1
|
Shan M, Cheng Q, Parris AB, Kong L, Yang X, Shi Y. Metformin reduces basal subpopulation and attenuates mammary epithelial cell stemness in FVB/N mice. Front Cell Dev Biol 2024; 12:1427395. [PMID: 39055652 PMCID: PMC11269140 DOI: 10.3389/fcell.2024.1427395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Metformin shows promise in breast cancer prevention, but its underlying mechanisms remain unclear. This study investigated the impact of metformin on the repopulation dynamics of mammary epithelial cells (MECs) and the signaling pathways in non-tumorigenic FVB/N mice. This study aimed to enhance our understanding of the role of metformin in reducing the susceptibility of MECs in premalignant tissues to oncogenic factors. In this study, female mice were administered 200 mg/kg/day of metformin via intraperitoneal (i.p.) injection from 8 to 18 weeks of age. After this treatment period, morphogenesis, flow cytometry, analyses of MEC stemness, and RNA sequencing were performed. The study findings indicated that metformin treatment in adult mice reduced mammary gland proliferation, as demonstrated by decreased Ki67+ cells and lateral bud formation. Additionally, metformin significantly reduced both basal and mammary repopulating unit subpopulations, indicating an impact on mammary epithelial cell repopulation. Mammosphere, colony-forming cell, and 3D culture assays revealed that metformin adversely affected mammary epithelial cell stemness. Furthermore, metformin downregulated signaling in key pathways including AMPK/mTOR, MAPK/Erk, PI3K/Akt, and ER, which contribute to its inhibitory effects on mammary proliferation and stemness. Transcriptome analysis with RNA sequencing indicated that metformin induced significant downregulation of genes involved in multiple critical pathways. KEGG-based pathway analysis indicated that genes in PI3K/Akt, focal adhesion, ECM-receptor, small cell lung cancer and immune-modulation pathways were among the top groups of differentially regulated genes. In summary, our research demonstrates that metformin inhibits MEC proliferation and stemness, accompanied by the downregulation of intrinsic signaling. These insights suggest that the regulatory effects of metformin on premalignant mammary tissues could potentially delay or prevent the onset of breast cancer, offering a promising avenue for developing new preventive strategies.
Collapse
Affiliation(s)
- Minghui Shan
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Cheng
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Amanda B. Parris
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Lingfei Kong
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Research Campus, North Carolina Central University, Kannapolis, NC, United States
| | - Yujie Shi
- Department of Pathology, People’s Hospital of Zhengzhou University, Zhengzhou, Hena, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Mancinelli L, Intini G. Age-associated declining of the regeneration potential of skeletal stem/progenitor cells. Front Physiol 2023; 14:1087254. [PMID: 36818437 PMCID: PMC9931727 DOI: 10.3389/fphys.2023.1087254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Bone fractures represent a significant health burden worldwide, mainly because of the rising number of elderly people. As people become older, the risk and the frequency of bone fractures increase drastically. Such increase arises from loss of skeletal integrity and is also associated to a reduction of the bone regeneration potential. Central to loss of skeletal integrity and reduction of regeneration potential are the skeletal stem/progenitor cells (SSPCs), as they are responsible for the growth, regeneration, and repair of the bone tissue. However, the exact identity of the SSPCs has not yet been determined. Consequently, their functions, and especially dysfunctions, during aging have never been fully characterized. In this review, with the final goal of describing SSPCs dysfunctions associated to aging, we first discuss some of the most recent findings about their identification. Then, we focus on how SSPCs participate in the normal bone regeneration process and how aging can modify their regeneration potential, ultimately leading to age-associated bone fractures and lack of repair. Novel perspectives based on our experience are also provided.
Collapse
Affiliation(s)
- Luigi Mancinelli
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
| | - Giuseppe Intini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States.,Department of Medicine (Hematology/Oncology), University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,University of Pittsburgh UPMC Hillman Cancer Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Ductal keratin 15 + luminal progenitors in normal breast exhibit a basal-like breast cancer transcriptomic signature. NPJ Breast Cancer 2022; 8:81. [PMID: 35821504 PMCID: PMC9276673 DOI: 10.1038/s41523-022-00444-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Normal breast luminal epithelial progenitors have been implicated as cell of origin in basal-like breast cancer, but their anatomical localization remains understudied. Here, we combine collection under the microscope of organoids from reduction mammoplasties and single-cell mRNA sequencing (scRNA-seq) of FACS-sorted luminal epithelial cells with multicolor imaging to profile ducts and terminal duct lobular units (TDLUs) and compare them with breast cancer subtypes. Unsupervised clustering reveals eleven distinct clusters and a differentiation trajectory starting with keratin 15+ (K15+) progenitors enriched in ducts. Spatial mapping of luminal progenitors is confirmed at the protein level by staining with critical duct markers. Comparison of the gene expression profiles of normal luminal cells with those of breast cancer subtypes suggests a strong correlation between normal breast ductal progenitors and basal-like breast cancer. We propose that K15+ basal-like breast cancers originate in ductal progenitors, which emphasizes the importance of not only lineages but also cellular position within the ductal-lobular tree.
Collapse
|
4
|
Lima A, Maddalo D. SEMMs: Somatically Engineered Mouse Models. A New Tool for In Vivo Disease Modeling for Basic and Translational Research. Front Oncol 2021; 11:667189. [PMID: 33968774 PMCID: PMC8103029 DOI: 10.3389/fonc.2021.667189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Most experimental oncology therapies fail during clinical development despite years of preclinical testing rationalizing their use. This begs the question of whether the current preclinical models used for evaluating oncology therapies adequately capture patient heterogeneity and response to therapy. Most of the preclinical work is based on xenograft models where tumor mis-location and the lack of the immune system represent a major limitation for the translatability of many observations from preclinical models to patients. Genetically engineered mouse models (GEMMs) hold great potential to recapitulate more accurately disease models but their cost and complexity have stymied their widespread adoption in discovery, early or late drug screening programs. Recent advancements in genome editing technology made possible by the discovery and development of the CRISPR/Cas9 system has opened the opportunity of generating disease-relevant animal models by direct mutation of somatic cell genomes in an organ or tissue compartment of interest. The advent of CRISPR/Cas9 has not only aided in the production of conventional GEMMs but has also enabled the bypassing of the construction of these costly strains. In this review, we describe the Somatically Engineered Mouse Models (SEMMs) as a new category of models where a specific oncogenic signature is introduced in somatic cells of an intended organ in a post-natal animal. In addition, SEMMs represent a novel platform to perform in vivo functional genomics studies, here defined as DIVoS (Direct In Vivo Screening).
Collapse
Affiliation(s)
- Anthony Lima
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, United States
- Roche Pharmaceuticals, Basel, Switzerland
| |
Collapse
|
5
|
Zhang J, Ye J, Yuan C, Fu Q, Zhang F, Zhu X, Wang L, Gao P, Shu G, Wang S, Liu Q, Jiang Q. Hydrogen sulfide is a regulator of mammary gland development in prepubescent female mice. Mol Med Rep 2020; 22:4061-4069. [PMID: 33000185 DOI: 10.3892/mmr.2020.11462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of exogenous H2S on mammary gland development in pubescent mice and to explore the underlying mechanism. The mouse mammary epithelial cell line HC11, along with C57BL/6J mice, were treated with different concentrations of sodium hydrosulfide (NaHS), which is a donor of H2S. The HC11 cell viability, pubescent mammary gland development, and the involvement of proliferative proteins and pathways were assessed by CCK‑8 assay, EdU assay, whole mount staining, H&E staining, western blotting and reverse transcription‑quantitative PCR. Both in vitro and in vivo, a low concentration of NaHS (100 µM in vitro; 9 mg/kg in vivo) significantly promoted the viability of HC11 cells and the development of mammary glands by increasing the expression of the proliferative markers cyclin D1/3 and proliferating cell nuclear antigen. However, a high concentration of NaHS (1,000 µM in vitro; 18 mg/kg in vivo) inhibited HC11 cell viability, mammary gland development and the expression levels of proteins involved in proliferation. Subsequent experiments revealed that NaHS regulated the phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (Akt)‑mammalian target of rapamycin (mTOR) signaling pathway during this process. In vivo, intraperitoneal injection of low concentration NaHS (9 mg/kg) activated the PI3K/Akt‑mTOR pathway in mammary glands of pubescent mice, increased the secretion of insulin‑like growth factor 1 (IGF‑1) and estradiol (E2), and then stimulated mammary gland ductal development. Whereas a high concentration of NaHS (18 mg/kg) elicited the opposite effects to those of low‑dose NaHS. In conclusion, the present study demonstrated that exogenous H2S supplied by NaHS may exert bidirectional effects on mammary gland ductal development; promoting ductal development at a low concentration and inhibiting it at a high concentration. The effects of H2S may occur via the intracellular PI3K/Akt‑mTOR signaling pathway, or by regulation of the secretion of IGF‑1 and E2.
Collapse
Affiliation(s)
- Jing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Jiayi Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P.R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
6
|
Saboya M, Jetzt AE, Datar K, Cohick WS. Fetal Alcohol Exposure Alters Mammary Epithelial Cell Subpopulations and Promotes Tumorigenesis. Alcohol Clin Exp Res 2020; 44:831-843. [PMID: 32056248 PMCID: PMC7166183 DOI: 10.1111/acer.14308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fetal alcohol exposure (FAE) increases the risk of mammary tumorigenesis in adult offspring; however, the underlying mechanism remains unknown. This study tested the hypothesis that FAE shifts the mammary epithelial cell (MEC) composition toward one that promotes tumorigenesis. METHODS Pregnant Friend Virus B NIH Jackson dams bred to MMTV-Wnt1 male mice were given ad libitum access to 5% alcohol in 0.2% saccharin solution from GD9-10 and 10% alcohol in 0.2% saccharin from GD11-GD19 or 0.2% saccharin solution from GD9-GD19. Thoracic and inguinal mammary glands from wild-type (WT) and transgenic (Tg) female offspring were harvested at 5 and 10 weeks of age and dissociated to yield a single cell suspension enriched for MECs for flow cytometry, mammosphere assay, and gene analysis. A subset of Tg offspring was followed for tumor formation. RESULTS WT glands of FAE animals exhibited a decreased basal cell population and increased luminal: basal ratio at 10 weeks of age. qRT-PCR analysis of total MECs found that Hey1 mRNA expression was increased in the WT FAE group at 10 weeks of age. In Tg glands, FAE increased the luminal progenitor cell population at 5 weeks of age but did not alter MEC composition at 10 weeks of age. Tertiary mammosphere-forming efficiency was greater in the WT glands of FAE animals at 10 weeks of age. Tumor latency was decreased in the FAE group. Flow cytometry analysis indicated that FAE females developed tumors with an increased basal cell population. CONCLUSIONS These data indicate that FAE can shift MEC subpopulations, increasing the proportion of cells that are potentially vulnerable to transformation and affecting cancer risk.
Collapse
Affiliation(s)
- Mariana Saboya
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Amanda E Jetzt
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Ketaki Datar
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Wendie S Cohick
- From the, The Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
7
|
Romagnoli M, Bresson L, Di-Cicco A, Pérez-Lanzón M, Legoix P, Baulande S, de la Grange P, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, Deugnier MA, Glukhova MA, Faraldo MM. Laminin-binding integrins are essential for the maintenance of functional mammary secretory epithelium in lactation. Development 2020; 147:dev.181552. [DOI: 10.1242/dev.181552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
Integrin dimers α3/β1, α6/β1 and α6/β4 are the mammary epithelial cell receptors for laminins, which are major components of the mammary basement membrane. The roles of specific basement membrane components and their integrin receptors in the regulation of functional gland development have not been analyzed in detail. To investigate the functions of laminin-binding integrins, we obtained mutant mice with mammary luminal cell-specific deficiencies of the α3 and α6 integrin chains generated by the Cre-Lox approach. During pregnancy, mutant mice displayed decreased luminal progenitor activity and retarded lobulo-alveolar development. Mammary glands appeared functional at the onset of lactation in mutant mice, however myoepithelial cell morphology was markedly altered, suggesting cellular compensation mechanisms involving cytoskeleton reorganization. Notably, lactation was not sustained in mutant females, and the glands underwent precocious involution. Inactivation of the p53 gene rescued the growth defects but did not restore lactogenesis in mutant mice. These results suggest that the p53 pathway is involved in the control of mammary cell proliferation and survival downstream of laminin-binding integrins and underline an essential role of cell interactions with laminin for lactogenic differentiation.
Collapse
Affiliation(s)
- Mathilde Romagnoli
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - María Pérez-Lanzón
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Patricia Legoix
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/ULP, F-67404 Illkirch, France
| | - Elisabeth Georges-Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/ULP, F-67404 Illkirch, France
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| | - Marina A. Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| | - Marisa M. Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| |
Collapse
|
8
|
Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels. Nat Commun 2019; 10:2481. [PMID: 31171792 PMCID: PMC6554275 DOI: 10.1038/s41467-019-10509-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromal–epithelial communication are not entirely understood. Here, we identify Sfrp3 as a mediator of the stromal–epithelial communication that is required for normal mouse MG development. Using Drosophila wing imaginal disc, we demonstrate that Sfrp3 functions as an extracellular transporter of Wnts that facilitates their diffusion, and thus, their levels in the boundaries of different compartments. Indeed, loss of Sfrp3 in mice leads to an increase of ductal invasion and branching mirroring an early pregnancy state. Finally, we observe that loss of Sfrp3 predisposes for invasive breast cancer. Altogether, our study shows that Sfrp3 controls MG morphogenesis by modulating the stromal-epithelial cross-talk during pubertal development. The signalling pathways regulating how the mammary gland stroma interacts with the epithelia to then regulate gland development are unclear. Here, the authors identify Sfrp3 as regulating stroma communication via Wnts, on deletion, this increases ductal invasion and initiates an early pregnancy state.
Collapse
|
9
|
Romagnoli M, Cagnet S, Chiche A, Bresson L, Baulande S, de la Grange P, De Arcangelis A, Kreft M, Georges-Labouesse E, Sonnenberg A, Deugnier MA, Raymond K, Glukhova MA, Faraldo MM. Deciphering the Mammary Stem Cell Niche: A Role for Laminin-Binding Integrins. Stem Cell Reports 2019; 12:831-844. [PMID: 30905738 PMCID: PMC6450809 DOI: 10.1016/j.stemcr.2019.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Integrins, which bind laminin, a major component of the mammary basement membrane, are strongly expressed in basal stem cell-enriched populations, but their role in controlling mammary stem cell function remains unclear. We found that stem cell activity, as evaluated in transplantation and mammosphere assays, was reduced in mammary basal cells depleted of laminin receptors containing α3- and α6-integrin subunits. This was accompanied by low MDM2 levels, p53 stabilization, and diminished proliferative capacity. Importantly, disruption of p53 function restored the clonogenicity of α3/α6-integrin-depleted mammary basal stem cells, while inhibition of RHO or myosin II, leading to decreased p53 activity, rescued the mammosphere formation. These data suggest that α3/α6-integrin-mediated adhesion plays an essential role in controlling the proliferative potential of mammary basal stem/progenitor cells through myosin II-mediated regulation of p53 and indicate that laminins might be important components of the mammary stem cell niche. α3- and α6-integrins are required for mammary basal stem cell function p53 is activated in mammary basal cells depleted of α3- and α6-integrins RHO and myosin II mediate p53 activation in α3- and α6-integrin-depleted cells
Collapse
Affiliation(s)
- Mathilde Romagnoli
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Stéphanie Cagnet
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Aurélie Chiche
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, 75005 Paris, France
| | | | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U1258/Université de Strasbourg, 67404 Illkirch, France
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Elisabeth Georges-Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104/INSERM U1258/Université de Strasbourg, 67404 Illkirch, France
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Karine Raymond
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 Rue d'Ulm, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Inserm, Paris, 75013 Paris, France.
| |
Collapse
|
10
|
Amphiregulin regulates proliferation and migration of HER2-positive breast cancer cells. Cell Oncol (Dordr) 2017; 41:159-168. [PMID: 29181633 DOI: 10.1007/s13402-017-0363-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Tumor initiation and progression rely on cellular proliferation and migration. Many factors are involved in these processes, including growth factors. Amphiregulin (AREG) is involved in normal mammary development and the development of estrogen receptor (ER)-positive breast cancer. The aim of this project was to determine if AREG is involved in the proliferation and progression of HER2-positive breast cancer. METHODS Mouse cell lines MMTV-neu, HC-11 and COMMA-D, as well as human cell lines MCF10A, SKBR3, HCC1954 and BT474 were used. Real-time PCR was used to quantify AREG expression and neutralizing antibodies were used to reduce the autocrine/paracrine effects of AREG. Transfections using siRNA and shRNA were used to knockdown AREG expression in the cancer cell lines. Free-floating sphere formation, colony forming, scratch wound and Transwell assays were used to assess the proliferation, tumor forming and migratory capacities of transfected cancer cells. RESULTS We found AREG expression in both normal epithelial cell lines and tumor-derived cell lines. Knockdown of AREG protein expression resulted in reduced sphere sizes and reduced sphere numbers in both mouse and human cancer cells that overexpress erbB2/HER2. AREG was found to be involved in cancer cell migration and invasion. In addition, we found that AREG expression knockdown resulted in different migration capacities in normal and erbB2/HER2 overexpressing cancer cells. CONCLUSIONS Based on our results we conclude that AREG is involved in regulating the proliferation and migration of erbB2/HER2-positive breast cancer cells.
Collapse
|
11
|
Wang C, Christin JR, Oktay MH, Guo W. Lineage-Biased Stem Cells Maintain Estrogen-Receptor-Positive and -Negative Mouse Mammary Luminal Lineages. Cell Rep 2017; 18:2825-2835. [PMID: 28329676 DOI: 10.1016/j.celrep.2017.02.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/08/2017] [Accepted: 02/23/2017] [Indexed: 02/02/2023] Open
Abstract
Delineating the mammary differentiation hierarchy is important for the study of mammary gland development and tumorigenesis. Mammary luminal cells are considered a major origin of human breast cancers. However, how estrogen-receptor-positive (ER+) and ER- luminal cells are developed and maintained remains poorly understood. The prevailing model suggests that a common stem/progenitor cell generates both cell types. Through genetic lineage tracing in mice, we find that SOX9-expressing cells specifically contribute to the development and maintenance of ER- luminal cells and, to a lesser degree, basal cells. In parallel, PROM1-expressing cells give rise only to ER+ luminal cells. Both SOX9+ and PROM1+ cells specifically sustain their respective lineages even after pregnancy-caused tissue remodeling or serial transplantation, demonstrating characteristic properties of long-term repopulating stem cells. Thus, our data reveal that mouse mammary ER+ and ER- luminal cells are two independent lineages that are maintained by distinct stem cells, providing a revised mammary epithelial cell hierarchy.
Collapse
Affiliation(s)
- Chunhui Wang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Timmermans-Sprang EPM, Gracanin A, Mol JA. Molecular Signaling of Progesterone, Growth Hormone, Wnt, and HER in Mammary Glands of Dogs, Rodents, and Humans: New Treatment Target Identification. Front Vet Sci 2017; 4:53. [PMID: 28451590 PMCID: PMC5389977 DOI: 10.3389/fvets.2017.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Mammary tumors are the most common form of neoplasia in the bitch. Female dogs are protected when they are spayed before the first estrus cycle, but this effect readily disappears and is already absent when dogs are spayed after the second heat. As the ovaries are removed during spaying, ovarian steroids are assumed to play an essential role in tumor development. The sensitivity toward tumor development is already present during early life, which may be caused by early mutations in stem cells during the first estrus cycles. Later on in life, tumors arise that are mostly steroid-receptor positive, although a small subset of tumors overexpressing human epidermal growth factor 2 (HER2) and some lacking estrogen receptor, progesterone receptor (PR), and HER2 (triple negative) are present, as is the situation in humans. Progesterone (P4), acting through PR, is the major steroid involved in outgrowth of mammary tissue. PRs are expressed in two forms, the progesterone receptor A (PRA) and progesterone receptor B (PRB) isoforms derived from splice variants from a single gene. The dog and the whole family of canids have only a functional PRA isoform, whereas the PRB isoform, if expressed at all, is devoid of intrinsic biological activity. In human breast cancer, overexpression of the PRA isoform is related to more aggressive carcinomas making the dog a unique model to study PRA-related mammary cancer. Administration of P4 to adult dogs results in local mammary expression of growth hormone (GH) and wing less-type mouse mammary tumor virus integration site family 4 (Wnt4). Both proteins play a role in activation of mammary stem cells. In this review, we summarize what is known on P4, GH, and Wnt signaling in canine mammary cancer, how the family of HER receptors could interact with this signaling, and what this means for comparative and translational oncological aspects of human breast cancer development.
Collapse
Affiliation(s)
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Zhao C, Cai S, Shin K, Lim A, Kalisky T, Lu WJ, Clarke MF, Beachy PA. Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells. Science 2017; 356:science.aal3485. [PMID: 28280246 DOI: 10.1126/science.aal3485] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
The stem cell niche is a complex local signaling microenvironment that sustains stem cell activity during organ maintenance and regeneration. The mammary gland niche must support its associated stem cells while also responding to systemic hormonal regulation that triggers pubertal changes. We find that Gli2, the major Hedgehog pathway transcriptional effector, acts within mouse mammary stromal cells to direct a hormone-responsive niche signaling program by activating expression of factors that regulate epithelial stem cells as well as receptors for the mammatrophic hormones estrogen and growth hormone. Whereas prior studies implicate stem cell defects in human disease, this work shows that niche dysfunction may also cause disease, with possible relevance for human disorders and in particular the breast growth pathogenesis associated with combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Chen Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kunyoo Shin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyumgbuk 37673, South Korea
| | - Agnes Lim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomer Kalisky
- Faculty of Engineering and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Mammary stem cells: angels or demons in mammary gland? Signal Transduct Target Ther 2017; 2:16038. [PMID: 29263909 PMCID: PMC5661614 DOI: 10.1038/sigtrans.2016.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the ‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).
Collapse
|
15
|
Phenotypic and Molecular Alterations in the Mammary Tissue of R-Spondin1 Knock-Out Mice during Pregnancy. PLoS One 2016; 11:e0162566. [PMID: 27611670 PMCID: PMC5017653 DOI: 10.1371/journal.pone.0162566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023] Open
Abstract
R-spondin1 (Rspo1) is a member of a secreted protein family which has pleiotropic functions in development and stem cell growth. Rspo1 knock-out mice are sex-reversed, but some remain sub-fertile, so they fail to nurse their pups. A lack of Rspo1 expression in the mammary gland results in an absence of duct side-branching development and defective alveolar formation. The aim of this study was to characterize the phenotypic and molecular alterations of mammary gland due to Rspo1 knock-out. Using the transcriptional profiling of mammary tissues, we identified misregulated genes in the mammary gland of Rspo1 knock-out mice during pregnancy. A stronger expression of mesenchymal markers was observed, without modifications to the structure of mammary epithelial tissue. Mammary epithelial cell immunohistochemical analysis revealed a persistence of virgin markers, which signify a delay in cell differentiation. Moreover, serial transplantation experiments showed that Rspo1 is associated with a regenerative potential of mammary epithelial cell control. Our finding also highlights the negatively regulated expression of Rspo1’s partners, Lgr4 and RNF43, in the mammary gland during pregnancy. Moreover, we offer evidence that Tgf-β signalling is modified in the absence of Rspo1. Taken together, our results show an abrupt halt or delay to mammary development during pregnancy due to the loss of a further differentiated function.
Collapse
|
16
|
De Cock JM, Shibue T, Dongre A, Keckesova Z, Reinhardt F, Weinberg RA. Inflammation Triggers Zeb1-Dependent Escape from Tumor Latency. Cancer Res 2016; 76:6778-6784. [PMID: 27530323 DOI: 10.1158/0008-5472.can-16-0608] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/19/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Abstract
The emergence of metastatic disease in cancer patients many years or decades after initial successful treatment of primary tumors is well documented but poorly understood at the molecular level. Recent studies have begun exploring the cell-intrinsic programs, causing disseminated tumor cells to enter latency and the cellular signals in the surrounding nonpermissive tissue microenvironment that maintain the latent state. However, relatively little is known about the mechanisms that enable disseminated tumor cells to escape cancer dormancy or tumor latency. We describe here an in vivo model of solitary metastatic latency in the lung parenchyma. The induction of a localized inflammation in the lungs, initiated by lipopolysaccharide treatment, triggers the awakening of these cells, which develop into macroscopic metastases. The escape from latency is dependent on the expression of Zeb1, a key regulator of the epithelial-to-mesenchymal transition (EMT). Furthermore, activation of the EMT program on its own, as orchestrated by Zeb1, is sufficient to incite metastatic outgrowth by causing carcinoma cells to enter stably into a metastasis-initiating cell state. Cancer Res; 76(23); 6778-84. ©2016 AACR.
Collapse
Affiliation(s)
- Jasmine M De Cock
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tsukasa Shibue
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Zuzana Keckesova
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,MIT Ludwig Center for Molecular Oncology, Cambridge, Massachusetts
| |
Collapse
|
17
|
George AL, Boulanger CA, Smith GH. Telomerase and estrogen-sensing activities are essential for continued mammary growth in vivo but dispensable for "reprogramming" neural stem cells. Aging (Albany NY) 2016; 8:1353-63. [PMID: 27347776 PMCID: PMC4993335 DOI: 10.18632/aging.100985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/10/2016] [Indexed: 11/25/2022]
Abstract
It has been proposed that the erosion of telomere length is a limiting factor in replicative capacity and important in cell senescence. To determine if this activity was essential in the mouse mammary gland in vivo, we serially transplanted mammary fragments from wild type (TER+/+), heterozygous (TER+/−), and homozygous (TER−/−) mammary tissues into the cleared mammary fat pads of immune-compromised nude mice. Individual implants from both homozygous and heterozygous TER null outgrowths showed growth senescence beginning at transplant generation two, earlier than implants from TER+/+ mammary glands which continued to show growth. This result suggests that either mammary epithelial stem cells maintain their telomere length in order to self renew, or that the absence or reduction of telomerase template results in more frequent death/extinction of stem cells during symmetric divisions. A third possibility is the inability of signaling cells in the niche to replicate resulting in reduction of the maintenance signals necessary for stem cell renewal. Consistent with this, examination of senescent outgrowths revealed the absence of estrogen receptor alpha (ERα+) epithelium although progesterone receptor (PR+) cells were abundant. Despite their inability to establish mammary growth in vivo, TER+/− cells were able to direct neural stem cells to mammary cell fates.
Collapse
Affiliation(s)
- Andrea L George
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Corinne A Boulanger
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gilbert H Smith
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Jonas W, Woodside B. Physiological mechanisms, behavioral and psychological factors influencing the transfer of milk from mothers to their young. Horm Behav 2016; 77:167-81. [PMID: 26232032 DOI: 10.1016/j.yhbeh.2015.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
This article is part of a Special Issue "Parental Care".Producing milk to support the growth of their young is a central element of maternal care in mammals. In spite of the facts that ecological constraints influence nursing frequency, length of time until weaning and the composition of milk, there is considerable similarity in the anatomy and physiology of milk production and delivery across mammalian species. Here we provide an overview of cross species variation in nursing patterns and milk composition as well as the mechanisms underlying mammary gland development, milk production and letdown. Not all women breastfeed their infants, thus in later sections we review studies of factors that facilitate or impede the initiation and duration of breastfeeding. The results of these investigations suggest that the decisions to initiate and maintain breastfeeding are influenced by an array of personal, social and biological factors. Finally, studies comparing the development of breastfed and formula fed infants as well as those investigating associations between breastfeeding, maternal health and mother/infant interaction are reviewed. Leading health agencies including the World Health Organization and CDC advocate breastfeeding for at least the first 6months postpartum. To achieve these rates will require not only institutional support but also a focus on individual mother/infant dyads and their experience.
Collapse
Affiliation(s)
- Wibke Jonas
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Fraser Mustard Institute of Human Development, University of Toronto, Toronto, Canada
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Ferrari N, Riggio AI, Mason S, McDonald L, King A, Higgins T, Rosewell I, Neil JC, Smalley MJ, Sansom OJ, Morris J, Cameron ER, Blyth K. Runx2 contributes to the regenerative potential of the mammary epithelium. Sci Rep 2015; 5:15658. [PMID: 26489514 PMCID: PMC4614940 DOI: 10.1038/srep15658] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling.
Collapse
Affiliation(s)
- Nicola Ferrari
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Alessandra I. Riggio
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Susan Mason
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Ayala King
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Theresa Higgins
- Cancer Research UK London Research Institute, Lincoln’s Inn Fields, London, WC2A 3LY
| | - Ian Rosewell
- Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD
| | - James C. Neil
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, CF24 4HQ
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Joanna Morris
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Ewan R. Cameron
- University of Glasgow, Garscube Estate, Bearsden, Glasgow, G61 1QH
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| |
Collapse
|
20
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
21
|
Boyle ST, Faulkner JW, McColl SR, Kochetkova M. The chemokine receptor CCR6 facilitates the onset of mammary neoplasia in the MMTV-PyMT mouse model via recruitment of tumor-promoting macrophages. Mol Cancer 2015; 14:115. [PMID: 26047945 PMCID: PMC4464622 DOI: 10.1186/s12943-015-0394-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Background The expression of the chemokine receptor CCR6 has been previously correlated with higher grades and stages of breast cancer and decreased relapse-free survival. Also, its cognate chemokine ligand CCL20 has been reported to induce proliferation of cultured human breast epithelial cells. Methods To establish if CCR6 plays a functional role in mammary tumorigenesis, a bigenic MMTV-PyMT CCR6-null mouse was generated and mammary tumor development was assessed. Levels of tumor-infiltrating immune cells within tumor-bearing mammary glands from MMTV-PyMT Ccr6WT and Ccr6−/− mice were also analyzed. Results Deletion of CCR6 delayed tumor onset, significantly reduced the extent of initial hyperplastic outgrowth, and decreased tumor incidence in PyMT transgenic mice. CCR6 was then shown to promote the recruitment of pro-tumorigenic macrophages to the tumor site, facilitating the onset of neoplasia. Conclusions This study delineated for the first time a role for CCR6 in the development of breast cancer, and demonstrated a critical function for this receptor in maintaining the pro-tumorigenic cancer microenvironment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0394-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah T Boyle
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica W Faulkner
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R McColl
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia, Australia
| | - Marina Kochetkova
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
22
|
Tornillo G, Smalley MJ. ERrrr…where are the progenitors? Hormone receptors and mammary cell heterogeneity. J Mammary Gland Biol Neoplasia 2015; 20:63-73. [PMID: 26193872 PMCID: PMC4595529 DOI: 10.1007/s10911-015-9336-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023] Open
Abstract
The mammary epithelium is a highly heterogenous and dynamic tissue that includes a range of cell types with varying levels of proliferative capacity and differentiation potential, from stem to committed progenitor and mature cells. Generation of mature cells through expansion and specification of immature precursors is driven by hormonal and local stimuli. Intriguingly, although circulating hormones can be directly sensed only by a subset of mammary cells, they also regulate the behaviour of cells lacking their cognate receptors through paracrine mechanisms. Thus, mapping the hormonal signalling network on to the emerging mammary cell hierarchy appears to be a difficult task. Nevertheless, a first step towards a better understanding is the characterization of the hormone receptor expression pattern across individual cell types in the mammary epithelium. Here we review the most relevant findings on the cellular distribution of hormone receptors in the mammary gland, taking into account differences between mice and humans, the methods employed to assess receptor expression as well as the variety of approaches used to resolve the mammary cell heterogeneity.
Collapse
Affiliation(s)
- Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff, CF24 4HQ, UK.
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff, CF24 4HQ, UK
| |
Collapse
|
23
|
BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth. Dev Cell 2015; 33:125-35. [PMID: 25865348 DOI: 10.1016/j.devcel.2015.02.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 12/17/2014] [Accepted: 02/24/2015] [Indexed: 11/22/2022]
Abstract
During embryogenesis, ectodermal stem cells adopt different fates and form diverse ectodermal organs, such as teeth, hair follicles, mammary glands, and salivary glands. Interestingly, these ectodermal organs differ in their tissue homeostasis, which leads to differential abilities for continuous growth postnatally. Mouse molars lose the ability to grow continuously, whereas incisors retain this ability. In this study, we found that a BMP-Smad4-SHH-Gli1 signaling network may provide a niche supporting transient Sox2+ dental epithelial stem cells in mouse molars. This mechanism also plays a role in continuously growing mouse incisors. The differential fate of epithelial stem cells in mouse molars and incisors is controlled by this BMP/SHH signaling network, which partially accounts for the different postnatal growth potential of molars and incisors. Collectively, our study highlights the importance of crosstalk between two signaling pathways, BMP and SHH, in regulating the fate of epithelial stem cells during organogenesis.
Collapse
|
24
|
Sharma N, Kim JH, Sodhi SS, Luong DH, Kim SW, Oh SJ, Jeong DK. Differentiation dynamics of mammary epithelial stem cells from Korean holstein dairy cattle under ECM-free conditions. J Biomol Struct Dyn 2015; 33:2633-54. [DOI: 10.1080/07391102.2014.1003197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Prokesch A, Smorlesi A, Perugini J, Manieri M, Ciarmela P, Mondini E, Trajanoski Z, Kristiansen K, Giordano A, Bogner-Strauss J, Cinti S. Molecular aspects of adipoepithelial transdifferentiation in mouse mammary gland. Stem Cells 2014; 32:2756-2766. [PMID: 24898182 PMCID: PMC6433276 DOI: 10.1002/stem.1756] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 04/20/2014] [Indexed: 01/09/2023]
Abstract
The circular, reversible conversion of the mammary gland during pregnancy and involution is a paradigm of physiological tissue plasticity. The two most prominent cell types in mammary gland, adipocytes and epithelial cells, interact in an orchestrated way to coordinate this process. Previously, we showed that this conversion is at least partly achieved by reciprocal transdifferentiation between mammary adipocytes and lobulo-alveolar epithelial cells. Here, we aim to shed more light on the regulators of mammary transdifferentiation. Using immunohistochemistry with cell type-specific lipid droplet-coating markers (Perilipin1 and 2), we show that cells with an intermediate adipoepithelial phenotype exist during and after pregnancy. Nuclei of cells with similar transitional structural characteristics are highly positive for Elf5, a master regulator of alveologenesis. In cultured adipocytes, we could show that transient and stable ectopic expression of Elf5 induces expression of the milk component whey acidic protein, although the general adipocyte phenotype is not affected suggesting that additional pioneering factors are necessary. Furthermore, the lack of transdifferentiation of adipocytes during pregnancy after clearing of the epithelial compartment indicates that transdifferentiation signals must emanate from the epithelial part. To explore candidate genes potentially involved in the transdifferentiation process, we devised a high-throughput gene expression study to compare cleared mammary fat pads with developing, contralateral controls at several time points during pregnancy. Incorporation of bioinformatic predictions of secretory proteins provides new insights into possible paracrine signaling pathways and downstream transdifferentiation factors. We discuss a potential role for osteopontin (secreted phosphoprotein 1 [Spp1]) signaling through integrins to induce adipoepithelial transdifferentiation.
Collapse
Affiliation(s)
- A. Prokesch
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse, Graz, Austria
- Institute of Biochemistry, Graz University of Technology, Petersgasse, Graz, Austria
| | - A. Smorlesi
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Italy
| | - J. Perugini
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Italy
| | - M. Manieri
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Italy
| | - P. Ciarmela
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Italy
| | - E. Mondini
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Italy
| | - Z. Trajanoski
- Biocenter, Division of Bioinformatics, Innsbruck Medical University, Innrain, Innsbruck, Austria
| | - K. Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - A. Giordano
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Italy
| | - J.G. Bogner-Strauss
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse, Graz, Austria
- Institute of Biochemistry, Graz University of Technology, Petersgasse, Graz, Austria
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Italy
- Center of Obesity, University of Ancona (Politecnica delle Marche)–United Hospitals, Ancona, Italy
| |
Collapse
|
26
|
Owens TW, Rogers RL, Best S, Ledger A, Mooney AM, Ferguson A, Shore P, Swarbrick A, Ormandy CJ, Simpson PT, Carroll JS, Visvader J, Naylor MJ. Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Res 2014; 74:5277-5286. [PMID: 25056120 DOI: 10.1158/0008-5472.can-14-0053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Regulators of differentiated cell fate can offer targets for managing cancer development and progression. Here, we identify Runx2 as a new regulator of epithelial cell fate in mammary gland development and breast cancer. Runx2 is expressed in the epithelium of pregnant mice in a strict temporally and hormonally regulated manner. During pregnancy, Runx2 genetic deletion impaired alveolar differentiation in a manner that disrupted alveolar progenitor cell populations. Conversely, exogenous transgenic expression of Runx2 in mammary epithelial cells blocked milk production, suggesting that the decrease in endogenous Runx2 observed late in pregnancy is necessary for full differentiation. In addition, overexpression of Runx2 drove epithelial-to-mesenchymal transition-like changes in normal mammary epithelial cells, whereas Runx2 deletion in basal breast cancer cells inhibited cellular phenotypes associated with tumorigenesis. Notably, loss of Runx2 expression increased tumor latency and enhanced overall survival in a mouse model of breast cancer, with Runx2-deficient tumors exhibiting reduced cell proliferation. Together, our results establish a previously unreported function for Runx2 in breast cancer that may offer a novel generalized route for therapeutic interventions. Cancer Res; 74(18); 5277-86. ©2014 AACR.
Collapse
Affiliation(s)
- Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Renee L Rogers
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Sarah Best
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3052, Australia
| | - Anita Ledger
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Marie Mooney
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Alison Ferguson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Paul Shore
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Alexander Swarbrick
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Christopher J Ormandy
- Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Peter T Simpson
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Herston, Queensland 4029, Australia
| | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute, Cambridge, CB2 0RE, UK
| | - Jane Visvader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Victoria 3052, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, NSW 2006, Australia.,Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
27
|
Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy. J Immunol Res 2014; 2014:518135. [PMID: 25126584 PMCID: PMC4121106 DOI: 10.1155/2014/518135] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Great hopes have been placed on human pluripotent stem (hPS) cells for therapy. Tissues or organs derived from hPS cells could be the best solution to cure many different human diseases, especially those who do not respond to standard medication or drugs, such as neurodegenerative diseases, heart failure, or diabetes. The origin of hPS is critical and the idea of creating a bank of well-characterized hPS cells has emerged, like the one that already exists for cord blood. However, the main obstacle in transplantation is the rejection of tissues or organ by the receiver, due to the three main immunological barriers: the human leukocyte antigen (HLA), the ABO blood group, and minor antigens. The problem could be circumvented by using autologous stem cells, like induced pluripotent stem (iPS) cells, derived directly from the patient. But iPS cells have limitations, especially regarding the disease of the recipient and possible difficulties to handle or prepare autologous iPS cells. Finally, reaching standards of good clinical or manufacturing practices could be challenging. That is why well-characterized and universal hPS cells could be a better solution. In this review, we will discuss the interest and the feasibility to establish hPS cells bank, as well as some economics and ethical issues.
Collapse
|
28
|
Guo W. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl Med 2014; 3:942-8. [PMID: 24904174 DOI: 10.5966/sctm.2014-0020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence has shown that cancer stem cells (CSCs), the cancer cells that have long-term proliferative potential and the ability to regenerate tumors with phenotypically heterogeneous cell types, are important mediators of tumor metastasis and cancer relapse. In breast cancer, these cells often possess attributes of cells that have undergone an epithelial-mesenchymal transition (EMT). Signaling networks mediated by microRNAs and EMT-inducing transcription factors connect the EMT program with the core stem cell regulatory machineries. These signaling networks are also regulated by extrinsic niche signals that induce and maintain CSCs, contributing to metastatic colonization and promoting the reactivation of dormant tumor cells. Targeting these CSC pathways is likely to improve the efficacy of conventional chemo- and radiotherapies.
Collapse
Affiliation(s)
- Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Abstract
The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.
Collapse
Affiliation(s)
- Qiaoxiang Dong
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA ; Institute of Environmental Safety and Human Health, Wenzhou Medical University, University Town, Wenzhou 325035, China
| | - Lu-Zhe Sun
- Department of Cellular & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78299, USA ; Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX 78299, USA
| |
Collapse
|
30
|
Huebner RJ, Lechler T, Ewald AJ. Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 2014; 141:1085-94. [PMID: 24550116 DOI: 10.1242/dev.103333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary ducts are elongated during development by stratified epithelial structures, known as terminal end buds (TEBs). TEBs exhibit reduced apicobasal polarity and extensive proliferation. A major unanswered question concerns the mechanism by which the simple ductal epithelium stratifies during TEB formation. We sought to elucidate this mechanism using real-time imaging of growth factor-induced stratification in 3D cultures of mouse primary epithelial organoids. We hypothesized that stratification could result from vertical divisions in either the apically positioned luminal epithelial cells or the basally positioned myoepithelial cells. Stratification initiated exclusively from vertical apical cell divisions, both in 3D culture and in vivo. During vertical apical divisions, only the mother cell retained tight junctions and segregated apical membranes. Vertical daughter cells initiated an unpolarized cell population located between the luminal and myoepithelial cells, similar to the unpolarized body cells in the TEB. As stratification and loss of apicobasal polarity are early hallmarks of cancer, we next determined the cellular mechanism of oncogenic stratification. Expression of activated ERBB2 induced neoplastic stratification through analogous vertical divisions of apically positioned luminal epithelial cells. However, ERBB2-induced stratification was accompanied by tissue overgrowth and acute loss of both tight junctions and apical polarity. Expression of phosphomimetic MEK (MEK1DD), a major ERBB2 effector, also induced stratification through vertical apical cell divisions. However, MEK1DD-expressing organoids exhibited normal levels of growth and retained apicobasal polarity. We conclude that both normal and neoplastic stratification are accomplished through receptor tyrosine kinase signaling dependent vertical cell divisions within the luminal epithelial cell layer.
Collapse
Affiliation(s)
- Robert J Huebner
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
31
|
Shore AN, Rosen JM. Regulation of mammary epithelial cell homeostasis by lncRNAs. Int J Biochem Cell Biol 2014; 54:318-30. [PMID: 24680897 DOI: 10.1016/j.biocel.2014.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 01/02/2023]
Abstract
The epithelial cells of the mammary gland develop primarily after birth and undergo surges of hormonally regulated proliferation, differentiation, and apoptosis during both puberty and pregnancy. Thus, the mammary gland is a useful model to study fundamental processes of development and adult tissue homeostasis, such as stem and progenitor cell regulation, cell fate commitment, and differentiation. Long noncoding RNAs (lncRNAs) are emerging as prominent regulators of these essential processes, as their extraordinary versatility allows them to modulate gene expression via diverse mechanisms at both transcriptional and post-transcriptional levels. Not surprisingly, lncRNAs are also aberrantly expressed in cancer and promote tumorigenesis by disrupting vital cellular functions, such as cell cycle, survival, and migration. In this review, we first broadly summarize the functions of lncRNAs in mammalian development and cancer. Then we focus on what is currently known about the role of lncRNAs in mammary gland development and breast cancer. This article is part of a Directed Issue entitled: The Non-coding RNA Revolution.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
32
|
Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres AC. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ 2014; 56:255-75. [PMID: 24635767 DOI: 10.1111/dgd.12126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023]
Abstract
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.
Collapse
Affiliation(s)
- Philip Kaenel
- Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004, Bern, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Yallowitz AR, Alexandrova EM, Talos F, Xu S, Marchenko ND, Moll UM. p63 is a prosurvival factor in the adult mammary gland during post-lactational involution, affecting PI-MECs and ErbB2 tumorigenesis. Cell Death Differ 2014; 21:645-54. [PMID: 24440910 DOI: 10.1038/cdd.2013.199] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023] Open
Abstract
In embryogenesis, p63 is essential to develop mammary glands. In the adult mammary gland, p63 is highly expressed in the basal cell layer that comprises myoepithelial and interspersed stem/progenitor cells, and has limited expression in luminal epithelial cells. In adult skin, p63 has a crucial role in the maintenance of epithelial stem cells. However, it is unclear whether p63 also has an equivalent role as a stem/progenitor cell factor in adult mammary epithelium. We show that p63 is essential in vivo for the survival and maintenance of parity-identified mammary epithelial cells (PI-MECs), a pregnancy-induced heterogeneous population that survives post-lactational involution and contain multipotent progenitors that give rise to alveoli and ducts in subsequent pregnancies. p63+/- glands are normal in virgin, pregnant and lactating states. Importantly, however, during the apoptotic phase of post-lactational involution p63+/- glands show a threefold increase in epithelial cell death, concomitant with increased activation of the oncostatin M/Stat3 and p53 pro-apoptotic pathways, which are responsible for this phase. Thus, p63 is a physiologic antagonist of these pathways specifically in this regressive stage. After the restructuring phase when involution is complete, mammary glands of p63+/- mice again exhibit normal epithelial architecture by conventional histology. However, using Rosa(LSL-LacZ);WAP-Cre transgenics (LSL-LacZ, lox-stop-lox β-galactosidase), a genetic in vivo labeling system for PI-MECs, we find that p63+/- glands have a 30% reduction in the number of PI-MEC progenitors and their derivatives. Importantly, PI-MECs are also cellular targets of pregnancy-promoted ErbB2 tumorigenesis. Consistent with their PI-MEC pool reduction, one-time pregnant p63+/- ErbB2 mice are partially protected from breast tumorigenesis, exhibiting extended tumor-free and overall survival, and reduced tumor multiplicity compared with their p63+/+ ErbB2 littermates. Conversely, in virgin ErbB2 mice p63 heterozygosity provides no survival advantage. In sum, our data establish that p63 is an important survival factor for pregnancy-identified PI-MEC progenitors in breast tissue in vivo.
Collapse
Affiliation(s)
- A R Yallowitz
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - E M Alexandrova
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - F Talos
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - S Xu
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - N D Marchenko
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - U M Moll
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
34
|
Chang THT, Kunasegaran K, Tarulli GA, De Silva D, Voorhoeve PM, Pietersen AM. New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res 2014; 16:R1. [PMID: 24398145 PMCID: PMC3978646 DOI: 10.1186/bcr3593] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Parity-identified mammary epithelial cells (PI-MECs) are an interesting cellular subset because they survive involution and are a presumptive target for transformation by human epidermal growth factor receptor 2 (HER2)/neu in mammary tumors. Depending on the type of assay, PI-MECs have been designated lobule-restricted progenitors or multipotent stem/progenitor cells. PI-MECs were reported to be part of the basal population of mammary epithelium based on flow cytometry. We investigated the cellular identity and lineage potential of PI-MECs in intact mammary glands. Methods We performed a quantitative and qualitative analysis of the contribution of PI-MECs to mammary epithelial cell lineages in pregnant and involuted mammary glands by immunohistochemistry, fluorescence-activated cells sorting (FACS), and quantitative polymerase chain reaction. PI-MECs were labeled by the activation of Whey Acidic Protein (WAP)-Cre during pregnancy that results in permanent expression of yellow fluorescent protein. Results After involution, PI-MECs are present exclusively in the luminal layer of mammary ducts. During pregnancy, PI-MECs contribute to the luminal layer but not the basal layer of alveolar lobules. Strikingly, whereas all luminal estrogen receptor (ER)-negative cells in an alveolus can be derived from PI-MECs, the alveolar ER-positive cells are unlabeled and reminiscent of Notch2-traced L cells. Notably, we observed a significant population of unlabeled alveolar progenitors that resemble PI-MECs based on transcriptional and histological analysis. Conclusions Our demonstration that PI-MECs are luminal cells underscores that not only basal cells display multi-lineage potential in transplantation assays. However, the lineage potential of PI-MECs in unperturbed mammary glands is remarkably restricted to luminal ER-negative cells of the secretory alveolar lineage. The identification of an unlabeled but functionally similar population of luminal alveolar progenitor cells raises the question of whether PI-MECs are a unique population or the result of stochastic labeling. Interestingly, even when all luminal ER-negative cells of an alveolus are PI-MEC-derived, the basal cells and hormone-sensing cells are derived from a different source, indicating that cooperative outgrowth of cells from different lineages is common in alveologenesis.
Collapse
|
35
|
Gallego-Ortega D, Oakes SR, Lee HJ, Piggin CL, Ormandy CJ. ELF5, normal mammary development and the heterogeneous phenotypes of breast cancer. BREAST CANCER MANAGEMENT 2013. [DOI: 10.2217/bmt.13.50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMMARY The ETS transcription factor ELF5 specifies the formation of the secretory cell lineage of the mammary gland during pregnancy, by directing cell fate decisions of the mammary progenitor cells. The decision-making activity continues in breast cancer, where in luminal breast cancer cells forced ELF5 expression suppresses estrogen sensitivity and shifts gene expression toward the basal molecular subtype. The development of anti-estrogen resistance in luminal breast cancer is accompanied by increased expression of ELF5 and acquired dependence on ELF5 for continued proliferation, providing a potential new therapeutic target or prognostic marker to improve the treatment of this stage of the disease. Forced ELF5 expression suppresses the mesenchymal phenotype, making cells more epithelial and producing lower rates of invasion and motility. Conversely, loss of ELF5 promotes metastasis, with a clear corollary in the claudin-low subtype of breast cancer, which does not express ELF5 and is highly metastatic, or during the final stages of tumor progression, where loss of ELF5 expression may be involved in the acquisition of the lethal phenotype. In circumstances where ELF5 expression increases in parallel with metastatic potential, such as anti-estrogen resistant luminal breast cancers and basal breast cancer, there is much more to be understood about ELF5 and metastasis.
Collapse
Affiliation(s)
- David Gallego-Ortega
- Cancer Research Program, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
- St Vincent‘s Clinical School, St Vincent‘s Hospital Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Samantha R Oakes
- Cancer Research Program, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
- St Vincent‘s Clinical School, St Vincent‘s Hospital Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Heather J Lee
- Cancer Research Program, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
- St Vincent‘s Clinical School, St Vincent‘s Hospital Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Catherine L Piggin
- Cancer Research Program, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
- St Vincent‘s Clinical School, St Vincent‘s Hospital Faculty of Medicine, University of New South Wales, NSW, Australia
| | - Christopher J Ormandy
- Cancer Research Program, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
36
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
37
|
Rauner G, Leviav A, Mavor E, Barash I. Development of Foreign Mammary Epithelial Morphology in the Stroma of Immunodeficient Mice. PLoS One 2013; 8:e68637. [PMID: 23825700 PMCID: PMC3688997 DOI: 10.1371/journal.pone.0068637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/03/2013] [Indexed: 01/13/2023] Open
Abstract
Systemic growth and branching stimuli, and appropriate interactions with the host stroma are essential for the development of foreign epithelia in the mammary gland of immunodeficient mice. These factors were manipulated to promote and investigate the generation of representative bovine epithelial morphology in the transplanted mouse mammary stroma. The bovine mammary epithelium is unique in its commitment to rapid proliferation and high rate of differentiation. Its morphological organization within a fibrotic stroma resembles that of the human breast, and differs significantly from the rudimentary ductal network that penetrates a fatty stroma in mice. Transplantation of bovine mammary epithelial cells into the cleared mammary fat pad of NOD-SCID mice led to continuous growth of epithelial structures. Multilayered hollow spheres developed within fibrotic areas, but in contrast to mice, no epithelial organization was formed between adipocytes. The multilayered spheres shared characteristics with the heifer gland’s epithelium, including lumen size, cell proliferation, cytokeratin orientation, estrogen/progesterone receptor expression and localization, and milk protein synthesis. However, they did not extend into the mouse fat pad via ductal morphology. Pre-transplantation of fibroblasts increased the number of spheres, but did not promote extension of bovine morphology. The bovine cells preserved their fate and rarely participated in chimeric mouse–bovine outgrowths. Nevertheless, a single case of terminal ductal lobuloalveolar unit (TDLU) development was recorded in mice treated with estrogen and progesterone, implying the feasibility of this representative bovine morphology’s development. In vitro extension of these studies revealed paracrine inhibition of bovine epithelial mammosphere development by adipocytes, which was also generalized to breast epithelial mammosphere formation. The rescue of mammosphere development by fibroblast growth factor administration evidences an active equilibrium between inhibitory and supportive effects exerted by the adipose and fibrotic regions of the stroma, respectively, which determines the development of foreign epithelium.
Collapse
Affiliation(s)
- Gat Rauner
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amos Leviav
- Department of Plastic Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Eliezer Mavor
- Department of Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel
- * E-mail:
| |
Collapse
|
38
|
Meier-Abt F, Milani E, Roloff T, Brinkhaus H, Duss S, Meyer DS, Klebba I, Balwierz PJ, van Nimwegen E, Bentires-Alj M. Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Res 2013; 15:R36. [PMID: 23621987 PMCID: PMC3672662 DOI: 10.1186/bcr3419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/20/2013] [Indexed: 12/11/2022] Open
Abstract
Introduction Early pregnancy has a strong protective effect against breast cancer in humans and rodents, but the underlying mechanism is unknown. Because breast cancers are thought to arise from specific cell subpopulations of mammary epithelia, we studied the effect of parity on the transcriptome and the differentiation/proliferation potential of specific luminal and basal mammary cells in mice. Methods Mammary epithelial cell subpopulations (luminal Sca1-, luminal Sca1+, basal stem/progenitor, and basal myoepithelial cells) were isolated by flow cytometry from parous and age-matched virgin mice and examined by using a combination of unbiased genomics, bioinformatics, in vitro colony formation, and in vivo limiting dilution transplantation assays. Specific findings were further investigated with immunohistochemistry in entire glands of parous and age-matched virgin mice. Results Transcriptome analysis revealed an upregulation of differentiation genes and a marked decrease in the Wnt/Notch signaling ratio in basal stem/progenitor cells of parous mice. Separate bioinformatics analyses showed reduced activity for the canonical Wnt transcription factor LEF1/TCF7 and increased activity for the Wnt repressor TCF3. This finding was specific for basal stem/progenitor cells and was associated with downregulation of potentially carcinogenic pathways and a reduction in the proliferation potential of this cell subpopulation in vitro and in vivo. As a possible mechanism for decreased Wnt signaling in basal stem/progenitor cells, we found a more than threefold reduction in the expression of the secreted Wnt ligand Wnt4 in total mammary cells from parous mice, which corresponded to a similar decrease in the proportion of Wnt4-secreting and estrogen/progesterone receptor-positive cells. Because recombinant Wnt4 rescued the proliferation defect of basal stem/progenitor cells in vitro, reduced Wnt4 secretion appears to be causally related to parity-induced alterations of basal stem/progenitor cell properties in mice. Conclusions By revealing that parity induces differentiation and downregulates the Wnt/Notch signaling ratio and the in vitro and in vivo proliferation potential of basal stem/progenitor cells in mice, our study sheds light on the long-term consequences of an early pregnancy. Furthermore, it opens the door to future studies assessing whether inhibitors of the Wnt pathway may be used to mimic the parity-induced protective effect against breast cancer.
Collapse
|
39
|
Ferrari N, McDonald L, Morris JS, Cameron ER, Blyth K. RUNX2 in mammary gland development and breast cancer. J Cell Physiol 2013; 228:1137-42. [PMID: 23169547 DOI: 10.1002/jcp.24285] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Abstract
Runx2 is best known as an essential factor in osteoblast differentiation and bone development but, like many other transcription factors involved in development, is known to operate over a much wider tissue range. Our understanding of these other aspects of Runx2 function is still at a relatively early stage and the importance of its role in cell fate decisions and lineage maintenance in non-osseous tissues is only beginning to emerge. One such tissue is the mammary gland, where Runx2 is known to be expressed and participate in the regulation of mammary specific genes. Furthermore, differential and temporal expression of this gene is observed during mammary epithelial differentiation in vivo, strongly indicative of an important functional role. Although the precise nature of that role remains elusive, preliminary evidence hints at possible involvement in the regulation of mammary stem and/or progenitor cells. As with many genes important in regulating cell fate, RUNX2 has also been linked to metastatic cancer where in some established breast cell lines, retention of expression is associated with a more invasive phenotype. More recently, expression analysis has been extended to primary breast cancers where high levels of RUNX2 align with a specific subtype of the disease. That RUNX2 expression correlates with the so called "Triple Negative" subtype is particularly interesting given the known cross talk between Runx2 and estrogen receptor signaling pathways. This review summaries our current understanding of Runx2 in mammary gland development and cancer, and postulates a role that may link both these processes.
Collapse
Affiliation(s)
- Nicola Ferrari
- The Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | | | | | | | |
Collapse
|
40
|
Janzen DM, Cheng D, Schafenacker AM, Paik DY, Goldstein AS, Witte ON, Jaroszewicz A, Pellegrini M, Memarzadeh S. Estrogen and progesterone together expand murine endometrial epithelial progenitor cells. Stem Cells 2013; 31:808-22. [PMID: 23341289 PMCID: PMC3774116 DOI: 10.1002/stem.1337] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 01/27/2023]
Abstract
Synchronous with massive shifts in reproductive hormones, the uterus and its lining the endometrium expand to accommodate a growing fetus during pregnancy. In the absence of an embryo the endometrium, composed of epithelium and stroma, undergoes numerous hormonally regulated cycles of breakdown and regeneration. The hormonally mediated regenerative capacity of the endometrium suggests that signals that govern the growth of endometrial progenitors must be regulated by estrogen and progesterone. Here, we report an antigenic profile for isolation of mouse endometrial epithelial progenitors. These cells are EpCAM(+) CD44(+) ITGA6(hi) Thy1(-) PECAM1(-) PTPRC(-) Ter119(-), comprise a minor subpopulation of total endometrial epithelia and possess a gene expression profile that is unique and different from other cells of the endometrium. The epithelial progenitors of the endometrium could regenerate in vivo, undergo multilineage differentiation and proliferate. We show that the number of endometrial epithelial progenitors is regulated by reproductive hormones. Coadministration of estrogen and progesterone dramatically expanded the endometrial epithelial progenitor cell pool. This effect was not observed when estrogen or progesterone was administered alone. Despite the remarkable sensitivity to hormonal signals, endometrial epithelial progenitors do not express estrogen or progesterone receptors. Therefore, their hormonal regulation must be mediated through paracrine signals resulting from binding of steroid hormones to the progenitor cell niche. Discovery of signaling defects in endometrial epithelial progenitors or their niche can lead to development of better therapies in diseases of the endometrium.
Collapse
Affiliation(s)
- DM Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - D Cheng
- The Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | - AM Schafenacker
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - DY Paik
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - AS Goldstein
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - ON Witte
- The Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - A Jaroszewicz
- Department of Molecular, Cell and Developmental Biology
| | - M Pellegrini
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology
| | - S Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| |
Collapse
|
41
|
Borena BM, Bussche L, Burvenich C, Duchateau L, Van de Walle GR. Mammary stem cell research in veterinary science: an update. Stem Cells Dev 2013; 22:1743-51. [PMID: 23360296 DOI: 10.1089/scd.2012.0677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammary gland is an organ with a remarkable regenerative capacity that can undergo multiple cycles of proliferation, lactation, and involution. Growing evidence suggests that these changes are driven by the coordinated division and differentiation of mammary stem cell populations (MaSC). Whereas information regarding MaSC and their role in comparative mammary gland physiology is readily available in human and mice, such information remains scarce in most veterinary mammal species such as cows, horses, sheep, goats, pigs, and dogs. We believe that a better knowledge on the MaSC in these species will not only help to gain more insights into mammary gland (patho) physiology in veterinary medicine, but will also be of value for human medicine. Therefore, this review summarizes the current knowledge on stem cell isolation and characterization in different mammals of veterinary importance.
Collapse
Affiliation(s)
- Bizunesh M Borena
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
42
|
Milani ES, Brinkhaus H, Dueggeli R, Klebba I, Mueller U, Stadler M, Kohler H, Smalley MJ, Bentires-Alj M. Protein tyrosine phosphatase 1B restrains mammary alveologenesis and secretory differentiation. Development 2013; 140:117-25. [DOI: 10.1242/dev.082941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tyrosine phosphorylation plays a fundamental role in mammary gland development. However, the role of specific tyrosine phosphatases in controlling mammary cell fate remains ill defined. We have identified protein tyrosine phosphatase 1B (PTP1B) as an essential regulator of alveologenesis and lactogenesis. PTP1B depletion increased the number of luminal mammary progenitors in nulliparous mice, leading to enhanced alveoli formation upon pregnancy. Mechanistically, Ptp1b deletion enhanced the expression of progesterone receptor and phosphorylation of Stat5, two key regulators of alveologenesis. Furthermore, glands from Ptp1b knockout mice exhibited increased expression of milk proteins during pregnancy due to enhanced Stat5 activation. These findings reveal that PTP1B constrains the number of mammary progenitors and thus prevents inappropriate onset of alveologenesis in early pregnancy. Moreover, PTP1B restrains the expression of milk proteins during pregnancy and thus prevents premature lactogenesis. Our work has implications for breast tumorigenesis because Ptp1b deletion has been shown to prevent or delay the onset of mammary tumors.
Collapse
Affiliation(s)
- Emanuela S. Milani
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
- University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Heike Brinkhaus
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Regula Dueggeli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Ina Klebba
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Urs Mueller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF1 3AX, UK
| | - Mohamed Bentires-Alj
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstr. 66, 4058 Basel, Switzerland
| |
Collapse
|
43
|
Sampayo R, Recouvreux S, Simian M. The hyperplastic phenotype in PR-A and PR-B transgenic mice: lessons on the role of estrogen and progesterone receptors in the mouse mammary gland and breast cancer. VITAMINS AND HORMONES 2013; 93:185-201. [PMID: 23810007 DOI: 10.1016/b978-0-12-416673-8.00012-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progesterone receptor (PR) belongs to the superfamily of steroid receptors and mediates the action of progesterone in its target tissues. In the mammary gland, in particular, PR expression is restricted to the luminal epithelial cell compartment. The generation of estrogen receptor-α (ER) and PR knockout mice allowed the specific characterization of the roles of each of these in mammary gland development: ER is critical for ductal morphogenesis, whereas PR has a key role in lobuloalveolar differentiation. To further study the role PR isoforms have in mammary gland biology, transgenic mice overexpressing either the "A" (PR-A) or the "B" (PR-B) isoforms of PR were generated. Overexpression of the A isoform of PR led to increased side branching, multilayered ducts, loss of basement membrane integrity, and alterations in matrix metalloproteinase activation in the mammary gland. Moreover, levels of TGFβ1 and p21 were diminished and those of cyclin D1 increased. Interestingly, the phenotype was counteracted by antiestrogens, suggesting that ER is essential for the manifestation of the hyperplasias. Mice overexpressing the B isoform of PR had limited ductal growth but retained the ability to differentiate during pregnancy. Levels of latent and active TGFβ1 were increased compared to PR-A transgenics. The phenotypes of these transgenic mice are further discussed in the context of the impact of progesterone on mammary stem cells and breast cancer. We conclude that an adequate balance between the A and B isoforms of PR is critical for tissue homeostasis. Future work to further understand the biology of PR in breast biology will hopefully lead to new and effective preventive and therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Rocio Sampayo
- Área Investigación, Instituto de Oncología "Angel H. Roffo", Avda. San Martin 5481, Buenos Aires, Argentina
| | | | | |
Collapse
|
44
|
Fuchs E, Chen T. A matter of life and death: self-renewal in stem cells. EMBO Rep 2013; 14:39-48. [PMID: 23229591 PMCID: PMC3537149 DOI: 10.1038/embor.2012.197] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/06/2012] [Indexed: 12/11/2022] Open
Abstract
If Narcissus could have self-renewed even once on seeing his own reflection, he would have died a happy man. Stem cells, on the other hand, have an enormous capacity for self-renewal; in other words, the ability to replicate and generate more of the same. In adult organisms, stem cells reside in specialized niches within each tissue. They replenish tissue cells that are lost during normal homeostasis, and on injury they repair damaged tissue. The ability of a stem cell to self-renew is governed by the dynamic interaction between the intrinsic proteins it expresses and the extrinsic signals that it receives from the niche microenvironment. Understanding the mechanisms governing when to proliferate and when to differentiate is vital, not only to normal stem cell biology, but also to ageing and cancer. This review focuses on elucidating conceptually, experimentally and mechanistically, our understanding of adult stem cell self-renewal. We use skin as a paradigm for discussing many of the salient points about this process, but also draw on the knowledge gained from these and other adult stem cell systems to delineate shared underlying principles, as well as highlight mechanistic distinctions among adult tissue stem cells. By doing so, we pinpoint important questions that still await answers.
Collapse
Affiliation(s)
- Elaine Fuchs
- Howard Hughes Medical Institute, Rockefeller University, Laboratory of Mammalian Cell Biology & Development, New York, New York 10065, USA.
| | | |
Collapse
|
45
|
Nassour M, Idoux-Gillet Y, Selmi A, Côme C, Faraldo MLM, Deugnier MA, Savagner P. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. PLoS One 2012; 7:e53498. [PMID: 23300933 PMCID: PMC3531397 DOI: 10.1371/journal.pone.0053498] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/29/2012] [Indexed: 12/22/2022] Open
Abstract
Background Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT) “master genes”. EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways. EMT also appears to mingle with stemness. However, very little is known on the physiological role and relevance of EMT master-genes. We addressed this question during mammary morphogenesis. Recently, a link between Slug/Snai2 and stemness has been described in mammary epithelial cells, but EMT master genes actual localization, role and targets during mammary gland morphogenesis are not known and we focused on this basic question. Methodology/Principal Findings Using a Slug–lacZ transgenic model and immunolocalization, we located Slug in a distinct subpopulation covering about 10–20% basal cap and duct cells, mostly cycling cells, coexpressed with basal markers P-cadherin, CK5 and CD49f. During puberty, Slug-deficient mammary epithelium exhibited a delayed development after transplantation, contained less cycling cells, and overexpressed CK8/18, ER, GATA3 and BMI1 genes, linked to luminal lineage. Other EMT master genes were overexpressed, suggesting compensation mechanisms. Gain/loss-of-function in vitro experiments confirmed Slug control of mammary epithelial cell luminal differentiation and proliferation. In addition, they showed that Slug enhances specifically clonal mammosphere emergence and growth, cell motility, and represses apoptosis. Strikingly, Slug-deprived mammary epithelial cells lost their potential to generate secondary clonal mammospheres. Conclusions/Significance We conclude that Slug pathway controls the growth dynamics of a subpopulation of cycling progenitor basal cells during mammary morphogenesis. Overall, our data better define a key mechanism coordinating cell lineage dynamics and morphogenesis, and provide physiological relevance to broadening EMT pathways.
Collapse
Affiliation(s)
- Mayssa Nassour
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier, Centre Régional de Lutte contre le Cancer Val d’Aurelle-Paul Lamarque, Montpellier, France
| | - Ysia Idoux-Gillet
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier, Centre Régional de Lutte contre le Cancer Val d’Aurelle-Paul Lamarque, Montpellier, France
| | - Abdelkader Selmi
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier, Centre Régional de Lutte contre le Cancer Val d’Aurelle-Paul Lamarque, Montpellier, France
| | - Christophe Côme
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier, Centre Régional de Lutte contre le Cancer Val d’Aurelle-Paul Lamarque, Montpellier, France
| | | | - Marie-Ange Deugnier
- Institut Curie UMR144, Centre National de la Recherche Scientifique, Paris, France
| | - Pierre Savagner
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier, Centre Régional de Lutte contre le Cancer Val d’Aurelle-Paul Lamarque, Montpellier, France
- * E-mail:
| |
Collapse
|
46
|
Abstract
Mammary gland stem cells (MaSC) have not been identified in spite of extensive research spanning over several decades. This has been primarily due to the complexity of mammary gland structure and its development, cell heterogeneity in the mammary gland and the insufficient knowledge about MaSC markers. At present, Lin (-) CD29 (i) CD49f (i) CD24 (+/mod) Sca- 1 (-) cells of the mammary gland have been reported to be enriched with MaSCs. We suggest that the inclusion of stem cell markers like Oct4, Sox2, Nanog and the mammary gland differentiation marker BRCA-1 may further narrow down the search for MaSCs. In addition, we have discussed some of the other unresolved puzzles on the mammary gland stem cells, such as their similarities and/or differences with mammary cancer stem cells, use of milk as source of mammary stem cells and the possibility of in vitro differentiation of embryonic stem (ES) cells into functional mammary gland structures in this review. Nevertheless, it is the lack of identity for a MaSC that is curtailing the advances in some of the above and other related areas.
Collapse
Affiliation(s)
- Suneesh Kaimala
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | | | | |
Collapse
|
47
|
Green MD, Huang SXL, Snoeck HW. Stem cells of the respiratory system: from identification to differentiation into functional epithelium. Bioessays 2012; 35:261-70. [PMID: 23175215 DOI: 10.1002/bies.201200090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We review recent progress in the stem cell biology of the respiratory system, and discuss its scientific and translational ramifications. Several studies have defined novel stem cells in postnatal lung and airways and implicated their roles in tissue homeostasis and repair. In addition, significant advances in the generation of respiratory epithelium from pluripotent stem cells (PSCs) now provide a novel and powerful platform for understanding lung development, modeling pulmonary diseases, and implementing drug screening. Finally, breakthroughs have been made in the generation of decellularized lung matrices that can serve as a scaffold for repopulation with respiratory cells derived from either postnatal or PSCs. These studies are a critical step forward towards the still distant goal of stem cell-based regenerative medicine for diseases of lung and airways.
Collapse
Affiliation(s)
- Michael D Green
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
48
|
Alexander CM, Goel S, Fakhraldeen SA, Kim S. Wnt signaling in mammary glands: plastic cell fates and combinatorial signaling. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008037. [PMID: 22661590 DOI: 10.1101/cshperspect.a008037] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mouse mammary gland is an outstanding developmental model that exemplifies the activities of many of the effector pathways known to organize mammalian morphogenesis; furthermore, there are well-characterized methods for the specific genetic manipulation of various mammary epithelial cell components. Among these signaling pathways, Wnt signaling has been shown to generate plasticity of fate determination, expanding the genetic programs available to cells in the mammary lineage. It is responsible first for the appearance of the mammary fate in embryonic ectoderm and then for maintaining bi-potential basal stem cells in adult mammary ductal trees. Recent technical developments have led to the separate analysis of various mammary epithelial cell subpopulations, spurring the investigation of Wnt-dependent interactions. Although Wnt signaling was shown to be oncogenic for mouse mammary epithelium even before being identified as the principle oncogenic driver for gut epithelium, conclusive data implicating this pathway as a tumor driver for breast cancer lag behind, and we examine potential reasons.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706-1599, USA.
| | | | | | | |
Collapse
|
49
|
van Amerongen R, Bowman A, Nusse R. Developmental Stage and Time Dictate the Fate of Wnt/β-Catenin-Responsive Stem Cells in the Mammary Gland. Cell Stem Cell 2012; 11:387-400. [DOI: 10.1016/j.stem.2012.05.023] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/27/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
|
50
|
Spaas JH, Chiers K, Bussche L, Burvenich C, Van de Walle GR. Stem/progenitor cells in non-lactating versus lactating equine mammary gland. Stem Cells Dev 2012; 21:3055-67. [PMID: 22574831 DOI: 10.1089/scd.2012.0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation, and involution. Based on the facts that (i) mammary stem/progenitor cells (MaSC) are proposed to be the driving forces behind mammary growth and function and (ii) variation exists between mammalian species with regard to physiological and pathological functioning of this organ, we believe that studying MaSC from different mammals is of great comparative interest. Over the years, important data has been gathered on MaSC of men and mice, although knowledge on MaSC in other mammals remains limited. Therefore, the aim of this work was to isolate and characterize MaSC from the mammary gland of horses. Hereby, our salient findings were that the isolated equine cells met the 2 in vitro hallmark properties of stem cells, namely the ability to self-renew and to differentiate into multiple cell lineages. Moreover, the cells were immunophenotyped using markers for CD29, CD44, CD49f, and Ki67. Finally, we propose the mammosphere assay as a valuable in vitro assay to study MaSC during different physiological phases since it was observed that equine lactating mammary gland contains significantly more mammosphere-initiating cells than the inactive, nonlactating gland (a reflection of MaSC self-renewal) and, moreover, that these spheres were significantly larger in size upon initial cultivation (a reflection of progenitor cell proliferation). Taken together, this study not only extends the current knowledge of mammary gland biology, but also benefits the comparative approach to study and compare MaSC in different mammalian species.
Collapse
Affiliation(s)
- Jan H Spaas
- Department of Comparative Physiology and Biometrics, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|