1
|
Bravo-Arévalo JE. Tracing the evolutionary pathway: on the origin of mitochondria and eukaryogenesis. FEBS J 2025. [PMID: 40271811 DOI: 10.1111/febs.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
The mito-early hypothesis posits that mitochondrial integration was a key driver in the evolution of defining eukaryotic characteristics (DECs). Building on previous work that identified endosymbiotic selective pressures as central to eukaryotic cell evolution, this study examines how endosymbiotic gene transfer (EGT) and the resulting genomic and bioenergetic constraints shaped mitochondrial protein import systems. These systems were crucial for maintaining cellular function in early eukaryotes and facilitated their subsequent diversification. A primary focus is the co-evolution of mitochondrial import mechanisms and eukaryotic endomembrane complexity. Specifically, I investigate how the necessity for nuclear-encoded mitochondrial protein import drove the adaptation of bacterial secretion components, alongside eukaryotic innovations, to refine translocation pathways. Beyond enabling bioenergetic expansion, mitochondrial endosymbiosis played a fundamental role in the emergence of compartmentalisation and cellular complexity in LECA, driving the evolution of organellar networks. By integrating genomic, structural and phylogenetic evidence, this study aimed to contribute to the mito-early framework, clarifying the mechanisms that linked mitochondrial acquisition to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- J Ernesto Bravo-Arévalo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
2
|
Heili JM, Adamala KP, Engelhart AE. Activation of Caged Functional RNAs by An Oxidative Transformation. Chembiochem 2025; 26:e202401056. [PMID: 39740778 PMCID: PMC12007075 DOI: 10.1002/cbic.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
RNA exhibits remarkable capacity as a functional polymer, with broader catalytic and ligand-binding capability than previously thought. Despite this, the low side chain diversity present in nucleic acids (two purines and two pyrimidines) relative to proteins (20+ side chains of varied charge, polarity, and chemical functionality) limits the capacity of functional RNAs to act as environmentally responsive polymers, as is possible for peptide-based receptors and catalysts. Here we show that incorporation of the modified nucleobase 2-thiouridine (2sU) into functional (aptamer and ribozyme) RNAs produces functionally inactivated polymers that can be activated by oxidative treatment. 2-thiouridine lacksthe 2-position oxygen found in uridine, altering its hydrogen bonding pattern. This limits critical interactions (e. g., G-U wobble pairs) that allow for proper folding. Oxidative desulfurization of the incorporated 2-thiouridine moieties to uridine relieves this inability to fold properly, enabling recovery of function. This demonstration of expanded roles for RNA as environmentally responsive functional polymers challenges the notion that they are not known to be redox-sensitive. Harnessing redox switchability in RNA could regulate cellular activities such as translation, or allow switching RNA between a "template" and a "catalytic" state in "RNA World" scenarios or in synthetic biology.
Collapse
Affiliation(s)
- Joseph M. Heili
- Department of GeneticsCell Biology, and DevelopmentUniversity of Minnesota, 6–160 Jackson Hall, 321 Church Street SEMinneapolisMN55455USA
| | - Katarzyna P. Adamala
- Department of GeneticsCell Biology, and DevelopmentUniversity of Minnesota, 6–160 Jackson Hall, 321 Church Street SEMinneapolisMN55455USA
- Department of BiochemistryMolecular Biology and BiophysicsUniversity of Minnesota, 321 Church Street SEMinneapolisMN55455USA
| | - Aaron E. Engelhart
- Department of GeneticsCell Biology, and DevelopmentUniversity of Minnesota, 6–160 Jackson Hall, 321 Church Street SEMinneapolisMN55455USA
- Department of BiochemistryMolecular Biology and BiophysicsUniversity of Minnesota, 321 Church Street SEMinneapolisMN55455USA
| |
Collapse
|
3
|
Sun Z, Lu L, Liu L, Liang R, Zhang Q, Liu Z, An J, Liu Q, Wu Q, Wei S, Zhang L, Peng W. Group IIC self-splicing intron-derived novel circular RNA vaccine elicits superior immune response against RSV. Front Immunol 2025; 16:1574568. [PMID: 40292280 PMCID: PMC12021820 DOI: 10.3389/fimmu.2025.1574568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction The remarkable commercial success of mRNA vaccines against COVID-19 and tumors, along with their potential as therapeutic drugs, has significantly boosted enthusiasm for circular RNAs (circRNA) as a promising next-generation therapeutic platform. The development of novel circRNA cyclization technologies represents a significant leap forward in RNA engineering and therapeutic applications. Recent advancements in group I and IIB self-splicing intron-based ribozymes have enabled precise cyclization of RNA molecules. However, this approach faces significant limitations, including low cyclization efficiency and the requirement for additional additives, which restrict its broader application. Group IIC self-splicing introns represent the shortest known selfsplicing ribozymes and employ a splicing mechanism that is fundamentally distinct from that of group IIB self-splicing introns. However, the potential of group IIC self-splicing introns to carry exogenous sequences for the development of circular RNA-based platforms remains an open question and warrants further investigation. Methods Here, we demonstrate that group IIC self-splicing introns can efficiently circularize and express exogenous proteins of varying lengths, as evidenced by luciferase and GFP reporter systems. Leveraging structural biology-based design, we engineered the RSV pre-F protein and validated the potential of IIC self-splicing introns as a vaccine platform for preventing infectious diseases. Results In mouse models, the novel nucleic acid vaccine developed using IIC self-splicing introns elicited superior immunogenicity and in vivo protective efficacy compared to protein-adjuvant vaccines. Discussion The development of the novel circular RNA vaccine platform holds significant promise for advancing next-generation therapeutics for disease treatment and prevention.
Collapse
Affiliation(s)
- Zeyun Sun
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lirong Lu
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Lijie Liu
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Ruoxu Liang
- Guangzhou National Laboratory, Guangzhou, China
| | - Qiqi Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhining Liu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiahao An
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Qian Liu
- Guangzhou National Laboratory, Guangzhou, China
| | - Qingxin Wu
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Shuai Wei
- Guangzhou National Laboratory, Guangzhou, China
| | - Long Zhang
- Guangzhou National Laboratory, Guangzhou, China
| | - Wei Peng
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
4
|
Smith EP, Valdivia RH. Chlamydia trachomatis: a model for intracellular bacterial parasitism. J Bacteriol 2025; 207:e0036124. [PMID: 39976429 PMCID: PMC11925236 DOI: 10.1128/jb.00361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Chlamydia comprises a diverse group of obligate intracellular bacteria that cause infections in animals, including humans. These organisms share fascinating biology, including distinct developmental stages, non-canonical cell surface structures, and adaptations to intracellular parasitism. Chlamydia trachomatis is of particular interest due to its significant clinical importance, causing both ocular and sexually transmitted infections. The strain L2/434/Bu, responsible for lymphogranuloma venereum, is the most common strain used to study chlamydial molecular and cell biology because it grows readily in cell culture and is amenable to genetic manipulation. Indeed, this strain has enabled researchers to tackle fundamental questions about the molecular mechanisms underlying Chlamydia's developmental transitions and biphasic lifecycle and cellular adaptations to obligate intracellular parasitism, including characterizing numerous conserved virulence genes and defining immune responses. However, L2/434/Bu is not representative of C. trachomatis strains that cause urogenital infections in humans, limiting its utility in addressing questions of host tropism and immune evasion in reproductive organs. Recent research efforts are shifting toward understanding the unique attributes of more clinically relevant C. trachomatis genovars.
Collapse
Affiliation(s)
- Erin P. Smith
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Host-Microbe Interactions, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Liu ZX, Liu JJG. Hydrolytic endonucleolytic ribozyme (HYER): Systematic identification, characterization and potential application in nucleic acid manipulation. Methods Enzymol 2025; 712:197-223. [PMID: 40121073 DOI: 10.1016/bs.mie.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Group II introns are transposable elements that can propagate in host genomes through the "copy and paste" mechanism. They usually comprise RNA and protein components for effective propagation. Recently, we found that some bacterial GII-C introns without protein components had multiple copies in their resident genomes, implicating their potential transposition activity. We demonstrated that some of these systems are active for hydrolytic DNA cleavage and proved their DNA manipulation capability in bacterial or mammalian cells. These introns are therefore named HYdrolytic Endonucleolytic Ribozymes (HYERs). Here, we provide a detailed protocol for the systematic identification and characterization of HYERs and present our perspectives on its potential application in nucleic acid manipulation.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Beijing Frontier Research Center for Biological Structure, Center of Synthetic and Systems Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P.R. China.
| | - Jun-Jie Gogo Liu
- Beijing Frontier Research Center for Biological Structure, Center of Synthetic and Systems Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, P.R. China.
| |
Collapse
|
6
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Wang L, Xie J, Zhang C, Zou J, Huang Z, Shang S, Chen X, Yang Y, Liu J, Dong H, Huang D, Su Z. Structural basis of circularly permuted group II intron self-splicing. Nat Struct Mol Biol 2025:10.1038/s41594-025-01484-x. [PMID: 39890981 DOI: 10.1038/s41594-025-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
Circularly permuted group II introns (CP introns) consist of rearranged structural domains separated by two tethered exons, generating branched introns and circular exons via back-splicing. Structural and mechanistic understanding of circular RNA (circRNA) generation by CP introns remains elusive. We resolve cryo-electron microscopy structures of a natural CP intron in different states during back-splicing at a resolution of 2.5-2.9 Å. Domain 6 (D6) undergoes a conformational change of 65° after branching, to facilitate 3'-exon recognition and circularization. Previously unseen tertiary interactions compact the catalytic triad and D6 for splicing without protein, whereas a metal ion, M35, is observed to stabilize the 5'-exon during splicing. While these unique features were not observed in canonical group II introns and spliceosomes, they are common in CP introns, as demonstrated by the cryo-EM structure of another CP intron discovered by comparative genomics analysis. Our results elucidate the mechanism of CP intron back-splicing dynamics, with potential applications in circRNA research and therapeutics.
Collapse
Affiliation(s)
- Liu Wang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Mingle Scope (Chengdu), Chengdu, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zirui Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sitong Shang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingyu Chen
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianquan Liu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haohao Dong
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Rogers SO, Bendich AJ. Direct repeats found in the vicinity of intron splice sites. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:14. [PMID: 39883174 PMCID: PMC11782384 DOI: 10.1007/s00114-025-01966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Four main classes of introns (group I, group II, spliceosomal, and archaeal) have been reported for all major types of RNA from nuclei and organelles of a wide range of taxa. When and how introns inserted within the genic regions of genomes, however, is often unclear. Introns were examined from Archaea, Bacteria, and Eukarya. Up to 80 bp surrounding each of the 5' and 3' intron/exon borders were compared to search for direct repeats (DRs). For each of the 213 introns examined, DNA sequence analysis revealed DRs at or near the intron/exon borders, ranging from 4 to 30 bp in length, with a mean of 11.4 bp. More than 80% of the repeats were within 10 bp of the intron/exon borders. The numbers of DRs 6-30 bp in length were greater than expected by chance. When a DNA segment moves into a new genomic location, the insertion involves a double-strand DNA break that must be repaired to maintain genome stability and often results in a pair of DRs that now flank the insert. This insertion process applies to both mobile genetic elements (MGEs), such as transposons, and to introns as reported here. The DNA break at the insertion site may be caused by transposon-like events or recombination. Thus, introns and transposons appear to be members of a group of parasitic MGEs that secondarily may benefit their host cell and have expanded greatly in eukaryotes from their prokaryotic ancestors.
Collapse
Affiliation(s)
- Scott O Rogers
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Szokoli D, Mutschler H. Protein-free catalysis of DNA hydrolysis and self-integration by a ribozyme. Nucleic Acids Res 2025; 53:gkae1224. [PMID: 39698822 PMCID: PMC11754743 DOI: 10.1093/nar/gkae1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Group II introns are ancient self-splicing ribozymes and retrotransposons. Though long speculated to have originated before translation, their dependence on intron-encoded proteins for splicing and mobility has cast doubt on this hypothesis. While some group II introns are known to retain part of their catalytic repertoire in the absence of protein cofactors, protein-free complete reverse splicing of a group II intron into a DNA target has never been demonstrated. Here, we demonstrate the complete independence of a group II intron from protein cofactors in all intron-catalyzed reactions. The ribozyme is capable of fully reverse splicing into single-stranded DNA targets in vitro, readily hydrolyzes DNA substrates and is even able to unwind and react with stably duplexed DNA. Our findings make a protein-free origin for group II introns plausible by expanding their known catalytic capabilities beyond what would be needed to survive the transition from RNA to DNA genomes. Furthermore, the intron's capacity to react with both single and double-stranded DNA in conjunction with its expanded sequence recognition may represent a promising starting point for the development of protein-free genomic editing tools.
Collapse
Affiliation(s)
- Deni Szokoli
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund 44227, Germany
| | - Hannes Mutschler
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, Dortmund 44227, Germany
| |
Collapse
|
10
|
Zhang Z, Wang Z. Cellular functions and biomedical applications of circular RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:157-168. [PMID: 39719879 PMCID: PMC11877143 DOI: 10.3724/abbs.2024241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as a large class of stable and conserved RNAs that are derived primarily from back-splicing of pre-mRNAs and expressed in a cell- and tissue-specific fashion. Recent studies have indicated that a subset of circRNAs may undergo translation through cap-independent pathways mediated by internal ribosome entry sites (IRESs), m6A modifications, or IRES-like short elements. Considering the stability and low immunogenicity of circRNAs, in vitro transcribed circRNAs hold great promise in biomedical applications. In this review, we briefly discuss the noncoding and coding functions of circRNAs in cells, as well as the methods for the in vitro synthesis of circRNAs and current advances in the applications of circRNAs in biomedicine.
Collapse
Affiliation(s)
- Zheyu Zhang
- CAS Key Laboratory of Computational BiologyChinese Academy of SciencesShanghai200031China
| | - Zefeng Wang
- Shool of Life ScienceSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
11
|
Ahmad EM, Abdelsamad A, El-Shabrawi HM, El-Awady MAM, Aly MAM, El-Soda M. In-silico identification of putatively functional intergenic small open reading frames in the cucumber genome and their predicted response to biotic and abiotic stresses. PLANT, CELL & ENVIRONMENT 2024; 47:5330-5342. [PMID: 39189930 DOI: 10.1111/pce.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
The availability of high-throughput sequencing technologies increased our understanding of different genomes. However, the genomes of all living organisms still have many unidentified coding sequences. The increased number of missing small open reading frames (sORFs) is due to the length threshold used in most gene identification tools, which is true in the genic and, more importantly and surprisingly, in the intergenic regions. Scanning the cucumber genome intergenic regions revealed 420 723 sORF. We excluded 3850 sORF with similarities to annotated cucumber proteins. To propose the functionality of the remaining 416 873 sORF, we calculated their codon adaptation index (CAI). We found 398 937 novel sORF (nsORF) with CAI ≥ 0.7 that were further used for downstream analysis. Searching against the Rfam database revealed 109 nsORFs similar to multiple RNA families. Using SignalP-5.0 and NLS, identified 11 592 signal peptides. Five predicted proteins interacting with Meloidogyne incognita and Powdery mildew proteins were selected using published transcriptome data of host-pathogen interactions. Gene ontology enrichment interpreted the function of those proteins, illustrating that nsORFs' expression could contribute to the cucumber's response to biotic and abiotic stresses. This research highlights the importance of previously overlooked nsORFs in the cucumber genome and provides novel insights into their potential functions.
Collapse
Affiliation(s)
- Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Abdelsamad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hattem M El-Shabrawi
- Plant Biotechnology Department, Genetic Engineering & Biotechnology Division, National Research Center, Giza, Egypt
| | | | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Zhao X, Liu Y, Huang H, Sun Y, Wu F, Jin W. A Simple and Efficient One-Step Synthesis System for Flexible Production of Circular RNA in E. coli. Biomolecules 2024; 14:1416. [PMID: 39595592 PMCID: PMC11592204 DOI: 10.3390/biom14111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Circular RNA (circRNA) exhibits a higher stability and intracellular half-life than linear RNA and has better potential in the fields of RNA vaccines and RNAi drugs. The current strategies for circRNA preparation have low efficiency, high costs, and high complexity, which significantly limits their applications. In this paper, we propose a one-step synthesis of circRNA based on E. coli. The four RNA sequence lengths of 1700, 1400, 500, and 64 nt were connected to group II intron elements from the surface protein region of Clostridium tetani and then inserted downstream of the T7 promoter in the pET28a plasmid to assist in cyclization. Then, circRNA was produced in HT115, where the yields of pET28-1700, pET28-1400, pET28-500, and pET28-64 were improved to 820, 783, 691, and 460 ng/1 mL, respectively. Consequently, this system could achieve the mass production of circRNA using only a simple E. coli culture and inducible expression. Meanwhile, the overexpressed circRNA and small circular interference RNA (sciRNA) maintained their biological functions in the protein translation and RNAi. Therefore, this simple and efficient one-step synthesis system can be applied to the functional study and preparation of circRNA in the future.
Collapse
Affiliation(s)
- Xiayang Zhao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.Z.); (Y.L.); (H.H.); (F.W.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China;
| | - Yiqing Liu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.Z.); (Y.L.); (H.H.); (F.W.)
| | - Huanhui Huang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.Z.); (Y.L.); (H.H.); (F.W.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China;
| | - Yue Sun
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China;
| | - Fangli Wu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.Z.); (Y.L.); (H.H.); (F.W.)
| | - Weibo Jin
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.Z.); (Y.L.); (H.H.); (F.W.)
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China;
| |
Collapse
|
13
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
14
|
Mukhopadhyay J, Hausner G. Interconnected roles of fungal nuclear- and intron-encoded maturases: at the crossroads of mitochondrial intron splicing. Biochem Cell Biol 2024; 102:351-372. [PMID: 38833723 DOI: 10.1139/bcb-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Group I and II introns are large catalytic RNAs (ribozymes) that are frequently encountered in fungal mitochondrial genomes. The discovery of respiratory mutants linked to intron splicing defects demonstrated that for the efficient removal of organellar introns there appears to be a requirement of protein splicing factors. These splicing factors can be intron-encoded proteins with maturase activities that usually promote the splicing of the introns that encode them (cis-acting) and/or nuclear-encoded factors that can promote the splicing of a range of different introns (trans-acting). Compared to plants organellar introns, fungal mitochondrial intron splicing is still poorly explored, especially in terms of the synergy of nuclear factors with intron-encoded maturases that has direct impact on splicing through their association with intron RNA. In addition, nuclear-encoded accessory factors might drive the splicing impetus through translational activation, mitoribosome assembly, and phosphorylation-mediated RNA turnover. This review explores protein-assisted splicing of introns by nuclear and mitochondrial-encoded maturases as a means of mitonuclear interplay that could respond to environmental and developmental factors promoting phenotypic adaptation and potentially speciation. It also highlights key evolutionary events that have led to changes in structure and ATP-dependence to accommodate the dual functionality of nuclear and organellar splicing factors.
Collapse
Affiliation(s)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
15
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Doi A, Delaney C, Tanner D, Burkhart K, Bell RD. RNA exon editing: Splicing the way to treat human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102311. [PMID: 39281698 PMCID: PMC11401238 DOI: 10.1016/j.omtn.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
RNA exon editing is a therapeutic strategy for correcting disease-causing mutations by inducing trans-splicing between a synthetic RNA molecule and an endogenous pre-mRNA target, resulting in functionally restored mRNA and protein. This approach enables the replacement of exons at the kilobase scale, addresses multiple mutations with a single therapy, and maintains native gene expression without changes to DNA. For genes larger than 5 kb, RNA exon editors can be delivered in a single vector despite AAV capacity limitations because only mutated exons need to be replaced. While correcting mutations by trans-splicing has been previously demonstrated, prior attempts were hampered by low efficiency or lack of translation in preclinical models. Advances in synthetic biology, next-generation sequencing, and bioinformatics, with a deeper understanding of mechanisms controlling RNA splicing, have triggered a re-emergence of trans-splicing and the development of new RNA exon editing molecules for treating human disease, including the first application in a clinical trial (this study was registered at ClinicalTrials.gov [NCT06467344]). Here, we provide an overview of RNA splicing, the history of trans-splicing, previously reported therapeutic applications, and how modern advances are enabling the discovery of RNA exon editing molecules for genetic targets unable to be addressed by conventional gene therapy and gene editing approaches.
Collapse
Affiliation(s)
- Akiko Doi
- Ascidian Therapeutics, Boston, MA, USA
| | | | | | | | | |
Collapse
|
17
|
Lee KH, Lee NE, Lee SW. In Vitro Self-Circularization Methods Based on Self-Splicing Ribozyme. Int J Mol Sci 2024; 25:9437. [PMID: 39273386 PMCID: PMC11394858 DOI: 10.3390/ijms25179437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In vitro circular RNA (circRNA) preparation methods have been gaining a lot of attention recently as several reports suggest that circRNAs are more stable, with better performances in cells and in vivo, than linear RNAs in various biomedical applications. Self-splicing ribozymes are considered a major in vitro circRNA generation method for biomedical applications due to their simplicity and efficiency in the circularization of the gene of interest. This review summarizes, updates, and discusses the recently developed self-circularization methods based on the self-splicing ribozyme, such as group I and II intron ribozymes, and the pros and cons of each method in preparing circRNA in vitro.
Collapse
Affiliation(s)
- Kyung Hyun Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Republic of Korea
| | - Nan-Ee Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Republic of Korea
| | - Seong-Wook Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Republic of Korea
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
18
|
Potapov V, Krudup S, Maguire S, Unlu I, Guan S, Buss JA, Smail BA, van Eeuwen T, Taylor MS, Burns KH, Ong JL, Trachman RJ. Discrete measurements of RNA polymerase and reverse transcriptase fidelity reveal evolutionary tuning. RNA (NEW YORK, N.Y.) 2024; 30:1246-1258. [PMID: 38942481 PMCID: PMC11331410 DOI: 10.1261/rna.080002.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/05/2024] [Indexed: 06/30/2024]
Abstract
Direct methods for determining the fidelity of DNA polymerases are robust, with relatively little sample manipulation before sequencing. In contrast, methods for measuring RNA polymerase and reverse transcriptase fidelities are complicated by additional preparation steps that introduce ambiguity and error. Here, we describe a sequencing method, termed Roll-Seq, for simultaneously determining the individual fidelities of RNA polymerases and reverse transcriptases (RT) using Pacific Biosciences single molecule real-time sequencing. By using reverse transcriptases with high rolling-circle activity, Roll-Seq generates long concatemeric cDNA from a circular RNA template. To discern the origin of a mutation, errors are recorded and determined to occur within a single concatemer (reverse transcriptase error) or all concatemers (RNA polymerase error) over the cDNA strand. We used Roll-Seq to measure the fidelities of T7 RNA polymerases, a Group II intron-encoded RT (Induro), and two LINE RTs (Fasciolopsis buski R2-RT and human LINE-1). Substitution rates for Induro and R2-RT are the same for cDNA and second-strand synthesis while LINE-1 has 2.5-fold lower fidelity when performing second-strand synthesis. Deletion and insertion rates increase for all RTs during second-strand synthesis. In addition, we find that a structured RNA template impacts fidelity for both RNA polymerase and RT. The accuracy and precision of Roll-Seq enable this method to be applied as a complementary analysis to structural and mechanistic characterization of RNA polymerases and reverse transcriptases or as a screening method for RNAP and RT fidelity.
Collapse
Affiliation(s)
| | - Stanislas Krudup
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
- École Supérieure de Biotechnologie de Strasbourg, 67400 Strasbourg, France
| | - Sean Maguire
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Irem Unlu
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Jackson A Buss
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | - Benedict A Smail
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Martin S Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jennifer L Ong
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
19
|
Yuan W, Yu J, Li Z. Rapid functional activation of horizontally transferred eukaryotic intron-containing genes in the bacterial recipient. Nucleic Acids Res 2024; 52:8344-8355. [PMID: 39011898 DOI: 10.1093/nar/gkae628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
Horizontal gene transfer has occurred across all domains of life and contributed substantially to the evolution of both prokaryotes and eukaryotes. Previous studies suggest that many horizontally transferred eukaryotic genes conferred selective advantages to bacterial recipients, but how these eukaryotic genes evolved into functional bacterial genes remained unclear, particularly how bacteria overcome the expressional barrier posed by eukaryotic introns. Here, we first confirmed that the presence of intron would inactivate the horizontally transferred gene in Escherichia coli even if this gene could be efficiently transcribed. Subsequent large-scale genetic screens for activation of gene function revealed that activation events could rapidly occur within several days of selective cultivation. Molecular analysis of activation events uncovered two distinct mechanisms how bacteria overcome the intron barrier: (i) intron was partially deleted and the resulting stop codon-removed mutation led to one intact foreign protein or (ii) intron was intactly retained but it mediated the translation initiation and the interaction of two split small proteins (derived from coding sequences up- and downstream of intron, respectively) to restore gene function. Our findings underscore the likelihood that horizontally transferred eukaryotic intron-containing genes could rapidly acquire functionality if they confer a selective advantage to the prokaryotic recipient.
Collapse
Affiliation(s)
- Wen Yuan
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jing Yu
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhichao Li
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
20
|
Unlu I, Maguire S, Guan S, Sun Z. Induro-RT mediated circRNA-sequencing (IMCR-seq) enables comprehensive profiling of full-length and long circular RNAs from low input total RNA. Nucleic Acids Res 2024; 52:e55. [PMID: 38850158 PMCID: PMC11260445 DOI: 10.1093/nar/gkae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/23/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Circular RNA (circRNA) has recently gained attention for its emerging biological activities, relevance to disease, potential as biomarkers, and promising an alternative modality for RNA vaccines. Nevertheless, sequencing circRNAs has presented challenges. In this context, we introduce a novel circRNA sequencing method called Induro-RT mediated circRNA-sequencing (IMCR-seq), which relies on a group II intron reverse transcriptase with robust rolling circle reverse transcription activity. The IMCR-seq protocol eliminates the need for conventional circRNA enrichment methods such as rRNA depletion and RNaseR digestion yet achieved the highest circRNA enrichment and detected 6-1000 times more circRNAs for the benchmarked human samples compared to other methods. IMCR-seq is applicable to any organism, capable of detecting circRNAs of longer than 7000 nucleotides, and is effective on samples as small as 10 ng of total RNA. These enhancements render IMCR-seq suitable for clinical samples, including disease tissues and liquid biopsies. We demonstrated the clinical relevance of IMCR-seq by detecting cancer-specific circRNAs as potential biomarkers from IMCR-seq results on lung tumor tissues together with blood plasma samples from both a healthy individual and a lung cancer patient. In summary, IMCR-seq presents an efficient and versatile circRNA sequencing method with high potential for research and clinical applications.
Collapse
Affiliation(s)
- Irem Unlu
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Sean Maguire
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Shengxi Guan
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Zhiyi Sun
- New England Biolabs Inc., Beverly, MA 01915, USA
| |
Collapse
|
21
|
Fernando CM, Breaker RR. Bioinformatic prediction of proteins relevant to functions of the bacterial OLE ribonucleoprotein complex. mSphere 2024; 9:e0015924. [PMID: 38771028 PMCID: PMC11332333 DOI: 10.1128/msphere.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
OLE (ornate, large, extremophilic) RNAs are members of a noncoding RNA class present in many Gram-positive, extremophilic bacteria. The large size, complex structure, and extensive sequence conservation of OLE RNAs are characteristics consistent with the hypothesis that they likely function as ribozymes. The OLE RNA representative from Halalkalibacterium halodurans is known to localize to the phospholipid membrane and requires at least three essential protein partners: OapA, OapB, and OapC. However, the precise biochemical functions of this unusual ribonucleoprotein (RNP) complex remain unknown. Genetic disruption of OLE RNA or its partners revealed that the complex is beneficial under diverse stress conditions. To search for additional links between OLE RNA and other cellular components, we used phylogenetic profiling to identify proteins that are either correlated or anticorrelated with the presence of OLE RNA in various bacterial species. This analysis revealed strong correlations between the essential protein-binding partners of OLE RNA and organisms that carry the ole gene. Similarly, proteins involved in sporulation are correlated, suggesting a potential role for the OLE RNP complex in spore formation. Intriguingly, the Mg2+ transporter MpfA is strongly anticorrelated with OLE RNA. Evidence indicates that MpfA is structurally related to OapA and therefore MpfA may serve as a functional replacement for some contributions otherwise performed by the OLE RNP complex in species that lack this device. Indeed, OLE RNAs might represent an ancient RNA class that enabled primitive organisms to sense and respond to major cellular stresses.IMPORTANCEOLE (ornate, large, extremophilic) RNAs were first reported nearly 20 years ago, and they represent one of the largest and most intricately folded noncoding RNA classes whose biochemical function remains to be established. Other RNAs with similar size, structural complexity, and extent of sequence conservation have proven to catalyze chemical transformations. Therefore, we speculate that OLE RNAs likewise operate as ribozymes and that they might catalyze a fundamental reaction that has persisted since the RNA World era-a time before the emergence of proteins in evolution. To seek additional clues regarding the function of OLE RNA, we undertook a computational effort to identify potential protein components of the OLE ribonucleoprotein (RNP) complex or other proteins that have functional links to this device. This analysis revealed known protein partners and several additional proteins that might be physically or functionally linked to the OLE RNP complex. Finally, we identified a Mg2+ transporter protein, MpfA, that strongly anticorrelates with the OLE RNP complex. This latter result suggests that MpfA might perform at least some functions that are like those carried out by the OLE RNP complex.
Collapse
Affiliation(s)
- Chrishan M. Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Tang J, Zhang L, Su J, Ye Q, Li Y, Liu D, Cui H, Zhang Y, Ye Z. Insights into Fungal Mitochondrial Genomes and Inheritance Based on Current Findings from Yeast-like Fungi. J Fungi (Basel) 2024; 10:441. [PMID: 39057326 PMCID: PMC11277600 DOI: 10.3390/jof10070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The primary functions of mitochondria are to produce energy and participate in the apoptosis of cells, with them being highly conserved among eukaryotes. However, the composition of mitochondrial genomes, mitochondrial DNA (mtDNA) replication, and mitochondrial inheritance varies significantly among animals, plants, and fungi. Especially in fungi, there exists a rich diversity of mitochondrial genomes, as well as various replication and inheritance mechanisms. Therefore, a comprehensive understanding of fungal mitochondria is crucial for unraveling the evolutionary history of mitochondria in eukaryotes. In this review, we have organized existing reports to systematically describe and summarize the composition of yeast-like fungal mitochondrial genomes from three perspectives: mitochondrial genome structure, encoded genes, and mobile elements. We have also provided a systematic overview of the mechanisms in mtDNA replication and mitochondrial inheritance during bisexual mating. Additionally, we have discussed and proposed open questions that require further investigation for clarification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.)
| |
Collapse
|
23
|
Wang C, Quadrado M, Mireau H. Temperature-sensitive splicing defects in Arabidopsis mitochondria caused by mutations in the ROOT PRIMORDIUM DEFECTIVE 1 gene. Nucleic Acids Res 2024; 52:4575-4587. [PMID: 38364869 PMCID: PMC11077063 DOI: 10.1093/nar/gkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Group II introns in plant organelles have lost splicing autonomy and require the assistance of nuclear-encoded trans-factors whose roles remain to be elucidated. These factors can be mono- or poly-specific with respect to the number of introns whose splicing they facilitate. Poly-acting splicing factors are often essential and their genetic identification may benefit from the use of conditional mutations. Temperature-sensitive (TS) mutations in the ROOT PRIMORDIUM DEFECTIVE 1 (RPD1) gene were initially selected for their inhibitory effect on root formation in Arabidopsis. Further analysis revealed that RPD1 encodes a mitochondria-targeted RNA-binding protein family member, suggesting a role in mitochondrial gene expression and making its role in root formation enigmatic. We analysed the function of RPD1 and found that it is required for the removal of 9 mitochondrial group II introns and that the identified TS mutations affect the splicing function of RPD1. These results support that the inhibition of adventitious root formation at non-permissive temperature results from a reduction in RPD1 activity and thus mitochondrial activity. We further show that RPD1 physically associates in vivo with the introns whose splicing it facilitates. Preliminary mapping indicates that RPD1 may not bind to the same regions within all of its intron targets, suggesting potential variability in its influence on splicing activation.
Collapse
Affiliation(s)
- Chuande Wang
- School of Agriculture and Biology, Joint Center for Single cell Biology/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai Jiao Tong University, Shanghai, China
| | - Martine Quadrado
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
24
|
Sang Z, Li X, Yan H, Wang W, Wen Y. Development of a group II intron-based genetic manipulation tool for Streptomyces. Microb Biotechnol 2024; 17:e14472. [PMID: 38683679 PMCID: PMC11057498 DOI: 10.1111/1751-7915.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
The availability of an alternative and efficient genetic editing technology is critical for fundamental research and strain improvement engineering of Streptomyces species, which are prolific producers of complex secondary metabolites with significant pharmaceutical activities. The mobile group II introns are retrotransposons that employ activities of catalytic intron RNAs and intron-encoded reverse transcriptase to precisely insert into DNA target sites through a mechanism known as retrohoming. We here developed a group II intron-based gene editing tool to achieve precise chromosomal gene insertion in Streptomyces. Moreover, by repressing the potential competition of RecA-dependent homologous recombination, we enhanced site-specific insertion efficiency of this tool to 2.38%. Subsequently, we demonstrated the application of this tool by screening and characterizing the secondary metabolite biosynthetic gene cluster (BGC) responsible for synthesizing the red pigment in Streptomyces roseosporus. Accompanied with identifying and inactivating this BGC, we observed that the impair of this cluster promoted cell growth and daptomycin production. Additionally, we applied this tool to activate silent jadomycin BGC in Streptomyces venezuelae. Overall, this work demonstrates the potential of this method as an alternative tool for genetic engineering and cryptic natural product mining in Streptomyces species.
Collapse
Affiliation(s)
- Ziwei Sang
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
25
|
Staedtke V, Sun N, Bai R. Hypoxia-targeting bacteria in cancer therapy. Semin Cancer Biol 2024; 100:39-48. [PMID: 38554791 PMCID: PMC11344594 DOI: 10.1016/j.semcancer.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Tumor hypoxia plays a crucial role in driving cancer progression and fostering resistance to therapies by contributing significantly to chemoresistance, radioresistance, angiogenesis, invasiveness, metastasis, altered cell metabolism, and genomic instability. Despite the challenges encountered in therapeutically addressing tumor hypoxia with conventional drugs, a noteworthy alternative has emerged through the utilization of anaerobic oncolytic bacteria. These bacteria exhibit a preference for accumulating and proliferating within the hypoxic regions of tumors, where they can initiate robust antitumor effects and immune responses. Through simple genetic manipulation or sophisticated synthetic bioengineering, these bacteria can be further optimized to improve safety and antitumor activities, or they can be combined synergistically with chemotherapies, radiation, or other immunotherapies. In this review, we explore the potential benefits and challenges associated with this innovative anticancer approach, addressing issues related to clinical translation, particularly as several strains have progressed to clinical evaluation.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University, 600 North Wolfe Street, Meyer 8-149 J, Baltimore, MD 21287, USA.
| | - Nihao Sun
- Kennedy Krieger Institute, Lab 520, 707 N Broadway, Baltimore, MD 21205, USA
| | - Renyuan Bai
- Kennedy Krieger Institute, Lab 520, 707 N Broadway, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Lab 520, 707 N Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Soares LW, King CG, Fernando CM, Roth A, Breaker RR. Genetic disruption of the bacterial raiA motif noncoding RNA causes defects in sporulation and aggregation. Proc Natl Acad Sci U S A 2024; 121:e2318008121. [PMID: 38306478 PMCID: PMC10861870 DOI: 10.1073/pnas.2318008121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/02/2023] [Indexed: 02/04/2024] Open
Abstract
Several structured noncoding RNAs in bacteria are essential contributors to fundamental cellular processes. Thus, discoveries of additional ncRNA classes provide opportunities to uncover and explore biochemical mechanisms relevant to other major and potentially ancient processes. A candidate structured ncRNA named the "raiA motif" has been found via bioinformatic analyses in over 2,500 bacterial species. The gene coding for the RNA typically resides between the raiA and comFC genes of many species of Bacillota and Actinomycetota. Structural probing of the raiA motif RNA from the Gram-positive anaerobe Clostridium acetobutylicum confirms key features of its sophisticated secondary structure model. Expression analysis of raiA motif RNA reveals that the RNA is constitutively produced but reaches peak abundance during the transition from exponential growth to stationary phase. The raiA motif RNA becomes the fourth most abundant RNA in C. acetobutylicum, excluding ribosomal RNAs and transfer RNAs. Genetic disruption of the raiA motif RNA causes cells to exhibit substantially decreased spore formation and diminished ability to aggregate. Restoration of normal cellular function in this knock-out strain is achieved by expression of a raiA motif gene from a plasmid. These results demonstrate that raiA motif RNAs normally participate in major cell differentiation processes by operating as a trans-acting factor.
Collapse
Affiliation(s)
- Lucas W. Soares
- Department of Microbial Pathogenesis, Yale University, New Haven, CT06536
| | - Christopher G. King
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| | - Chrishan M. Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
| | - Adam Roth
- HHMI, Yale University, New Haven, CT06511-8103
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511-8103
- HHMI, Yale University, New Haven, CT06511-8103
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511-8103
| |
Collapse
|
27
|
Liu ZX, Zhang S, Zhu HZ, Chen ZH, Yang Y, Li LQ, Lei Y, Liu Y, Li DY, Sun A, Li CP, Tan SQ, Wang GL, Shen JY, Jin S, Gao C, Liu JJG. Hydrolytic endonucleolytic ribozyme (HYER) is programmable for sequence-specific DNA cleavage. Science 2024; 383:eadh4859. [PMID: 38301022 DOI: 10.1126/science.adh4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024]
Abstract
Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shouyue Zhang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han-Zhou Zhu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Hang Chen
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun Yang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long-Qi Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Lei
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dan-Yuan Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ao Sun
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng-Ping Li
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shun-Qing Tan
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gao-Li Wang
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie-Yi Shen
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Jin
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Jie Gogo Liu
- Beijing Advanced Innovation Center for Structural Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
29
|
Oscorbin IP, Filipenko ML. A Novel Thermostable and Processive Reverse Transcriptase from a Group II Intron of Anoxybacillus flavithermus. Biomolecules 2023; 14:49. [PMID: 38254649 PMCID: PMC10813441 DOI: 10.3390/biom14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Reverse transcriptases (RTs) are a family of enzymes that synthesize DNA using an RNA template and are involved in retrovirus propagation and telomere lengthening. In vitro, RTs are widely applied in various methods, including RNA-seq, RT-PCR, and RT-LAMP. Thermostable RTs from bacterial group II introns are promising tools for biotechnology due to their higher thermostability, fidelity, and processivity compared to commonly used M-MuLV RT and its mutants. However, the diversity of group II intron-encoded RTs is still understudied. In this work, we biochemically characterized a novel RT from a thermophilic bacterium, Anoxybacillus flavithermus, which was isolated from a hot spring in New Zealand and has an optimal growth temperature of around 60 °C. The cloned RT, named Afl RT, retained approximately 40% of the specific activity after a 45 min incubation at 50 °C. The optimal pH was 8.5, the optimal temperature was between 45 and 50 °C, and Mn2+ ions were found to be an optimal cofactor. The processivity analysis with MS2 phage gRNA (3569 b) demonstrated that Afl RT elongated fully up to 36% of the template molecules. In reverse transcription and RT-qLAMP, the enzyme allowed up to 10 copies of MS2 phage genomic RNA to be detected per reaction. Thus, Afl RT holds great potential for a variety of practical applications that require the use of thermostable and processive RTs.
Collapse
Affiliation(s)
- Igor P. Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8 Lavrentiev Avenue, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
30
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
31
|
Ruiz Esparza Garrido R, Velázquez Flores MÁ. Circular RNAs: the next level of gene regulation. Am J Transl Res 2023; 15:6122-6135. [PMID: 37969203 PMCID: PMC10641363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023]
Abstract
Gene regulation is a highly complex process involving the presence and participation of many molecules and complexes that regulate gene expression in the genome, which occurs in a precise and coordinated way. Among all these regulatory molecules, the circular RNAs (circRNAs) are the most novel and peculiar family of noncoding RNAs (ncRNAs) as they have a circular structure, are very specific on their expression, highly conserved, and highly resistant to degradation. These molecules have been described in recent years as excellent disease markers and as potential therapeutic targets. In this review, we focused on general characteristics and on the evolution of the circRNAs, as well as on their biological functions, emphasizing on their participation in the formation of brain tumors.
Collapse
Affiliation(s)
- Ruth Ruiz Esparza Garrido
- Investigadora por México, Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| | - Miguel Ángel Velázquez Flores
- Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría CMNSXXI, Instituto Mexicano del Seguro Social (IMSS)CDMX, México
| |
Collapse
|
32
|
Wang X, Dong J, Lu Y. Circular mRNA: A novel therapeutic agent. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:58-63. [PMID: 39416918 PMCID: PMC11446363 DOI: 10.1016/j.biotno.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2024]
Abstract
Circular mRNA (circmRNA) is a covalent closed loop formed by reverse splicing of the 3' end to the 5' end of mRNA. Compared to traditional linear mRNAs, circmRNAs can mediate efficient, stable, and durable protein expression and are considered an alternative to linear mRNAs in terms of therapeutic reagents. With the continuous development of circmRNA research, circmRNA has also made significant progress in vaccines and cellular therapies. In this review, we present research advances in the in vitro synthesis of circmRNAs, focusing on the biological ligation methods of circmRNAs and current applications, with a summary of challenges regarding circmRNA design, synthesis, and applications. Based on the enhanced stability of circmRNAs, further research on circmRNAs could help expand their applications in biotherapeutics and strengthen their role in basic medical applications.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Dong
- Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
33
|
Deng P, Tan SQ, Yang QY, Fu L, Wu Y, Zhu HZ, Sun L, Bao Z, Lin Y, Zhang QC, Wang H, Wang J, Liu JJG. Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon. Cell 2023; 186:2865-2879.e20. [PMID: 37301196 DOI: 10.1016/j.cell.2023.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.
Collapse
Affiliation(s)
- Pujuan Deng
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shun-Qing Tan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi-Yu Yang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liangzheng Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Zhou Zhu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhangbin Bao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yi Lin
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jun-Jie Gogo Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
35
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
36
|
Wilkinson ME, Frangieh CJ, Macrae RK, Zhang F. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science 2023; 380:301-308. [PMID: 37023171 PMCID: PMC10499050 DOI: 10.1126/science.adg7883] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Non-long terminal repeat (non-LTR) retrotransposons, or long interspersed nuclear elements (LINEs), are an abundant class of eukaryotic transposons that insert into genomes by target-primed reverse transcription (TPRT). During TPRT, a target DNA sequence is nicked and primes reverse transcription of the retrotransposon RNA. Here, we report the cryo-electron microscopy structure of the Bombyx mori R2 non-LTR retrotransposon initiating TPRT at its ribosomal DNA target. The target DNA sequence is unwound at the insertion site and recognized by an upstream motif. An extension of the reverse transcriptase (RT) domain recognizes the retrotransposon RNA and guides the 3' end into the RT active site to template reverse transcription. We used Cas9 to retarget R2 in vitro to non-native sequences, suggesting future use as a reprogrammable RNA-based gene-insertion tool.
Collapse
Affiliation(s)
- Max E. Wilkinson
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Chris J. Frangieh
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
37
|
Zumkeller S, Knoop V. Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases. BMC Ecol Evol 2023; 23:5. [PMID: 36915058 PMCID: PMC10012718 DOI: 10.1186/s12862-023-02108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
38
|
Development of an efficient ClosTron system for gene disruption in Ruminiclostridium papyrosolvens. Appl Microbiol Biotechnol 2023; 107:1801-1812. [PMID: 36808278 DOI: 10.1007/s00253-023-12427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its metabolic engineering is limited by lack of genetic tools. Here, we firstly employed the endogenous xylan-inducible promoter to control ClosTron system for gene disruption of R. papyrosolvens. The modified ClosTron can be easily transformed into R. papyrosolvens and specifically disrupt targeting genes. Furthermore, a counter selectable system based on uracil phosphoribosyl-transferase (Upp) was successfully established and introduced into the ClosTron system, which resulted in plasmid curing rapidly. Thus, the combination of xylan-inducible ClosTron and upp-based counter selectable system makes the gene disruption more efficient and convenient for successive gene disruption in R. papyrosolvens. KEY POINTS: • Limiting expression of LtrA enhanced the transformation of ClosTron plasmids in R. papyrosolvens. • DNA targeting specificity can be improved by precise management of the expression of LtrA. • Curing of ClosTron plasmids was achieved by introducing the upp-based counter selectable system.
Collapse
|
39
|
Huber LB, Betz K, Marx A. Reverse Transcriptases: From Discovery and Applications to Xenobiology. Chembiochem 2023; 24:e202200521. [PMID: 36354312 DOI: 10.1002/cbic.202200521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Reverse transcriptases are DNA polymerases that can use RNA as a template for DNA synthesis. They thus catalyze the reverse of transcription. Although discovered in 1970, reverse transcriptases are still of great interest and are constantly being further developed for numerous modern research approaches. They are frequently used in biotechnological and molecular diagnostic applications. In this review, we describe the discovery of these fascinating enzymes and summarize research results and applications ranging from molecular cloning, direct virus detection, and modern sequencing methods to xenobiology.
Collapse
Affiliation(s)
- Luisa B Huber
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| |
Collapse
|
40
|
Cui G, Hua D, Zhao X, Zhou J, Yang Y, Huang T, Wang X, Zhao Y, Zhang T, Liao J, Guan Z, Luo P, Chen Z, Qi X, Hong W. A New EBS2b-IBS2b Base Paring (A -8/T -8) Improved the Gene-Targeting Efficiency of Thermotargetron in Escherichia coli. Microbiol Spectr 2023; 11:e0315922. [PMID: 36809044 PMCID: PMC10100991 DOI: 10.1128/spectrum.03159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/21/2023] [Indexed: 02/23/2023] Open
Abstract
Thermophilic group II intron is one type of retrotransposon composed of intron RNA and intron-encoded protein (IEP), which can be utilized in gene targeting by harnessing their novel ribozyme-based DNA integration mechanism termed "retrohoming." It is mediated by a ribonucleoprotein (RNP) complex that contains the excised intron lariat RNA and an IEP with reverse transcriptase (RT) activity. The RNP recognizes targeting sites by exon-binding sequences 2 (EBS2)/intron-binding sequences 2 (IBS2), EBS1/IBS1, and EBS3/IBS3 bases pairing. Previously, we developed the TeI3c/4c intron as a thermophilic gene targeting system-Thermotargetron (TMT). However, we found that the targeting efficiency of TMT varies significantly at different targeting sites, which leads to a relatively low success rate. To further improve the success rate and gene-targeting efficiency of TMT, we constructed a Random Gene-targeting Plasmids Pool (RGPP) to analyze the sequence recognition preference of TMT. A new base pairing, located at the -8 site between EBS2/IBS2 and EBS1/IBS1 (named EBS2b-IBS2b), increased the success rate (2.45- to 5.07-fold) and significantly improved gene-targeting efficiency of TMT. A computer algorithm (TMT 1.0), based on the newly discovered sequence recognition roles, was also developed to facilitate the design of TMT gene-targeting primers. The present work could essentially expand the practicalities of TMT in the genome engineering of heat-tolerance mesophilic and thermophilic bacteria. IMPORTANCE The randomized base pairing in the interval of IBS2 and IBS1 of Tel3c/4c intron (-8 and -7 sites) in Thermotargetron (TMT) results in a low success rate and gene-targeting efficiency in bacteria. In the present work, we constructed a randomized gene-targeting plasmids pool (RGPP) to study whether there is a base preference in target sequences. Among all the successful "retrohoming" targets, we found that a new EBS2b-IBS2b base paring (A-8/T-8) significantly increased TMT's gene-targeting efficiency, and the concept is also applicable to other gene targets in redesigned gene-targeting plasmids pool in E. coli. The improved TMT is a promising tool for the genetic engineering of bacteria and could promote metabolic engineering and synthetic biology research in valuable microbes that recalcitrance for genetic manipulation.
Collapse
Affiliation(s)
- Guzhen Cui
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Dengxiong Hua
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Xingxing Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jia Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tingyu Huang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xinxin Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
| | - Zhenghong Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
41
|
Villarreal L, Witzany G. Self-empowerment of life through RNA networks, cells and viruses. F1000Res 2023; 12:138. [PMID: 36785664 PMCID: PMC9918806 DOI: 10.12688/f1000research.130300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/05/2024] Open
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
42
|
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
43
|
Gilstrap SR, Hobson JM, Owens MA, White DM, Sammy MJ, Ballinger S, Sorge RE, Goodin BR. Mitochondrial reactivity following acute exposure to experimental pain testing in people with HIV and chronic pain. Mol Pain 2023; 19:17448069231195975. [PMID: 37542365 PMCID: PMC10467217 DOI: 10.1177/17448069231195975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023] Open
Abstract
Background: Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. Methods: The current study included PWH with (n = 26), and without (n = 29), chronic pain. Participants completed a single session that lasted approximately 180 min, including QST. Blood was taken prior to and following the QST battery for assays measuring mtDNA damage, mtDNA copy number, and mtDNA damage-associated molecular pattern (DAMP) levels (i.e., ND1 and ND6). Results: We examined differences between those with and without pain on various indicators of mitochondrial reactivity following exposure to QST. However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. Conclusion: PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.
Collapse
Affiliation(s)
- Shannon R Gilstrap
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joanna M Hobson
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael A Owens
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Dyan M White
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melissa J Sammy
- Bio-Analytical Research Biology (BARB) Core, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott Ballinger
- Bio-Analytical Research Biology (BARB) Core, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, Washington University, St Louis, MO, USA
| |
Collapse
|
44
|
Wu CS, Chen CI, Chaw SM. Plastid phylogenomics and plastome evolution in the morning glory family (Convolvulaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1061174. [PMID: 36605953 PMCID: PMC9808526 DOI: 10.3389/fpls.2022.1061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Convolvulaceae, the morning glories or bindweeds, is a large family containing species of economic value, including crops, traditional medicines, ornamentals, and vegetables. However, not only are the phylogenetic relationships within this group still debated at the intertribal and intergeneric levels, but also plastid genome (plastome) complexity within Convolvulaceae is not well surveyed. We gathered 78 plastomes representing 17 genera across nine of the 12 Convolvulaceae tribes. Our plastid phylogenomic trees confirm the monophyly of Convolvulaceae, place the genus Jacquemontia within the subfamily Dicranostyloideae, and suggest that the tribe Merremieae is paraphyletic. In contrast, positions of the two genera Cuscuta and Erycibe are uncertain as the bootstrap support of the branches leading to them is moderate to weak. We show that nucleotide substitution rates are extremely variable among Convolvulaceae taxa and likely responsible for the topological uncertainty. Numerous plastomic rearrangements are detected in Convolvulaceae, including inversions, duplications, contraction and expansion of inverted repeats (IRs), and losses of genes and introns. Moreover, integrated foreign DNA of mitochondrial origin was found in the Jacquemontia plastome, adding a rare example of gene transfer from mitochondria to plastids in angiosperms. In the IR of Dichondra, we discovered an extra copy of rpl16 containing a direct repeat of ca. 200 bp long. This repeat was experimentally demonstrated to trigger effective homologous recombination, resulting in the coexistence of intron-containing and -lacking rpl16 duplicates. Therefore, we propose a hypothetical model to interpret intron loss accompanied by invasion of direct repeats at appropriate positions. Our model complements the intron loss model driven by retroprocessing when genes have lost introns but contain abundant RNA editing sites adjacent to former splicing sites.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-I. Chen
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
45
|
Fan K, Fu Q, Wei Q, Jia S, Zhao A, Wang T, Cao J, Liu Y, Ren Z, Liu Y. ZmnMAT1, a nuclear-encoded type I maturase, is required for the splicing of mitochondrial Nad1 intron 1 and Nad4 intron 2. FRONTIERS IN PLANT SCIENCE 2022; 13:1033869. [PMID: 36507372 PMCID: PMC9727264 DOI: 10.3389/fpls.2022.1033869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Maturases can specifically bind to intron-containing pre-RNAs, folding them into catalytic structures that facilitate intron splicing in vivo. Plants possess four nuclear-encoded maturase-related factors (nMAT1-nMAT4) and some maturases have been shown to involve in the splicing of different mitochondrial group II introns; however, the specific biological functions of maturases in maize are largely uncharacterized. In this study, we identified a maize ZmnMAT1 gene, which encodes a mitochondrion-localized type I maturase with an RT domain at N-terminus and an X domain at C-terminus. Loss-of-function mutation in ZmnMAT1 significantly reduced the splicing efficiencies of Nad1 intron 1 and Nad4 intron 2, and showed arrested embryogenesis and endosperm development, which may be related to impaired mitochondrial ultrastructure and function due to the destruction of the assembly and activity of complex I. Direct physical interaction was undetectable between ZmnMAT1 and the proteins associated with the splicing of Nad1 intron 1 and/or Nad4 intron 2 by yeast two-hybrid assays, suggesting the complexity of group II intron splicing in plants.
Collapse
Affiliation(s)
- Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghui Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianhan Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sinian Jia
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Anqi Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Tengteng Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Cao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Chung K, Xu L, Chai P, Peng J, Devarkar SC, Pyle AM. Structures of a mobile intron retroelement poised to attack its structured DNA target. Science 2022; 378:627-634. [PMID: 36356138 PMCID: PMC10190682 DOI: 10.1126/science.abq2844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Group II introns are ribozymes that catalyze their self-excision and function as retroelements that invade DNA. As retrotransposons, group II introns form ribonucleoprotein (RNP) complexes that roam the genome, integrating by reversal of forward splicing. Here we show that retrotransposition is achieved by a tertiary complex between a structurally elaborate ribozyme, its protein mobility factor, and a structured DNA substrate. We solved cryo-electron microscopy structures of an intact group IIC intron-maturase retroelement that was poised for integration into a DNA stem-loop motif. By visualizing the RNP before and after DNA targeting, we show that it is primed for attack and fits perfectly with its DNA target. This study reveals design principles of a prototypical retroelement and reinforces the hypothesis that group II introns are ancient elements of genetic diversification.
Collapse
Affiliation(s)
- Kevin Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Ling Xu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Swapnil C. Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
47
|
Cao SK, Liu R, Wang M, Sun F, Sayyed A, Shi H, Wang X, Tan BC. The small PPR protein SPR2 interacts with PPR-SMR1 to facilitate the splicing of introns in maize mitochondria. PLANT PHYSIOLOGY 2022; 190:1763-1776. [PMID: 35976145 PMCID: PMC9614438 DOI: 10.1093/plphys/kiac379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 05/31/2023]
Abstract
Splicing of plant mitochondrial introns is facilitated by numerous nucleus-encoded protein factors. Although some splicing factors have been identified in plants, the mechanism underlying mitochondrial intron splicing remains largely unclear. In this study, we identified a small P-type pentatricopeptide repeat (PPR) protein containing merely four PPR repeats, small PPR protein 2 (SPR2), which is required for the splicing of more than half of the introns in maize (Zea mays) mitochondria. Null mutations of Spr2 severely impair the splicing of 15 out of the 22 mitochondrial Group II introns, resulting in substantially decreased mature transcripts, which abolished the assembly and activity of mitochondrial complex I. Consequently, embryogenesis and endosperm development were arrested in the spr2 mutants. Yeast two-hybrid, luciferase complementation imaging, bimolecular fluorescence complementation, and semi-in vivo pull-down analyses indicated that SPR2 interacts with small MutS-related domain protein PPR-SMR1, both of which are required for the splicing of 13 introns. In addition, SPR2 and/or PPR-SMR1 interact with other splicing factors, including PPR proteins EMPTY PERICARP16, PPR14, and chloroplast RNA splicing and ribosome maturation (CRM) protein Zm-mCSF1, which participate in the splicing of specific intron(s) of the 13 introns. These results prompt us to propose that SPR2/PPR-SMR1 serves as the core component of a splicing complex and possibly exerts the splicing function through a dynamic interaction with specific substrate recognizing PPR proteins in mitochondria.
Collapse
Affiliation(s)
- Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Miaodi Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hong Shi
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
48
|
Park SK, Mohr G, Yao J, Russell R, Lambowitz AM. Group II intron-like reverse transcriptases function in double-strand break repair. Cell 2022; 185:3671-3688.e23. [PMID: 36113466 PMCID: PMC9530004 DOI: 10.1016/j.cell.2022.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Accepted: 08/14/2022] [Indexed: 01/26/2023]
Abstract
Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase θ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.
Collapse
Affiliation(s)
- Seung Kuk Park
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Georg Mohr
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
49
|
Li Q, Li L, Zhang T, Xiang P, Wu Q, Tu W, Bao Z, Zou L, Chen C. The first two mitochondrial genomes for the genus Ramaria reveal mitochondrial genome evolution of Ramaria and phylogeny of Basidiomycota. IMA Fungus 2022; 13:16. [PMID: 36100951 PMCID: PMC9469536 DOI: 10.1186/s43008-022-00100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
In the present study, we assembled and analyzed the mitogenomes of two Ramaria species. The assembled mitogenomes of Ramaria cfr. rubripermanens and R. rubella were circularized, with sizes of 126,497 bp and 143,271 bp, respectively. Comparative mitogenome analysis showed that intron region contributed the most (contribution rate, 43.74%) to the size variations of Ramaria mitogenomes. The genetic contents, gene length, tRNAs, and codon usages of the two Ramaria mitogenomes varied greatly. In addition, the evolutionary rates of different core protein coding genes (PCGs) in Phallomycetidae mitogenomes varied. We detected large-scale gene rearrangements between Phallomycetidae mitogenomes, including gene displacement and tRNA doubling. A total of 4499 bp and 7746 bp aligned fragments were detected between the mitochondrial and nuclear genomes of R. cfr. rubripermanens and R. rubella, respectively, indicating possible gene transferring events. We further found frequent intron loss/gain and potential intron transfer events in Phallomycetidae mitogenomes during the evolution, and the mitogenomes of R. rubella contained a novel intron P44. Phylogenetic analyses using both Bayesian inference (BI) and Maximum Likelihood (ML) methods based on a combined mitochondrial gene dataset obtained an identical and well-supported phylogenetic tree for Basidiomycota, wherein R. cfr. rubripermanens and Turbinellus floccosus are sister species. This study served as the first report on mitogenomes from the genus Ramaria, which provides a basis for understanding the evolution, genetics, and taxonomy of this important fungal group.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, People's Republic of China.
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
50
|
Intraspecific comparison of mitochondrial genomes reveals the evolution in medicinal fungus Ganoderma lingzhi. J Biosci Bioeng 2022; 134:374-383. [PMID: 36075811 DOI: 10.1016/j.jbiosc.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Several mitogenomes of the genus Ganoderma have been assembled, but intraspecific comparisons of mitogenomes in Ganoderma lingzhi have not been reported. In this study, 19 G. lingzhi mitogenomes were assembled and analyzed combined with three mitogenomes of G. lingzhi from GenBank in term of the characteristics, evolution, and phylogeny. The results showed that the mitogenomes of the G. lingzhi strains are closed circular ranging from 49.23 kb to 68.37 kb. The genetic distance, selective pressure, and base variation indicate that the 14 common protein coding genes were highly conserved. The differences in introns, open reading frames, and repetitive sequences in the mitogenome were the main factors leaded to the variations in mitogenome. The introns were horizontally transferred in mitogenomes, and the differences between introns in the same insertion, which were primarily caused by the repetitive sequence, showed that the introns may be under degeneration. Besides, the frequent insertion and deletion of introns showed an evolutionary rate faster than protein coding genes. Phylogenetic analysis showed that the G. lingzhi strains gathered with high support, and those with the same intron distribution law had closer clustering relationships.
Collapse
|