1
|
Poirier A, Utecht T, Villot R, Gélinas Y, Mouchiroud M, Kordahi M, Kolnohuz A, Pasteur C, Roy J, Beaulieu MJ, Orain M, Samson N, Blanchet MR, Joubert P, Laplante M. ZNF768 loss amplifies p53 action and reduces lung tumorigenesis in mice. Oncogene 2025:10.1038/s41388-025-03352-w. [PMID: 40133474 DOI: 10.1038/s41388-025-03352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Cell proliferation is a fundamental process required for organismal development, growth, and maintenance. Failure to control this process leads to several diseases, including cancer. Zinc finger protein 768 (ZNF768) is an emerging transcription factor that plays key roles in driving proliferation. In addition to controlling a gene network supporting cell division, ZNF768 physically interacts and inhibits the activity of the tumor suppressor p53. Although the importance of ZNF768 in promoting cell proliferation has been well demonstrated in vitro, the physiological and pathological roles of ZNF768 in vivo are still unknown. Here, we report the generation and characterization of a ZNF768 null mouse model. ZNF768 null mice are viable but show a growth defect early in life. Mouse embryonic fibroblasts (MEFs) isolated from ZNF768 null embryos exhibit higher p53 levels, premature senescence, and higher sensitivity to genotoxic stress. In line with these findings, ZNF768 null mice showed increased radiosensitivity. This effect was associated not only with higher expression of a subset of p53 target genes, but also with alterations in genes regulating transmembrane receptor signaling, cell adhesion, and growth. Because ZNF768 levels are elevated in tumors, we tested the impact of ZNF768 loss on cancer development in mice. Here, we show that ZNF768 deletion was sufficient to repress lung tumor development in a KRASG12D-induced cancer mouse model. Overall, our findings establish ZNF768 as an important protein controlling cell proliferation that could potentially be targeted to reduce tumorigenesis.
Collapse
Affiliation(s)
- Audrey Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Timon Utecht
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Romain Villot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yves Gélinas
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Manal Kordahi
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Alona Kolnohuz
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
| | - Coline Pasteur
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Joanny Roy
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Marie-Josée Beaulieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Michèle Orain
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Nolwenn Samson
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Philippe Joubert
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, QC, Canada.
- Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Wu K, Ge XX, Duan XF, Li JQ, Wang K, Chen QH, Huang ZM, Zhang WY, Wu Y, Li Q. Wip1 phosphatase activator QGC-8-52 specifically sensitizes p53-negative cancer cells to chemotherapy while protecting normal cells. Drug Resist Updat 2025; 79:101196. [PMID: 39787991 DOI: 10.1016/j.drup.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
PP2C serine-threonine phosphatase Wip1 plays an important role in normal tissue homeostasis, stress signaling and pathogenesis of various human diseases. It is an attractive drug target for cancer treatment and inhibition of its expression or activity constitute a novel therapeutic intervention strategy to prevent the development of various cancers. However, previous strategies for Wip1 suppression may be ineffective in cancers lacking p53. Here, we have characterized the activity of a novel Wip1 phosphatase activator, QGC-8-52, in preclinical models of breast malignancies. QGC-8-52 significantly sensitizes the cancer cell lines with p53 deletion to chemotherapeutic agents. This effect was mediated by the Wip1-FOXO3a interaction and subsequent dephosphorylation of Thr487 that resulted, in response to anticancer treatment, in enhancing the transcription activity of FOXO3a on the proapoptotic TRAIL gene. The sensitizing effect of Wip1 activation on chemotherapeutic drugs only targeted cancer cells lacking p53. The activation of Wip1 in normal cells provided protection from anticancer drug-induced apoptosis by reducing the strength of upstream signaling to p53. Therefore, during the treatment of anticancer drugs, the activated Wip1 phosphatase boosts the apoptosis of p53-negative tumors and protects normal tissues. Our findings may represent an effective and safe therapeutic strategy for cancers with p53 deletion.
Collapse
Affiliation(s)
- Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charls Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; School of Nursing, Wuhan University, Wuhan, 430071, China
| | - Xiao-Xiao Ge
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Xiao-Fan Duan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China
| | - Jie-Qing Li
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Zhi-Min Huang
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charls Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Qun Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| |
Collapse
|
3
|
Wu LF, Ren CH, Xu JC, Zhang YF, Liu YB, Zhou PH, Zhang YQ. NUC7738 Induces Apoptosis Through Modulating Stability of P53 in Esophageal Cancer Cells. J Biochem Mol Toxicol 2025; 39:e70175. [PMID: 39967332 DOI: 10.1002/jbt.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Esophageal cancer is an aggressive malignancy with a poor prognosis. NUC7738, a cordycepin derivative, has shown promise in overcoming the limited in vivo efficacy of its parent compound. This study compares the anticancer effects of NUC7738 and cordycepin in esophageal cancer and explores the molecular mechanisms of NUC7738 action. In vitro, NUC7738 and cordycepin were tested on normal (Het1A) and esophageal cancer cell lines (ECA109, KYSE510) using Cell Counting Kit-8 (CCK-8) and colony formation assays. Apoptosis was confirmed by inhibitors and flow cytometry. Western blot was performed to detect apoptosis-related protein. KEGG analysis identified potential downstream signaling pathways, while qPCR, western blot, and immunofluorescence staining were applied to assess p53 expression and stability. In vivo, ECA109 cells were xenografted into nude mice, and tumor tissues were analyzed for p53 expression using Immunohistochemical staining. Finally, CCK-8, colony formation, and subcutaneous tumor xenograft assays in nude mice were employed to assess the synergistic effects of NUC7738 and cisplatin. The results revealed that NUC7738, although less effective than cordycepin in vitro, demonstrated superior anticancer activity in vivo. NUC7738 induced apoptosis by stabilizing p53 via ubiquitination, inhibiting tumor growth. Additionally, NUC7738 combined with cisplatin showed enhanced anticancer effects both in vitro and in vivo. These findings highlight greater potential of NUC7738 for clinical application, particularly in improving p53 stability and augmenting chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Lin-Feng Wu
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Chang-Hao Ren
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Cheng Xu
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Yi-Fei Zhang
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Yan-Bo Liu
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Ping-Hong Zhou
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| | - Yi-Qun Zhang
- Department of Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Endoscopy, Shanghai Collaborative Innovation Center, Shanghai, China
| |
Collapse
|
4
|
Doron-Mandel E, Bokor BJ, Ma Y, Street LA, Tang LC, Abdou AA, Shah NH, Rosenberger G, Jovanovic M. SEC-MX: an approach to systematically study the interplay between protein assembly states and phosphorylation. Nat Commun 2025; 16:1176. [PMID: 39885126 PMCID: PMC11782603 DOI: 10.1038/s41467-025-56303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states. SEC-MX enhances throughput, allows phosphopeptide enrichment, and facilitates quantitative differential comparisons between biological conditions. Conducting SEC-MX on HEK293 and HCT116 cells, we generate a proof-of-concept dataset, mapping thousands of phosphopeptides and their assembly states. Our analysis reveals intricate relationships between phosphorylation events and assembly states and generates testable hypotheses for follow-up studies. Overall, we establish SEC-MX as a valuable tool for exploring protein functions and regulation beyond abundance changes.
Collapse
Affiliation(s)
- Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lauren C Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed A Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Neel H Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Chen H, Gao S, Wang P, Xie M, Zhang H, Fan Y, Nie E, Lan Q. SRBD1 Regulates the Cell Cycle, Apoptosis, and M2 Macrophage Polarization via the RPL11-MDM2-p53 Pathway in Glioma. ENVIRONMENTAL TOXICOLOGY 2025; 40:66-78. [PMID: 39258423 DOI: 10.1002/tox.24396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Low expression of certain ribosomal proteins leads to the inactivation of p53, which is mediated mainly by RPL5 or RPL11 (ribosomal protein L11). It is also unknown what mechanisms drive aberrant ribosomal proteins expression in tumor. SRBD1 (S1 RNA-binding domain 1), as a highly conserved RNA-binding protein, is lowly expressed in glioma tissues and correlated with glioma prognosis. In this study, we observed that SRBD1 was closely related to p53 signaling. The upregulation of SRBD1 elevated p53 levels, thereby activating the p53 signaling pathway. As an RNA bind protein, SRBD1 could bind to the 5'-UTR of target genes and regulate RNA translation. We further conducted RNA immunoprecipitation using anti-SRDB1 antibody and noticed 29 hub RNA, including RPL11. RPL11 could inhibit MDM2-mediated p53 ubiquitination. SRBD1 upregulation promoted RPL11 binding to MDM2 via elevating RPL11 protein levels, which in turn activated the p53 signaling. Disrupting the p53 signaling blocked SRBD1-induced glioma suppression. In mouse xenograft model, SRBD1 ectopic expression was effective in reducing the total M2 tumor-associated macrophages (TAMs) density and suppressed glioma tumor growth. In summary, these data show that SRBD1 has a critical role in inhibition of glioma tumor growth and M2 macrophage polarization, and targeting RPL11-MDM2-p53 signaling may be an effective strategy to improve therapy and survival for glioma patients.
Collapse
Affiliation(s)
- Hongfu Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shuping Gao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Neurosurgery, Rizhao Central Hospital, Rizhao, Shandong, People's Republic of China
| | - Manyi Xie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Hui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yuechao Fan
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Al-Ayoubi C, Rocher O, Naylies C, Lippi Y, Vignard J, Puel S, Puel O, Oswald IP, Soler L. More than a mutagenic Aflatoxin B1 precursor: The multiple cellular targets of Versicolorin A revealed by global gene expression analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125138. [PMID: 39424048 DOI: 10.1016/j.envpol.2024.125138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Versicolorin A (VerA), a precursor of the potent carcinogen Aflatoxin B1 (AFB1), is an emerging mycotoxin. Recent research has highlighted the mutagenic and genotoxic properties of VerA, yet several facets of its pronounced toxicity remain unexplored. In the present study, we investigated early (6 h) transcriptomic changes induced by VerA in differentiated intestinal cells in non-cytotoxic conditions (1 and 3 μM) and compared its effects to those of AFB1 at 1 μM. Our findings indicated that VerA led to substantial alterations in global gene expression profiles, while AFB1 did not exhibit the same effects. As expected, both toxins caused alterations in gene expression associated with well-known aspects of their toxicity, including mutagenicity, genotoxicity, oxidative stress, and apoptosis. However, we also observed novel features of VerA toxicity, including the ability to cause mitochondrial dysfunction and to trigger a type-1 interferon response, at least partially mediated by cGAS-STING. VerA also induced changes in the expression of genes involved in the regulation of cell shape and adhesion, transcription/translation as well as genes associated with tumor biology. Our results provide new evidence of the high toxicity of VerA and underscore the importance of further assessing the risks associated with its presence in food.
Collapse
Affiliation(s)
- Carine Al-Ayoubi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Ophelie Rocher
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Sylvie Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France.
| |
Collapse
|
7
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Phenotypical mapping of TP53 unique missense mutations spectrum in human cancers. J Biomol Struct Dyn 2024:1-14. [PMID: 39639563 DOI: 10.1080/07391102.2024.2435060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
The p53 tumor suppressor is one of the most mutated genes responsible for tumorigenesis in most human cancers. Out of 29,891 genomic mutations reported in the TP53 Database (https://tp53.isb-cgc.org/), 1,297 are identified as unique missense somatic mutations excluding frameshift, intronic, deletion, nonsense, silent, splice, and other unknown mutations. We have comprehensively analyzed all these 1,297 unique missense mutations and created a phenotypical map based on the distribution of mutations in each domain, the functional state of the protein, and their occurrence in different types of tissues and organs. Our mutation map shows that almost 118 unique missense mutations are reported in the transactivation and proline-rich domains, 1,065 in the central DNA-binding domains, and 113 in the oligomerization and regulatory domains. Based on the phenotype, these mutations are subdivided into 46 super trans, 491 functional, 315 partially functional, and 415 non-functional mutations. The prevalence of these mutations was checked in 71 different types of tissues and found that the mutant R248Q is reported in 51 types of tissues followed by R175H and R273H in 46 types. We correlated the potential impact of mutation in target gene transcription and regulation with nucleosomal DNA and RNA-Pol II complexes. We have discussed the impact of mutation at post-translational modification sites in the structure and function of p53 highlighting the potential therapeutic drug targets with tremendous clinical applications.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Ye C, Cheng Y, Qian X, Zhong B, Ma J, Guo H. The CDK4/6 Inhibitor Palbociclib Induces Cell Senescence of High-grade Serous Ovarian Cancer Through Acetylation of p53. Biochem Genet 2024; 62:5115-5128. [PMID: 38388849 DOI: 10.1007/s10528-024-10704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Cell senescence is an anti-cancer strategy following DNA repair and apoptosis, which is associated with the initiation, progression, and treatment of ovarian cancer. The CDK4/6 inhibitor alters cell cycle and induces cell senescence dependent on retinoblastoma (RB) family proteins. Objective Herein, we aimed to explore the effects of Palbociclib (a CDK4/6 inhibitor) on cellular senescence of high-grade serous ovarian cancer (HGSOC). Cell viability and cell cycle were evaluated by cell counting kit-8 and flow cytometry. Cell senescence was analyzed using the SA-β-gal staining assay. The senescence-associated secretory phenotype was assessed using quantitative PCR (qPCR). Senescence-related markers were tested using western blot. The role of Palbociclib in vivo was clarified using xenograft tumor. Acetylation of p53 was evaluated by qPCR and western blot. The results showed that Palbociclib inhibited cell viability, blocked cell cycle at G0/G1 phase, and induced cell senescence. A rescue study indicated that knockdown of p53 reversed the effects on cell cycle and senescence induced by Palbociclib. Moreover, we found that Palbociclib promotes P300-mediated p53 acetylation, thus increasing p53 stability and transcription activity. Moreover, Palbociclib suppressed tumor growth in vivo with increased p53 and acetylated p53 levels. In conclusion, Palbociclib induced cell senescence of HGSOC through P300-mediated p53 acetylation, suggesting that Palbociclib may have the effect of treating HGSOC.
Collapse
Affiliation(s)
- Cong Ye
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Yan Cheng
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Xiaohong Qian
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Bo Zhong
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Jinchun Ma
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China
| | - Hongling Guo
- Department of Gynecology, Taicang Affiliated Hospital of Soochow University (The First People's Hospital of Taicang), No.58 Changsheng South Road, Taicang, 215400, Jiangsu, China.
| |
Collapse
|
9
|
Ashraf S, Deshpande N, Cheung Q, Asabere JB, Wong RJ, Gauthier AG, Parekh M, Adhikari Y, Melangath G, Jurkunas UV. Modulation of ATM enhances DNA repair in G2/M phase of cell cycle and averts senescence in Fuchs endothelial corneal dystrophy. Commun Biol 2024; 7:1482. [PMID: 39523410 PMCID: PMC11551145 DOI: 10.1038/s42003-024-07179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Fuchs Endothelial Corneal Dystrophy (FECD) is an aging disorder characterized by expedited loss of corneal endothelial cells (CEnCs) and heightened DNA damage compared to normal CEnCs. We previously established that ultraviolet-A (UVA) light causes DNA damage and leads to FECD phenotype in a non-genetic mouse model. Here, we demonstrate that acute treatment with chemical stressor, menadione, or physiological stressors, UVA, and catechol estrogen (4-OHE2), results in an early and increased activation of ATM-mediated DNA damage response in FECD compared to normal CEnCs. Acute stress with UVA and 4OHE2 causes (i) greater cell-cycle arrest and DNA repair in G2/M phase, and (ii) greater cytoprotective senescence in NQO1-/- compared to NQO1+/+ cells, which was reversed upon ATM inhibition. Chronic stress with UVA and 4OHE2 results in ATM-driven cell-cycle arrest in G0/G1 phase, reduced DNA repair, and cytotoxic senescence, due to sustained damage. Likewise, UVA-induced cell-cycle reentry, gamma-H2AX foci, and senescence-associated heterochromatin were reduced in Atm-null mice. Remarkably, inhibiting ATM activation with KU-55933 restored DNA repair in G2/M phase and attenuated senescence in chronic cellular model of FECD lacking NQO1. This study provides insights into understanding the pivotal role of ATM in regulating cell-cycle, DNA repair, and senescence, in oxidative-stress disorders like FECD.
Collapse
Affiliation(s)
- Shazia Ashraf
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Queenie Cheung
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jeffrey Boakye Asabere
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Raymond Jeff Wong
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Alex G Gauthier
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Mohit Parekh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yadav Adhikari
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Geetha Melangath
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Rida P, Baker S, Saidykhan A, Bown I, Jinna N. FOXM1 Transcriptionally Co-Upregulates Centrosome Amplification and Clustering Genes and Is a Biomarker for Poor Prognosis in Androgen Receptor-Low Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3191. [PMID: 39335162 PMCID: PMC11429756 DOI: 10.3390/cancers16183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
There are currently no approved targeted treatments for quadruple-negative breast cancer [QNBC; ER-/PR-/HER2-/androgen receptor (AR)-], a subtype of triple-negative breast cancer (TNBC). AR-low TNBC is more proliferative and clinically aggressive than AR-high TNBC. Centrosome amplification (CA), a cancer hallmark, is rampant in TNBC, where it induces spindle multipolarity-mediated cell death unless centrosome clustering pathways are co-upregulated to avert these sequelae. We recently showed that genes that confer CA and centrosome clustering are strongly overexpressed in AR-low TNBCs relative to AR-high TNBCs. However, the molecular mechanisms that index centrosome clustering to the levels of CA are undefined. We argue that FOXM1, a cell cycle-regulated oncogene, links the expression of genes that drive CA to the expression of genes that act at kinetochores and along microtubules to facilitate centrosome clustering. We provide compelling evidence that upregulation of the FOXM1-E2F1-ATAD2 oncogene triad in AR-low TNBC is accompanied by CA and the co-upregulation of centrosome clustering proteins such as KIFC1, AURKB, BIRC5, and CDCA8, conferring profound dysregulation of cell cycle controls. Targeting FOXM1 in AR-low TNBC may render cancer cells incapable of clustering their centrosomes and impair their ability to generate excess centrosomes. Hence, our review illuminates FOXM1 as a potential actionable target for AR-low TNBC.
Collapse
Affiliation(s)
- Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Sophia Baker
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Adam Saidykhan
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Isabelle Bown
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Nikita Jinna
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
12
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
13
|
Manav N, Jit BP, Kataria B, Sharma A. Cellular and epigenetic perspective of protein stability and its implications in the biological system. Epigenomics 2024; 16:879-900. [PMID: 38884355 PMCID: PMC11370918 DOI: 10.1080/17501911.2024.2351788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Protein stability is a fundamental prerequisite in both experimental and therapeutic applications. Current advancements in high throughput experimental techniques and functional ontology approaches have elucidated that impairment in the structure and stability of proteins is intricately associated with the cause and cure of several diseases. Therefore, it is paramount to deeply understand the physical and molecular confounding factors governing the stability of proteins. In this review article, we comprehensively investigated the evolution of protein stability, examining its emergence over time, its relationship with organizational aspects and the experimental methods used to understand it. Furthermore, we have also emphasized the role of Epigenetics and its interplay with post-translational modifications (PTMs) in regulating the stability of proteins.
Collapse
Affiliation(s)
- Nisha Manav
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Babita Kataria
- Department of Medical Oncology, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
- Department of Biochemistry, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| |
Collapse
|
14
|
Wehbe N, Badran A, Baydoun S, Al-Sawalmih A, Maresca M, Baydoun E, Mesmar JE. The Antioxidant Potential and Anticancer Activity of Halodule uninervis Ethanolic Extract against Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2024; 13:726. [PMID: 38929164 PMCID: PMC11200955 DOI: 10.3390/antiox13060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Natural remedies have been indispensable to traditional medicine practices for generations, offering therapeutic solutions for various ailments. In modern times, these natural products continue to play a pivotal role in the discovery of new drugs, especially for cancer treatment. The marine ecosystem offers a wide range of plants with potential anticancer activities due to their distinct biochemical diversity and adaptation to extreme situations. The seagrass Halodule uninervis is rich in diverse bioactive metabolites that bestow the plant with various pharmacological properties. However, its anticancer activity against invasive triple-negative breast cancer (TNBC) is still poorly investigated. In the present study, the phytochemical composition of an ethanolic extract of H. uninervis (HUE) was screened, and its antioxidant potential was evaluated. Moreover, the anticancer potential of HUE against MDA-MB-231 cells was investigated along with the possible underlying mechanisms of action. Our results showed that HUE is rich in diverse phytochemicals that are known for their antioxidant and anticancer effects. In MDA-MB-231 cells, HUE targeted the hallmarks of cancer, including cell proliferation, adhesion, migration, invasion, and angiogenesis. The HUE-mediated anti-proliferative and anti-metastatic effects were associated with the downregulation of the proto-oncogenic STAT3 signaling pathway. Taken together, H. uninervis could serve as a valuable source for developing novel drugs targeting TNBC.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Adnan Badran
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Joelle Edward Mesmar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| |
Collapse
|
15
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
16
|
Munteanu C, Turti S, Achim L, Muresan R, Souca M, Prifti E, Mârza SM, Papuc I. The Relationship between Circadian Rhythm and Cancer Disease. Int J Mol Sci 2024; 25:5846. [PMID: 38892035 PMCID: PMC11172077 DOI: 10.3390/ijms25115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The circadian clock regulates biological cycles across species and is crucial for physiological activities and biochemical reactions, including cancer onset and development. The interplay between the circadian rhythm and cancer involves regulating cell division, DNA repair, immune function, hormonal balance, and the potential for chronotherapy. This highlights the importance of maintaining a healthy circadian rhythm for cancer prevention and treatment. This article investigates the complex relationship between the circadian rhythm and cancer, exploring how disruptions to the internal clock may contribute to tumorigenesis and influence cancer progression. Numerous databases are utilized to conduct searches for articles, such as NCBI, MEDLINE, and Scopus. The keywords used throughout the academic archives are "circadian rhythm", "cancer", and "circadian clock". Maintaining a healthy circadian cycle involves prioritizing healthy sleep habits and minimizing disruptions, such as consistent sleep schedules, reduced artificial light exposure, and meal timing adjustments. Dysregulation of the circadian clock gene and cell cycle can cause tumor growth, leading to the need to regulate the circadian cycle for better treatment outcomes. The circadian clock components significantly impact cellular responses to DNA damage, influencing cancer development. Understanding the circadian rhythm's role in tumor diseases and their therapeutic targets is essential for treating and preventing cancer. Disruptions to the circadian rhythm can promote abnormal cell development and tumor metastasis, potentially due to immune system imbalances and hormonal fluctuations.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sabina Turti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Larisa Achim
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Raluca Muresan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Marius Souca
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Eftimia Prifti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
17
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Liu Z, Yang Y, Sun X, Ma R, Zhang W, Wang W, Yang G, Wang H, Zhang J, Wang Y, Tian J. Discovery of Novel Antitumor Small-Molecule Agent with Dual Action of CDK2/p-RB and MDM2/p53. Molecules 2024; 29:725. [PMID: 38338471 PMCID: PMC10856454 DOI: 10.3390/molecules29030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cell cycle-dependent kinase 2 (CDK2) is located downstream of CDK4/6 in the cell cycle and regulates cell entry into S-phase by binding to Cyclin E and hyper-phosphorylating Rb. Proto-oncogene murine double minute 2 (MDM2) is a key negative regulator of p53, which is highly expressed in tumors and plays an important role in tumorigenesis and progression. In this study, we identified a dual inhibitor of CDK2 and MDM2, III-13, which had good selectivity for inhibiting CDK2 activity and significantly reduced MDM2 expression. In vitro results showed that III-13 inhibited proliferation of a wide range of tumor cells, regardless of whether Cyclin E1 (CCNE1) was overexpressed or not. The results of in vivo experiments showed that III-13 significantly inhibited proliferation of tumor cells and did not affect body weight of mice. The results of the druggability evaluation showed that III-13 was characterized by low bioavailability and poor membrane permeability when orally administered, suggesting the necessity of further structural modifications. Therefore, this study provided a lead compound for antitumor drugs, especially those against CCNE1-amplified tumor proliferation.
Collapse
Affiliation(s)
- Zhaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Yifei Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Runchen Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Wenjing Zhang
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, China;
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Jianzhao Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Z.L.); (Y.Y.); (X.S.); (R.M.); (W.W.); (G.Y.); (H.W.); (J.Z.)
| |
Collapse
|
19
|
Indeglia A, Murphy ME. Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression. Crit Rev Biochem Mol Biol 2024; 59:128-138. [PMID: 38661126 PMCID: PMC11209770 DOI: 10.1080/10409238.2024.2344465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
TP53 encodes a transcription factor that is centrally-involved in several pathways, including the control of metabolism, the stress response, DNA repair, cell cycle arrest, senescence, programmed cell death, and others. Since the discovery of TP53 as the most frequently-mutated tumor suppressor gene in cancer over four decades ago, the field has focused on uncovering target genes of this transcription factor that are essential for tumor suppression. This search has been fraught with red herrings, however. Dozens of p53 target genes were discovered that had logical roles in tumor suppression, but subsequent data showed that most were not tumor suppressive, and were dispensable for p53-mediated tumor suppression. In this review, we focus on p53 transcriptional targets in two categories: (1) canonical targets like CDKN1A (p21) and BBC3 (PUMA), which clearly play critical roles in p53-mediated cell cycle arrest/senescence and cell death, but which are not mutated in cancer, and for which knockout mice fail to develop spontaneous tumors; and (2) a smaller category of recently-described p53 target genes that are mutated in human cancer, and which appear to be critical for tumor suppression by p53. Interestingly, many of these genes encode proteins that control broad cellular pathways, like splicing and protein degradation, and several of them encode proteins that feed back to regulate p53. These include ZMAT3, GLS2, PADI4, ZBXW7, RFX7, and BTG2. The findings from these studies provide a more complex, but exciting, potential framework for understanding the role of p53 in tumor suppression.
Collapse
Affiliation(s)
- Alexandra Indeglia
- The Wistar Institute, Philadelphia PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104
| | | |
Collapse
|
20
|
Smalley J, Cowley SM, Hodgkinson JT. MDM2 Antagonist Idasanutlin Reduces HDAC1/2 Abundance and Corepressor Partners but Not HDAC3. ACS Med Chem Lett 2024; 15:93-98. [PMID: 38229760 PMCID: PMC10788946 DOI: 10.1021/acsmedchemlett.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
Histone deacetylases 1-3 (HDAC1, HDAC2, and HDAC3) and their associated corepressor complexes play important roles in regulating chromatin structure and gene transcription. HDAC enzymes are also validated drug targets for oncology and offer promise toward new drugs for neurodegenerative diseases and cardiovascular diseases. We synthesized four novel heterobifunctional molecules designed to recruit the mouse double minute 2 homologue (MDM2) E3 ligase to degrade HDAC1-3 utilizing the MDM2 inhibitor idasanutlin, known as proteolysis targeting chimeras (PROTACs). Idasanutlin inhibits the MDM2-P53 protein-protein interaction and is in clinical trials. Although two MDM2-recruiting heterobifunctional molecules reduced HDAC1 and HDAC2 abundance with complete selectivity over HDAC3 and reduced HDAC1/2 corepressor components LSD1 and SIN3A, we were surprised to observe that idasanutlin alone was also capable of this effect. This finding suggests an association between the MDM2 E3 ligase and HDAC1/2 corepressor complexes, which could be important for designing future dual/bifunctional HDAC- and MDM2-targeting therapeutics, such as PROTACs.
Collapse
Affiliation(s)
- Joshua
P. Smalley
- Leicester
Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shaun M. Cowley
- Department
of Molecular and Cell Biology, University
of Leicester, Leicester LE1 7RH, United Kingdom
| | - James T. Hodgkinson
- Leicester
Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
21
|
Kwon YJ, Kwon TU, Shin S, Lee B, Lee H, Park H, Kim D, Moon A, Chun YJ. Enhancing the invasive traits of breast cancers by CYP1B1 via regulation of p53 to promote uPAR expression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166868. [PMID: 37661069 DOI: 10.1016/j.bbadis.2023.166868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Human cytochrome P450 1B1 (CYP1B1) catalyzes estrogen metabolism to produce metabolites that promote the progression of breast cancer. Since the invasive properties of cancer cells cause cancer relapse, which dramatically reduces patient survival, we investigated the new pro-invasive mechanism involving CYP1B1 in breast cancer. Exploring clinical data from invasive breast cancer patients revealed that CYP1B1 exhibits a potential correlation with urokinase-type plasminogen activator receptor (uPAR). Interestingly, uPAR mRNA expression was elevated in invasive breast cancer patients carrying TP53 genes with driver mutations, and our results showed that CYP1B1 activates the uPAR pathway following regulation of p53 according to its mutant status. CYP1B1 suppressed wild-type (WT) p53 whereas it induced the oncogenic gain-of-function mutant p53R280K, not only via transcriptional regulation but also the protein stabilization and activation following phosphorylation on Ser15 residue of p53R280K. Intriguingly, results from CYP1B1 polymorphic gene study and 4-hydroxyestradiol (4-OHE2) treatment showed that CYP1B1 regulates p53s and uPAR through its enzymatic activity. Furthermore, effects of DMBA and TMS on uPAR expression disappeared in HCT116p53-/- cells, indicating that p53 is critical for uPAR induction by CYP1B1. Collectively, our results demonstrate that CYP1B1 may reduce the relapse-free survival rate of breast cancer patients by inducing invasive traits in cancer cells via p53 regulation based on the mutation status of TP53 genes and further activation of the uPAR pathway. The elucidation of the previously unknown molecular mechanism of CYP1B1 may provide evidence for the development of effective anti-cancer therapeutic strategies that target the progression of cancer invasion.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Tae-Uk Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Sangyun Shin
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Boyoung Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyein Lee
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hyemin Park
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, South Korea
| | - Young-Jin Chun
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
22
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
23
|
Zheng J, Li Y, Liu N, Zhang J, Liu S, Tan H. Multi-omics Data Reveal the Effect of Sodium Butyrate on Gene Expression and Protein Modification in Streptomyces. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1149-1162. [PMID: 36115661 PMCID: PMC11082262 DOI: 10.1016/j.gpb.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Streptomycetes possess numerous gene clusters and the potential to produce a large amount of natural products. Histone deacetylase (HDAC) inhibitors play an important role in the regulation of histone modifications in fungi, but their roles in prokaryotes remain poorly understood. Here, we investigated the global effects of the HDAC inhibitor, sodium butyrate (SB), on marine-derived Streptomycesolivaceus FXJ 8.021, particularly focusing on the activation of secondary metabolite biosynthesis. The antiSMASH analysis revealed 33 secondary metabolite biosynthetic gene clusters (BGCs) in strain FXJ 8.021, among which the silent lobophorin BGC was activated by SB. Transcriptomic data showed that the expression of genes involved in lobophorin biosynthesis (ge00097-ge00139) and CoA-ester formation (e.g., ge02824), as well as the glycolysis/gluconeogenesis pathway (e.g., ge01661), was significantly up-regulated in the presence of SB. Intracellular CoA-ester analysis confirmed that SB triggered the biosynthesis of CoA-ester, thereby increasing the precursor supply for lobophorin biosynthesis. Further acetylomic analysis revealed that the acetylation levels on 218 sites of 190 proteins were up-regulated and those on 411 sites of 310 proteins were down-regulated. These acetylated proteins were particularly enriched in transcriptional and translational machinery components (e.g., elongation factor GE04399), and their correlations with the proteins involved in lobophorin biosynthesis were established by protein-protein interaction network analysis, suggesting that SB might function via a complex hierarchical regulation to activate the expression of lobophorin BGC. These findings provide solid evidence that acetylated proteins triggered by SB could affect the expression of genes involved in the biosynthesis of primary and secondary metabolites in prokaryotes.
Collapse
Affiliation(s)
- Jiazhen Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao 266237, China.
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Sakaguchi S, Nakagawa N, Wahba HM, Wada J, Kamada R, Omichinski JG, Sakaguchi K. Highly Similar Tetramerization Domains from the p53 Protein of Different Mammalian Species Possess Varying Biophysical, Functional and Structural Properties. Int J Mol Sci 2023; 24:16620. [PMID: 38068946 PMCID: PMC10706167 DOI: 10.3390/ijms242316620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The p53 protein is a transcriptional regulatory factor and many of its functions require that it forms a tetrameric structure. Although the tetramerization domain of mammalian p53 proteins (p53TD) share significant sequence similarities, it was recently shown that the tree shrew p53TD is considerably more thermostable than the human p53TD. To determine whether other mammalian species display differences in this domain, we used biophysical, functional, and structural studies to compare the properties of the p53TDs from six mammalian model organisms (human, tree shrew, guinea pig, Chinese hamster, sheep, and opossum). The results indicate that the p53TD from the opossum and tree shrew are significantly more stable than the human p53TD, and there is a correlation between the thermostability of the p53TDs and their ability to activate transcription. Structural analysis of the tree shrew and opossum p53TDs indicated that amino acid substitutions within two distinct regions of their p53TDs can dramatically alter hydrophobic packing of the tetramer, and in particular substitutions at positions corresponding to F341 and Q354 of the human p53TD. Together, the results suggest that subtle changes in the sequence of the p53TD can dramatically alter the stability, and potentially lead to important changes in the functional activity, of the p53 protein.
Collapse
Affiliation(s)
- Shuya Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Natsumi Nakagawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Haytham M. Wahba
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada;
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 2722165, Egypt
| | - Junya Wada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - Rui Kamada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| | - James G. Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada;
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; (S.S.); (N.N.); (J.W.); (R.K.)
| |
Collapse
|
25
|
Xu AF, Molinuevo R, Fazzari E, Tom H, Zhang Z, Menendez J, Casey KM, Ruggero D, Hinck L, Pritchard JK, Barna M. Subfunctionalized expression drives evolutionary retention of ribosomal protein paralogs Rps27 and Rps27l in vertebrates. eLife 2023; 12:e78695. [PMID: 37306301 PMCID: PMC10313321 DOI: 10.7554/elife.78695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023] Open
Abstract
The formation of paralogs through gene duplication is a core evolutionary process. For paralogs that encode components of protein complexes such as the ribosome, a central question is whether they encode functionally distinct proteins or whether they exist to maintain appropriate total expression of equivalent proteins. Here, we systematically tested evolutionary models of paralog function using the ribosomal protein paralogs Rps27 (eS27) and Rps27l (eS27L) as a case study. Evolutionary analysis suggests that Rps27 and Rps27l likely arose during whole-genome duplication(s) in a common vertebrate ancestor. We show that Rps27 and Rps27l have inversely correlated mRNA abundance across mouse cell types, with the highest Rps27 in lymphocytes and the highest Rps27l in mammary alveolar cells and hepatocytes. By endogenously tagging the Rps27 and Rps27l proteins, we demonstrate that Rps27- and Rps27l-ribosomes associate preferentially with different transcripts. Furthermore, murine Rps27 and Rps27l loss-of-function alleles are homozygous lethal at different developmental stages. However, strikingly, expressing Rps27 protein from the endogenous Rps27l locus or vice versa completely rescues loss-of-function lethality and yields mice with no detectable deficits. Together, these findings suggest that Rps27 and Rps27l are evolutionarily retained because their subfunctionalized expression patterns render both genes necessary to achieve the requisite total expression of two equivalent proteins across cell types. Our work represents the most in-depth characterization of a mammalian ribosomal protein paralog to date and highlights the importance of considering both protein function and expression when investigating paralogs.
Collapse
Affiliation(s)
- Adele Francis Xu
- Department of Genetics, Stanford UniversityStanfordUnited States
- Medical Scientist Training Program, Stanford School of MedicineStanfordUnited States
| | - Rut Molinuevo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Elisa Fazzari
- Helen Diller Family Comprehensive Cancer Center, University of California, Los AngelesLos AngelesUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Harrison Tom
- Helen Diller Family Comprehensive Cancer Center, University of California, Los AngelesLos AngelesUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Zijian Zhang
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Julien Menendez
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | - Kerriann M Casey
- Department of Biology, Stanford UniversityStanfordUnited States
- Department of Comparative Medicine, Stanford School of MedicineStanfordUnited States
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| | - Lindsay Hinck
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa CruzSanta CruzUnited States
| | | | - Maria Barna
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
26
|
Di Ianni A, Tüting C, Kipping M, Ihling CH, Köppen J, Iacobucci C, Arlt C, Kastritis PL, Sinz A. Structural assessment of the full-length wild-type tumor suppressor protein p53 by mass spectrometry-guided computational modeling. Sci Rep 2023; 13:8497. [PMID: 37231156 DOI: 10.1038/s41598-023-35437-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The tetrameric tumor suppressor p53 represents a great challenge for 3D-structural analysis due to its high degree of intrinsic disorder (ca. 40%). We aim to shed light on the structural and functional roles of p53's C-terminal region in full-length, wild-type human p53 tetramer and their importance for DNA binding. For this, we employed complementary techniques of structural mass spectrometry (MS) in an integrated approach with computational modeling. Our results show no major conformational differences in p53 between DNA-bound and DNA-free states, but reveal a substantial compaction of p53's C-terminal region. This supports the proposed mechanism of unspecific DNA binding to the C-terminal region of p53 prior to transcription initiation by specific DNA binding to the core domain of p53. The synergies between complementary structural MS techniques and computational modeling as pursued in our integrative approach is envisioned to serve as general strategy for studying intrinsically disordered proteins (IDPs) and intrinsically disordered region (IDRs).
Collapse
Affiliation(s)
- Alessio Di Ianni
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Christian Tüting
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Marc Kipping
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Janett Köppen
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100, L'Aquila, Italy
| | - Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
| | - Panagiotis L Kastritis
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
| |
Collapse
|
27
|
Ghate NB, Kim S, Mehmood R, Shin Y, Kim K, An W. VprBP/DCAF1 regulates p53 function and stability through site-specific phosphorylation. Oncogene 2023; 42:1405-1416. [PMID: 37041410 PMCID: PMC10121470 DOI: 10.1038/s41388-023-02685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023]
Abstract
VprBP (also known as DCAF1) is a recently identified kinase that is overexpressed in cancer cells and serves as a major determinant for epigenetic gene silencing and tumorigenesis. The role of VprBP in driving target gene inactivation has been largely attributed to its ability to mediate histone H2A phosphorylation. However, whether VprBP also phosphorylates non-histone proteins and whether these phosphorylation events drive oncogenic signaling pathways have not been explored. Here we report that serine 367 phosphorylation (S367p) of p53 by VprBP is a key player in attenuating p53 transcriptional and growth suppressive activities. VprBP catalyzes p53S367p through a direct interaction with the C-terminal domain of p53. Mechanistically, VprBP-mediated S367p inhibits p53 function in the wake of promoting p53 proteasomal degradation, because blocking p53S367p increases p53 protein levels, thereby enhancing p53 transactivation. Furthermore, abrogation of VprBP-p53 interaction by p53 acetylation is critical for preventing p53S367p and potentiating p53 function in response to DNA damage. Together, our findings establish VprBP-mediated S367p as a negative regulator of p53 function and identify a previously uncharacterized mechanism by which S367p modulates p53 stability.
Collapse
Affiliation(s)
- Nikhil Baban Ghate
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sungmin Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Roasa Mehmood
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kyunghwan Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
28
|
Cozma EC, Banciu LM, Soare C, Cretoiu SM. Update on the Molecular Pathology of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24076646. [PMID: 37047618 PMCID: PMC10095059 DOI: 10.3390/ijms24076646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, originating from keratinocytes of the spinous layer. Numerous risk factors have been discovered for the initiation and growth of this type of cancer, such as exposure to UV and ionizing radiation, chemical carcinogens, the presence of immunosuppression states, chronic inflammation, infections with high-risk viral strains, and, last but not least, the presence of diseases associated with genetic alterations. The important socio-economic impact, as well as the difficulty associated with therapy for advanced forms, has made the molecular mechanisms underlying this neoplasia more and more intensively studied, with the intention of achieving a better understanding and advancing the treatment of this pathology. This review aims to provide a brief foray into the molecular, genetic, and epigenetic aspects of this cancer, as well as the treatment methods, ranging from the first used to the latest targeted therapies.
Collapse
Affiliation(s)
- Elena-Codruta Cozma
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Pathophysiology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Laura Madalina Banciu
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Soare
- Dermatology Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sanda-Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
29
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
30
|
Fusée L, Salomao N, Ponnuswamy A, Wang L, López I, Chen S, Gu X, Polyzoidis S, Vadivel Gnanasundram S, Fahraeus R. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures. Cell Death Differ 2023; 30:1072-1081. [PMID: 36813920 PMCID: PMC10070458 DOI: 10.1038/s41418-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular stress conditions activate p53-dependent pathways to counteract the inflicted damage. To achieve the required functional diversity, p53 is subjected to numerous post-translational modifications and the expression of isoforms. Little is yet known how p53 has evolved to respond to different stress pathways. The p53 isoform p53/47 (p47 or ΔNp53) is linked to aging and neural degeneration and is expressed in human cells via an alternative cap-independent translation initiation from the 2nd in-frame AUG at codon 40 (+118) during endoplasmic reticulum (ER) stress. Despite an AUG codon in the same location, the mouse p53 mRNA does not express the corresponding isoform in either human or mouse-derived cells. High-throughput in-cell RNA structure probing shows that p47 expression is attributed to PERK kinase-dependent structural alterations in the human p53 mRNA, independently of eIF2α. These structural changes do not take place in murine p53 mRNA. Surprisingly, PERK response elements required for the p47 expression are located downstream of the 2nd AUG. The data show that the human p53 mRNA has evolved to respond to PERK-mediated regulation of mRNA structures in order to control p47 expression. The findings highlight how p53 mRNA co-evolved with the function of the encoded protein to specify p53-activities under different cellular conditions.
Collapse
Affiliation(s)
- Leila Fusée
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | - Norman Salomao
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | | | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Sa Chen
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Xiaolian Gu
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Stavros Polyzoidis
- Department of Neurosurgery, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Robin Fahraeus
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France. .,Department of Medical Biosciences, Umea University, 90185, Umea, Sweden. .,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653, Brno, Czech Republic.
| |
Collapse
|
31
|
Weigel C, Maczis MA, Palladino END, Green CD, Maceyka M, Guo C, Wang XY, Dozmorov MG, Milstien S, Spiegel S. Sphingosine Kinase 2 in Stromal Fibroblasts Creates a Hospitable Tumor Microenvironment in Breast Cancer. Cancer Res 2023; 83:553-567. [PMID: 36541910 PMCID: PMC9931683 DOI: 10.1158/0008-5472.can-22-1638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Reciprocal interactions between breast cancer cells and the tumor microenvironment (TME) are important for cancer progression and metastasis. We report here that the deletion or inhibition of sphingosine kinase 2 (SphK2), which produces sphingosine-1-phosphate (S1P), markedly suppresses syngeneic breast tumor growth and lung metastasis in mice by creating a hostile microenvironment for tumor growth and invasion. SphK2 deficiency decreased S1P and concomitantly increased ceramides, including C16-ceramide, in stromal fibroblasts. Ceramide accumulation suppressed activation of cancer-associated fibroblasts (CAF) by upregulating stromal p53, which restrained production of tumor-promoting factors to reprogram the TME and to restrict breast cancer establishment. Ablation of p53 in SphK2-deficient fibroblasts reversed these effects, enabled CAF activation and promoted tumor growth and invasion. These data uncovered a novel role of SphK2 in regulating non-cell-autonomous functions of p53 in stromal fibroblasts and their transition to tumor-promoting CAFs, paving the way for the development of a strategy to target the TME and to enhance therapeutic efficacy. SIGNIFICANCE Sphingosine kinase 2 (SphK2) facilitates the activation of stromal fibroblasts to tumor-promoting cancer-associated fibroblasts by suppressing host p53 activity, revealing SphK2 as a potential target to reprogram the TME.
Collapse
Affiliation(s)
- Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Melissa A. Maczis
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mikhail G. Dozmorov
- Departments of Biostatistics and Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
32
|
Motoji Y, Fukazawa R, Matsui R, Abe Y, Uehara I, Watanabe M, Hashimoto Y, Miyagi Y, Nagi-Miura N, Tanaka N, Ishii Y. Statins Show Anti-Atherosclerotic Effects by Improving Endothelial Cell Function in a Kawasaki Disease-like Vasculitis Mouse Model. Int J Mol Sci 2022; 23:ijms232416108. [PMID: 36555746 PMCID: PMC9780952 DOI: 10.3390/ijms232416108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kawasaki disease (KD) is an acute inflammatory syndrome of unknown etiology that is complicated by cardiovascular sequelae. Chronic inflammation (vasculitis) due to KD might cause vascular cellular senescence and vascular endothelial cell damage, and is a potential cause of atherosclerosis in young adults. This study examined the effect of KD and HMG-CoA inhibitors (statins) on vascular cellular senescence and vascular endothelial cells. Candida albicans water-soluble fraction (CAWS) was administered intraperitoneally to 5-week-old male apolipoprotein E-deficient (ApoE-) mice to induce KD-like vasculitis. The mice were then divided into three groups: control, CAWS, and CAWS+statin groups. Ten weeks after injection, the mice were sacrificed and whole aortic tissue specimens were collected. Endothelial nitric oxide synthase (eNOS) expression in the ascending aortic intima epithelium was evaluated using immunostaining. In addition, eNOS expression and levels of cellular senescence markers were measured in RNA and proteins extracted from whole aortic tissue. KD-like vasculitis impaired vascular endothelial cells that produce eNOS, which maintains vascular homeostasis, and promoted macrophage infiltration into the tissue. Statins also restored vascular endothelial cell function by promoting eNOS expression. Statins may be used to prevent secondary cardiovascular events during the chronic phase of KD.
Collapse
Affiliation(s)
- Yusuke Motoji
- Department of Cardiovascular Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Ryuji Fukazawa
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
- Correspondence: ; Tel.: +81-3-3822-2131
| | - Ryosuke Matsui
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Makoto Watanabe
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yoshiaki Hashimoto
- Department of Pediatrics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yasuo Miyagi
- Department of Cardiovascular Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Noriko Nagi-Miura
- Laboratory for Immunopharmacology of Microbial Products, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yosuke Ishii
- Department of Cardiovascular Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| |
Collapse
|
33
|
Mancikova V, Pesova M, Pavlova S, Helma R, Zavacka K, Hejret V, Taus P, Hynst J, Plevova K, Malcikova J, Pospisilova S. Distinct p53 phosphorylation patterns in chronic lymphocytic leukemia patients are reflected in the activation of circumjacent pathways upon DNA damage. Mol Oncol 2022; 17:82-97. [PMID: 36334078 PMCID: PMC9812841 DOI: 10.1002/1878-0261.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022] Open
Abstract
TP53 gene abnormalities represent the most important biomarker in chronic lymphocytic leukemia (CLL). Altered protein modifications could also influence p53 function, even in the wild-type protein. We assessed the impact of p53 protein phosphorylations on p53 functions as an alternative inactivation mechanism. We studied p53 phospho-profiles induced by DNA-damaging agents (fludarabine, doxorubicin) in 71 TP53-intact primary CLL samples. Doxorubicin induced two distinct phospho-profiles: profile I (heavily phosphorylated) and profile II (hypophosphorylated). Profile II samples were less capable of activating p53 target genes upon doxorubicin exposure, resembling TP53-mutant samples at the transcriptomic level, whereas standard p53 signaling was triggered in profile I. ATM locus defects were more common in profile II. The samples also differed in the basal activity of the hypoxia pathway: the highest level was detected in TP53-mutant samples, followed by profile II and profile I. Our study suggests that wild-type TP53 CLL cells with less phosphorylated p53 show TP53-mutant-like behavior after DNA damage. p53 hypophosphorylation and the related lower ability to respond to DNA damage are linked to ATM locus defects and the higher basal activity of the hypoxia pathway.
Collapse
Affiliation(s)
- Veronika Mancikova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Michaela Pesova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pavlova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Robert Helma
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Kristyna Zavacka
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Vaclav Hejret
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Petr Taus
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Jakub Hynst
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Karla Plevova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic,Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Jitka Malcikova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic,Department of Internal Medicine – Hematology and Oncology, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic,Institute of Medical Genetics and Genomics, Faculty of MedicineMasaryk University and University Hospital BrnoCzech Republic
| |
Collapse
|
34
|
Malhotra L, Sharma S, Hariprasad G, Dhingra R, Mishra V, Sharma RS, Kaur P, Ethayathulla AS. Mechanism of apoptosis activation by Curcumin rescued mutant p53Y220C in human pancreatic cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119343. [PMID: 36007676 DOI: 10.1016/j.bbamcr.2022.119343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The mutant p53Y220C (mutp53Y220C) is frequently observed in numerous tumors, including pancreatic cancer. The mutation creates a crevice in the DNA binding core domain and makes p53 a thermally unstable non-functional protein that assists tumor progression and confers resistance to chemotherapeutic drugs. Restoring mutp53 function to its wild type by selectively targeting this crevice with small molecules is a pivotal strategy to promote apoptosis. In this study, we have shown through different biophysical and cell-based studies that curcumin binds and rescues mutp53Y220C to an active wild-type conformation and restores its apoptotic transcription function in BxPC-3-pancreatic cancer cells. In addition, the curcumin-rescued-p53Y220C (CRp53) showed significant hyperphosphorylation at Ser15, Ser20, and acetylation at Lys382 with an 8-fold increase in transcription activity in the BxPC-3 cell lines. We also observed that the active CRp53 escapes Mdm2-mediated proteasomal degradation and the majority of the proteins were localized inside the nucleus with an increased half-life and transcription restoration compared to untreated BxPC-3 cells. By label-free proteomics analysis, we observed that upon curcumin treatment almost 227 proteins were dysregulated with the majority of them being transcriptional targets of p53. Based on our studies, it reflects that apoptosis in pancreatic cancer cells is mediated by curcumin-rescued mutant p53Y220C.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Renu Dhingra
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Radhey S Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi 110007, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
35
|
Insights into Regulators of p53 Acetylation. Cells 2022; 11:cells11233825. [PMID: 36497084 PMCID: PMC9737083 DOI: 10.3390/cells11233825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.
Collapse
|
36
|
Amendolare A, Marzano F, Petruzzella V, Vacca RA, Guerrini L, Pesole G, Sbisà E, Tullo A. The Underestimated Role of the p53 Pathway in Renal Cancer. Cancers (Basel) 2022; 14:cancers14235733. [PMID: 36497215 PMCID: PMC9736171 DOI: 10.3390/cancers14235733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The TP53 tumor suppressor gene is known as the guardian of the genome, playing a pivotal role in controlling genome integrity, and its functions are lost in more than 50% of human tumors due to somatic mutations. This percentage rises to 90% if mutations and alterations in the genes that code for regulators of p53 stability and activity are taken into account. Renal cell carcinoma (RCC) is a clear example of cancer that despite having a wild-type p53 shows poor prognosis because of the high rate of resistance to radiotherapy or chemotherapy, which leads to recurrence, metastasis and death. Remarkably, the fact that p53 is poorly mutated does not mean that it is functionally active, and increasing experimental evidences have demonstrated this. Therefore, RCC represents an extraordinary example of the importance of p53 pathway alterations in therapy resistance. The search for novel molecular biomarkers involved in the pathways that regulate altered p53 in RCC is mandatory for improving early diagnosis, evaluating the prognosis and developing novel potential therapeutic targets for better RCC treatment.
Collapse
Affiliation(s)
- Alessandra Amendolare
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Luisa Guerrini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
| | - Elisabetta Sbisà
- Institute of Biomedical Technologies, National Research Council—CNR, 70126 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council—CNR, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-0805929672
| |
Collapse
|
37
|
Hernández-de la Cruz ON, Domínguez-Gómez G, Deb M, Díaz-Chávez J. Editorial: Advances in wild type and mutant p53 research in cancer. Front Mol Biosci 2022; 9:1064280. [PMID: 36438655 PMCID: PMC9686431 DOI: 10.3389/fmolb.2022.1064280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/31/2022] [Indexed: 01/03/2025] Open
Affiliation(s)
| | | | - Moonmoon Deb
- Wellcome Trust Centre for Cell Biology, Edinburgh, United Kingdom
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología (INCan), México City, Mexico
| |
Collapse
|
38
|
Chan GHH, Chan E, Kwok CTK, Leung GPH, Lee SMY, Seto SW. The role of p53 in the alternation of vascular functions. Front Pharmacol 2022; 13:981152. [PMID: 36147350 PMCID: PMC9485942 DOI: 10.3389/fphar.2022.981152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ageing is a risk factor for many degenerative diseases. Cardiovascular diseases (CVDs) are usually big burdens for elderly, caregivers and the health system. During the aging process, normal functions of vascular cells and tissue progressively lost and eventually develop vascular diseases. Endothelial dysfunction, reduced bioavailability of endothelium-derived nitric oxide are usual phenomena observed in patients with cardiovascular diseases. Myriad of studies have been done to investigate to delay the vascular dysfunction or improve the vascular function to prolong the aging process. Tumor suppressor gene p53, also a transcription factor, act as a gatekeeper to regulate a number of genes to maintain normal cell function including but not limited to cell proliferation, cell apoptosis. p53 also crosstalk with other key transcription factors like hypoxia-inducible factor 1 alpha that contribute to the progression of cardiovascular diseases. Therefore, in recent three decades, p53 has drawn scientists’ attention on its effects in vascular function. Though the role of tumor suppressor gene p53 is still not clear in vascular function, it is found to play regulatory roles and may involve in vascular remodeling, atherosclerosis or pulmonary hypertension. p53 may have a divergent role in endothelial and vascular muscle cells in those conditions. In this review, we describe the different effects of p53 in cardiovascular physiology. Further studies on the effects of endothelial cell-specific p53 deficiency on atherosclerotic plaque formation in common animal models are required before the therapeutic potential can be realized.
Collapse
Affiliation(s)
- Gabriel Hoi-Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Enoch Chan
- School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Carsten Tsun-Ka Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - Sai-Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Sai-Wang Seto,
| |
Collapse
|
39
|
Long noncoding RNA NONMMUT015745 inhibits doxorubicin-mediated cardiomyocyte apoptosis by regulating Rab2A-p53 axis. Cell Death Dis 2022; 8:364. [PMID: 35974003 PMCID: PMC9381503 DOI: 10.1038/s41420-022-01144-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022]
Abstract
Doxorubicin (DOX) is an efficacious and widely used drug for human malignancy treatment, but its clinical application is limited due to side effects, especially cardiotoxicity. Our present study revealed that DOX could induce apoptosis in cardiomyocytes. Herein, we screened the dysregulated long noncoding RNAs (lncRNAs) in DOX-treated cardiomyocytes. Notably, overexpression of lncRNA NONMMUT015745 (lnc5745) could alleviate DOX-induced cardiomyocyte apoptosis both in vitro and in vivo. Conversely, silencing lnc5745 promotes cardiomyocyte apoptosis. Moreover, Rab2A, a direct target of lnc5745, possesses a protective effect in DOX-induced cardiotoxicity once knocked down. Importantly, we verified that the p53-related apoptotic signalling pathway was responsible for the lnc5745-mediated protective role against DOX-induced cardiomyocyte apoptosis. Mechanistically, Rab2A interacts with p53 and phosphorylated p53 on Ser 33 (p53 (Phospho-Ser 33)), promotes p53 phosphorylation, thereby activating the apoptotic pathway. Taken together, our results suggested that lnc5745 protects against DOX-induced cardiomyocyte apoptosis through suppressing Rab2A expression, modifying p53 phosphorylation, thereby regulating p53-related apoptotic signalling pathway. Our findings establish the functional mode of the lnc5745-Rab2A-p53 axis in DOX-induced cardiotoxicity. The development of new strategies targeting the lnc5745-Rab2A-p53 axis could attenuate DOX-induced cardiotoxicity, which is beneficial to its clinical anti-tumour application.
Collapse
|
40
|
Overstreet JM, Gifford CC, Tang J, Higgins PJ, Samarakoon R. Emerging role of tumor suppressor p53 in acute and chronic kidney diseases. Cell Mol Life Sci 2022; 79:474. [PMID: 35941392 PMCID: PMC11072039 DOI: 10.1007/s00018-022-04505-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023]
Abstract
p53 is a major regulator of cell cycle arrest, apoptosis, and senescence. While involvement of p53 in tumorigenesis is well established, recent studies implicate p53 in the initiation and progression of several renal diseases, which is the focus of this review. Ischemic-, aristolochic acid (AA) -, diabetic-, HIV-associated-, obstructive- and podocyte-induced nephropathies are accompanied by activation and/or elevated expression of p53. Studies utilizing chemical or renal-specific inhibition of p53 in mice confirm the pathogenic role of this transcription factor in acute kidney injury and chronic kidney disease. TGF-β1, NOX, ATM/ATR kinases, Cyclin G, HIPK, MDM2 and certain micro-RNAs are important determinants of renal p53 function in response to trauma. AA, cisplatin or TGF-β1-mediated ROS generation via NOXs promotes p53 phosphorylation and subsequent tubular dysfunction. p53-SMAD3 transcriptional cooperation downstream of TGF-β1 orchestrates induction of fibrotic factors, extracellular matrix accumulation and pathogenic renal cell communication. TGF-β1-induced micro-RNAs (such as mir-192) could facilitate p53 activation, leading to renal hypertrophy and matrix expansion in response to diabetic insults while AA-mediated mir-192 induction regulates p53 dependent epithelial G2/M arrest. The widespread involvement of p53 in tubular maladaptive repair, interstitial fibrosis, and podocyte injury indicate that p53 clinical targeting may hold promise as a novel therapeutic strategy for halting progression of certain acute and chronic renal diseases, which affect hundreds of million people worldwide.
Collapse
Affiliation(s)
| | - Cody C Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul J Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, 12208, USA.
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
41
|
Xiong Y, Xu S, Fu B, Tang W, Zaky MY, Tian R, Yao R, Zhang S, Zhao Q, Nian W, Lin X, Wu H. Vitamin C-induced competitive binding of HIF-1α and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem Toxicol 2022; 168:113321. [PMID: 35931247 DOI: 10.1016/j.fct.2022.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Vitamin C (VC), in regard to its effectiveness against tumors, has had a controversial history in cancer treatment. However, the anticancer mechanisms of VC are not fully understood. Here, we reported that VC exerted an anticancer effect on cancer cell and xenograft models via inhibiting HIF-1α-dependent cell proliferation and promoting p53-dependent cell apoptosis. To be specific, VC modulated the competitive binding of HIF-1α and p53 to their common E3 ubiquitin ligase CBL, thereby inhibiting tumorigenesis. Moreover, VC treatment activated SIRT1, resulting in p53 deacetylation and CBL-p53 complex dissociation, which in turn facilitated CBL recruitment of HIF-1α for ubiquitination in a proteasome-dependent manner. Altogether, our results provided a mechanistic rationale for exploring the therapeutic use of VC in cancer therapy.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Shanfu Zhang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Qingting Zhao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
42
|
Padariya M, Jooste ML, Hupp T, Fåhraeus R, Vojtesek B, Vollrath F, Kalathiya U, Karakostis K. The Elephant evolved p53 isoforms that escape mdm2-mediated repression and cancer. Mol Biol Evol 2022; 39:6632613. [PMID: 35792674 PMCID: PMC9279639 DOI: 10.1093/molbev/msac149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The p53 tumor suppressor is a transcription factor with roles in cell development, apoptosis, oncogenesis, aging, and homeostasis in response to stresses and infections. p53 is tightly regulated by the MDM2 E3 ubiquitin ligase. The p53–MDM2 pathway has coevolved, with MDM2 remaining largely conserved, whereas the TP53 gene morphed into various isoforms. Studies on prevertebrate ancestral homologs revealed the transition from an environmentally induced mechanism activating p53 to a tightly regulated system involving cell signaling. The evolution of this mechanism depends on structural changes in the interacting protein motifs. Elephants such as Loxodonta africana constitute ideal models to investigate this coevolution as they are large and long-living as well as having 20 copies of TP53 isoformic sequences expressing a variety of BOX-I MDM2-binding motifs. Collectively, these isoforms would enhance sensitivity to cellular stresses, such as DNA damage, presumably accounting for strong cancer defenses and other adaptations favoring healthy aging. Here we investigate the molecular evolution of the p53–MDM2 system by combining in silico modeling and in vitro assays to explore structural and functional aspects of p53 isoforms retaining the MDM2 interaction, whereas forming distinct pools of cell signaling. The methodology used demonstrates, for the first time that in silico docking simulations can be used to explore functional aspects of elephant p53 isoforms. Our observations elucidate structural and mechanistic aspects of p53 regulation, facilitate understanding of complex cell signaling, and suggest testable hypotheses of p53 evolution referencing Peto’s Paradox.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Mia-Lyn Jooste
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh , Edinburgh EH4 2XR, UK
| | - Robin Fåhraeus
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
- Department of Medical Biosciences, Umeå University , 90185 Umeå , Sweden
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute , 65653 Brno , Czech Republic
| | - Fritz Vollrath
- Department of Zoology, Zoology Research and Administration Building, University of Oxford , Oxford, UK
- Save the Elephants Marula Manor , Marula Lane, Karen P.O. Box 54667. Nairobi 00200. Kenya Office: +254 720 441 178
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk , ul. Kładki 24, 80-822 Gdansk , Poland
| | - Konstantinos Karakostis
- Inserm UMRS1131, Institut de Génétique Moléculaire , Université Paris 7, Hôpital St. Louis, F-75010 Paris , France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , 08193 Bellaterra (Barcelona) , Spain
| |
Collapse
|
43
|
p53 Isoforms as Cancer Biomarkers and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14133145. [PMID: 35804915 PMCID: PMC9264937 DOI: 10.3390/cancers14133145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The well-known tumor suppressor protein p53 plays important roles in tumor prevention through transcriptional regulation of its target genes. Reactivation of p53 activity has been a potent strategy for cancer treatment. Accumulating evidences indicate that p53 isoforms truncated/modified in the N- or C-terminus can modulate the p53 pathway in a p53-dependent or p53-independent manner. It is thus imperative to characterize the roles of the p53 isoforms in cancer development. This review illustrates how p53 isoforms participate in tumor development and/or suppression. It also summarizes the knowledge about the p53 isoforms as promising cancer biomarkers and therapeutic targets. Abstract This review aims to summarize the implications of the major isoforms of the tumor suppressor protein p53 in aggressive cancer development. The current knowledge of p53 isoforms, their involvement in cell-signaling pathways, and their interactions with other cellular proteins or factors suggests the existence of an intricate molecular network that regulates their oncogenic function. Moreover, existing literature about the involvement of the p53 isoforms in various cancers leads to the proposition of therapeutic solutions by altering the cellular levels of the p53 isoforms. This review thus summarizes how the major p53 isoforms Δ40p53α/β/γ, Δ133p53α/β/γ, and Δ160p53α/β/γ might have clinical relevance in the diagnosis and effective treatments of cancer.
Collapse
|
44
|
Xu Z, Wang L, Wang X, Wan M, Tang M, Ding Y. Characterizing the Effect of the Lysine Deacetylation Modification on Enzyme Activity of Pyruvate Kinase I and Pathogenicity of Vibrio alginolyticus. Front Vet Sci 2022; 9:877067. [PMID: 35795782 PMCID: PMC9252168 DOI: 10.3389/fvets.2022.877067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 01/22/2023] Open
Abstract
Pyruvate kinase I (PykF) is one of the key enzymes of glycolysis and plays a crucial role in bacterial metabolism. Several acetylation sites of Vibrio alginolyticus PykF were reported in previous studies and then 11 sites were first verified in this study, however, the specific roles of PykF acetylation remains unclear. Overlap-PCR and homologous recombination were implied to delete V. alginolyticus pykF gene and constructed complementary strains of site-directed mutagenesis for the further research focus on the deacetylation regulation on PykF. The results showed that the pyruvate kinase activity was sharply suppressed in the deacetylation status of K52, K68, and K317 of PykF, as well as the extracellular protease activity was significantly decreased in the deacetylation status of K52 and K68, but not induced with K317. Moreover, the growth rates of V. alginolyticus were not influenced with these three deacetylation sites. The ΔpykF mutant exhibited a 6-fold reduction in virulence to zebrafish. Site-directed mutations of K52R and K68R also showed reduced virulence while mutations of K317R didn't. The in vitro experiments showed that PykF was acetylated by acetyl phosphate (AcP), with the increase of incubation time by AcP, the acetylation level of PykF increased while the enzyme activity of PykF decreased correspondingly. Besides, PykF was deacetylated by CobB deacetylase and in result that the deacetylation was significantly down-regulated while the pyruvate kinase activity of PykF increased. Moreover, deletion of cobB gene had no significant difference in pyruvate kinase activity. These results confirm that CobB can regulate the acetylation level and pyruvate kinase activity of PykF. In summary, the results of this study provide a theoretical basis for further understanding of the deacetylation modification of PykF. It provides a new idea for the prevention and cure of vibriosis.
Collapse
Affiliation(s)
- Zhou Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Linjing Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Xudong Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mingyue Wan
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Mei Tang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Yu Ding
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Yu Ding
| |
Collapse
|
45
|
p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ 2022; 29:972-982. [PMID: 35444234 PMCID: PMC9090812 DOI: 10.1038/s41418-022-00999-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Despite several decades of intense research focused on understanding function(s) and disease-associated malfunction of p53, there is no sign of any “mid-life crisis” in this rapidly advancing area of biomedicine. Firmly established as the hub of cellular stress responses and tumor suppressor targeted in most malignancies, p53’s many talents continue to surprise us, providing not only fresh insights into cell and organismal biology, but also new avenues to cancer treatment. Among the most fruitful lines of p53 research in recent years have been the discoveries revealing the multifaceted roles of p53-centered pathways in the fundamental processes of DNA replication and ribosome biogenesis (RiBi), along with cellular responses to replication and RiBi stresses, two intertwined areas of cell (patho)physiology that we discuss in this review. Here, we first provide concise introductory notes on the canonical roles of p53, the key interacting proteins, downstream targets and post-translational modifications involved in p53 regulation. We then highlight the emerging involvement of p53 as a key component of the DNA replication Fork Speed Regulatory Network and the mechanistic links of p53 with cellular checkpoint responses to replication stress (RS), the driving force of cancer-associated genomic instability. Next, the tantalizing, yet still rather foggy functional crosstalk between replication and RiBi (nucleolar) stresses is considered, followed by the more defined involvement of p53-mediated monitoring of the multistep process of RiBi, including the latest updates on the RPL5/RPL11/5 S rRNA-MDM2-p53-mediated Impaired Ribosome Biogenesis Checkpoint (IRBC) pathway and its involvement in tumorigenesis. The diverse defects of RiBi and IRBC that predispose and/or contribute to severe human pathologies including developmental syndromes and cancer are then outlined, along with examples of promising small-molecule-based strategies to therapeutically target the RS- and particularly RiBi- stress-tolerance mechanisms to which cancer cells are addicted due to their aberrant DNA replication, repair, and proteo-synthesis demands. ![]()
Collapse
|
46
|
Dai Z, Li G, Chen Q, Yang X. Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194827. [PMID: 35618207 DOI: 10.1016/j.bbagrm.2022.194827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Human p53 is a transcription factor regulating the transcription of a variety of target genes. Under various stresses, its tumor suppressor function was activated by the phosphorylation of p53. In this study, we found that full-length wild-type p53 could form phase-separated condensates with the aggregation tendency in vitro and in vivo. The LLPS of p53 was regulated by multiple functional domains. Specific DNA could promote the formation of p53 condensates. Fluorescence recovery data after photobleaching revealed that the Ser392 phosphorylation enhanced the fluidity of p53 condensates. Fluorescence analysis suggested that Ser392 phosphorylation increased the p53 concentration in condensates involved in transcription initiation and the stability of p53-mediated transcriptional condensates. The experiments in cells showed that p53 was evenly dispersed in the nucleus, it formed the dynamic condensates under the UV radiation-induced DNA damage, and the Ser392 nonphosphorylatable mutant S392A p53 formed condensates with significantly reduced number and size. These findings revealed that p53 phosphorylation modified its LLPS behavior, and suggested a mechanism that phosphorylation regulated condensate preference.
Collapse
Affiliation(s)
- Zhuojun Dai
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Guoli Li
- Ministry of Agriculture Key Laboratory of Animal Biochemistry and Nutrition, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China
| | - Qunyang Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China
| | - Xiaorong Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong Province 510006, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
47
|
Miller JJ, Kwan K, Gaiddon C, Storr T. A role for bioinorganic chemistry in the reactivation of mutant p53 in cancer. J Biol Inorg Chem 2022; 27:393-403. [PMID: 35488931 DOI: 10.1007/s00775-022-01939-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Metal ion dysregulation has been implicated in a number of diseases from neurodegeneration to cancer. While defective metal ion transport mechanisms are known to cause specific diseases of genetic origin, the role of metal dysregulation in many diseases has yet to be elucidated due to the complicated function (both good and bad!) of metal ions in the body. A breakdown in metal ion speciation can manifest in several ways from increased reactive oxygen species (ROS) generation to an increase in protein misfolding and aggregation. In this review, we will discuss the role of Zn in the proper function of the p53 protein in cancer. The p53 protein plays a critical role in the prevention of genome mutations via initiation of apoptosis, DNA repair, cell cycle arrest, anti-angiogenesis, and senescence pathways to avoid propagation of damaged cells. p53 is the most frequently mutated protein in cancer and almost all cancers exhibit malfunction along the p53 pathway. Thus, there has been considerable effort dedicated to restoring normal p53 expression and activity to mutant p53. This includes understanding the relative populations of the Zn-bound and Zn-free p53 in wild-type and mutant forms, and the development of metallochaperones to re-populate the Zn binding site to restore mutant p53 activity. Parallels will be made to the development of multifunctional metal binding agents for modulating the aggregation of the amyloid-beta peptide in Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Christian Gaiddon
- Inserm UMR_S1113, IRFAC, team Streinth, Strasbourg University, Strasbourg, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
48
|
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022; 41:3039-3050. [PMID: 35487975 PMCID: PMC9149126 DOI: 10.1038/s41388-022-02331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Although it is well established that p53-mediated tumor suppression mainly acts through its ability in transcriptional regulation, the molecular mechanisms of this regulation are not completely understood. Among a number of regulatory modes, acetylation of p53 attracts great interests. p53 was one of the first non-histone proteins found to be functionally regulated by acetylation and deacetylation, and subsequent work has established that reversible acetylation is a general mechanism for regulation of non-histone proteins. Unlike other types of post-translational modifications occurred during stress responses, the role of p53 acetylation has been recently validated in vivo by using the knockin mice with both acetylation-defective and acetylation-mimicking p53 mutants. Here, we review the role of acetylation in p53-mediated activities, with a focus on which specific acetylation sites are critical for p53-dependent transcription regulation during tumor suppression and how acetylation of p53 recruits specific “readers” to execute its promoter-specific regulation of different targets. We also discuss the role of p53 acetylation in differentially regulating its classic activities in cell cycle arrest, senescence and apoptosis as well as newly identified unconventional functions such as cell metabolism and ferroptosis.
Collapse
|
49
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
50
|
Huang Y, Yong P, Dickey D, Vora SM, Wu H, Bernlohr DA. Inflammasome Activation and Pyroptosis via a Lipid-regulated SIRT1-p53-ASC Axis in Macrophages From Male Mice and Humans. Endocrinology 2022; 163:6523230. [PMID: 35136993 PMCID: PMC8896164 DOI: 10.1210/endocr/bqac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1β and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3). Pharmacologic inhibition of fatty acid synthase or stearoyl-coenzyme A desaturase inhibits, whereas exogenous addition of C16:1 or C18:1 but not their saturated acyl chain counterparts, activates SIRT1 and p53/STAT3 signaling and IL-1β/IL-18 release. Expression of the p53 target gene ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)] required for assembly of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is downregulated in FABP4 null mice and macrophage cell lines leading to loss of procaspase 1 activation and pyroptosis. Concomitant with loss of ASC expression in FABP4-/- macrophages, inflammasome activation, gasdermin D processing, and functional activation of pyroptosis are all diminished in FABP4 null macrophages but can be rescued by silencing SIRT1 or exogenous expression of ASC. Taken together, these results reveal a novel lipid-regulated pathway linking to SIRT1-p53-ASC signaling and activation of inflammasome action and pyroptosis.
Collapse
Affiliation(s)
- Yimao Huang
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Peter Yong
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Deborah Dickey
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - David A Bernlohr
- Departments of Biochemistry, Molecular Biology and Biophysics
- Institute for Diabetes, Obesity and Metabolism University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Correspondence: David A. Bernlohr, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|