cable J, Elowitz MB, Domingos AI, Habib N, Itzkovitz S, Hamidzada H, Balzer MS, Yanai I, Liberali P, Whited J, Streets A, Cai L, Stergachis AB, Hong CKY, Keren L, Guilliams M, Alon U, Shalek AK, Hamel R, Pfau SJ, Raj A, Quake SR, Zhang NR, Fan J, Trapnell C, Wang B, Greenwald NF, Vento-Tormo R, Santos SDM, Spencer SL, Garcia HG, Arekatla G, Gaiti F, Arbel-Goren R, Rulands S, Junker JP, Klein AM, Morris SA, Murray JI, Galloway KE, Ratz M, Romeike M. Single cell biology-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:74-97. [PMID: 34605044 DOI: 10.1111/nyas.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Abstract
Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.
Collapse
Affiliation(s)
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, United Kingdom.,The Howard Hughes Medical Institute, New York, New York
| | - Naomi Habib
- Cell Circuits Program, Broad Institute, Cambridge, Massachusetts.,Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Itai Yanai
- Institute for Computational Medicine, NYU Langone Health, New York, New York
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Jessica Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Aaron Streets
- Department of Bioengineering and Center for Computational Biology, University of California, Berkeley, Berkeley, California.,Chan Zuckerberg Biohub, San Francisco, California
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington; and Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Clarice Kit Yee Hong
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, Missouri.,Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Leeat Keren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Pathology, School of Medicine, Stanford University, Stanford, California
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, and Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Uri Alon
- Faculty of Sciences, Department of Human Biology, University of Haifa, Haifa, Israel
| | - Alex K Shalek
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Regan Hamel
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J Pfau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Arjun Raj
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R Quake
- Chan Zuckerberg Biohub, San Francisco, California.,Department of Bioengineering, Stanford University, Stanford, California.,Department of Applied Physics, Stanford University, Stanford, California
| | - Nancy R Zhang
- Graduate Group in Genomics and Computational Biology and Department of Statistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine; Brotman Baty Institute for Precision Medicine; and Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California
| | - Noah F Greenwald
- Department of Pathology, School of Medicine, Stanford University, Stanford, California
| | | | | | - Sabrina L Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Hernan G Garcia
- Department of Physics; Biophysics Graduate Group; Department of Molecular and Cell Biology; and Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California
| | | | - Federico Gaiti
- New York Genome Center and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, and Center for Systems Biology Dresden, Dresden, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Allon M Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
| | - Samantha A Morris
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri.,Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - John I Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Merrit Romeike
- Max Perutz Laboratories Vienna, University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Cheemarla NR, Watkins TA, Mihaylova VT, Wang B, Zhao D, Wang G, Landry ML, Foxman EF. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. J Exp Med 2021; 218:e20210583. [PMID: 34128960 PMCID: PMC8210587 DOI: 10.1084/jem.20210583] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Initial replication of SARS-CoV-2 in the upper respiratory tract is required to establish infection, and the replication level correlates with the likelihood of viral transmission. Here, we examined the role of host innate immune defenses in restricting early SARS-CoV-2 infection using transcriptomics and biomarker-based tracking in serial patient nasopharyngeal samples and experiments with airway epithelial organoids. SARS-CoV-2 initially replicated exponentially, with a doubling time of ∼6 h, and induced interferon-stimulated genes (ISGs) in the upper respiratory tract, which rose with viral replication and peaked just as viral load began to decline. Rhinovirus infection before SARS-CoV-2 exposure accelerated ISG responses and prevented SARS-CoV-2 replication. Conversely, blocking ISG induction during SARS-CoV-2 infection enhanced viral replication from a low infectious dose. These results show that the activity of ISG-mediated defenses at the time of SARS-CoV-2 exposure impacts infection progression and that the heterologous antiviral response induced by a different virus can protect against SARS-CoV-2.
Collapse
Affiliation(s)
- Nagarjuna R. Cheemarla
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Timothy A. Watkins
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Valia T. Mihaylova
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Bao Wang
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Dejian Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genomic Analysis, Yale School of Medicine, New Haven, CT
| | - Guilin Wang
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genomic Analysis, Yale School of Medicine, New Haven, CT
| | - Marie L. Landry
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Ellen F. Foxman
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
12
|
|
13
|
Ahn JH, Kim J, Hong SP, Choi SY, Yang MJ, Ju YS, Kim YT, Kim HM, Rahman MDT, Chung MK, Hong SD, Bae H, Lee CS, Koh GY. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest 2021; 131:148517. [PMID: 34003804 PMCID: PMC8245175 DOI: 10.1172/jci148517] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
The upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells. We observed these findings during the early stage of COVID-19, when infected ciliated cells were rapidly replaced by differentiating precursor cells. Moreover, our analyses revealed that SARS-CoV-2 cellular tropism was restricted to the nasal ciliated versus oral squamous epithelium. These results imply that targeting ciliated cells of the nasal epithelium during the early stage of COVID-19 could be an ideal strategy to prevent SARS-CoV-2 propagation.
Collapse
Affiliation(s)
- Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - JungMo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sung Yong Choi
- Department of Otorhinolaryngology – Head and Neck Surgery, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Biomolecular and Cellular Structure, IBS, Daejeon, Republic of Korea
| | - MD Tazikur Rahman
- Department of Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk, National University Hospital, Jeonju, Republic of Korea
| | - Man Ki Chung
- Department of Otorhinolaryngology – Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Duk Hong
- Department of Otorhinolaryngology – Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Chang-Seop Lee
- Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk, National University Hospital, Jeonju, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
14
|
Sposito B, Broggi A, Pandolfi L, Crotta S, Ferrarese R, Sisti S, Clementi N, Ambrosi A, Liu E, Frangipane V, Saracino L, Marongiu L, Facchini FA, Bottazzi A, Fossali T, Colombo R, Clementi M, Tagliabue E, Pontiroli AE, Meloni F, Wack A, Mancini N, Zanoni I. Severity of SARS-CoV-2 infection as a function of the interferon landscape across the respiratory tract of COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.30.437173. [PMID: 33821280 PMCID: PMC8020981 DOI: 10.1101/2021.03.30.437173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 outbreak driven by SARS-CoV-2 has caused more than 2.5 million deaths globally, with the most severe cases characterized by over-exuberant production of immune-mediators, the nature of which is not fully understood. Interferons of the type I (IFN-I) or type III (IFN-III) families are potent antivirals, but their role in COVID-19 remains debated. Our analysis of gene and protein expression along the respiratory tract shows that IFNs, especially IFN-III, are over-represented in the lower airways of patients with severe COVID-19, while high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity; also, IFN expression varies with abundance of the cell types that produce them. Our data point to a dynamic process of inter- and intra-family production of IFNs in COVID-19, and suggest that IFNs play opposing roles at distinct anatomical sites.
Collapse
Affiliation(s)
- Benedetta Sposito
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology, Boston, US
- Dep. of Biotechnology and Biosciences and Ph.D. program in Molecular and Translational Medicine (DIMET), University of Milano - Bicocca, Milan, Italy
| | - Achille Broggi
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology, Boston, US
| | - Laura Pandolfi
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Sofia Sisti
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Enju Liu
- Harvard Medical School, Boston Children’s Hospital, Division of Gastroenterology, Boston, US
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA, USA
| | - Vanessa Frangipane
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Laura Saracino
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Laura Marongiu
- Dep. of Biotechnology and Biosciences and Ph.D. program in Molecular and Translational Medicine (DIMET), University of Milano - Bicocca, Milan, Italy
| | - Fabio A Facchini
- Dep. of Biotechnology and Biosciences and Ph.D. program in Molecular and Translational Medicine (DIMET), University of Milano - Bicocca, Milan, Italy
| | - Andrea Bottazzi
- Department of Anesthesia and Critical Care Medicine, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Tommaso Fossali
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Riccardo Colombo
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Massimo Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Hospital, Milan, Italy
| | | | | | - Federica Meloni
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine and Pharmacology, University of Pavia, Pavia, Italy
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Hospital, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology, Boston, US
- Harvard Medical School, Boston Children’s Hospital, Division of Gastroenterology, Boston, US
| |
Collapse
|