1
|
Sun R, Allen JP, Mao Z, Wilson L, Haider M, Alten B, Zhou Z, Wang X, Zhou Q. The postsynaptic density in excitatory synapses is composed of clustered, heterogeneous nanoblocks. J Cell Biol 2025; 224:e202406133. [PMID: 40145863 PMCID: PMC11948668 DOI: 10.1083/jcb.202406133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The nanoscale organization of proteins within synapses is critical for maintaining and regulating synaptic transmission and plasticity. Here, we used cryo-electron tomography (cryo-ET) to directly visualize the three-dimensional architecture and supramolecular organization of postsynaptic components in both synaptosomes and synapses from cultured neurons. Cryo-ET revealed that postsynaptic density (PSD) is composed of membrane-associated nanoblocks of various sizes. Subtomogram averaging from synaptosomes showed two types (type A and B) of postsynaptic receptor-like particles at resolutions of 24 and 26 Å, respectively. Furthermore, our analysis suggested that potential presynaptic release sites are closer to nanoblocks with type A/B receptor-like particles than to nanoblocks without type A/B receptor-like particles. The results of this study provide a more comprehensive understanding of synaptic ultrastructure and suggest that PSD is composed of clustering of various nanoblocks. These nanoblocks are heterogeneous in size, assembly, and distribution, which likely contribute to the dynamic nature of PSD in modulating synaptic strength.
Collapse
Affiliation(s)
- Rong Sun
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - James P. Allen
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Zhuqing Mao
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Liana Wilson
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Mariam Haider
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology Cryo-EM Facility, Vanderbilt University, Nashville, TN, USA
| | - Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Zimeng Zhou
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- School of Engineering, Vanderbilt University, Nashville, TN, USA
| | - Xinyi Wang
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Qiangjun Zhou
- Department of Cell and Developmental Biology, Center for Structural Biology, Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Liss A, Siddiqi MT, Marsland P, Varodayan FP. Neuroimmune regulation of the prefrontal cortex tetrapartite synapse. Neuropharmacology 2025; 269:110335. [PMID: 39904409 DOI: 10.1016/j.neuropharm.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
The prefrontal cortex (PFC) is an essential driver of cognitive, affective, and motivational behavior. There is clear evidence that the neuroimmune system directly influences PFC synapses, in addition to its role as the first line of defense against toxins and pathogens. In this review, we first describe the core structures that form the tetrapartite PFC synapse, focusing on the signaling microdomain created by astrocytic cradling of the synapse as well as the emerging role of the extracellular matrix in synaptic organization and plasticity. Neuroimmune signals (e.g. pro-inflammatory interleukin 1β) can impact the function of each core structure within the tetrapartite synapse, as well as promote intra-synaptic crosstalk, and we will provide an overview of recent advances in this field. Finally, evidence from post mortem human brain tissue and preclinical studies indicate that inflammation may be a key contributor to PFC dysfunction. Therefore, we conclude with a mechanistic discussion of neuroimmune-mediated maladaptive plasticity in neuropsychiatric disorders, with a focus on alcohol use disorder (AUD). Growing recognition of the neuroimmune system's role as a critical regulator of the PFC tetrapartite synapse provides strong support for targeting the neuroimmune system to develop new pharmacotherapeutics.
Collapse
Affiliation(s)
- Andrea Liss
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Mahum T Siddiqi
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Paige Marsland
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA.
| |
Collapse
|
3
|
Bartol TM, Ordyan M, Sejnowski TJ, Rangamani P, Kennedy MB. A spatial model of autophosphorylation of CaMKII predicts that the lifetime of phospho-CaMKII after induction of synaptic plasticity is greatly prolonged by CaM-trapping. Front Synaptic Neurosci 2025; 17:1547948. [PMID: 40255983 PMCID: PMC12006173 DOI: 10.3389/fnsyn.2025.1547948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). A critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca2+ flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca2+ and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activity in vivo, and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measure in vivo. We examine the effects of "CaM-trapping," a process in which the affinity for Ca2+/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca2+/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Bartol
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Mariam Ordyan
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Terrence J. Sejnowski
- The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
4
|
Xu N, Chen SY, Tang AH. Tuning synapse strength by nanocolumn plasticity. Trends Neurosci 2025; 48:200-212. [PMID: 39848836 DOI: 10.1016/j.tins.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025]
Abstract
The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength. Although synapses exhibit diverse protein compositions and nanoscale organizations, the role of structural diversity in the notable differences observed in synaptic physiology remains poorly understood. In this review we examine the current literature on the molecular mechanisms underlying the formation and maintenance of nanocolumns, as well as their role in modulating various aspects of synaptic transmission. We also discuss how the reorganization of nanocolumns contributes to functional dynamics in both synaptic plasticity and pathology.
Collapse
Affiliation(s)
- Na Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; School of Medicine, Anhui University of Science and Technology, Huainan 232001, China.
| | - Si-Yu Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Ai-Hui Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| |
Collapse
|
5
|
Wang B, He T, Qiu G, Li C, Xue S, Zheng Y, Wang T, Xia Y, Yao L, Yan J, Chen Y. Altered synaptic homeostasis: a key factor in the pathophysiology of depression. Cell Biosci 2025; 15:29. [PMID: 40001206 PMCID: PMC11863845 DOI: 10.1186/s13578-025-01369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Depression, a widespread psychiatric disorder, is characterized by a diverse array of symptoms such as melancholic mood and anhedonia, imposing a significant burden on both society and individuals. Despite extensive research into the neurobiological foundations of depression, a complete understanding of its complex mechanisms is yet to be attained, and targeted therapeutic interventions remain under development. Synaptic homeostasis, a compensatory feedback mechanism, involves neurons adjusting synaptic strength by regulating pre- or postsynaptic processes. Recent advancements in depression research reveal a crucial association between the disorder and disruptions in synaptic homeostasis within neural regions and circuits pivotal for emotional and cognitive functions. This paper explores the mechanisms governing synaptic homeostasis in depression, focusing on the role of ion channels, the regulation of presynaptic neurotransmitter release, synaptic scaling processes, and essential signaling molecules. By mapping new pathways in the study of synaptic homeostasis as it pertains to depression, this research aims to provide valuable insights for identifying novel therapeutic targets for more effective antidepressant treatments.
Collapse
Affiliation(s)
- Bokai Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Teng He
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Guofan Qiu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chong Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Song Xue
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yucen Xia
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Bosch M, Castro J, Sur M, Hayashi Y. Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microscopy Imaging of Single Stimulated Synapses. Methods Mol Biol 2025; 2910:145-175. [PMID: 40220099 DOI: 10.1007/978-1-0716-4446-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- MBF Bioscience, Williston, VT, USA
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Saitama, Japan
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama, Japan
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Bartol TM, Ordyan M, Sejnowski TJ, Rangamani P, Kennedy MB. A spatial model of autophosphorylation of Ca 2+/calmodulin-dependent protein kinase II (CaMKII) predicts that the lifetime of phospho-CaMKII after induction of synaptic plasticity is greatly prolonged by CaM-trapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578696. [PMID: 38352446 PMCID: PMC10862815 DOI: 10.1101/2024.02.02.578696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). The critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca2+ flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca2+ and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activity in vivo, and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measure in vivo. We examine the effects of "CaM-trapping," a process in which the affinity for Ca2+/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca2+/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
| | - Mariam Ordyan
- The Salk Institute for Biological Studies, La Jolla, CA
| | - Terrence J Sejnowski
- The Salk Institute for Biological Studies, La Jolla, CA
- Department of Neurobiology, University of California at San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Mary B Kennedy
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
8
|
Seo S, Parr-Brownlie LC, Wicky HE, Bilkey DK, Hughes SM, Oorschot DE. A Risk Factor for Attention Deficit Hyperactivity Disorder Induces Marked Long-Term Anatomical Changes at GABAergic-Dopaminergic Synapses in the Rat Ventral Tegmental Area. Int J Mol Sci 2024; 25:12970. [PMID: 39684680 DOI: 10.3390/ijms252312970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. However, the core biology of the disorder that leads to the hypofunctioning of the cerebral dopaminergic network requires further elucidation. We investigated midbrain synaptic changes in male rats exposed to repeated hypoxia during the equivalent of extreme prematurity, which is a new animal model of the hyperactive/impulsive presentation of ADHD. We used a novel combination of a lentiviral vector, peroxidase-immunonanogold double-labelling, three-dimensional serial section transmission electron microscopy and stereological techniques to investigate the synapses formed between GABAergic axons of the rostromedial tegmental nucleus (RMTg) and dopaminergic neurons of the posterior ventral tegmental area (pVTA). This is a key site that sends extensive dopaminergic projections to the forebrain. We also compared the results to our previous study on a schizophrenia risk factor that produces cerebral hyperdopaminergia. In total, 117 reconstructed synapses were compared. Repeated hypoxic rats had a significantly thicker (22%) and longer (18%) postsynaptic density at RMTg GABAergic-pVTA dopaminergic synapses compared to their controls. These results were opposite to those previously observed in rats exposed to a schizophrenia risk factor. These findings for repeated hypoxic rats suggest that the enhanced inhibition of pVTA dopaminergic neurons may contribute to hypodopaminergia in ADHD motor hyperactivity. Synaptic triads, a key component of pVTA circuitry, were not detected in repeated hypoxic rats, indicating a marked deficit. The current knowledge may guide development in males of novel, site-specific ADHD drugs, which is necessary due to the rising prevalence of ADHD, the chronic nature of ADHD symptoms and the limitations of the currently available medications.
Collapse
Affiliation(s)
- Steve Seo
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Brain Research, Dunedin 9054, New Zealand
| | - Hollie E Wicky
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Brain Research, Dunedin 9054, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - David K Bilkey
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Department of Psychology, University of Otago, Dunedin 9054, New Zealand
| | - Stephanie M Hughes
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- Brain Research, Dunedin 9054, New Zealand
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Khaled H, Ghasemi Z, Inagaki M, Patel K, Naito Y, Feller B, Yi N, Bourojeni FB, Lee AK, Chofflet N, Kania A, Kosako H, Tachikawa M, Connor S, Takahashi H. The TrkC-PTPσ complex governs synapse maturation and anxiogenic avoidance via synaptic protein phosphorylation. EMBO J 2024; 43:5690-5717. [PMID: 39333774 PMCID: PMC11574141 DOI: 10.1038/s44318-024-00252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The precise organization of pre- and postsynaptic terminals is crucial for normal synaptic function in the brain. In addition to its canonical role as a neurotrophin-3 receptor tyrosine kinase, postsynaptic TrkC promotes excitatory synapse organization through interaction with presynaptic receptor-type tyrosine phosphatase PTPσ. To isolate the synaptic organizer function of TrkC from its role as a neurotrophin-3 receptor, we generated mice carrying TrkC point mutations that selectively abolish PTPσ binding. The excitatory synapses in mutant mice had abnormal synaptic vesicle clustering and postsynaptic density elongation, more silent synapses, and fewer active synapses, which additionally exhibited enhanced basal transmission with impaired release probability. Alongside these phenotypes, we observed aberrant synaptic protein phosphorylation, but no differences in the neurotrophin signaling pathway. Consistent with reports linking these aberrantly phosphorylated proteins to neuropsychiatric disorders, mutant TrkC knock-in mice displayed impaired social responses and increased avoidance behavior. Thus, through its regulation of synaptic protein phosphorylation, the TrkC-PTPσ complex is crucial for the maturation, but not formation, of excitatory synapses in vivo.
Collapse
Affiliation(s)
- Husam Khaled
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Zahra Ghasemi
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Mai Inagaki
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Kyle Patel
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Yusuke Naito
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Benjamin Feller
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Neuroscience, Faculty of medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Nayoung Yi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Farin B Bourojeni
- Neural Circuit Development Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Alfred Kihoon Lee
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Artur Kania
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada
- Neural Circuit Development Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| | - Steven Connor
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B2, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada.
| |
Collapse
|
10
|
Tao-Cheng JH, Moreira SL, Winters CA. Ultrastructural characterization of hippocampal inhibitory synapses under resting and stimulated conditions. Mol Brain 2024; 17:76. [PMID: 39438991 PMCID: PMC11494804 DOI: 10.1186/s13041-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
The present study uses electron microscopy to document ultrastructural characteristics of hippocampal GABAergic inhibitory synapses under resting and stimulated conditions in three experimental systems. Synaptic profiles were sampled from stratum pyramidale and radiatum of the CA1 region from (1) perfusion fixed mouse brains, (2) immersion fixed rat organotypic slice cultures, and from (3) rat dissociated hippocampal cultures of mixed cell types. Synapses were stimulated in the brain by a 5 min delay in perfusion fixation to trigger an ischemia-like excitatory condition, and by treating the two culture systems with 90 mM high K+ for 2-3 min to depolarize the neurons. Upon such stimulation conditions, the presynaptic terminals of the inhibitory synapses exhibited similar structural changes to those seen in glutamatergic excitatory synapses, with depletion of synaptic vesicles, increase of clathrin-coated vesicles and appearance of synaptic spinules. However, in contrast to excitatory synapses, no structural differences were detected in the postsynaptic compartment of the inhibitory synapses upon stimulation. There were no changes in the appearance of material associated with the postsynaptic membrane or the length and curvature of the membrane. Also no change was detected in the labeling density of gephyrin, a GABAergic synaptic marker, lining the postsynaptic membrane. Furthermore, virtually all inhibitory synaptic clefts remained rigidly apposed, unlike in the case of excitatory synapses where ~ 20-30% of cleft edges were open upon stimulation, presumably to facilitate the clearance of neurotransmitters from the cleft. The fact that no open clefts were induced in inhibitory synapses upon stimulation suggests that inhibitory input may not need to be toned down under these conditions. On the other hand, similar to excitatory synapse, EGTA (a calcium chelator) induced open clefts in ~ 18% of inhibitory synaptic cleft edges, presumably disrupting similar calcium-dependent trans-synaptic bridges in both types of synapses.
Collapse
Affiliation(s)
- Jung-Hwa Tao-Cheng
- NINDS Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sandra Lara Moreira
- NINDS Electron Microscopy Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christine A Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Cao N, Merchant W, Gautron L. Limited evidence for anatomical contacts between intestinal GLP-1 cells and vagal neurons in male mice. Sci Rep 2024; 14:23666. [PMID: 39390033 PMCID: PMC11467209 DOI: 10.1038/s41598-024-74000-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The communication between intestinal Glucagon like peptide 1 (GLP-1)-producing cells and the peripheral nervous system has garnered renewed interest considering the availability of anti-obesity and anti-diabetic approaches targeting GLP-1 signaling. While it is well-established that intestinal GLP-1 cells can exert influence through paracrine mechanisms, recent evidence suggests the possible existence of synaptic-like connections between GLP-1 cells and peripheral neurons, including those of the vagus nerve. In this study, using a reporter Phox2b-Cre-Tomato mouse model and super-resolution confocal microscopy, we demonstrated that vagal axons made apparent contacts with less than 0.5% of GLP-1 cells. Moreover, immunohistochemistry combined with super-resolution confocal microscopy revealed abundant post-synaptic density 95 (PSD-95) immunoreactivity within the enteric plexus of the lower intestines of C57/BL6 mice, with virtually none in its mucosa. Lastly, utilizing RNAScope in situ hybridization in the lower intestines of mice, we observed that GLP-1 cells expressed generic markers of secretory cells such as Snap25 and Nefm, but neither synaptic markers such as Syn1 and Nrxn2, nor glutamatergic markers such as Slc17a7. Through theoretical considerations and a critical review of the literature, we concluded that intestinal GLP-1 cells primarily communicate with vagal neurons through paracrine mechanisms, rather than synaptic-like contacts.
Collapse
Affiliation(s)
- Newton Cao
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Warda Merchant
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
13
|
Glausier JR, Bouchet-Marquis C, Maier M, Banks-Tibbs T, Wu K, Ning J, Melchitzky D, Lewis DA, Freyberg Z. Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582174. [PMID: 38463986 PMCID: PMC10925168 DOI: 10.1101/2024.02.26.582174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Synaptic function is directly reflected in quantifiable ultrastructural features using electron microscopy (EM) approaches. This coupling of synaptic function and ultrastructure suggests that in vivo synaptic function can be inferred from EM analysis of ex vivo human brain tissue. To investigate this, we employed focused ion beam-scanning electron microscopy (FIB-SEM), a volume EM (VEM) approach, to generate ultrafine-resolution, three-dimensional (3D) micrographic datasets of postmortem human dorsolateral prefrontal cortex (DLPFC), a region with cytoarchitectonic characteristics distinct to human brain. Synaptic, sub-synaptic, and organelle measures were highly consistent with findings from experimental models that are free from antemortem or postmortem effects. Further, 3D neuropil reconstruction revealed a unique, ultrastructurally-complex, spiny dendritic shaft that exhibited features characteristic of heightened synaptic communication, integration, and plasticity. Altogether, our findings provide critical proof-of-concept data demonstrating that ex vivo VEM analysis is an effective approach to infer in vivo synaptic functioning in human brain.
Collapse
Affiliation(s)
- Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Matthew Maier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Tabitha Banks-Tibbs
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
- College of Medicine, The Ohio State University, Columbus, OH
| | - Ken Wu
- Materials and Structural Analysis, Thermo Fisher Scientific, Hillsboro, OR
| | - Jiying Ning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
14
|
Zheng Z, Own CS, Wanner AA, Koene RA, Hammerschmith EW, Silversmith WM, Kemnitz N, Lu R, Tank DW, Seung HS. Fast imaging of millimeter-scale areas with beam deflection transmission electron microscopy. Nat Commun 2024; 15:6860. [PMID: 39127683 PMCID: PMC11316758 DOI: 10.1038/s41467-024-50846-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Serial section transmission electron microscopy (TEM) has proven to be one of the leading methods for millimeter-scale 3D imaging of brain tissues at nanoscale resolution. It is important to further improve imaging efficiency to acquire larger and more brain volumes. We report here a threefold increase in the speed of TEM by using a beam deflecting mechanism to enable highly efficient acquisition of multiple image tiles (nine) for each motion of the mechanical stage. For millimeter-scale areas, the duty cycle of imaging doubles to more than 30%, yielding a net average imaging rate of 0.3 gigapixels per second. If fully utilized, an array of four beam deflection TEMs should be capable of imaging a dataset of cubic millimeter scale in five weeks.
Collapse
Affiliation(s)
- Zhihao Zheng
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Harris KM, Kuwajima M, Flores JC, Zito K. Synapse-specific structural plasticity that protects and refines local circuits during LTP and LTD. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230224. [PMID: 38853547 PMCID: PMC11529630 DOI: 10.1098/rstb.2023.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 06/11/2024] Open
Abstract
Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Kristen M. Harris
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Masaaki Kuwajima
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618, USA
| |
Collapse
|
16
|
Song HX, Xie YH, Fang YY, Lin JJ, Wang LL, Gan CL, Aschner M, Jiang YM. Sodium para-aminosalicylic acid attenuates combined manganese/iron-induced cortical synaptic damage in rats. Basic Clin Pharmacol Toxicol 2024; 135:81-97. [PMID: 38780039 DOI: 10.1111/bcpt.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
We established experimental models of manganese (Mn) and iron (Fe) exposure in vitro and in vivo, and addressed the effects of manganese and iron combined exposure on the synaptic function of pheochromocytoma derived cell line 12 (PC12) cells and rat cortex, respectively. We investigated the protective effect of sodium para-aminosalicylate (PAS-Na) on manganese and iron combined neurotoxicity, providing a scientific basis for the prevention and treatment of ferromanganese combined neurotoxicity. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of protein and mRNA related to synaptic damage. Y-maze novelty test and balance beam test were used to evaluate the motor and cognitive function of rats. Haematoxylin and eosin (H&E) and Nissl staining were performed to observe the cortical damage of rats. The results showed that the combined exposure of Mn and Fe in rats led to a synergistic effect, attenuating growth and development, and altering learning and memory as well as motor function. The combination of Mn and Fe also caused damage to the synaptic structure of PC12 cells, which is manifested as swelling of dendrites and axon terminals, and even lead to cell death. PAS-Na displayed some antagonistic effects against the Mn- and Fe-induced synaptic structural damage, growth, learning and memory impairment.
Collapse
Affiliation(s)
- Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yu-Han Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jun-Jie Lin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lei-Lei Wang
- School of Public Health, Xiamen University, Xiamen, China
| | - Cui-Liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Turegano-Lopez M, de Las Pozas F, Santuy A, Rodriguez JR, DeFelipe J, Merchan-Perez A. Tracing nerve fibers with volume electron microscopy to quantitatively analyze brain connectivity. Commun Biol 2024; 7:796. [PMID: 38951162 PMCID: PMC11217374 DOI: 10.1038/s42003-024-06491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.
Collapse
Affiliation(s)
- Marta Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
| | - Felix de Las Pozas
- Visualization & Graphics Lab (VG-Lab), Universidad Rey Juan Carlos, C/Tulipán S/N, Móstoles, 28933, Madrid, Spain
| | - Andrea Santuy
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), San Cugat del Vallès, 08195, Barcelona, Spain
| | - Jose-Rodrigo Rodriguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031, Madrid, Spain.
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
18
|
Matúš D, Lopez JM, Sando RC, Südhof TC. Essential Role of Latrophilin-1 Adhesion GPCR Nanoclusters in Inhibitory Synapses. J Neurosci 2024; 44:e1978232024. [PMID: 38684366 PMCID: PMC11154861 DOI: 10.1523/jneurosci.1978-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Latrophilin-1 (Lphn1, aka CIRL1 and CL1; gene symbol Adgrl1) is an adhesion GPCR that has been implicated in excitatory synaptic transmission as a candidate receptor for α-latrotoxin. Here we analyzed conditional knock-in/knock-out mice for Lphn1 that contain an extracellular myc epitope tag. Mice of both sexes were used in all experiments. Surprisingly, we found that Lphn1 is localized in cultured neurons to synaptic nanoclusters that are present in both excitatory and inhibitory synapses. Conditional deletion of Lphn1 in cultured neurons failed to elicit a detectable impairment in excitatory synapses but produced a decrease in inhibitory synapse numbers and synaptic transmission that was most pronounced for synapses close to the neuronal soma. No changes in axonal or dendritic outgrowth or branching were observed. Our data indicate that Lphn1 is among the few postsynaptic adhesion molecules that are present in both excitatory and inhibitory synapses and that Lphn1 by itself is not essential for excitatory synaptic transmission but is required for some inhibitory synaptic connections.
Collapse
Affiliation(s)
- Daniel Matúš
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Jaybree M Lopez
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| | - Richard C Sando
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
- Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
19
|
Chelini G, Mirzapourdelavar H, Durning P, Baidoe-Ansah D, Sethi MK, O'Donovan SM, Klengel T, Balasco L, Berciu C, Boyer-Boiteau A, McCullumsmith R, Ressler KJ, Zaia J, Bozzi Y, Dityatev A, Berretta S. Focal clusters of peri-synaptic matrix contribute to activity-dependent plasticity and memory in mice. Cell Rep 2024; 43:114112. [PMID: 38676925 PMCID: PMC11251421 DOI: 10.1016/j.celrep.2024.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Recent findings show that effective integration of novel information in the brain requires coordinated processes of homo- and heterosynaptic plasticity. In this work, we hypothesize that activity-dependent remodeling of the peri-synaptic extracellular matrix (ECM) contributes to these processes. We show that clusters of the peri-synaptic ECM, recognized by CS56 antibody, emerge in response to sensory stimuli, showing temporal and spatial coincidence with dendritic spine plasticity. Using CS56 co-immunoprecipitation of synaptosomal proteins, we identify several molecules involved in Ca2+ signaling, vesicle cycling, and AMPA-receptor exocytosis, thus suggesting a role in long-term potentiation (LTP). Finally, we show that, in the CA1 hippocampal region, the attenuation of CS56 glycoepitopes, through the depletion of versican as one of its main carriers, impairs LTP and object location memory in mice. These findings show that activity-dependent remodeling of the peri-synaptic ECM regulates the induction and consolidation of LTP, contributing to hippocampal-dependent memory.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Peter Durning
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - David Baidoe-Ansah
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany
| | - Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sinead M O'Donovan
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Translational Molecular Genomics Laboratory, Mclean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Luigi Balasco
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy
| | - Cristina Berciu
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Anne Boyer-Boiteau
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Robert McCullumsmith
- Cognitive Disorders Research Laboratory, University of Toledo, Toledo, OH 43606, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Neurobiology of Fear Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA 02118, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Yuri Bozzi
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068 Trento, Italy; CNR Neuroscience Institute Pisa, 56124 Pisa, Italy
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases, Magdeburg 39120 Saxony-Anhalt, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg 39106 Saxony-Anhalt, Germany
| | - Sabina Berretta
- Translational Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Miao S, Fourgeaud L, Burrola PG, Stern S, Zhang Y, Happonen KE, Novak SW, Gage FH, Lemke G. Tyro3 promotes the maturation of glutamatergic synapses. Front Neurosci 2024; 18:1327423. [PMID: 38410160 PMCID: PMC10894971 DOI: 10.3389/fnins.2024.1327423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The receptor tyrosine kinase Tyro3 is abundantly expressed in neurons of the neocortex, hippocampus, and striatum, but its role in these cells is unknown. We found that neuronal expression of this receptor was markedly up-regulated in the postnatal mouse neocortex immediately prior to the final development of glutamatergic synapses. In the absence of Tyro3, cortical and hippocampal synapses never completed end-stage differentiation and remained electrophysiologically and ultrastructurally immature. Tyro3-/- cortical neurons also exhibited diminished plasma membrane expression of the GluA2 subunits of AMPA-type glutamate receptors, which are essential to mature synaptic function. Correspondingly, GluA2 membrane insertion in wild-type neurons was stimulated by Gas6, a Tyro3 ligand widely expressed in the postnatal brain. Behaviorally, Tyro3-/- mice displayed learning enhancements in spatial recognition and fear-conditioning assays. Together, these results demonstrate that Tyro3 promotes the functional maturation of glutamatergic synapses by driving plasma membrane translocation of GluA2 AMPA receptor subunits.
Collapse
Affiliation(s)
- Sheng Miao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yuhan Zhang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kaisa E Happonen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
21
|
Thumu SCR, Jain M, Soman S, Das S, Verma V, Nandi A, Gutmann DH, Jayaprakash B, Nair D, Clement JP, Marathe S, Ramanan N. SRF-deficient astrocytes provide neuroprotection in mouse models of excitotoxicity and neurodegeneration. eLife 2024; 13:e95577. [PMID: 38289036 PMCID: PMC10857791 DOI: 10.7554/elife.95577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Reactive astrogliosis is a common pathological hallmark of CNS injury, infection, and neurodegeneration, where reactive astrocytes can be protective or detrimental to normal brain functions. Currently, the mechanisms regulating neuroprotective astrocytes and the extent of neuroprotection are poorly understood. Here, we report that conditional deletion of serum response factor (SRF) in adult astrocytes causes reactive-like hypertrophic astrocytes throughout the mouse brain. These SrfGFAP-ERCKO astrocytes do not affect neuron survival, synapse numbers, synaptic plasticity or learning and memory. However, the brains of Srf knockout mice exhibited neuroprotection against kainic-acid induced excitotoxic cell death. Relevant to human neurodegenerative diseases, SrfGFAP-ERCKO astrocytes abrogate nigral dopaminergic neuron death and reduce β-amyloid plaques in mouse models of Parkinson's and Alzheimer's disease, respectively. Taken together, these findings establish SRF as a key molecular switch for the generation of reactive astrocytes with neuroprotective functions that attenuate neuronal injury in the setting of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Monika Jain
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - Sumitha Soman
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - Soumen Das
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Arnab Nandi
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - David H Gutmann
- Department of Neurology, Washington University School of MedicineSt. LouisUnited States
| | | | - Deepak Nair
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
| | - Swananda Marathe
- Centre for Neuroscience, Indian Institute of ScienceBangaloreIndia
| | | |
Collapse
|
22
|
Yarmohammadi-Samani P, Vatanparast J. Sex-specific dendritic morphology of hippocampal pyramidal neurons in the adolescent and young adult rats. Int J Dev Neurosci 2024; 84:47-63. [PMID: 37933732 DOI: 10.1002/jdn.10307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
CA1 and CA3 pyramidal neurons are the major sources of hippocampal efferents. The structural features of these neurons are presumed to be involved in various normal/abnormal cognitive and emotional outcomes by influencing the pattern of synaptic inputs and neuronal signal processing. Although many studies have described hippocampal structure differences between males and females, these reports mainly focused on gross anatomical features in adult or aged models, and such distinctions on neuronal morphology and dendritic spine density during adolescence, a period of high vulnerability to neurodevelopmental disorders, have received much less attention. In this work, we analyzed dendritic architecture and density of spines in CA1 and CA3 neurons of male and female rats in early adolescence (postnatal day, PND 40) and compared them with those in late adolescence/young adulthood (PND 60). On PND 40, CA1 neurons of male rats showed more Sholl intersections and spine density in apical and basal dendrites compared to those in females. The Sholl intersections in basal dendrites of CA3 neurons were also more in males, whereas the number of apical dendrite intersections was not significantly different between sexes. In male rats, there was a notable decrease in the number of branch and terminal points in the basal dendrite of CA1 neurons of young adults when compared to their sex-matched adolescent rats. On the other hand, CA1 neurons in young adult females also showed more Sholl intersections in apical and basal dendrites compared to adolescent females. Meanwhile, the total cable length, the number of branches, and terminal points of apical dendrites in CA3 neurons also exhibited a significant reduction in young adult male rats compared to their sex-matched adolescents. In young adult rats, both apical and basal dendrites of CA3 neurons in males showed fewer intersections with Sholl circles, but there were no significant differences in dendritic spine density or count estimation between males and females. On the other hand, young adult female rats had more Sholl intersections and dendritic spine count on the basal dendrites of CA3 neurons compared to adolescent females. Although no significant sex- and age-dependent difference in neuronal density was detected in CA1 and CA3 subareas, CA3 pyramidal neurons of both male and female rats showed reduced soma area compared to adolescent rats. Our findings show that the sex differences in the dendritic structure of CA1 and CA3 neurons vary by age and also by the compartments of dendritic arbors. Such variations in the morphology of hippocampal pyramidal neurons may take part as a basis for normal cognitive and affective differences between the sexes, as well as distinct sensitivity to interfering factors and the prevalence of neuropsychological diseases.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| |
Collapse
|
23
|
Mohrmann L, Seebach J, Missler M, Rohlmann A. Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins. Int J Mol Sci 2024; 25:1285. [PMID: 38279285 PMCID: PMC10817056 DOI: 10.3390/ijms25021285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of β-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of β-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of β-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic β-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns.
Collapse
Affiliation(s)
| | | | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| |
Collapse
|
24
|
Wu H, Chen X, Shen Z, Li H, Liang S, Lu Y, Zhang M. Phosphorylation-dependent membraneless organelle fusion and fission illustrated by postsynaptic density assemblies. Mol Cell 2024; 84:309-326.e7. [PMID: 38096828 DOI: 10.1016/j.molcel.2023.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024]
Abstract
Membraneless organelles formed by phase separation of proteins and nucleic acids play diverse cellular functions. Whether and, if yes, how membraneless organelles in ways analogous to membrane-based organelles also undergo regulated fusion and fission is unknown. Here, using a partially reconstituted mammalian postsynaptic density (PSD) condensate as a paradigm, we show that membraneless organelles can undergo phosphorylation-dependent fusion and fission. Without phosphorylation of the SAPAP guanylate kinase domain-binding repeats, the upper and lower layers of PSD protein mixtures form two immiscible sub-compartments in a phase-in-phase organization. Phosphorylation of SAPAP leads to fusion of the two sub-compartments into one condensate accompanied with an increased Stargazin density in the condensate. Dephosphorylation of SAPAP can reverse this event. Preventing SAPAP phosphorylation in vivo leads to increased separation of proteins from the lower and upper layers of PSD sub-compartments. Thus, analogous to membrane-based organelles, membraneless organelles can also undergo regulated fusion and fission.
Collapse
Affiliation(s)
- Haowei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zeyu Shen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiqi Liang
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
25
|
Wildenberg G, Li H, Sampathkumar V, Sorokina A, Kasthuri N. Isochronic development of cortical synapses in primates and mice. Nat Commun 2023; 14:8018. [PMID: 38049416 PMCID: PMC10695974 DOI: 10.1038/s41467-023-43088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
The neotenous, or delayed, development of primate neurons, particularly human ones, is thought to underlie primate-specific abilities like cognition. We tested whether synaptic development follows suit-would synapses, in absolute time, develop slower in longer-lived, highly cognitive species like non-human primates than in shorter-lived species with less human-like cognitive abilities, e.g., the mouse? Instead, we find that excitatory and inhibitory synapses in the male Mus musculus (mouse) and Rhesus macaque (primate) cortex form at similar rates, at similar times after birth. Primate excitatory and inhibitory synapses and mouse excitatory synapses also prune in such an isochronic fashion. Mouse inhibitory synapses are the lone exception, which are not pruned and instead continuously added throughout life. The monotony of synaptic development clocks across species with disparate lifespans, experiences, and cognitive abilities argues that such programs are likely orchestrated by genetic events rather than experience.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Anastasia Sorokina
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| |
Collapse
|
26
|
Shen Z, Sun D, Savastano A, Varga SJ, Cima-Omori MS, Becker S, Honigmann A, Zweckstetter M. Multivalent Tau/PSD-95 interactions arrest in vitro condensates and clusters mimicking the postsynaptic density. Nat Commun 2023; 14:6839. [PMID: 37891164 PMCID: PMC10611757 DOI: 10.1038/s41467-023-42295-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease begins with mild memory loss and slowly destroys memory and thinking. Cognitive impairment in Alzheimer's disease has been associated with the localization of the microtubule-associated protein Tau at the postsynapse. However, the correlation between Tau at the postsynapse and synaptic dysfunction remains unclear. Here, we show that Tau arrests liquid-like droplets formed by the four postsynaptic density proteins PSD-95, GKAP, Shank, Homer in solution, as well as NMDA (N-methyl-D-aspartate)-receptor-associated protein clusters on synthetic membranes. Tau-mediated condensate/cluster arrest critically depends on the binding of multiple interaction motifs of Tau to a canonical GMP-binding pocket in the guanylate kinase domain of PSD-95. We further reveal that competitive binding of a high-affinity phosphorylated peptide to PSD-95 rescues the diffusional dynamics of an NMDA truncated construct, which contains the last five amino acids of the NMDA receptor subunit NR2B fused to the C-terminus of the tetrameric GCN4 coiled-coil domain, in postsynaptic density-like condensates/clusters. Taken together, our findings propose a molecular mechanism where Tau modulates the dynamic properties of the postsynaptic density.
Collapse
Affiliation(s)
- Zheng Shen
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Daxiao Sun
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Adriana Savastano
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Sára Joana Varga
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Maria-Sol Cima-Omori
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Technische Universität Dresden, Biotechnologisches Zentrum (BIOTEC), Dresden, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural Biology, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
27
|
Qin Y, Zhang XY, Liu Y, Ma Z, Tao S, Li Y, Peng R, Wang F, Wang J, Feng J, Qiu Z, Jin L, Wang H, Gong X. Downregulation of mGluR1-mediated signaling underlying autistic-like core symptoms in Shank1 P1812L-knock-in mice. Transl Psychiatry 2023; 13:329. [PMID: 37880287 PMCID: PMC10600164 DOI: 10.1038/s41398-023-02626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms that consist of social deficits and repetitive behaviors. Unfortunately, no effective medication is available thus far to target the core symptoms of ASD, since the pathogenesis remains largely unknown. To investigate the pathogenesis of the core symptoms in ASD, we constructed Shank1 P1812L-knock-in (KI) mice corresponding to a recurrent ASD-related mutation, SHANK1 P1806L, to achieve construct validity and face validity. Shank1 P1812L-KI heterozygous (HET) mice presented with social deficits and repetitive behaviors without the presence of confounding comorbidities. HET mice also exhibited downregulation of metabotropic glutamate receptor (mGluR1) and associated signals, along with structural abnormalities in the dendritic spines and postsynaptic densities. Combined with findings from Shank1 R882H-KI mice, our study confirms that mGluR1-mediated signaling dysfunction is a pivotal mechanism underlying the core symptoms of ASD. Interestingly, Shank1 P1812L-KI homozygous (HOM) mice manifested behavioral signs of impaired long-term memory rather than autistic-like core traits; thus, their phenotype was markedly different from that of Shank1 P1812L-KI HET mice. Correspondingly, at the molecular level, Shank1 P1812L-KI HOM displayed upregulation of AMPA receptor (GluA2)-related signals. The different patterns of protein changes in HOM and HET mice may explain the differences in behaviors. Our study emphasizes the universality of mGluR1-signaling hypofunction in the pathogenesis of the core symptoms in ASD, providing a potential target for therapeutic drugs. The precise correspondence between genotype and phenotype, as shown in HOM and HET mice, indicates the importance of reproducing disease-related genotypes in mouse models.
Collapse
Affiliation(s)
- Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yanyan Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuo Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ying Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Rui Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianfeng Feng
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Wang L, Pang K, Zhou L, Cebrián-Silla A, González-Granero S, Wang S, Bi Q, White ML, Ho B, Li J, Li T, Perez Y, Huang EJ, Winkler EA, Paredes MF, Kovner R, Sestan N, Pollen AA, Liu P, Li J, Piao X, García-Verdugo JM, Alvarez-Buylla A, Liu Z, Kriegstein AR. A cross-species proteomic map reveals neoteny of human synapse development. Nature 2023; 622:112-119. [PMID: 37704727 PMCID: PMC10576238 DOI: 10.1038/s41586-023-06542-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.
Collapse
Affiliation(s)
- Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaifang Pang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Li Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arantxa Cebrián-Silla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Shaohui Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Qiuli Bi
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew L White
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Brandon Ho
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jiani Li
- Gilead Sciences, Foster City, CA, USA
| | - Tao Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Yonatan Perez
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Pengyuan Liu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Xianhua Piao
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
29
|
Tao-Cheng JH, Moreira SL, Winters CA, Reese TS, Dosemeci A. Modification of the synaptic cleft under excitatory conditions. Front Synaptic Neurosci 2023; 15:1239098. [PMID: 37840571 PMCID: PMC10568020 DOI: 10.3389/fnsyn.2023.1239098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
The synaptic cleft is the extracellular part of the synapse, bridging the pre- and postsynaptic membranes. The geometry and molecular organization of the cleft is gaining increased attention as an important determinant of synaptic efficacy. The present study by electron microscopy focuses on short-term morphological changes at the synaptic cleft under excitatory conditions. Depolarization of cultured hippocampal neurons with high K+ results in an increased frequency of synaptic profiles with clefts widened at the periphery (open clefts), typically exhibiting patches of membranes lined by postsynaptic density, but lacking associated presynaptic membranes (18.0% open clefts in high K+ compared to 1.8% in controls). Similarly, higher frequencies of open clefts were observed in adult brain upon a delay of perfusion fixation to promote excitatory/ischemic conditions. Inhibition of basal activity in cultured neurons through the application of TTX results in the disappearance of open clefts whereas application of NMDA increases their frequency (19.0% in NMDA vs. 5.3% in control and 2.6% in APV). Depletion of extracellular Ca2+ with EGTA also promotes an increase in the frequency of open clefts (16.6% in EGTA vs. 4.0% in controls), comparable to that by depolarization or NMDA, implicating dissociation of Ca2+-dependent trans-synaptic bridges. Dissociation of transsynaptic bridges under excitatory conditions may allow perisynaptic mobile elements, such as AMPA receptors to enter the cleft. In addition, peripheral opening of the cleft would facilitate neurotransmitter clearance and thus may have a homeostatic and/or protective function.
Collapse
Affiliation(s)
- Jung-Hwa Tao-Cheng
- NINDS Electron Microscopy Facility, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sandra L. Moreira
- NINDS Electron Microscopy Facility, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Christine A. Winters
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ayse Dosemeci
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Belapurkar V, Mahadeva Swamy HS, Singh N, Kedia S, Setty SRG, Jose M, Nair D. Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM. Cell Mol Life Sci 2023; 80:295. [PMID: 37726569 PMCID: PMC11072284 DOI: 10.1007/s00018-023-04939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or "nanodomains" has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer's disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the "Y682ENPTY687" domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y682ENPTY687, namely, APP-Δ9 and APP-Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP-Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP-SWE, while APP-Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Vivek Belapurkar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Interdisciplinary Institute for Neuroscience CNRS UMR5297, University of Bordeaux, Bordeaux, France
| | - H S Mahadeva Swamy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Tata Institute for Genetics and Society, Bengaluru, India
| | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
31
|
Medalla M, Zikopoulos B. Laminar Excitatory Inputs to the Dorsolateral Prefrontal Cortex: Implications for Periadolescent Synaptic Plasticity and Circuit Pathology. Biol Psychiatry 2023; 94:280-282. [PMID: 37495330 DOI: 10.1016/j.biopsych.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Affiliation(s)
- Maria Medalla
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts; Center for Systems Neuroscience, Boston University, Boston, Massachusetts.
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts; Department of Health Sciences, Boston University, Boston, Massachusetts; Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
32
|
Wang S, Cai Q, Xu L, Sun Y, Wang M, Wang Y, Zhang L, Li K, Ni Z. Isoalantolactone relieves depression-like behaviors in mice after chronic social defeat stress via the gut-brain axis. Psychopharmacology (Berl) 2023; 240:1775-1787. [PMID: 37400661 PMCID: PMC10349788 DOI: 10.1007/s00213-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
RATIONALE The management of depression continues to be challenging despite the variety of available antidepressants. Herbal medicines are used in many cultures but lack stringent testing to understand their efficacy and mechanism of action. Isoalantolactone (LAT) from Elecampane (Inula helenium) improved the chronic social defeat stress (CSDS)-induced anhedonia-like phenotype in mice comparable to fluoxetine, a selective serotonin reuptake inhibitor (SSRI). OBJECTIVES Compare the effects of LAT and fluoxetine on depression-like behaviors in mice exposed to CSDS. RESULT The CSDS-induced decrease in protein expression of postsynaptic density (PSD95), brain derived neurotrophic factor (BDNF), and glutamate receptor subunit-1 (GluA1) in the prefrontal cortex was restored by LAT. LAT showed robust anti-inflammatory activity and can lessen the increase in IL-6 and TNF-α caused by CSDS. CSDS altered the gut microbiota at the taxonomic level, resulting in significant changes in α- and β-diversity. LAT treatment reestablished the bacterial abundance and diversity and increased the production of butyric acid in the gut that was inhibited by CSDS. The levels of butyric acid were negatively correlated with the abundance of Bacteroidetes, and positively correlated with those of Proteobacteria and Firmicutes across all treatment groups. CONCLUSIONS The current data suggest that, similar to fluoxetine, LAT show antidepressant-like effects in mice exposed to CSDS through the modulation of the gut-brain axis.
Collapse
Affiliation(s)
- Siming Wang
- School of Basic Medical Science, Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Qihan Cai
- School of Basic Medical Science, Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Lu Xu
- School of Basic Medical Science, Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Yanan Sun
- College of Traditional Chinese Medicine, Hebei University, Baoding, 071000, China
| | - Mengmeng Wang
- School of Basic Medical Science, Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Yu Wang
- School of Basic Medical Science, Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Lili Zhang
- Hebei Provincial Mental Health Center, Baoding, 071000, Hebei Province, China
- Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, 071000, China
| | - Keqing Li
- Hebei Provincial Mental Health Center, Baoding, 071000, Hebei Province, China.
- Hebei Key Laboratory of Major Mental and Behavioral Disorders, Baoding, 071000, China.
- , Baoding, China.
| | - Zhiyu Ni
- Affiliated Hospital of Hebei University, Baoding, 071000, China.
- Clinical Medical College, Hebei University, Baoding, 071000, Hebei Province, People's Republic of China.
- Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Baoding, 071000, China.
| |
Collapse
|
33
|
Ma Q, Huang F, Guo W, Feng K, Huang T, Cai Y. Identification of Phase-Separation-Protein-Related Function Based on Gene Ontology by Using Machine Learning Methods. Life (Basel) 2023; 13:1306. [PMID: 37374089 DOI: 10.3390/life13061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Phase-separation proteins (PSPs) are a class of proteins that play a role in the process of liquid-liquid phase separation, which is a mechanism that mediates the formation of membranelle compartments in cells. Identifying phase separation proteins and their associated function could provide insights into cellular biology and the development of diseases, such as neurodegenerative diseases and cancer. Here, PSPs and non-PSPs that have been experimentally validated in earlier studies were gathered as positive and negative samples. Each protein's corresponding Gene Ontology (GO) terms were extracted and used to create a 24,907-dimensional binary vector. The purpose was to extract essential GO terms that can describe essential functions of PSPs and build efficient classifiers to identify PSPs with these GO terms at the same time. To this end, the incremental feature selection computational framework and an integrated feature analysis scheme, containing categorical boosting, least absolute shrinkage and selection operator, light gradient-boosting machine, extreme gradient boosting, and permutation feature importance, were used to build efficient classifiers and identify GO terms with classification-related importance. A set of random forest (RF) classifiers with F1 scores over 0.960 were established to distinguish PSPs from non-PSPs. A number of GO terms that are crucial for distinguishing between PSPs and non-PSPs were found, including GO:0003723, which is related to a biological process involving RNA binding; GO:0016020, which is related to membrane formation; and GO:0045202, which is related to the function of synapses. This study offered recommendations for future research aimed at determining the functional roles of PSPs in cellular processes by developing efficient RF classifiers and identifying the representative GO terms related to PSPs.
Collapse
Affiliation(s)
- Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
34
|
Mısır E, Akay GG. Synaptic dysfunction in schizophrenia. Synapse 2023:e22276. [PMID: 37210696 DOI: 10.1002/syn.22276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Schizophrenia is a chronic disease presented with psychotic symptoms, negative symptoms, impairment in the reward system, and widespread neurocognitive deterioration. Disruption of synaptic connections in neural circuits is responsible for the disease's development and progression. Because deterioration in synaptic connections results in the impaired effective processing of information. Although structural impairments of the synapse, such as a decrease in dendritic spine density, have been shown in previous studies, functional impairments have also been revealed with the development of genetic and molecular analysis methods. In addition to abnormalities in protein complexes regulating exocytosis in the presynaptic region and impaired vesicle release, especially, changes in proteins related to postsynaptic signaling have been reported. In particular, impairments in postsynaptic density elements, glutamate receptors, and ion channels have been shown. At the same time, effects on cellular adhesion molecular structures such as neurexin, neuroligin, and cadherin family proteins were detected. Of course, the confusing effect of antipsychotic use in schizophrenia research should also be considered. Although antipsychotics have positive and negative effects on synapses, studies indicate synaptic deterioration in schizophrenia independent of drug use. In this review, the deterioration in synapse structure and function and the effects of antipsychotics on the synapse in schizophrenia will be discussed.
Collapse
Affiliation(s)
- Emre Mısır
- Department of Psychiatry, Baskent University Faculty of Medicine, Ankara, Turkey
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
| | - Güvem Gümüş Akay
- Department of Interdisciplinary Neuroscience, Ankara University, Ankara, Turkey
- Faculty of Medicine, Department of Physiology, Ankara University, Ankara, Turkey
- Brain Research Center (AÜBAUM), Ankara University, Ankara, Turkey
- Department of Cellular Neuroscience and Advanced Microscopic Neuroimaging, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| |
Collapse
|
35
|
Jung JH, Chen X, Reese TS. Cryo-EM tomography and automatic segmentation delineate modular structures in the postsynaptic density. Front Synaptic Neurosci 2023; 15:1123564. [PMID: 37091879 PMCID: PMC10117989 DOI: 10.3389/fnsyn.2023.1123564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Abstract
Postsynaptic densities (PSDs) are large protein complexes associated with the postsynaptic membrane of excitatory synapses important for synaptic function including plasticity. Conventional electron microscopy (EM) typically depicts PSDs as compact disk-like structures of hundreds of nanometers in size. Biochemically isolated PSDs were also similar in dimension revealing a predominance of proteins with the ability to polymerize into an extensive scaffold; several EM studies noted their irregular contours with often small granular structures (<30 nm) and holes. Super-resolution light microscopy studies observed clusters of PSD elements and their activity-induced lateral movement. Furthermore, our recent EM study on PSD fractions after sonication observed PSD fragments (40–90 nm in size) separate from intact PSDs; however, such structures within PSDs remained unidentified. Here we examined isolated PSDs by cryo-EM tomography with our new approach of automatic segmentation that enables delineation of substructures and their quantitative analysis. The delineated substructures broadly varied in size, falling behind 30 nm or exceeding 100 nm and showed that a considerable portion of the substructures (>38%) in isolated PSDs was in the same size range as those fragments. Furthermore, substructures spanning the entire thickness of the PSD were found, large enough to contain both membrane-associated and cytoplasmic proteins of the PSD; interestingly, they were similar to nanodomains in frequency. The structures detected here appear to constitute the isolated PSD as modules of various compositions, and this modular nature may facilitate remodeling of the PSD for proper synaptic function and plasticity.
Collapse
|
36
|
Brown NK, Roche JK, Farmer CB, Roberts RC. Evidence for upregulation of excitatory synaptic transmission in the substantia nigra in Schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:561-573. [PMID: 36735096 DOI: 10.1007/s00702-023-02593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
The dopamine hypothesis of schizophrenia suggests that psychotic symptoms originate from dysregulation of dopaminergic activity, which may be controlled by upstream innervation. We hypothesized that we would find anatomical evidence for the hyperexcitability seen in the SN. We examined and quantified synaptic morphology, which correlates with function, in the postmortem substantia nigra (SN) from 15 schizophrenia and 12 normal subjects. Synapses were counted using stereological techniques and classified based on the morphology of the post-synaptic density (PSD) and the presence or absence of a presynaptic density. The density and proportion of excitatory synapses was higher in the schizophrenia group than in controls, while the proportion (but not density) of inhibitory synapses was lower. We also detected in the schizophrenia group an increase in density of synapses with a PSD of intermediate thickness, which may represent excitatory synapses. The density of synapses with presynaptic densities was similar in both groups. The density of synapses with mixed morphologies was higher in the schizophrenia group than in controls. The human SN contains atypical synaptic morphology. We found an excess amount and proportion of excitatory synapses in the SN in schizophrenia that could result in hyperactivity and drive the psychotic symptoms of schizophrenia. The sources of afferent excitatory inputs to the SN arise from the subthalamic nucleus, the pedunculopontine nucleus, and the ventral tegmental area (VTA), areas that could be the source of excess excitation. Synapses with mixed morphologies may represent inputs from the VTA, which release multiple transmitters.
Collapse
Affiliation(s)
- Nicole K Brown
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
37
|
Lee H, Chofflet N, Liu J, Fan S, Lu Z, Resua Rojas M, Penndorf P, Bailey AO, Russell WK, Machius M, Ren G, Takahashi H, Rudenko G. Designer molecules of the synaptic organizer MDGA1 reveal 3D conformational control of biological function. J Biol Chem 2023; 299:104586. [PMID: 36889589 PMCID: PMC10131064 DOI: 10.1016/j.jbc.2023.104586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1β, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.
Collapse
Affiliation(s)
- Hubert Lee
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shanghua Fan
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhuoyang Lu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Martin Resua Rojas
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Patrick Penndorf
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mischa Machius
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montréal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada.
| | - Gabby Rudenko
- Deptartment of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
38
|
Wang W, Zhao F, Lu Y, Siedlak SL, Fujioka H, Feng H, Perry G, Zhu X. Damaged mitochondria coincide with presynaptic vesicle loss and abnormalities in alzheimer's disease brain. Acta Neuropathol Commun 2023; 11:54. [PMID: 37004141 PMCID: PMC10067183 DOI: 10.1186/s40478-023-01552-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Loss of synapses is the most robust pathological correlate of Alzheimer's disease (AD)-associated cognitive deficits, although the underlying mechanism remains incompletely understood. Synaptic terminals have abundant mitochondria which play an indispensable role in synaptic function through ATP provision and calcium buffering. Mitochondrial dysfunction is an early and prominent feature in AD which could contribute to synaptic deficits. Here, using electron microscopy, we examined synapses with a focus on mitochondrial deficits in presynaptic axonal terminals and dendritic spines in cortical biopsy samples from clinically diagnosed AD and age-matched non-AD control patients. Synaptic vesicle density within the presynaptic axon terminals was significantly decreased in AD cases which appeared largely due to significantly decreased reserve pool, but there were significantly more presynaptic axons containing enlarged synaptic vesicles or dense core vesicles in AD. Importantly, there was reduced number of mitochondria along with significantly increased damaged mitochondria in the presynapse of AD which correlated with changes in SV density. Mitochondria in the post-synaptic dendritic spines were also enlarged and damaged in the AD biopsy samples. This study provided evidence of presynaptic vesicle loss as synaptic deficits in AD and suggested that mitochondrial dysfunction in both pre- and post-synaptic compartments contribute to synaptic deficits in AD.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Yubing Lu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Hisashi Fujioka
- Cryo-EM Core Facility, Case Western Reserve University, Cleveland, OH, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas, San Antonio, TX, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
39
|
Vidyadhara DJ, Somayaji M, Wade N, Yücel B, Zhao H, Shashaank N, Ribaudo J, Gupta J, Lam TT, Sames D, Greene LE, Sulzer DL, Chandra SS. Dopamine transporter and synaptic vesicle sorting defects underlie auxilin-associated Parkinson's disease. Cell Rep 2023; 42:112231. [PMID: 36920906 PMCID: PMC10127800 DOI: 10.1016/j.celrep.2023.112231] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/22/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Auxilin participates in the uncoating of clathrin-coated vesicles (CCVs), thereby facilitating synaptic vesicle (SV) regeneration at presynaptic sites. Auxilin (DNAJC6/PARK19) loss-of-function mutations cause early-onset Parkinson's disease (PD). Here, we utilized auxilin knockout (KO) mice to elucidate the mechanisms through which auxilin deficiency and clathrin-uncoating deficits lead to PD. Auxilin KO mice display cardinal features of PD, including progressive motor deficits, α-synuclein pathology, nigral dopaminergic loss, and neuroinflammation. Significantly, treatment with L-DOPA ameliorated motor deficits. Unbiased proteomic and neurochemical analyses of auxilin KO brains indicated dopamine dyshomeostasis. We validated these findings by demonstrating slower dopamine reuptake kinetics in vivo, an effect associated with dopamine transporter misrouting into axonal membrane deformities in the dorsal striatum. Defective SV protein sorting and elevated synaptic autophagy also contribute to ineffective dopamine sequestration and compartmentalization, ultimately leading to neurodegeneration. This study provides insights into how presynaptic endocytosis deficits lead to dopaminergic vulnerability and pathogenesis of PD.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Mahalakshmi Somayaji
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Nigel Wade
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Betül Yücel
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Helen Zhao
- Department of Neurology, Yale University, New Haven, CT, USA
| | - N Shashaank
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Joseph Ribaudo
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jyoti Gupta
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS and Proteomics Resource, Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dalibor Sames
- Department of Chemistry and NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Lois E Greene
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - David L Sulzer
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Departments of Neurology and Pharmacology, Columbia University, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA.
| |
Collapse
|
40
|
Wildenberg G, Li H, Kasthuri N. The Development of Synapses in Mouse and Macaque Primary Sensory Cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528564. [PMID: 36824798 PMCID: PMC9949058 DOI: 10.1101/2023.02.15.528564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report that the rate of synapse development in primary sensory cortices of mice and macaques is unrelated to lifespan, as was previously thought. We analyzed 28,084 synapses over multiple developmental time points in both species and find, instead, that net excitatory synapse development of mouse and macaque neurons primarily increased at similar rates in the first few postnatal months, and then decreased over a span of 1-1.5 years of age. The development of inhibitory synapses differed qualitatively across species. In macaques, net inhibitory synapses first increase and then decrease on excitatory soma at similar ages as excitatory synapses. In mice, however, such synapses are added throughout life. These findings contradict the long-held belief that the cycle of synapse formation and pruning occurs earlier in shorter-lived animals. Instead, our results suggest more nuanced rules, with the development of different types of synapses following different timing rules or different trajectories across species.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| |
Collapse
|
41
|
Kater MSJ, Badia-Soteras A, van Weering JRT, Smit AB, Verheijen MHG. Electron microscopy analysis of astrocyte-synapse interactions shows altered dynamics in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:1085690. [PMID: 36779013 PMCID: PMC9908992 DOI: 10.3389/fncel.2023.1085690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Astrocyte-synapse bi-directional communication is required for neuronal development and synaptic plasticity. Astrocytes structurally interact with synapses using their distal processes also known as leaflets or perisynaptic astrocytic processes (PAPs). We recently showed that these PAPs are retracted from hippocampal synapses, and involved in the consolidation of fear memory. However, whether astrocytic synaptic coverage is affected when memory is impaired is unknown. Methods Here, we describe in detail an electron microscopy method that makes use of a large number of 2D images to investigate structural astrocyte-synapse interaction in paraformaldehyde fixed brain tissue of mice. Results and discussion We show that fear memory-induced synaptic activation reduces the interaction between the PAPs and the presynapse, but not the postsynapse, accompanied by retraction of the PAP tip from the synaptic cleft. Interestingly, this retraction is absent in the APP/PS1 mouse model of Alzheimer's disease, supporting the concept that alterations in astrocyte-synapse coverage contribute to memory processing.
Collapse
Affiliation(s)
- Mandy S. J. Kater
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aina Badia-Soteras
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan R. T. van Weering
- Department of Human Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,*Correspondence: Mark H. G. Verheijen,
| |
Collapse
|
42
|
Heck N, Santos MD. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. ADVANCES IN NEUROBIOLOGY 2023; 34:311-348. [PMID: 37962799 DOI: 10.1007/978-3-031-36159-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.
Collapse
Affiliation(s)
- Nicolas Heck
- Laboratory Neurosciences Paris Seine, Sorbonne Université, Paris, France.
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
43
|
Bulovaite E, Qiu Z, Kratschke M, Zgraj A, Fricker DG, Tuck EJ, Gokhale R, Koniaris B, Jami SA, Merino-Serrais P, Husi E, Mendive-Tapia L, Vendrell M, O'Dell TJ, DeFelipe J, Komiyama NH, Holtmaat A, Fransén E, Grant SGN. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 2022; 110:4057-4073.e8. [PMID: 36202095 PMCID: PMC9789179 DOI: 10.1016/j.neuron.2022.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
Collapse
Affiliation(s)
- Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maximilian Kratschke
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Adrianna Zgraj
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David G Fricker
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eleanor J Tuck
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Shekib A Jami
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
44
|
Altered GABA A Receptor Expression in the Primary Somatosensory Cortex of a Mouse Model of Genetic Absence Epilepsy. Int J Mol Sci 2022; 23:ijms232415685. [PMID: 36555327 PMCID: PMC9778655 DOI: 10.3390/ijms232415685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Absence seizures are hyperexcitations within the cortico-thalamocortical (CTC) network, however the underlying causative mechanisms at the cellular and molecular level are still being elucidated and appear to be multifactorial. Dysfunctional feed-forward inhibition (FFI) is implicated as one cause of absence seizures. Previously, we reported altered excitation onto parvalbumin-positive (PV+) interneurons in the CTC network of the stargazer mouse model of absence epilepsy. In addition, downstream changes in GABAergic neurotransmission have also been identified in this model. Our current study assessed whether dysfunctional FFI affects GABAA receptor (GABAAR) subunit expression in the stargazer primary somatosensory cortex (SoCx). Global tissue expression of GABAAR subunits α1, α3, α4, α5, β2, β3, γ2 and δ were assessed using Western blotting (WB), while biochemically isolated subcellular fractions were assessed for the α and δ subunits. We found significant reductions in tissue and synaptic expression of GABAAR α1, 18% and 12.2%, respectively. However, immunogold-cytochemistry electron microscopy (ICC-EM), conducted to assess GABAAR α1 specifically at synapses between PV+ interneurons and their targets, showed no significant difference. These data demonstrate a loss of phasic GABAAR α1, indicating altered GABAergic inhibition which, coupled with dysfunctional FFI, could be one mechanism contributing to the generation or maintenance of absence seizures.
Collapse
|
45
|
de Bartolomeis A, De Simone G, Ciccarelli M, Castiello A, Mazza B, Vellucci L, Barone A. Antipsychotics-Induced Changes in Synaptic Architecture and Functional Connectivity: Translational Implications for Treatment Response and Resistance. Biomedicines 2022; 10:3183. [PMID: 36551939 PMCID: PMC9776416 DOI: 10.3390/biomedicines10123183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a severe mental illness characterized by alterations in processes that regulate both synaptic plasticity and functional connectivity between brain regions. Antipsychotics are the cornerstone of schizophrenia pharmacological treatment and, beyond occupying dopamine D2 receptors, can affect multiple molecular targets, pre- and postsynaptic sites, as well as intracellular effectors. Multiple lines of evidence point to the involvement of antipsychotics in sculpting synaptic architecture and remodeling the neuronal functional unit. Furthermore, there is an increasing awareness that antipsychotics with different receptor profiles could yield different interregional patterns of co-activation. In the present systematic review, we explored the fundamental changes that occur under antipsychotics' administration, the molecular underpinning, and the consequences in both acute and chronic paradigms. In addition, we investigated the relationship between synaptic plasticity and functional connectivity and systematized evidence on different topographical patterns of activation induced by typical and atypical antipsychotics.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Fehr T, Janssen WG, Park J, Baxter MG. Neonatal exposures to sevoflurane in rhesus monkeys alter synaptic ultrastructure in later life. iScience 2022; 25:105685. [PMID: 36567715 PMCID: PMC9772858 DOI: 10.1016/j.isci.2022.105685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Repeated or prolonged early life exposure to anesthesia is neurotoxic in animals and associated with neurocognitive impairment in later life in humans. We used electron microscopy with unbiased stereological sampling to assess synaptic ultrastructure in dorsolateral prefrontal cortex (dlPFC) and hippocampal CA1 of female and male rhesus monkeys, four years after three 4-h exposures to sevoflurane during the first five postnatal weeks. This allowed us to ascertain long-term consequences of anesthesia exposure without confounding effects of surgery or illness. Synapse areas were reduced in the largest synapses in CA1 and dlPFC, predominantly in perforated spinous synapses in CA1 and nonperforated spinous synapses in dlPFC. Mitochondrial morphology and localization changed subtly in both areas. Synapse areas in CA1 correlated with response to a mild social stressor. Thus, exposure to anesthesia in infancy can cause long-term ultrastructural changes in primates, which may be substrates for long-term alterations in synaptic transmission and behavioral deficits.
Collapse
Affiliation(s)
- Tristan Fehr
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - William G.M. Janssen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Janis Park
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA,Corresponding author
| |
Collapse
|
47
|
Cui Z, Guo Z, Wei L, Zou X, Zhu Z, Liu Y, Wang J, Chen L, Wang D, Ke Z. Altered pain sensitivity in 5×familial Alzheimer disease mice is associated with dendritic spine loss in anterior cingulate cortex pyramidal neurons. Pain 2022; 163:2138-2153. [PMID: 35384934 PMCID: PMC9578529 DOI: 10.1097/j.pain.0000000000002648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is highly prevalent. Individuals with cognitive disorders such as Alzheimer disease are a susceptible population in which pain is frequently difficult to diagnosis. It is still unclear whether the pathological changes in patients with Alzheimer disease will affect pain processing. Here, we leverage animal behavior, neural activity recording, optogenetics, chemogenetics, and Alzheimer disease modeling to examine the contribution of the anterior cingulate cortex (ACC) neurons to pain response. The 5× familial Alzheimer disease mice show alleviated mechanical allodynia which can be regained by the genetic activation of ACC excitatory neurons. Furthermore, the lower peak neuronal excitation, delayed response initiation, as well as the dendritic spine reduction of ACC pyramidal neurons in 5×familial Alzheimer disease mice can be mimicked by Rac1 or actin polymerization inhibitor in wild-type (WT) mice. These findings indicate that abnormal of pain sensitivity in Alzheimer disease modeling mice is closely related to the variation of neuronal activity and dendritic spine loss in ACC pyramidal neurons, suggesting the crucial role of dendritic spine density in pain processing.
Collapse
Affiliation(s)
- Zhengyu Cui
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zilu Zhu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Liu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deheng Wang
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
48
|
Digitalizing neuronal synapses with cryo-electron tomography and correlative microscopy. Curr Opin Neurobiol 2022; 76:102595. [DOI: 10.1016/j.conb.2022.102595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022]
|
49
|
Post-embryonic remodeling of the C. elegans motor circuit. Curr Biol 2022; 32:4645-4659.e3. [DOI: 10.1016/j.cub.2022.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
50
|
Werth R. A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sci 2022; 12:1305. [PMID: 36291239 PMCID: PMC9599441 DOI: 10.3390/brainsci12101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Although subjective conscious experience and introspection have long been considered unscientific and banned from psychology, they are indispensable in scientific practice. These terms are used in scientific contexts today; however, their meaning remains vague, and earlier objections to the distinction between conscious experience and unconscious processing, remain valid. This also applies to the distinction between conscious visual perception and unconscious visual processing. Damage to the geniculo-striate pathway or the visual cortex results in a perimetrically blind visual hemifield contralateral to the damaged hemisphere. In some cases, cerebral blindness is not absolute. Patients may still be able to guess the presence, location, shape or direction of movement of a stimulus even though they report no conscious visual experience. This "unconscious" ability was termed "blindsight". The present paper demonstrates how the term conscious visual experience can be introduced in a logically precise and methodologically correct way and becomes amenable to scientific examination. The distinction between conscious experience and unconscious processing is demonstrated in the cases of conscious vision and blindsight. The literature on "blindsight" and its neurobiological basis is reviewed. It is shown that blindsight can be caused by residual functions of neural networks of the visual cortex that have survived cerebral damage, and may also be due to an extrastriate pathway via the midbrain to cortical areas such as areas V4 and MT/V5.
Collapse
Affiliation(s)
- Reinhard Werth
- Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|