1
|
Liu C, Liu X, Cao P, Xin H, Li X, Zhu S. Circadian rhythm related genes identified through tumorigenesis and immune infiltration-guided strategies as predictors of prognosis, immunotherapy response, and candidate drugs in skin cutaneous malignant melanoma. Front Immunol 2025; 16:1513750. [PMID: 40191195 PMCID: PMC11968383 DOI: 10.3389/fimmu.2025.1513750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/20/2025] [Indexed: 04/09/2025] Open
Abstract
Background Skin cutaneous malignant melanoma (SKCM) is among the most aggressive forms of skin cancer, notorious for its rapid progression and poor prognosis under late diagnosis. This study investigates the role of circadian rhythm-related genes (CRGs) in SKCM addressing a gap in understanding how CRGs affect tumor progression and patient outcomes. Methods An analysis of CRGs expression was conducted on SKCM samples derived from The Cancer Genome Atlas datasets(TCGA). Moreover, a correlation between various subtypes and their clinical features was identified. The study employed various bioinformatics methods, including differential expression analysis, consensus clustering, and survival analysis, to investigate the role of CRGs. The functional consequences of various CRG expression patterns were further investigated using immune infiltration analysis and gene set variation analysis (GSVA). A scoring system based on CRGs was developed to predict overall survival (OS) and treatment responses in SKCM patients. The predictive accuracy of this score system was then tested, and a nomogram was used to improve its clinical usefulness. Results Key findings from this study include significant genetic alterations in circadian rhythm-related genes (CRGs) in skin cutaneous melanoma (SKCM), such as mutations and CNVs. Two molecular subtypes with distinct clinical outcomes and immune profiles were identified. A prognostic model based on six CRGs (CMTM, TNPO1, CTBS, UTRN, HK2, and LIF) was developed and validated with TCGA and GEO datasets, showing high predictive accuracy for overall survival (OS). A high CRGs score correlated with poor OS, immune checkpoint expression, and reduced sensitivity to several chemotherapeutics, including AKT inhibitor VIII and Camptothecin. Conclusions This work provides valuable insights into the circadian regulation of SKCM and underscores the potential of CRGs as biomarkers for prognosis and targets for therapeutic interventions. The novel molecular subtypes and CRGs prognostic scoring model introduced in this study offer significant contributions to the understanding and management of SKCM.
Collapse
Affiliation(s)
- Chengling Liu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xingchen Liu
- Department of Pathology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Pengjuan Cao
- Department of Endocrinology and Traditional Chinese Medicine, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Haiming Xin
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Xin Li
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| | - Sailing Zhu
- Center of Burns and Plastic Surgery and Dermatology, The 924th Hospital of Joint Logistics Support Force of the Chinese People's Liberation Army (PLA), Guilin, China
| |
Collapse
|
2
|
Joerger AC, Stiewe T, Soussi T. TP53: the unluckiest of genes? Cell Death Differ 2025; 32:219-224. [PMID: 39443700 PMCID: PMC11803090 DOI: 10.1038/s41418-024-01391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The transcription factor p53 plays a key role in the cellular defense against cancer development. It is inactivated in virtually every tumor, and in every second tumor this inactivation is due to a mutation in the TP53 gene. In this perspective, we show that this diverse mutational spectrum is unique among all other cancer-associated proteins and discuss what drives the selection of TP53 mutations in cancer. We highlight that several factors conspire to make the p53 protein particularly vulnerable to inactivation by the mutations that constantly plague our genome. It appears that the TP53 gene has emerged as a victim of its own evolutionary past that shaped its structure and function towards a pluripotent tumor suppressor, but came with an increased structural fragility of its DNA-binding domain. TP53 loss of function - with associated dominant-negative effects - is the main mechanism that will impair TP53 tumor suppressive function, regardless of whether a neomorphic phenotype is associated with some of these variants.
Collapse
Affiliation(s)
- Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany.
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
| | - Thierry Soussi
- Equipe « Hematopoietic and Leukemic Development », Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Paris, France.
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
3
|
Benitez DA, Cumplido-Laso G, Olivera-Gómez M, Del Valle-Del Pino N, Díaz-Pizarro A, Mulero-Navarro S, Román-García A, Carvajal-Gonzalez JM. p53 Genetics and Biology in Lung Carcinomas: Insights, Implications and Clinical Applications. Biomedicines 2024; 12:1453. [PMID: 39062026 PMCID: PMC11274425 DOI: 10.3390/biomedicines12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The TP53 gene is renowned as a tumor suppressor, playing a pivotal role in overseeing the cell cycle, apoptosis, and maintaining genomic stability. Dysregulation of p53 often contributes to the initiation and progression of various cancers, including lung cancer (LC) subtypes. The review explores the intricate relationship between p53 and its role in the development and progression of LC. p53, a crucial tumor suppressor protein, exists in various isoforms, and understanding their distinct functions in LC is essential for advancing our knowledge of this deadly disease. This review aims to provide a comprehensive literature overview of p53, its relevance to LC, and potential clinical applications.
Collapse
Affiliation(s)
- Dixan A. Benitez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| | | | | | | | | | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (G.C.-L.); (M.O.-G.); (N.D.V.-D.P.); (A.D.-P.); (S.M.-N.); (A.R.-G.)
| |
Collapse
|
4
|
Seeger N, Gutknecht S, Zschokke I, Fleischmann I, Roth N, Metzger J, Weber M, Breitenstein S, Grochola LF. A Predictive Noninvasive Single-Nucleotide Variation-Based Biomarker Signature for Resectable Pancreatic Cancer: Protocol for a Prospective Validation Study. JMIR Res Protoc 2024; 13:e54042. [PMID: 38635586 PMCID: PMC11130767 DOI: 10.2196/54042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Single-nucleotide variations (SNVs; formerly SNPs) are inherited genetic variants that can be easily determined in routine clinical practice using a simple blood or saliva test. SNVs have potential to serve as noninvasive biomarkers for predicting cancer-specific patient outcomes after resection of pancreatic ductal adenocarcinoma (PDAC). Two recent analyses led to the identification and validation of three SNVs in the CD44 and CHI3L2 genes (rs187115, rs353630, and rs684559), which can be used as predictive biomarkers to help select patients most likely to benefit from pancreatic resection. These variants were associated with an over 2-fold increased risk for tumor-related death in three independent PDAC study cohorts from Europe and the United States, including The Cancer Genome Atlas cohorts (reaching a P value of 1×10-8). However, these analyses were limited by the inherent biases of a retrospective study design, such as selection and publication biases, thereby limiting the clinical use of these promising biomarkers in guiding PDAC therapy. OBJECTIVE To overcome the limitations of previous retrospectively designed studies and translate the findings into clinical practice, we aim to validate the association of the identified SNVs with survival in a controlled setting using a prospective cohort of patients with PDAC following pancreatic resection. METHODS All patients with PDAC who will undergo pancreatic resection at three participating hospitals in Switzerland and fulfill the inclusion criteria will be included in the study consecutively. The SNV genotypes will be determined using standard genotyping techniques from patient blood samples. For each genotyped locus, log-rank and Cox multivariate regression tests will be performed, accounting for the relevant covariates American Joint Committee on Cancer stage and resection status. Clinical follow-up data will be collected for at least 3 years. Sample size calculation resulted in a required sample of 150 patients to sufficiently power the analysis. RESULTS The follow-up data collection started in August 2019 and the estimated end of data collection will be in May 2027. The study is still recruiting participants and 142 patients have been recruited as of November 2023. The DNA extraction and genotyping of the SNVs will be performed after inclusion of the last patient. Since no SNV genotypes have been determined, no data analysis has been performed to date. The results are expected to be published in 2027. CONCLUSIONS This is the first prospective study of the CD44 and CHI3L2 SNV-based biomarker signature in PDAC. A prospective validation of this signature would enable its clinical use as a noninvasive predictive biomarker of survival after pancreatic resection that is readily available at the time of diagnosis and can assist in guiding PDAC therapy. The results of this study may help to individualize treatment decisions and potentially improve patient outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/54042.
Collapse
Affiliation(s)
- Nico Seeger
- Department of Visceral and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Stefan Gutknecht
- Department of Visceral, Thoracic and Cardiovascular Surgery, Triemli Hospital, Zurich, Switzerland
| | - Irin Zschokke
- Department of General and Visceral Surgery, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Isabella Fleischmann
- Department of General and Visceral Surgery, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Nadja Roth
- Department of General and Visceral Surgery, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Jürg Metzger
- Department of General and Visceral Surgery, Cantonal Hospital of Lucerne, Lucerne, Switzerland
| | - Markus Weber
- Department of Visceral, Thoracic and Cardiovascular Surgery, Triemli Hospital, Zurich, Switzerland
| | - Stefan Breitenstein
- Department of Visceral and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Lukasz Filip Grochola
- Department of Visceral and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| |
Collapse
|
5
|
Prasad R, Sharma K, Bhutani K, Prasad S, Manhas S, Kishan J. Identification of Genetic Variants in Exon 4 of TP53 in Lung Carcinoma and in Silico Prediction of Their Significance. Indian J Clin Biochem 2024; 39:276-282. [PMID: 38577139 PMCID: PMC10987423 DOI: 10.1007/s12291-022-01099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Lung cancer is a severe and the leading cause of cancer related deaths in men and women all over the world. Tumor suppressor protein (TP53) encoded by the TP53 gene which plays a pivotal role in various cellular tumor suppression processes viz cell cycle arrest and apoptosis. Henceforth, the present study was aimed to TP53 exon4 variants from lung carcinoma. Histopathologic and clinically proven 20 patients of lung cancer were enrolled in this study the average age of patients was 45 ± 8 years which categorized as early onset of lung cancer. Genomic DNA was isolated from the blood specimen of patients. Extracted DNA was subjected to PCR amplification for exon 4 of TP53 using appropriate primers and subsequently amplified products were applied to nucleotide alterations via using the DNA sanger sequencing. The genetic analysis documented five variants in exon4 of TP53 which include viz. 4 substitutions [c.215 > C at codon 72, C. 358-359AA > GG at codon 120] were highly prevalent, occurring in 63% and 25% frequency in patients. Other two variants viz. C. 358 A > C at codon 120, C. 365T > G at codon 122 were present at frequency of 15% whilst one deletion variant [152 del C] was found with 5% frequency. Furthermore, alterations on codon 72, 120,122 and 51 were characterized as possibly damaging by Poly Phen-2 and decreased stability using stability bioinformatic tool. Taken together all these findings infer that TP53 gene involved in modulation and susceptibility to lung cancer.
Collapse
Affiliation(s)
- Rajendra Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Kirti Sharma
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Karanpreet Bhutani
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Suvarna Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
- Department of Biochemistry, AIIMS, Deoghar, India
| | - Sunita Manhas
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| | - Jai Kishan
- Department of Respiratory Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala India
| |
Collapse
|
6
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
7
|
Cheng WY, Shen CC, Liang YJ, Chiao MT, Yang YC, Hsieh WY, Lin CH, Chen JP. Polymorphism at codon 31 of CDKN1A (p21) as a predictive factor for bevacizumab therapy in glioblastoma multiforme. BMC Cancer 2023; 23:886. [PMID: 37730565 PMCID: PMC10510274 DOI: 10.1186/s12885-023-11400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Glioblastoma (GBM), a prevalent and malignant brain tumor, poses a challenge in surgical resection due to its invasive nature within the brain parenchyma. CDKN1A (p21, Waf-1), a cyclin-dependent kinase inhibitor, plays a pivotal role in regulating cell growth arrest, terminal differentiation, and apoptosis. The existence of natural variants of CDKN1A has been associated with specific cancer types. In this retrospective study, our objective was to identify polymorphic variants of CDKN1A, specifically c.93C > A (codon 31 Ser31Arg), and investigate its potential impact within the scope of bevacizumab therapy for glioblastoma multiforme. This study involved a cohort of 139 unrelated adult Chinese GBM patients in Taiwan. Genomic DNA extracted from tumor samples was utilized for genotyping using the polymerase chain reaction (PCR) restriction fragment length polymorphism method (PCR-RFLP analysis). Through unconditional logistic regression analysis, odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were calculated. Our findings unveiled that among these GBM patients, the distribution of codon 31 polymorphisms was as follows: 23.02% were Serine homozygotes (Ser/Ser), 27.34% were Arginine homozygotes (Arg/Arg), and 49.64% were Serine/Arginine heterozygotes (Ser/Arg). While CDKN1A c.93C > A polymorphisms did not exhibit a direct association with overall survival in GBM patients, noteworthy survival benefits emerged among individuals with Arg/Arg and Arg/Ser genotypes who received combined concurrent chemoradiotherapy (CCRT) and bevacizumab treatment compared to those who underwent CCRT alone. Our findings indicate a significant involvement of the CDKN1A c.93C > A polymorphism in the development and onset of GBM, offering potential implications for the early prognostication of bevacizumab therapy outcomes.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung city, Taiwan.
- Department of Physical Therapy, Hung Kuang University, Taichung city, Taiwan.
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung city, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung city, Taiwan.
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung city, Taiwan
- Department of Physical Therapy, Hung Kuang University, Taichung city, Taiwan
- Basic Medical Education, Central Taiwan University of Science and Technology, Taichung city, Taiwan
| | - Yea-Jiuen Liang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung city, Taiwan
| | - Ming-Tsang Chiao
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung city, Taiwan
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung city, Taiwan
| | - Wan-Yu Hsieh
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung city, Taiwan
| | - Cheng-Hui Lin
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung city, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force, Taichung Veterans General Hospital, Taichung city, Taiwan
| |
Collapse
|
8
|
Wu Y, Li M, Meng G, Ma Y, Ye J, Sun T, Ji C. Immune checkpoint-related gene polymorphisms are associated with acute myeloid leukemia. Cancer Med 2023; 12:18588-18596. [PMID: 37602517 PMCID: PMC10557852 DOI: 10.1002/cam4.6468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Chemotherapy is still the standard regimen for treating acute myeloid leukemia (AML) and its disappointing efficacy requires the urgent need for new therapeutic targets. It is well known that immune response plays an increasingly significant role in the pathogenesis of AML. METHODS We detected nine single nucleotide polymorphisms (SNPs) in immune checkpoint-related genes, including PD1, LAG3, TIM3, and TIGIT in 285 AML inpatients and 324 healthy controls. SNP genotyping was performed on the MassARRAY platform. Furthermore, we analyzed the relationship between the susceptibility and prognosis of AML and the selected SNPs. RESULTS Our results showed that rs2227982 and rs10204525 in PD1 were significantly associated with susceptibility to AML after false discovery rate correction. PD1 rs10204525 also showed a significant correlation with the response to chemotherapy and risk stratification of AML. Importantly, the AA genotype of PD1 (rs2227982) under the recessive model showed a negative impact on AML prognosis independently. CONCLUSIONS Our results indicate that PD1 SNPs are important for susceptibility and prognosis in AML, which may provide a new therapeutic target for AML patients.
Collapse
Affiliation(s)
- Yuyan Wu
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Mingying Li
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Guangqiang Meng
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Yuechan Ma
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Jingjing Ye
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
- Shandong Key Laboratory of ImmunohematologyQilu Hospital of Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Tao Sun
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
- Shandong Key Laboratory of ImmunohematologyQilu Hospital of Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Chunyan Ji
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
- Shandong Key Laboratory of ImmunohematologyQilu Hospital of Shandong UniversityJinanShandong ProvincePeople's Republic of China
| |
Collapse
|
9
|
Zafar A, Khan MJ, Naeem A. MDM2- an indispensable player in tumorigenesis. Mol Biol Rep 2023; 50:6871-6883. [PMID: 37314603 PMCID: PMC10374471 DOI: 10.1007/s11033-023-08512-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Murine double minute 2 (MDM2) is a well-recognized molecule for its oncogenic potential. Since its identification, various cancer-promoting roles of MDM2 such as growth stimulation, sustained angiogenesis, metabolic reprogramming, apoptosis evasion, metastasis, and immunosuppression have been established. Alterations in the expression levels of MDM2 occur in multiple types of cancers resulting in uncontrolled proliferation. The cellular processes are modulated by MDM2 through transcription, post-translational modifications, protein degradation, binding to cofactors, and subcellular localization. In this review, we discuss the precise role of deregulated MDM2 levels in modulating cellular functions to promote cancer growth. Moreover, we also briefly discuss the role of MDM2 in inducing resistance against anti-cancerous therapies thus limiting the benefits of cancerous treatment.
Collapse
Affiliation(s)
- Aasma Zafar
- Department of Biosciences, COMSATS University, Islamabad, 45550 Pakistan
| | | | - Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 20057 Washington, DC U.S
- Qatar University Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
10
|
Bhardwaj J, Upadhye A, Gaskin EL, Doumbo S, Kayentao K, Ongoiba A, Traore B, Crompton PD, Tran TM. Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study. J Infect Dis 2023; 228:202-211. [PMID: 36961831 PMCID: PMC10345479 DOI: 10.1093/infdis/jiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Sun SY, Crago A. MDM2 Implications for Potential Molecular Pathogenic Therapies of Soft-Tissue Tumors. J Clin Med 2023; 12:3638. [PMID: 37297833 PMCID: PMC10253559 DOI: 10.3390/jcm12113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Murine double minute 2 (MDM2, gene name MDM2) is an oncogene that mainly codes for a protein that acts as an E3 ubiquitin ligase, which targets the tumor suppressor protein p53 for degradation. Overexpression of MDM2 regulates the p53 protein levels by binding to it and promoting its degradation by the 26S proteasome. This leads to the inhibition of p53's ability to regulate cell cycle progression and apoptosis, allowing for uncontrolled cell growth, and can contribute to the development of soft-tissue tumors. The application of cellular stress leads to changes in the binding of MDM2 to p53, which prevents MDM2 from degrading p53. This results in an increase in p53 levels, which triggers either cell cycle arrest or apoptosis. Inhibiting the function of MDM2 has been identified as a potential therapeutic strategy for treating these types of tumors. By blocking the activity of MDM2, p53 function can be restored, potentially leading to tumor cell death and inhibiting the growth of tumors. However, further research is needed to fully understand the implications of MDM2 inhibition for the treatment of soft-tissue tumors and to determine the safety and efficacy of these therapies in clinical trials. An overview of key milestones and potential uses of MDM2 research is presented in this review.
Collapse
Affiliation(s)
- Sylvia Yao Sun
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, 417 E 618 St, New York, NY 10065, USA
| | - Aimee Crago
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Surgery, Weill Cornell Medical Center, 525 E 68th St M 404, New York, NY 10065, USA
| |
Collapse
|
12
|
Floris M, Pira G, Castiglia P, Idda M, Steri M, De Miglio M, Piana A, Cossu A, Azara A, Arru C, Deiana G, Putzu C, Sanna V, Carru C, Serra A, Bisail M, Muroni M. Impact on breast cancer susceptibility and clinicopathological traits of common genetic polymorphisms in TP53, MDM2 and ATM genes in Sardinian women. Oncol Lett 2022; 24:331. [PMID: 36039053 PMCID: PMC9404703 DOI: 10.3892/ol.2022.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022] Open
Abstract
Common variants of genes involved in DNA damage correction [tumor protein p53 (TP53), murine double 2 homolog oncoprotein (MDM2) and ataxia-telengiectasia mutated (ATM)] may serve a role in cancer predisposition. The purpose of the present study was to investigate the association of five variants in these genes with breast cancer risk and clinicopathological traits in a cohort of 261 women from northern Sardinia. Polymorphic variants in TP53 (rs17878362, rs1042522 and rs1625895), MDM2 (rs2279744) and ATM (rs1799757) were determined by PCR and TaqMan single nucleotide polymorphism assay in patients with breast cancer (n=136) and healthy controls (n=125). Association with clinicopathological (e.g., age at diagnosis, lymph node involvement, clinical stage) and lifestyle factors (e.g., smoking status, alcohol intake, contraceptive use) was also evaluated. TP53 rs17878362 and rs1625895 polymorphisms were associated with decreased risk of BC diagnosis in patients older than 50 years (codominant and recessive models) and post-menopause (recessive model). Furthermore, there was a significant association between lymph node status (positive vs. negative) and ATM rs1799757-delT in dominant and additive models and between MDM2 rs2279744-allele and use of oral contraceptives. This analysis suggested that TP53 rs17878362 and rs1625895 may affect age of onset of breast cancer and ATM rs1799757 and MDM2 rs2279744 may be associated with lymph node status and prolonged use of oral contraceptives, respectively.
Collapse
Affiliation(s)
- Matteo Floris
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Pira
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Paolo Castiglia
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Maria Idda
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maristella Steri
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| | - Maria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Piana
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Andrea Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonio Azara
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Giovanna Deiana
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Carlo Putzu
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Valeria Sanna
- Division of Medical Oncology, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, Surgery and Pharmacy, University of Sassari, Sassari, I-07100 Sardinia, Italy
| | - Antonello Serra
- Unit of Occupational Medicine, Azienda Ospedaliera Universitaria, Sassari, I-07100 Sardinia, Italy
| | - Marco Bisail
- Lega Italiana per la Lotta contro i Tumori, Sassari, I-07100 Sardinia, Italy
| | - Maria Muroni
- Institute for Genetic and Biomedical Research, National Research Council, Monserrato, Cagliari, I-09121 Sardinia, Italy
| |
Collapse
|
13
|
Yamamura K, Nojiri M, Nishiki K, Kato R, Shinomiya S, Takahara Y, Oikawa T, Ishizaki T, Toga H, Mizuno S. Serum Derivatives of Reactive Oxygen Metabolites are Associated with Severity of Chronic Obstructive Pulmonary Disease and Affected by a p53 Gene Polymorphism. Int J Chron Obstruct Pulmon Dis 2022; 17:1589-1600. [PMID: 35854898 PMCID: PMC9289177 DOI: 10.2147/copd.s366792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Oxidative stress is known to activate tumor suppressor p53, which inhibits cell cycle progression and induces apoptosis. Levels of p53 in lung tissues from patients with chronic obstructive pulmonary disease (COPD) are increased compared with levels in nonsmokers or smokers without emphysema. A polymorphism in p53 codon 72 (rs1042522) is associated with emphysematous changes in patients with COPD. However, whether oxidative stress in the serum is associated with the p53 polymorphism and disease severity in COPD patients is unclear. Patients and Methods A total of 251 patients with a history of smoking more than 10 pack-years were enrolled in this study, and serum levels of derivatives of reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), and d-ROMs/BAP ratio (oxidative stress index; OSI) were measured. The percent low-attenuation area (LAA%) and cross-sectional area of the erector spinae muscles (ESMCSA) at the Th12 level were calculated from chest high-resolution computed tomography images. p53 codon 72 C/G genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism analysis. Results In patients carrying the p53 GG genotype, LAA% was significantly higher than in those carrying the CC genotype. d-ROM levels and OSI were associated with COPD severity and correlated with airflow limitation and markers of muscle atrophy (ESMCSA and creatinine/cystatin C ratio). Associations between markers of oxidative stress and COPD severity were observed primarily in patients carrying the p53 codon 72 GG genotype. Conclusion Susceptibility to pulmonary emphysema and responses to oxidative stress may be affected by the p53 gene polymorphism.
Collapse
Affiliation(s)
- Koichi Yamamura
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Masafumi Nojiri
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Kazuaki Nishiki
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Ryo Kato
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Shohei Shinomiya
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Yutaka Takahara
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Taku Oikawa
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Takeshi Ishizaki
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Hirohisa Toga
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Shiro Mizuno
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
14
|
Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage. Cell Death Differ 2022; 29:722-736. [PMID: 34642466 PMCID: PMC8989948 DOI: 10.1038/s41418-021-00886-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
p53 is a classic tumor suppressor that functions in maintaining genome stability by inducing either cell arrest for damage repair or cell apoptosis to eliminate damaged cells in response to different types of stress. Posttranslational modifications (PTMs) of p53 are thought to be the most effective way for modulating of p53 activation. Here, we show that SIRT5 interacts with p53 and suppresses its transcriptional activity. Using mass spectrometric analysis, we identify a previously unknown PTM of p53, namely, succinylation of p53 at Lysine 120 (K120). SIRT5 mediates desuccinylation of p53 at K120, resulting in the suppression of p53 activation. Moreover, using double knockout mice (p53-/-Sirt5-/-), we validate that the suppression of p53 target gene expression and cell apoptosis upon DNA damage is dependent on cellular p53. Our study identifies a novel PTM of p53 that regulates its activation as well as reveals a new target of SIRT5 acting as a desuccinylase.
Collapse
|
15
|
Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ 2022; 29:1850-1863. [PMID: 35338333 PMCID: PMC9433379 DOI: 10.1038/s41418-022-00970-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis, a novel form of regulated cell death induced by iron-dependent lipid peroxidation, plays an essential role in the development and drug resistance of tumors. Long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be involved in the regulation of cell cycle, proliferation, apoptosis, and migration of tumor cells. However, the function and molecular mechanism of NEAT1 in regulating ferroptosis in tumors remain unclear. Here, we found that ferroptosis inducers erastin and RSL3 increased NEAT1 expression by promoting the binding of p53 to the NEAT1 promoter. Induced NEAT1 promoted the expression of MIOX by competitively binding to miR-362-3p. MIOX increased ROS production and decreased the intracellular levels of NADPH and GSH, resulting in enhanced erastin- and RSL3-induced ferroptosis. Importantly, overexpression of NEAT1 increased the anti-tumor activity of erastin and RSL3 by enhancing ferroptosis both in vitro and in vivo. Collectively, these data suggest that NEAT1 plays a novel and indispensable role in ferroptosis by regulating miR-362-3p and MIOX. Considering the clinical findings that HCC patients are insensitive to chemotherapy and immunotherapy, ferroptosis induction may be a promising therapeutic strategy for HCC patients with high NEAT1 expression.
Collapse
|
16
|
TIAN L, SUN S, WANG J, LI W, WANG X. GINS2 affects activity/differentiation, apoptosis and proliferation of osteoblast and osteoclast in steroid-induced osteonecrosis of the femoral head by regulating P53/GADD45A signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.09921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lei TIAN
- Shandong First Medical University, China
| | - Shui SUN
- Shandong First Medical University, China
| | - Jian WANG
- Shandong First Medical University, China
| | - Wei LI
- Shandong First Medical University, China
| | | |
Collapse
|
17
|
Rizzotto D, Englmaier L, Villunger A. At a Crossroads to Cancer: How p53-Induced Cell Fate Decisions Secure Genome Integrity. Int J Mol Sci 2021; 22:ijms221910883. [PMID: 34639222 PMCID: PMC8509445 DOI: 10.3390/ijms221910883] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; (D.R.); (L.E.)
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
18
|
Timóteo M, Tavares A, Cruz S, Campos C, Medeiros R, Sousa H. Association of Murine Double Minute 2 polymorphisms with gastric cancer: A systematic review with meta-analysis. Biomed Rep 2021; 15:69. [PMID: 34257965 DOI: 10.3892/br.2021.1445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer (GC) is the 5th most common type of cancer, with the 3rd highest mortality rate worldwide in both sexes. Murine double minute 2 (MDM2) protein is the major negative regulator of p53, and genetic polymorphisms in this gene have shown to be associated with several types of cancer. In the present study, a literature search was performed using PubMed and Scopus with the following key word combinations 'gastric cancer AND polymorphism AND MDM2'. Studies were carefully revised according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify eligible studies that matched the inclusion criteria. Statistical analysis was performed to assess the association between the different genetic polymorphisms and GC risk, by calculating the odds ratios (OR) and the confidence intervals (CI), with a 5% level of significance. A total of 11 manuscripts studied MDM2 polymorphisms in GC: rs937283 (n=1), rs3730485 (n=1) and rs2279744 (n=9). Both the rs937283 and rs3730485 reports showed an association with GC; however, there was only one study on each of these polymorphisms in the literature. A meta-analysis was performed for the rs2279744 polymorphism, of which studies showed a positive association between the G allele and risk of GC, either in the dominant model (OR=1.46; 95% CI 1.21-1.75; P<0.001) or recessive model (OR 1.65; 95% CI 1.45-1.87; P<0.001). In conclusion, genetic polymorphisms in MDM2 seemed to be associated with an increased risk of GC development, nevertheless, the number of studies were relatively low and the studied populations were primarily Chinese. The present meta-analysis emphasizes the need for additional studies in other populations to corroborate the association of these polymorphisms with GC.
Collapse
Affiliation(s)
- Mafalda Timóteo
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Ana Tavares
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Pathology Department, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Sara Cruz
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Carla Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Microbiology Service, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-172 Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
19
|
Słomiński B, Skrzypkowska M, Ryba-Stanisławowska M, Myśliwiec M, Trzonkowski P. Associations of TP53 codon 72 polymorphism with complications and comorbidities in patients with type 1 diabetes. J Mol Med (Berl) 2021; 99:675-683. [PMID: 33495869 PMCID: PMC8055568 DOI: 10.1007/s00109-020-02035-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
Wild-type TP53 plays an important role in the regulation of immune response and systemic inflammation. In type 1 diabetes (T1D), TP53 pathways are upregulated and an increased susceptibility to apoptosis is observed. We hypothesize that TP53 codon 72 polymorphism could be associated with complications and comorbidities in patients with T1D. We have investigated the associations of the TP53 codon 72 polymorphism with the T1D complications and comorbidities (retinopathy, nephropathy, hypertension, dyslipidemia, autoimmune thyroiditis, and celiac disease) in 350 patients. The key results of our approach are as follows: (1) In diabetic subjects, the Pro/Pro genotype is associated with an increased risk of microvascular complications, dyslipidemia, and celiac disease; (2) the Arg/Arg variant is associated with a decreased risk of autoimmune thyroiditis and celiac disease; (3) the Pro allele is associated with an increased risk of dyslipidemia, autoimmune thyroiditis, and celiac disease. Although further studies are required, our results for the first time indicate that the TP53 codon 72 polymorphism could be considered a genetic marker to predict the increased susceptibility to some T1D complications and comorbidities. KEY MESSAGES: We analyzed the TP53 codon 72 polymorphism in patients with T1D. Pro/Pro genotype is associated with an increased risk of microvascular complications, dyslipidemia, and celiac disease. The Arg/Arg variant is associated with a decreased risk of autoimmune thyroiditis and celiac disease. The Pro allele is associated with an increased risk of dyslipidemia, autoimmune thyroiditis, and celiac disease.
Collapse
Affiliation(s)
- Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland.
| | - Maria Skrzypkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| | - Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Chair & Clinics of Paediatrics, Diabetology and Endocrinology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
20
|
Haupt S, Haupt Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front Genet 2021; 12:632719. [PMID: 33664771 PMCID: PMC7920968 DOI: 10.3389/fgene.2021.632719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
There are many differences in cancer manifestation between men and women. New understanding of the origin of these point to fundamental distinctions in the genetic code and its demise. Tumour suppressor protein p53 is the chief operating officer of cancer defence and critically acts to safeguard against sustained DNA damaged. P53 cannot be ignored in cancer sex disparity. In this review we discuss the greater prevalence and associated death rates for non-reproductive cancers in males. The major tumour suppressor protein p53, encoded in the TP53 gene is our chosen context. It is fitting to ask why somatic TP53 mutation incidence is estimated to be disproportionately higher among males in the population for these types of cancers compared with females? We scrutinised the literature for evidence of predisposing genetic and epigenetic alterations that may explain this sex bias. Our second approach was to explore whether redox activity, either externally imposed or inherent to males and females, may define distinct risks that could contribute to the clear cancer sex disparities.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Association between tobacco substance usage and a missense mutation in the tumor suppressor gene P53 in the Saudi Arabian population. PLoS One 2021; 16:e0245133. [PMID: 33481818 PMCID: PMC7822264 DOI: 10.1371/journal.pone.0245133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene TP53 and its downstream genes P21 and MDM2 play crucial roles in combating DNA damage at the G1/S cell cycle checkpoint. Polymorphisms in these genes can lead to the development of various diseases. This study was conducted to examine a potential association between tobacco substance usage (TSU) and single-nucleotide polymorphism (SNP) at the exon regions of the P53, P21, and MDM2 genes by comparing populations of smokers and non-smokers from Saudi Arabia. P53 rs1042522 (C/G), P21 rs1801270 (A/C), and MDM2 rs769412 (A/G) were investigated by genotyping 568 blood specimens: 283 from male/female smokers and 285 from male/female non-smokers. The results obtained from the smokers and their control non-smokers were compared according to age, sex, duration of smoking, and type of TSU. Heterozygous CG, homozygous GG, and CG+GG genotypes, as well as the G allele of rs1042522 were significantly associated with TSU in Saudi smokers compared with non-smokers. The C allele frequency of rs1801270 was also associated with TSU in smokers (OR = 1.33, p = 0.049) in comparison with non-smokers, in younger smokers (≤29 years) (OR = 1.556, p = 0.03280) in comparison with non-smokers of the same age, in smokers who had smoked cigarettes for seven years or less (OR = 1.596, p = 0.00882), and in smokers who had consumed shisha (OR = 1.608, p = 0.04104) in comparison with the controls. However, the genotypic and allelic frequencies for rs769412 did not show significant associations with TSU in Saudis. The selected SNP of P53 was strongly associated with TSU and may be linked to TSU-induced diseases in the Saudi Arabian population.
Collapse
|
22
|
Miller H, Czigany Z, Lurje I, Reichelt S, Bednarsch J, Strnad P, Trautwein C, Roderburg C, Tacke F, Gaisa NT, Knüchel-Clarke R, Neumann UP, Lurje G. Impact of Angiogenesis- and Hypoxia-Associated Polymorphisms on Tumor Recurrence in Patients with Hepatocellular Carcinoma Undergoing Surgical Resection. Cancers (Basel) 2020; 12:cancers12123826. [PMID: 33352897 PMCID: PMC7767259 DOI: 10.3390/cancers12123826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma remains a leading cause of cancer-related death and the most common primary hepatic malignancy in the Western hemisphere. Previous research found that angiogenesis-related cytokines and elevated levels of interleukin 8 and vascular endothelial growth factor (VEGF) shorten the expected time of survival. Moreover, factors of tumor angiogenesis- and hypoxia-driven signaling pathways are already associated with worse outcome in disease-free survival in several tumor entities. Our study investigates the prognosis of hepatocellular carcinoma patients based on a selection of ten different single-nucleotide polymorphisms from angiogenesis, carcinogenesis, and hypoxia pathways. Our study with 127 patients found supporting evidence that polymorphisms in angiogenesis-associated pathways corelate with disease-free survival and clinical outcome in patients with hepatocellular carcinoma. Abstract Tumor angiogenesis plays a pivotal role in hepatocellular carcinoma (HCC) biology. Identifying molecular prognostic markers is critical to further improve treatment selection in these patients. The present study analyzed a subset of 10 germline polymorphisms involved in tumor angiogenesis pathways and their impact on prognosis in HCC patients undergoing partial hepatectomy in a curative intent. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from 127 HCC patients at a German primary care hospital. Genomic DNA was extracted, and genotyping was carried out using polymerase chain reaction (PCR)–restriction fragment length polymorphism-based protocols. Polymorphisms in interleukin-8 (IL-8) (rs4073; p = 0.047, log-rank test) and vascular endothelial growth factor (VEGF C + 936T) (rs3025039; p = 0.045, log-rank test) were significantly associated with disease-free survival (DFS). After adjusting for covariates in the multivariable model, IL-8 T-251A (rs4073) (adjusted p = 0.010) and a combination of “high-expression” variants of rs4073 and rs3025039 (adjusted p = 0.034) remained significantly associated with DFS. High-expression variants of IL-8 T-251A may serve as an independent molecular marker of prognosis in patients undergoing surgical resection for HCC. Assessment of the patients’ individual genetic risks may help to identify patient subgroups at high risk for recurrence following curative-intent surgery.
Collapse
Affiliation(s)
- Hannah Miller
- Charité–Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (H.M.); (S.R.)
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Zoltan Czigany
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Isabella Lurje
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
- Charité–Universitätsmedizin Berlin, Department of Gastroenterology and Hepatology, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (C.R.); (F.T.)
| | - Sophie Reichelt
- Charité–Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (H.M.); (S.R.)
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Jan Bednarsch
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Christoph Roderburg
- Charité–Universitätsmedizin Berlin, Department of Gastroenterology and Hepatology, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (C.R.); (F.T.)
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Frank Tacke
- Charité–Universitätsmedizin Berlin, Department of Gastroenterology and Hepatology, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (C.R.); (F.T.)
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (P.S.); (C.T.)
| | - Nadine Therese Gaisa
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (N.T.G.); (R.K.-C.)
| | - Ruth Knüchel-Clarke
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (N.T.G.); (R.K.-C.)
| | - Ulf Peter Neumann
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
| | - Georg Lurje
- Charité–Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, 13353 Berlin, Germany; (H.M.); (S.R.)
- Department of Surgery and Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany; (Z.C.); (I.L.); (J.B.); (U.P.N.)
- Correspondence: ; Tel.: +49-30-450-652339
| |
Collapse
|
23
|
Liu Q, Hua M, Yan S, Zhang C, Wang R, Yang X, Han F, Hou M, Ma D. Immunorelated gene polymorphisms associated with acute myeloid leukemia. Clin Exp Immunol 2020; 201:266-278. [PMID: 32349161 PMCID: PMC7419888 DOI: 10.1111/cei.13446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although the pathogenesis of acute myeloid leukemia (AML) is still unknown, accumulating evidence has revealed that immune response plays a vital part in the pathogenesis. Here, we investigated the involvement of 21 single nucleotide polymorphisms (SNPs) of immunorelated genes, including cytokines [interleukin (IL)-2, IL-4, IL-9, IL-12A, IL-22, interferon (IFN-α) and transforming growth factor (TGF)-β1], transcriptional regulatory genes (TBX21, STAT1, STAT3, STAT5B, STAT6, GATA3, FOXP3 and IRF4) and others (IL2RA, IL6R, NFKBIA) in 269 AML in-patients and 200 healthy controls. Furthermore, we analyzed the relationship between the SNPs and clinical characteristics. Immunorelated SNP genotyping was performed on the Sequenom MassARRAY iPLEX platform. All the SNPs in healthy controls were consistent with Hardy-Weinberg equilibrium. All final P-values were adjusted by Bonferroni multiple testing. Our results showed that IL-22 (rs2227491) was significantly associated with the white blood cell (WBC) counts. Signal transducer and activator of transcription 5B (STAT-5B) (rs6503691) showed a close relationship with the recurrent genetic abnormalities in patients with AML. We verified the negatively independent effect of age and risk of cytogenetics on overall survival (OS). More importantly, the GG genotype of IL-12A (rs6887695) showed a negative impact on AML prognosis independently. Furthermore, the relative expression of IL-12 was decreased in GG genotype, no matter under a co-dominant or recessive model. However, no correlation was observed between the SNPs mentioned above and disease susceptibility, risk stratification and survival. Our findings suggest that immunorelated gene polymorphisms are associated with prognosis in AML, which may perform as novel inspection targets for AML patients.
Collapse
Affiliation(s)
- Q. Liu
- Department of HematologyQilu HospitalShandong UniversityJinanChina
- Department of HematologyQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of HematologyTaian Central HospitalTaianShandongChina
| | - M. Hua
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - S. Yan
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - C. Zhang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - R. Wang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - X. Yang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - F. Han
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - M. Hou
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - D. Ma
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| |
Collapse
|
24
|
Saha G, Singh R, Mandal A, Das S, Chattopadhyay E, Panja P, Roy P, DeSarkar N, Gulati S, Ghatak S, Ghosh S, Banerjee S, Roy B, Ghosh S, Chaudhuri D, Arora N, Biswas NK, Sikdar N. A novel hotspot and rare somatic mutation p.A138V, at TP53 is associated with poor survival of pancreatic ductal and periampullary adenocarcinoma patients. Mol Med 2020; 26:59. [PMID: 32552660 PMCID: PMC7302128 DOI: 10.1186/s10020-020-00183-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/03/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pancreatic Ductal Adenocarcinoma (PDAC) is a cancer of the exocrine pancreas and 5-year survival rates remain constant at 7%. Along with PDAC, Periampullary Adenocarcinoma (PAC) accounts for 0.5-2% of all gastrointestinal malignancies. Genomic observations were well concluded for PDAC and PACs in western countries but no reports are available from India till now. METHODS Targeted Next Generation Sequencing were performed in 8 (5 PDAC and 3 PAC) tumour normal pairs, using a panel of 412 cancer related genes. Primary findings were replicated in 85 tumour samples (31 PDAC and 54 PAC) using the Sanger sequencing. Mutations were also validated by ASPCR, RFLP, and Ion Torrent sequencing. IHC along with molecular dynamics and docking studies were performed for the p.A138V mutant of TP53. Key polymorphisms at TP53 and its associated genes were genotyped by PCR-RFLP method and association with somatic mutations were evaluated. All survival analysis was done using the Kaplan-Meier survival method which revealed that the survival rates varied significantly depending on the somatic mutations the patients harboured. RESULTS Among the total 114 detected somatic mutations, TP53 was the most frequently mutated (41%) gene, followed by KRAS, SMAD4, CTNNB1, and ERBB3. We identified a novel hotspot TP53 mutation (p.A138V, in 17% of all patients). Low frequency of KRAS mutation (33%) was detected in these samples compared to patients from Western counties. Molecular Dynamics (MD) simulation and DNA-protein docking analysis predicted p.A138V to have oncogenic characteristics. Patients with p.A138V mutation showed poorer overall survival (p = 0.01). So, our finding highlights elevated prevalence of the p53p.A138V somatic mutation in PDAC and pancreatobiliary PAC patients. CONCLUSION Detection of p.A138V somatic variant in TP53 might serve as a prognostic marker to classify patients. It might also have a role in determining treatment regimes. In addition, low frequency of KRAS hotspot mutation mostly in Indian PDAC patient cohort indicates presence of other early drivers in malignant transformation.
Collapse
Affiliation(s)
- Gourab Saha
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Richa Singh
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Argha Mandal
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Subrata Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Esita Chattopadhyay
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Prasun Panja
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Paromita Roy
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Navonil DeSarkar
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, USA
| | - Sumit Gulati
- Department of Surgical Gastroenterology, Calcutta Medical Research Institute, Kolkata, India
| | - Supriyo Ghatak
- Department of Surgical Gastroenterology, Calcutta Medical Research Institute, Kolkata, India
| | - Shibajyoti Ghosh
- Department of General Surgery, Medical College and Hospital, Kolkata, India
| | - Sudeep Banerjee
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Saurabh Ghosh
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Dipankar Chaudhuri
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Neeraj Arora
- Department of Pathology & Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India.
| |
Collapse
|
25
|
Lotfi Garavand A, Mohammadi M, Mohammadzadeh S. Evaluation of TP53 Codon 72, P21 Codon 31, and MDM2 SNP309 Polymorphisms in Iranian Patients with Acute Lymphocytic Leukemia. Rep Biochem Mol Biol 2020; 9:26-32. [PMID: 32821748 PMCID: PMC7424426 DOI: 10.29252/rbmb.9.1.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND The tumor suppressing protein p53 and its downstream effector p21 play important roles in cell cycle regulation. Deficiency or deactivation of these proteins as a result of gene alterations has been indicated in several cancers. Such genetic variations could be considered as susceptibility indicators in acute lymphocytic leukemia (ALL). Therefore, we investigated the associations between ALL risk and TP53 codon 72, p21 codon 31, and MDM2 SNP309 polymorphisms in an Iranian population. METHODS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the MDM2 T309G (rs2279744), TP53 codon Arg72Pro (rs1042522), and p21 Ser31Arg (rs1801270) single nucleotide polymorphisms (SNPs). This study was performed in 115 ALL patients and 115 healthy controls in Khuzestan province in southwest Iran. RESULTS In the control group and ALL patients, p21 Ser/Arg, and MDM2 TG and GG genotypes were associated with significant 1.81-fold (95% confidence interval CI= 1.008-3.267; P < 0.05), 11.07-fold (95% CI= 5.10-24.05; P < 0.0001), and 19.41-fold (95% CI= 8.56-43.99; P < 0.0001) increased risks for ALL, respectively. The TP53 72 Arg allele was significantly more prevalent in ALL patients (56.96%) than in control subjects (47.39%), and was significantly associated with ALL (OR= 1.47; 95% CI = 1.017-2.121, P < 0.05). CONCLUSION The MDM2T309G and the p21 Ser31Arg SNPs indicate a significantly increased risk for developing ALL in Khuzestan province.
Collapse
Affiliation(s)
- Ahmad Lotfi Garavand
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Mohammadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Sara Mohammadzadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Corresponding author: Sara Mohammadzadeh; Tel: +98 83 34276473; E-mail:
| |
Collapse
|
26
|
Naidoo P, Naidoo RN, Ramkaran P, Chuturgoon AA. Effect of maternal HIV infection, BMI and NOx air pollution exposure on birth outcomes in South African pregnant women genotyped for the p53 Pro72Arg (rs1042522). Int J Immunogenet 2020; 47:414-429. [PMID: 32080966 DOI: 10.1111/iji.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Tumour suppressor protein, p53, plays a role in modulating innate immune responses, DNA repair, cell cycle arrest, senescence and apoptosis. Maternal nitrogen oxide (NOx) air pollution exposure, body mass index (BMI), human immunodeficiency virus (HIV) infection and p53 Pro72Arg (rs1042522) affect foetal growth. We investigated whether the aforementioned factors influence birth outcomes in a South African population. Pregnant women (n = 300; HIV -ve = 194 and HIV +ve = 106) were genotyped for the p53 rs1042522 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and further stratified based on HIV status, infants' birthweight (BW; NBW: normal BW [>2,500 g] and LBW: low BW [<2,500 g]) and gestational age (GA; NGA: normal GA [>37 weeks] and PTB: preterm birth [≤37 weeks]). A land use regression model was developed to characterize maternal NOx exposure. Pearson's correlation and multivariate regression analysis statistical tests were used to determine the effect of rs1042522 genotyped pregnant women's BMI and NOx exposure on maternal blood pressure and haemoglobin and iron levels, and infants' anthropometric measurements and Appearance Pulse Grimace Activity and Respiration (APGAR) scores. The prevalence of LBW and PTB was 14.7% and 18.7%, respectively. The LBW group had a higher frequency of the variant Arg-allele versus NBW group (47.7% vs. 31.4%, p = .0046, OR = 2.0, 95% CI = 1.26-3.17). No association was observed between NGA and PTB groups. A significant association between BMI and systolic blood pressure (r = .50, p = .00; B = 0.76, p = .002) and birth length (r = -.28, p = .01; B = -0.107, p = .011), and NOx and birth length (r = -.26, p = .08; B = -0.191, p = .046) and birthweight (B = -8.87, p = .048) was observed in HIV-infected mothers with the variant Pro/Arg + Arg/Arg genotypes. Mothers from the LBW group with the variant genotypes displayed an association between NOx and diastolic blood pressure (r = .58, p = .04), blood iron levels (r = -.60, p = .04; B = -0.204, p = .004), APGAR scores at 1 min (r = -.86, p = .00; B = -0.101, p = .003) and 5 min (r = -.75, p = .01) and birth length (r = -.61, p = .04), and BMI and diastolic blood pressure (r = .72, p = .01). In the PTB group, maternal variant genotypes and NOx were associated with blood haemoglobin levels (B = -0.132, p = .045) and APGAR scores at 1 min (B = -0.161, p = .045) and 5 min (B = -0.147, p = .043). Maternal rs1042522 Arg-allele, HIV infection, BMI and NOx exposure collectively play a role in lowering blood iron levels, gestational hypertension and LBW outcomes.
Collapse
Affiliation(s)
- Pragalathan Naidoo
- Discipline of Medical Biochemistry and Chemical Pathology, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Prithiksha Ramkaran
- Discipline of Medical Biochemistry and Chemical Pathology, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
27
|
Bukovac A, Kafka A, Hrašćan R, Vladušić T, Pećina-Šlaus N. Nucleotide variations of TP53 exon 4 found in intracranial meningioma and in silico prediction of their significance. Mol Clin Oncol 2019; 11:563-572. [PMID: 31692929 PMCID: PMC6826266 DOI: 10.3892/mco.2019.1936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/20/2019] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to identify TP53 exon 4 mutations in patients with meningioma and to investigate their potential association with specific tumor pathology. Nucleotide alterations were investigated in 48 meningiomas via the direct sequencing of TP53 exon 4 in patient tumor and blood samples using the DNA Sanger method with the BigDyeTerminator v3.1 Cycle Sequencing kit and Applied Biosystems 3730XL apparatus. The results revealed that TP53 exon 4 was frequently altered in meningioma, occurring in 60.4% of the patients investigated. A total of 18 different alterations were detected in the meningioma samples assessed in the current study. The majority of these appeared more than once and some were repeatedly identified in several patients. Changes at codons 72 (c.215G>C) and 62 (c.186delA) were highly prevalent, occurring in 44.8% of patients. Other changes detected via frequency analysis included: Five substitutions on codon 105 (c.315C>T); four insertions on codon 70 (c.209_210insG); three insertions on codon 64 (c.190C>G), 82 (245C>T; 245delC; 243_244insA) and 104 (c.312G>A); and two insertions on codons 108 (c.322G>C), 71 (c.213C>A), 73 (c.217G>A), 91 (c.271T>C) and 100 (c.300G>T). Codons 68 (c.202_203insT), 77 (c.229C>T), 88 (c.263C>G) and 92 (c.276C>A) were altered once. Alterations on codons 82, 91, 108, 104, 105, 70 and 92 were characterized as possibly damaging by PolyPhen-2 and Mutation Taster2 tools. The current study also demonstrated that nucleotide alterations were significantly associated with the loss of p53 expression (P=0.04) and female patients (P=0.049), particularly codon 72. The results present novel data on the mutational spectrum of TP53 in meningeal brain tumors.
Collapse
Affiliation(s)
- Anja Bukovac
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Vladušić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
28
|
Gluck WL, Gounder MM, Frank R, Eskens F, Blay JY, Cassier PA, Soria JC, Chawla S, de Weger V, Wagner AJ, Siegel D, De Vos F, Rasmussen E, Henary HA. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma. Invest New Drugs 2019; 38:831-843. [PMID: 31359240 PMCID: PMC7211202 DOI: 10.1007/s10637-019-00840-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Background This open-label, first-in-human, phase 1 study evaluated AMG 232, an oral selective MDM2 inhibitor in patients with TP53 wild-type (P53WT), advanced solid tumors or multiple myeloma (MM). Methods In the dose escalation (n = 39), patients with P53WT refractory solid tumors enrolled to receive once-daily AMG 232 (15, 30, 60, 120, 240, 480, and 960 mg) for seven days every 3 weeks (Q3W). In the dose expansion (n = 68), patients with MDM2-amplified (well-differentiated and de-differentiated liposarcomas [WDLPS and DDLPS], glioblastoma multiforme [GBM], or other solid tumors [OST]), MDM2-overexpressing ER+ breast cancer (BC), or MM received AMG 232 at the maximum tolerated dose (MTD). Safety, pharmacokinetics, pharmacodynamics, and efficacy were assessed. Results AMG 232 had acceptable safety up to up to 240 mg. Three patients had dose-limiting toxicities of thrombocytopenia (n = 2) and neutropenia (n = 1). Due to these and other delayed cytopenias, AMG 232 240 mg Q3W was determined as the highest tolerable dose assessed in the dose expansion. Adverse events were typically mild/moderate and included diarrhea, nausea, vomiting, fatigue, decreased appetite, and anemia. AMG 232 plasma concentrations increased dose proportionally. Increases in serum macrophage inhibitor cytokine-1 from baseline were generally dose dependent, indicating p53 pathway activation. Per local review, there were no responses. Stable disease (durability in months) was observed in patients with WDLPS (3.9), OST (3.3), DDLPS (2.0), GBM (1.8), and BC (1.4–2.0). Conclusions In patients with P53WT advanced solid tumors or MM, AMG 232 showed acceptable safety and dose-proportional pharmacokinetics, and stable disease was observed.
Collapse
Affiliation(s)
- W Larry Gluck
- Prisma Health - Upstate, Institute for Translational Oncology Research, 900 W. Faris Rd., 3rd Floor, Greenville, SC, 29605, USA.
| | - Mrinal M Gounder
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Ferry Eskens
- Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jean Yves Blay
- Department of Medicine, Centre Léon Bérard, Lyon, France
| | | | - Jean-Charles Soria
- Department of Medicine, The Institute Gustave-Roussy, Paris, France.,Université Paris Sud, Orsay, France
| | - Sant Chawla
- Sarcoma Oncology Center, Cancer Center of Southern California, Santa Monica, CA, USA
| | - Vincent de Weger
- Department of Internal Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrew J Wagner
- Center for Sarcoma and Bone Oncology and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David Siegel
- Multiple Myeloma Division, John Theurer Cancer Center at the Hackensack University Medical Center, Hackensack, NJ, USA
| | - Filip De Vos
- Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Erik Rasmussen
- Oncology Early Development, Amgen Inc., Thousand Oaks, CA, USA
| | - Haby A Henary
- Oncology Early Development, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
29
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
30
|
Luan L, Wang H, Zhao B, Wang F, Shi J, Xu X. Association of MDM2 gene SNP 309 polymorphism and human non-small cell lung cancer susceptibility: A meta-analysis. Pathol Res Pract 2019; 215:152538. [PMID: 31326197 DOI: 10.1016/j.prp.2019.152538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
This updated meta-analysis was performed to evaluate the relationship of a common polymorphism (T309 G, rs2279744 T > G) in the murine double minute 2 (MDM2) gene with susceptibility and prognosis of non-small cell lung cancer (NSCLC). The Cochrane Library, PubMed, Embase, CNKI, WanFang and CNKI databases were searched comprehensively for related study. Odds ratios (ORs) with their 95% confidence intervals (95% CI) were calculated. 11 articles with a total 6470 NSCLC patients and 8027 controls met the inclusion criteria were included. MDM2 T309 G polymorphism might be strongly correlated with an increased risk of NSCLC. The overall pooled analysis indicated that MDM2 309 T/G polymorphism was significantly associated with NSCLC susceptibility in the whole population under allelic (OR: 1.22, 95% CI: 1.08-1.38), recessive (OR: 1.37, 95% CI: 1.15-1.63), dominant (OR: 1.23, 95% CI: 1.04-1.45), and homozygous genetic models (OR: 1.49, 95% CI: 1.20-1.86). The subgroup analysis showed a significant association of MDM2 309 T/G polymorphism with NSCLC susceptibility in Asian population, but not in Caucasian population. Besides, a significant association was found again in the female population. The meta-analysis provides convincing evidence that the MDM2 T309 G polymorphism may contribute to NSCLC susceptibility, especially for Asians and women.
Collapse
Affiliation(s)
- Lan Luan
- School of Nursing and Midwifery, Jiangsu College of Nursing, No. 9, Keji Road, Huai'an City, Jiangsu Province, 223005, China; Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, Huai'an City, Jiangsu Province, 223002, China
| | - Hongying Wang
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, Huai'an City, Jiangsu Province, 223002, China
| | - Beibei Zhao
- School of Nursing and Midwifery, Jiangsu College of Nursing, No. 9, Keji Road, Huai'an City, Jiangsu Province, 223005, China
| | - Fan Wang
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, Huai'an City, Jiangsu Province, 223002, China
| | - Juan Shi
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, Huai'an City, Jiangsu Province, 223002, China
| | - Xiajun Xu
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, Huai'an City, Jiangsu Province, 223002, China.
| |
Collapse
|
31
|
Dimitrakopoulos C, Vrugt B, Flury R, Schraml P, Knippschild U, Wild P, Hoerstrup S, Henne-Bruns D, Wuerl P, Graf R, Breitenstein S, Bond G, Beerenwinkel N, Grochola LF. Identification and Validation of a Biomarker Signature in Patients With Resectable Pancreatic Cancer via Genome-Wide Screening for Functional Genetic Variants. JAMA Surg 2019; 154:e190484. [PMID: 30942874 DOI: 10.1001/jamasurg.2019.0484] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Surgery currently offers the only chance for a cure in pancreatic ductal adenocarcinoma (PDAC), but it carries a significant morbidity and mortality risk and results in varying oncologic outcomes. At present, to our knowledge, there are no tests available before surgical resection to identify tumors with an aggressive biological phenotype that could guide personalized treatment strategies. Objective Identification of noninvasive genetic biomarkers that could direct therapy in patients whose cases are amenable to pancreatic cancer resection. Design, Setting, and Participants This multicenter study combined a prospective European cohort of patients with PDAC who underwent pancreatic resection (from University Hospital of Zurich, Zurich, Switzerland; Cantonal Hospital of Winterthur, Winterthur, Switzerland; and University Clinic of Ulm, Ulm, Germany) with data from the Cancer Genome Atlas database in the United States, which includes prospectively registered patients with PDAC. A genome-wide screening for functional single-nucleotide polymorphisms (SNPs) that affect PDAC survival was conducted using the European cohort for identification and the Cancer Genome Atlas cohort for validation. We used Cox proportional hazards models to screen for high-frequency polymorphic variants that are associated with allelic differences in tumor-associated survival and either result in an altered protein structure and function or reside in known regulatory noncoding genomic regions. The false-discovery rate method was applied for multiple hypothesis-testing corrections. Data analysis occurred from November 2017 to May 2018. Exposures Pancreatic resection. Main Outcomes and Measures Tumor-associated survival. Results A total of 195 patients in the European cohort were included, as well as 136 patients in the Cancer Genome Atlas cohort (overall median [range] age, 66 [19-87] years; 156 [47.1%] were women, and 175 [52.9%] were men). Two SNPs in noncoding, functional regions of genes that regulate cancer progression, invasion, and metastasis were identified (CHI3L2 SNP rs684559 and CD44 SNP rs353630). These were associated with survival after PDAC resection; patients who carry the risk alleles at 1 of both SNP loci had a 2.63-fold increased risk for tumor-associated death compared with those with protective genotypes (hazard ratio for survival, 0.38 [95% CI, 0.27-0.53]; P = 1.0 × 10-8). Conclusions and Relevance The identified polymorphisms may serve as a noninvasive biomarker signature of prospective survival after pancreatic resection that is readily available at the time of PDAC diagnosis. This signature can be used to identify a subset of high-risk patients with PDAC with very low survival probability who might be eligible for inclusion in clinical trials of new therapeutic strategies, including neoadjuvant chemotherapy protocols. In addition, the biological knowledge about these SNPs could help guide the development of individualized genomic strategies for PDAC therapies.
Collapse
Affiliation(s)
- Christos Dimitrakopoulos
- Computational Biology Group, Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Bart Vrugt
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Renata Flury
- Institute for Pathology, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Peter Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Senckenberg Institute for Pathology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Simon Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Peter Wuerl
- Department of General, Visceral and Thoracic Surgery, Klinikum Dessau, Dessau, Germany
| | - Rolf Graf
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Breitenstein
- Department of Visceral and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Gareth Bond
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Niko Beerenwinkel
- Computational Biology Group, Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lukasz Filip Grochola
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Visceral and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| |
Collapse
|
32
|
Evaluation of clinical utility of P53 gene variations in repeated implantation failure. Mol Biol Rep 2019; 46:2885-2891. [PMID: 30859450 DOI: 10.1007/s11033-019-04748-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
|
33
|
Lefever S, Rihani A, Van der Meulen J, Pattyn F, Van Maerken T, Van Dorpe J, Hellemans J, Vandesompele J. Cost-effective and robust genotyping using double-mismatch allele-specific quantitative PCR. Sci Rep 2019; 9:2150. [PMID: 30770838 PMCID: PMC6377641 DOI: 10.1038/s41598-019-38581-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/06/2018] [Indexed: 12/03/2022] Open
Abstract
For a wide range of diseases, SNPs in the genome are the underlying mechanism of dysfunction. Therefore, targeted detection of these variations is of high importance for early diagnosis and (familial) screenings. While allele-specific PCR has been around for many years, its adoption for SNP genotyping or somatic mutation detection has been hampered by its low discriminating power and high costs. To tackle this, we developed a cost-effective qPCR based method, able to detect SNPs in a robust and specific manner. This study describes how to combine the basic principles of allele-specific PCR (the combination of a wild type and variant primer) with the straightforward readout of DNA-binding dye based qPCR technology. To enhance the robustness and discriminating power, an artificial mismatch in the allele-specific primer was introduced. The resulting method, called double-mismatch allele-specific qPCR (DMAS-qPCR), was successfully validated using 12 SNPs and 15 clinically relevant somatic mutations on 48 cancer cell lines. It is easy to use, does not require labeled probes and is characterized by high analytical sensitivity and specificity. DMAS-qPCR comes with a complimentary online assay design tool, available for the whole scientific community, enabling researchers to design custom assays and implement those as a diagnostic test.
Collapse
Affiliation(s)
- Steve Lefever
- Center for Medical Genetics Ghent, Ghent University, Ghent, 9000, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium. .,Bioinformatics Institute Ghent (BIG), Ghent University, Ghent, 9000, Belgium.
| | - Ali Rihani
- Center for Medical Genetics Ghent, Ghent University, Ghent, 9000, Belgium.,Karolinska Institute, Stockholm, SE-171 77, Sweden
| | | | - Filip Pattyn
- Center for Medical Genetics Ghent, Ghent University, Ghent, 9000, Belgium.,Ontoforce, Ghent, 9000, Belgium
| | - Tom Van Maerken
- Center for Medical Genetics Ghent, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium
| | - Jo Van Dorpe
- Department of Pathology, University Hospital Ghent, Ghent, 9000, Belgium
| | | | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent, 9000, Belgium.,Biogazelle, Zwijnaarde, 9052, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium.,Bioinformatics Institute Ghent (BIG), Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
34
|
Gunaratna RT, Santos A, Luo L, Nagi C, Lambertz I, Spier M, Conti CJ, Fuchs-Young RS. Dynamic role of the codon 72 p53 single-nucleotide polymorphism in mammary tumorigenesis in a humanized mouse model. Oncogene 2019; 38:3535-3550. [PMID: 30651598 PMCID: PMC6756019 DOI: 10.1038/s41388-018-0630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Lambertz
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Madison Spier
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Claudio J Conti
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.,Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Robin S Fuchs-Young
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA. .,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
35
|
Meng C, Shen X, Jiang W. Potential biomarkers of HCC based on gene expression and DNA methylation profiles. Oncol Lett 2018; 16:3183-3192. [PMID: 30127913 PMCID: PMC6096098 DOI: 10.3892/ol.2018.9020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to identify potential biomarkers of hepatocellular carcinoma (HCC). Three gene expression profiles of GSE95698, GSE49515 and GSE76427 and a DNA methylation profile of GSE73003 were downloaded from the Gene Expression Omnibus (GEO) database, each comprising data regarding HCC and control tissue samples. The differentially expressed genes (DEGs) between the HCC group and the control group were identified using the limma software package. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the overlapping DEGs. The PPI network of the overlapping DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins. A total of 41 DEGs were identified in HCC the group compared with control group. The overlapping DEGs were enriched in 11 GO terms and 3 KEGG pathways. A total of 6,349 DMSs were identified, and 6 of the differentially expressed genes were also differentially methylated [Denticleless protein homolog (DTL), Dual specificity phosphatase 1 (DUSP1), Eomesodermin, Endothelial cell specific molecule 1, Nuclear factor κ-light-chain gene enhancer of activated B cells inhibitor, α (NFKBIA) and suppressor of cytokine signaling 2 (SOCS2)]. The present study suggested that DTL, DUSP1, NFKBIA and SOCS2 may be potential biomarkers of HCC, and the tumor protein 'p53 signaling', 'forkhead box O1' signaling and 'metabolic' pathways may serve roles in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Chao Meng
- Department of Clinical Laboratory, Tianjin Second People's Hospital, Tianjin 300192, P.R. China
- Tianjin Institute of Hepatology, Tianjin 300192, P.R. China
| | - Xiaomin Shen
- Department of Liver Transplantation, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Wentao Jiang
- Department of Liver Transplantation, Tianjin First Center Hospital, Tianjin 300192, P.R. China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, P.R. China
| |
Collapse
|
36
|
Zhang H, Zhang X, Li X, Meng WB, Bai ZT, Rui SZ, Wang ZF, Zhou WC, Jin XD. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 2018; 234:619-631. [PMID: 30069972 DOI: 10.1002/jcp.26816] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023]
Abstract
Pancreatic cancer (PC) is a serious malignancy with high mortality and poor prognosis due to nonspecific incipient symptoms and early metastasis. Also, increasing evidence indicates that a panel of genes is newly identified in the pathogenesis of PC. As is a regulatory subunit, elevated cyclin B1 (CCNB1) expression has been detected in different cancers including PC. This study is designed to investigate the effects of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in PC. PC tissues and normal pancreatic tissues were collected. Cells were transfected and assigned into different groups. The expressions of CCNB1, p53, MDM2, Bax, caspase-9, caspase-3, and p21 in tissues and cells were detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. β-Galactosidase staining, MTT assay, and flow cytometry were conducted to test cell senescence, proliferation, cell cycle, and apoptosis. PC tissues showed higher expressions of CCNB1 and MDM2 and lower expressions of Bax, caspase-9, caspase-3, and p21. Cells transfected with shCCNB1 had lower expressions of CCNB1 and MDM2, whereas higher expressions of Bax, caspase-9, caspase-3, p53, and p21. The shCCNB1 group had decreased proliferation and S-phase cell proportion and increased apoptosis, senescence, and G0/G1-phase cell proportion. The PFT-α group showed higher expressions of MDM2 and lower expressions of Bax, caspase-9, caspase-3, p53, and p21. The PFT-α group had increased proliferation and S-phase cell proportion and declined apoptosis, senescence, and G0/G1-phase cell proportion. CCNB1 silencing inhibits cell proliferation and promotes cell senescence via activation of the p53 signaling pathway in PC.
Collapse
Affiliation(s)
- Hui Zhang
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Xuan Zhang
- Northwest Minzu University, Lanzhou, P. R. China
| | - Xun Li
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Wen-Bo Meng
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Zhong-Tian Bai
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Shao-Zhen Rui
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Zheng-Feng Wang
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, the First Hospital of Lanzhou University, Institute of Hepatopancreatobiliary Surgery of Gansu, Lanzhou, P. R. China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, P. R. China
| | - Xiao-Da Jin
- University of South China, Hengyang, P. R. China
| |
Collapse
|
37
|
Liu LQ, Tian FJ, Xiong Y, Zhao Y, Song JB. Gadd45a gene silencing by RNAi promotes cell proliferation and inhibits apoptosis and senescence in skin squamous cell carcinoma through the p53 signaling pathway. J Cell Physiol 2018; 233:7424-7434. [PMID: 29663367 DOI: 10.1002/jcp.26588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/08/2018] [Indexed: 12/28/2022]
Abstract
Skin squamous cell carcinoma (SCC) is generally considered as nonaggressive lesions and mainly caused by ultraviolet (UV) radiation. Gadd45a is a key component protecting skin against UV-induced tumors. For that, the study aims to investigate the mechanism of Gadd45a gene silencing on cell proliferation, apoptosis, and senescence in nude mice with skin SCC through the p53 signaling pathway. Healthy nude mice was collected as the normal group and 40 nude mouse models of skin SCC were successfully established as the model group, which were sub-divided into five groups. The incidence, size, and weight of SCC tumor of nude mice were observed. The mRNA expression of Gadd45a, Cyclin B1, MMP-2, Bcl-2, and Bax were determined by RT-qPCR. Cell viability, cell cycle and apoptosis, cell senescence were detected by MTT assay, flow cytometry, and β-galactosidase staining, respectively. The levels of inflammatory factors and vascular endothelial growth factor (VEGF) were detected by using ELISA. The protein expression rate of mutant p53 was detected by immunohistochemistry. Mice transfected with siGadd45a showed increased tumor incidence, size, and weight. Cells transfected with siGadd45a showed decrease in expression of Gadd45a and Bax; and increase in expression of Cyclin B1, MMP-2, and Bcl-2, expression of mutant p53, IL-1α, IL-1β, IL-6, TNF-α, and VEGF. Cell apoptosis and senescence were inhibited, while cell viability and proliferation were promoted after siGadd45a treatment. The results reveal that Gadd45a silencing increases tumor cell proliferation and reduces apoptosis and senescence through the p53 signaling pathway in skin SCC.
Collapse
Affiliation(s)
- Li-Qian Liu
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Fu-Jun Tian
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Ying Xiong
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Yan Zhao
- Dermatological Department, Linyi People's Hospital, Linyi, P.R. China
| | - Jian-Bo Song
- Dermatological Department, Dezhou People's Hospital, Dezhou, P.R. China
| |
Collapse
|
38
|
Al-Obaide MAI, Ibrahim BA, Al-Humaish S, Abdel-Salam ASG. Genomic and Bioinformatics Approaches for Analysis of Genes Associated With Cancer Risks Following Exposure to Tobacco Smoking. Front Public Health 2018; 6:84. [PMID: 29616208 PMCID: PMC5869936 DOI: 10.3389/fpubh.2018.00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Cancer is a significant health problem in the Middle East and global population. It is well established that there is a direct link between tobacco smoking and cancer, which will continue to pose a significant threat to human health. The impact of long-term exposure to tobacco smoke on the risk of cancer encouraged the study of biomarkers for vulnerable individuals to tobacco smoking, especially children, who are more susceptible than adults to the action of environmental carcinogens. The carcinogens in tobacco smoke condensate induce DNA damage and play a significant role in determining the health and well-being of smokers, non-smoker, and primarily children. Cancer is a result of genomic and epigenomic malfunctions that lead to an initial premalignant condition. Although premalignancy genetic cascade is a much-delayed process, it will end with adverse health consequences. In addition to the DNA damage and mutations, tobacco smoke can cause changes in the DNA methylation and gene expression associated with cancer. The genetic events hint on the possible use of genomic–epigenomic changes in genes related to cancer, in predicting cancer risks associated with exposure to tobacco smoking. Bioinformatics provides indispensable tools to identify the cascade of expressed genes in active smokers and non-smokers and could assist the development of a framework to manage this cascade of events linked with the evolvement of disease including cancer. The aim of this mini review is to cognize the essential genomic processes and health risks associated with tobacco smoking and the implications of bioinformatics in cancer prediction, prevention, and intervention.
Collapse
Affiliation(s)
- Mohammed A I Al-Obaide
- Department of Biomedical Science, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, TX, United States
| | | | | | - Abdel-Salam G Abdel-Salam
- Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
39
|
Effects of microRNA-374 on proliferation, migration, invasion, and apoptosis of human SCC cells by targeting Gadd45a through P53 signaling pathway. Biosci Rep 2017; 37:BSR20170710. [PMID: 28679648 PMCID: PMC6435473 DOI: 10.1042/bsr20170710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the effects of microRNA-374 (miR-374) on human squamous cell carcinoma (SCC) cell proliferation, migration, invasion, and apoptosis through P53 signaling pathway by targeting growth arrest and DNA-damage-inducible protein 45 α (Gadd45a). Skin samples were collected from patients with skin SCC and normal skin samples. Expression of miR-374, Gadd45a, P53, P73, P16, c-myc, bcl-2, Bax, caspase-3, and caspase-9 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. A431 and SCL-1 cells were divided into blank, negative control (NC), miR-374 mimics, miR374 inhibitors, siRNA–Gadd45a, and miR-374 inhibitors + siRNA–Gadd45a groups. Their proliferation, migration, invasion, cell cycle, and apoptosis were evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, scratch test, Transwell assay, and flow cytometry. SCC skin tissues exhibited decreased expression of miR-374, P73, P16, Bax caspase-3 and caspase-9, and increased levels of Gadd45a, P53, c-myc, and Bcl-2 compared with the normal skin tissues. The miR-374 inhibitors group exhibited decreased expression of miR-374, P73, P16, Bax caspase-3 and caspase-9, and increased expression of Gadd45a, P53, c-myc, and Bcl-2, enhanced cell proliferation, migration, and invasion, and reduced apoptosis compared with the blank and NC groups; the miR-374 mimics group followed opposite trends. Compared with the blank and NC groups, the miR-374 inhibitors + siRNA–Gadd45a group showed decreased miR-374 level; the siRNA–Gadd45a group showed elevated levels of P73, P16, Bax, caspase-3 and caspase-9, decreased levels of Gadd45a, P53, c-myc, and Bcl-2, reduced cell proliferation, migration, and invasion, and accelerated apoptosis. miR-374 induces apoptosis and inhibits proliferation, migration, and invasion of SCC cells through P53 signaling pathway by down-regulating Gadd45a.
Collapse
|
40
|
Myneni AA, Chang SC, Niu R, Liu L, Zhao B, Shi J, Han X, Li J, Su J, Yu S, Zhang ZF, Mu L. Ataxia Telangiectasia-Mutated ( ATM)Polymorphisms and Risk of Lung Cancer in a Chinese Population. Front Public Health 2017; 5:102. [PMID: 28642860 PMCID: PMC5462911 DOI: 10.3389/fpubh.2017.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/18/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The ataxia telangiectasia-mutated (ATM) gene has a key role in DNA repair including activation and stabilization of p53, which implicates the importance of ATM polymorphisms in the development of cancer. This study aims to investigate the association of two ATM single-nucleotide polymorphisms (SNPs) with lung cancer, as well as their potential interaction with p53 gene and other known risk factors of lung cancer. METHODS A population-based case-control study was conducted in Taiyuan city, China with 399 cases and 466 controls matched on the distribution of age and sex of cases. The two ATM gene SNPs, ATMrs227060 and ATMrs228589 as well as p53 gene SNP, p53rs1042522 were genotyped using Sequenom platform. Unconditional logistic regression models were used to estimate crude and adjusted odds ratios (aOR) and 95% confidence intervals (CIs). Adjusted models controlled for age, sex, and smoking status. RESULTS The study showed that TT genotype of ATMrs227060 (aOR = 1.58, 95% CI: 1.06-2.35) and AA genotype of ATMrs228589 were significantly associated with lung cancer (aOR = 1.50, 95% CI: 1.08-2.08) in a recessive model. Additionally, carrying variant genotypes of ATMrs227060 (TT), ATMrs228589 (AA), and p53rs1042522 (CC) concomitantly was associated with much higher risk (aOR = 3.68, 95% CI: 1.43-9.45) of lung cancer than carrying variant genotypes of any one of the above three SNPs. We also found multiplicative and additive interaction between tea drinking and ATMrs227060 in association with lung cancer. CONCLUSION This study indicates that ATM gene variants might be associated with development of lung cancer in Chinese population. These results need to be validated in larger and different population samples.
Collapse
Affiliation(s)
- Ajay A. Myneni
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York (SUNY) at Buffalo, Buffalo, NY, United States
| | - Shen-Chih Chang
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Rungui Niu
- Shanxi Tumor Hospital, Taiyuan, Shanxi, China
| | - Li Liu
- Taiyuan City Center for Disease Control and Prevention (CDC), Taiyuan, Shanxi, China
| | - Baoxing Zhao
- Taiyuan City Center for Disease Control and Prevention (CDC), Taiyuan, Shanxi, China
| | - Jianping Shi
- Taiyuan City Center for Disease Control and Prevention (CDC), Taiyuan, Shanxi, China
| | - Xiaoyou Han
- Shanxi Tumor Hospital, Taiyuan, Shanxi, China
| | - Jiawei Li
- School of Public Health, Fudan University, Shanghai, China
| | - Jia Su
- School of Public Health, Fudan University, Shanghai, China
| | - Shunzhang Yu
- School of Public Health, Fudan University, Shanghai, China
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York (SUNY) at Buffalo, Buffalo, NY, United States
| |
Collapse
|
41
|
Turgut S, Ilhan M, Turan S, Karaman O, Yaylim I, Kucukhuseyin O, Tasan E. The Role of p16 and MDM2 Gene Polymorphisms in Prolactinoma: MDM2 Gene Polymorphisms May Be Associated with Tumor Shrinkage. ACTA ACUST UNITED AC 2017; 31:357-363. [PMID: 28438863 DOI: 10.21873/invivo.11067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
AIM Prolactinomas are thought to arise from clonal expansion of a single mutated cell which is subjected to growth stimuli of several permissive factors, although the pathogenetic mechanisms underlying tumorigenesis remain unclear. The present study aimed to investigate the role of p16 (540C→G and 580C→T) and mouse double minute 2 (MDM2) (SNP309T→G) gene polymorphisms in tumorigenesis and characteristics of prolactinoma. PATIENTS AND METHODS A total of 74 patients with prolactinoma and 100 age- and gender-matched healthy individuals were enrolled in the study. Serum prolactin levels were measured by enzyme-linked immunosorbent assay (ELISA). p16 and MDM2 polymorphisms were determined by polymerase chain reaction-restriction fragment polymorphism and agarose gel electrophoresis. RESULTS p16 540C→G genotype distribution was found to be: CC: 66.2%, CG: 28.4%, GG: 5.4%; p16 580C→T genotype distribution was found to be: CC: 82.4%, CT: 17.6%, TT: 0% and MDM2 genotype distribution was found to be: TT: 31.1%, TG: 47.3%, GG: 21.6% in patients with prolactinoma. Tumor diameter before treatment was correlated with prolactin levels before treatment and percentage of prolactin decrease with treatment (r=0.719, p<0.001, p=0.034 r=0.256, respectively). The number of patients with tumor size decrease of more than 50% in those with homozygous genotype (TT+GG) of MDM2 SNP309T→G was significantly higher than in heterozygous genotype (TG) carriers (odds ratio(OR)=0.18, 95% confidence interval(CI)=0.06-0.58; p=0.003). CONCLUSION This study showed that p16 and MDM2 polymorphisms do not play a decisive role in tumorigenesis, but some genotypes of these polymorphisms might be associated with follow-up characteristics of prolactinoma.
Collapse
Affiliation(s)
- Seda Turgut
- Department of Internal Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Muzaffer Ilhan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Istanbul, Turkey
| | - Saime Turan
- Department of Molecular Medicine, The Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozcan Karaman
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Istanbul, Turkey
| | - Ilhan Yaylim
- Department of Molecular Medicine, The Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ozlem Kucukhuseyin
- Department of Molecular Medicine, The Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ertugrul Tasan
- Department of Endocrinology and Metabolism, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
42
|
Carvalho IN, Reis AH, dos Santos AC, Vargas FR. A polymorphism in mir-34b/c as a potential biomarker for early onset of hereditary retinoblastoma. Cancer Biomark 2017; 18:313-317. [DOI: 10.3233/cbm-160248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ivna N.S.R. Carvalho
- Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Birth Defects Epidemiology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana H.O. Reis
- Genetics Division, Genetics Counseling Program, Instituto Nacional de Cancer, Rio de Janeiro, RJ, Brazil
| | - Anna C.E. dos Santos
- Genetics Division, Genetics Counseling Program, Instituto Nacional de Cancer, Rio de Janeiro, RJ, Brazil
| | - Fernando R. Vargas
- Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Birth Defects Epidemiology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Genetics and Molecular Department, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
43
|
Mizuno S, Ishizaki T, Kadowaki M, Akai M, Shiozaki K, Iguchi M, Oikawa T, Nakagawa K, Osanai K, Toga H, Gomez-Arroyo J, Kraskauskas D, Cool CD, Bogaard HJ, Voelkel NF. p53 Signaling Pathway Polymorphisms Associated With Emphysematous Changes in Patients With COPD. Chest 2017; 152:58-69. [PMID: 28315337 DOI: 10.1016/j.chest.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/10/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The p53 signaling pathway may be important for the pathogenesis of emphysematous changes in the lungs of smokers. Polymorphism of p53 at codon 72 is known to affect apoptotic effector proteins, and the polymorphism of mouse double minute 2 homolog (MDM2) single nucleotide polymorphism (SNP)309 is known to increase MDM2 expression. The aim of this study was to assess polymorphisms of the p53 and MDM2 genes in smokers and confirm the role of SNPs in these genes in the pathogenesis of pulmonary emphysema. METHODS This study included 365 patients with a smoking history, and the polymorphisms of p53 and MDM2 genes were identified. The degree of pulmonary emphysema was determined by means of CT scanning. SNPs, MDM2 mRNA, and p53 protein levels were assessed in human lung tissues from smokers. Plasmids encoding p53 and MDM2 SNPs were used to transfect human lung fibroblasts (HLFs) with or without cigarette smoke extract (CSE), and the effects on cell proliferation and MDM2 promoter activity were measured. RESULTS The polymorphisms of the p53 and MDM2 genes were associated with emphysematous changes in the lung and were also associated with p53 protein and MDM2 mRNA expression in the lung tissue samples. Transfection with a p53 gene-coding plasmid regulated HLF proliferation, and the analysis of P2 promoter activity in MDM2 SNP309-coding HLFs showed the promoter activity was altered by CSE. CONCLUSIONS Our data demonstrated that p53 and MDM2 gene polymorphisms are associated with apoptotic signaling and smoking-related emphysematous changes in lungs from smokers.
Collapse
Affiliation(s)
- Shiro Mizuno
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Takeshi Ishizaki
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Maiko Kadowaki
- Department of Respiratory Medicine, University of Fukui, Fukui, Japan
| | - Masaya Akai
- Department of Respiratory Medicine, Fukui Red Cross Hospital, Fukui, Japan
| | - Kohei Shiozaki
- Department of Respiratory Medicine, Fukui Red Cross Hospital, Fukui, Japan
| | - Masaharu Iguchi
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Taku Oikawa
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Ken Nakagawa
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Kazuhiro Osanai
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Hirohisa Toga
- Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Donatas Kraskauskas
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Health Science Center, Lung Tissue Repository Consortium Repository, Aurora, CO
| | | | - Norbert F Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
44
|
Abstract
A coding region polymorphism exists in the TP53 gene (Pro47Ser; rs1800371) in individuals of African descent, which reduces p53 tumor suppressor function in a mouse model. It has been unclear whether this functionally significant polymorphism alters cancer risk in humans. This analysis included 6907 women with breast cancer and 7644 controls from the AMBER, ROOT, and AABC consortia. We used multivariable logistic regression to estimate associations between the TP53 Pro47Ser allele and overall breast cancer risk. Because polymorphisms in TP53 tend to be associated with cancer risk in pre-menopausal women, we also limited our analyses to this population in the AMBER and ROOT consortia, where menopausal status was known, and conducted a fixed effects meta-analysis. In an analysis of all women in the AMBER, ROOT, and AABC consortia, we found no evidence for association of the Pro47Ser variant with breast cancer risk. However, when we restricted our analysis to only pre-menopausal women from the AMBER and ROOT consortia, there was a per allele odds ratio of 1.72 (95% confidence interval 1.08-2.76; p-value = 0.023). Although the Pro47Ser variant was not associated with overall breast cancer risk, it may increase risk among pre-menopausal women of African ancestry. Following up on more studies in human populations may better elucidate the role of this variant in breast cancer etiology. However, because of the low frequency of the polymorphism in women of African ancestry, its impact at a population level may be minimal.
Collapse
|
45
|
Stracquadanio G, Vrugt B, Flury R, Schraml P, Würl P, Müller TH, Knippschild U, Henne-Bruns D, Breitenstein S, Clavien PA, Graf R, Bond GL, Grochola LF. CD44 SNPrs187115: A Novel Biomarker Signature that Predicts Survival in Resectable Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2016; 22:6069-6077. [PMID: 27283965 DOI: 10.1158/1078-0432.ccr-16-0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Although pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor, like other common cancers, it displays a wide range of biology. However, at present, there are no reliable tests to predict patients' cancer-specific outcomes and guide personalized treatment decisions. In this study, we aim to identify such biomarkers in resectable PDAC by studying SNPs in the CD44 gene, which drives the progression of pancreatic cancer. EXPERIMENTAL DESIGN A total of 348 PDAC patients from three independent cohorts [Switzerland, Germany, The Cancer Genome Atlas (TCGA)] who underwent pancreatic resection are included in the study. Information on the haplotype structure of the CD44 gene is obtained using 1000 Genomes Project data, and the genotypes of the respective tagging SNPs are determined. Cox proportional hazards models are utilized to analyze the impact of SNP genotype on patients' survival. RESULTS We identify an SNP in the CD44 gene (SNPrs187115) that independently associates with allelic differences in prognosis in all study cohorts. Specifically, in 121 Swiss patients, we observe an up to 2.38-fold (P = 0.020) difference in tumor-related death between the genotypes of SNPrs187115 We validate those results in both the German (HR = 2.32, P = 0.044, 101 patients) and the TCGA cohort (HR = 2.36, P = 0.044, 126 patients). CONCLUSIONS CD44 SNPrs187115 can serve as a novel biomarker readily available at the time of PDAC diagnosis that identifies patients at risk for faster tumor progression and guide personalized treatment decisions. It has the potential to significantly expand the pool of patients that would benefit from tumor resection. Clin Cancer Res; 22(24); 6069-77. ©2016 AACR.
Collapse
Affiliation(s)
| | - Bart Vrugt
- Institute for Surgical Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Renata Flury
- Institute for Pathology, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Peter Schraml
- Institute for Surgical Pathology, University Hospital of Zurich, Zurich, Switzerland
| | - Peter Würl
- Department of General and Visceral Surgery, Diakoniekrankenhaus Halle, Halle, Germany
| | - Thomas H Müller
- German Red Cross Blood Transfusion Service NSTOB, Springe, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Stefan Breitenstein
- Department of Visceral- and Thoracic Surgery, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Pierre-Alain Clavien
- Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rolf Graf
- Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Gareth L Bond
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Lukasz F Grochola
- Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
Wasylishen AR, Lozano G. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026211. [PMID: 27329033 DOI: 10.1101/cshperspect.a026211] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The p53 pathway is perturbed in the majority of human cancers. Although this most frequently occurs through the direct mutation or deletion of p53 itself, there are a number of other alterations that can attenuate the pathway and contribute to tumorigenesis. For example, amplification of important negative regulators, MDM2 and MDM4, occurs in a number of cancers. In this work, we will review both the normal regulation of the p53 pathway and the different mechanisms of pathway inhibition in cancer, discuss these alterations in the context of the global genomic analyses that have been conducted across tumor types, and highlight the translational implications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Amanda R Wasylishen
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
47
|
Pećina-Šlaus N, Kafka A, Vladušić T, Tomas D, Logara M, Skoko J, Hrašćan R. Loss of p53 expression is accompanied by upregulation of beta-catenin in meningiomas: a concomitant reciprocal expression. Int J Exp Pathol 2016; 97:159-69. [PMID: 27292269 DOI: 10.1111/iep.12186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/13/2016] [Indexed: 12/13/2022] Open
Abstract
Crosstalk between Wnt and p53 signalling pathways in cancer has long been suggested. Therefore in this study we have investigated the involvement of these pathways in meningiomas by analysing their main effector molecules, beta-catenin and p53. Cellular expression of p53 and beta-catenin proteins and genetic changes in TP53 were analysed by immunohistochemistry, PCR/RFLP and direct sequencing of TP53 exon 4. All the findings were analysed statistically. Our analysis showed that 47.5% of the 59 meningiomas demonstrated loss of expression of p53 protein. Moderate and strong p53 expression in the nuclei was observed in 8.5% and 6.8% of meningiomas respectively. Gross deletion of TP53 gene was observed in one meningioma, but nucleotide alterations were observed in 35.7% of meningiomas. In contrast, beta-catenin, the main Wnt signalling molecule, was upregulated in 71.2%, while strong expression was observed in 28.8% of meningiomas. The concomitant expressions of p53 and beta-catenin were investigated in the same patients. In the analysed meningiomas, the levels of the two proteins were significantly negatively correlated (P = 0.002). This indicates that meningiomas with lost p53 upregulate beta-catenin and activate Wnt signalling. Besides showing the reciprocal relationship between proteins, we also showed that the expression of p53 was significantly (P = 0.021) associated with higher meningioma grades (II and III), while beta-catenin upregulation was not associated with malignancy grades. Additionally, women exhibited significantly higher values of p53 loss when compared to males (P = 0.005). Our findings provide novel information about p53 involvement in meningeal brain tumours and reveal the complex relationship between Wnt and p53 signalling, they suggest an important role for beta-catenin in these tumours.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Vladušić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Davor Tomas
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Hospital Centre 'Sisters of Charity', Zagreb, Croatia
| | - Monika Logara
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Josip Skoko
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.,University of Stuttgart Institute of Cell Biology and Immunology, D-70569 Stuttgart, Germany
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
48
|
Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. THE PHARMACOGENOMICS JOURNAL 2016; 17:11-20. [PMID: 27241064 DOI: 10.1038/tpj.2016.45] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/15/2016] [Accepted: 05/04/2016] [Indexed: 12/30/2022]
Abstract
Osteosarcoma (OS), the most common malignant tumor of bone, is presently treated with multidrug neoadjuvant chemotherapy protocols, which allow to cure 60-65% of patients but also induce toxicity events that cannot be predicted or efficiently prevented. The identification and validation of pharmacogenomic biomarkers is, therefore, absolutely warranted to provide the bases for planning personalized treatments with the aim to increase the therapeutic benefits and to avoid or limit unnecessary toxicities. As several targeted therapies against molecular and immunological markers in OS are presently under clinical investigation, it may be speculated that some new agents for innovative treatments may emerge in the next years. However, the real improvement of therapeutic perspectives for OS is strictly connected to the identification of pharmacogenomic biomarkers that may stratify patients in responders or non-responders and identify those individuals with higher susceptibility to treatment-associated toxicity. This review provides an overview of the pharmacogenomic biomarkers identified so far in OS, which appear to be promising candidates for a translation to clinical practice, after further investigation and/or prospective validation.
Collapse
Affiliation(s)
- M Serra
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - C M Hattinger
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| |
Collapse
|
49
|
Abstract
Somatic mutations in the tumor suppressor gene p53 occur in more than half of all human cancers. Rare germline mutations result in the Li-Fraumeni cancer family syndrome. In this issue ofGenes&Development, Jennis and colleagues (pp. 918-930) use an elegant mouse model to examine the affect of a polymorphism, P47S (rs1800371), in the N terminus of p53 that is found in Africans as well as more than a million African Americans. Remarkably, the single nucleotide change causes the mice to be substantially tumor-prone compared with littermates, suggesting that this allele causes an increased risk of developing cancer. The defect in p53 function is traced to a restriction in downstream gene regulation that reduces cell death in response to stress.
Collapse
Affiliation(s)
- David Lane
- p53 Laboratory, A*Star Singapore, Singapore 138648
| |
Collapse
|
50
|
MDM2 SNP 309G Allele Is Associated With Younger Age at Surgery in Chronic Pancreatitis Patients. Pancreas 2016; 45:e11-2. [PMID: 26954495 DOI: 10.1097/mpa.0000000000000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|