1
|
Xavier AM, Lin Q, Kang CJ, Cheadle L. A single-cell transcriptomic atlas of sensory-dependent gene expression in developing mouse visual cortex. Development 2025; 152:dev204244. [PMID: 40018816 DOI: 10.1242/dev.204244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Sensory experience drives the maturation of neural circuits during postnatal brain development through molecular mechanisms that remain to be fully elucidated. One likely mechanism involves the sensory-dependent expression of genes that encode direct mediators of circuit remodeling within developing cells. To identify potential drivers of sensory-dependent synaptic development, we generated a single-nucleus RNA sequencing dataset describing the transcriptional responses of cells in the mouse visual cortex to sensory deprivation or to stimulation during a developmental window when visual input is necessary for circuit refinement. We sequenced 118,529 nuclei across 16 neuronal and non-neuronal cell types isolated from control, sensory deprived and sensory stimulated mice, identifying 1268 sensory-induced genes within the developing brain. While experience elicited transcriptomic changes in all cell types, excitatory neurons in layer 2/3 exhibited the most robust changes, and the sensory-induced genes in these cells are poised to strengthen synapse-to-nucleus crosstalk and to promote cell type-specific axon guidance pathways. Altogether, we expect this dataset to significantly broaden our understanding of the molecular mechanisms through which sensory experience shapes neural circuit wiring in the developing brain.
Collapse
Affiliation(s)
- Andre M Xavier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Qianyu Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Chris J Kang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
2
|
Boucherie C, Alkailani M, Jossin Y, Ruiz-Reig N, Mahdi A, Aldaalis A, Aittaleb M, Tissir F. Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex. J Adv Res 2025; 72:151-163. [PMID: 39013538 DOI: 10.1016/j.jare.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION The AUTS2 gene is associated with various neurodevelopmental and psychiatric disorders and has been suggested to play a role in acquiring human-specific traits. Functional analyses of Auts2 knockout mice have focused on postmitotic neurons, and the reported phenotypes do not faithfully recapitulate the whole spectrum of AUTS2-related human diseases. OBJECTIVE The objective of the study is to assess the role of AUTS2 in the biology of neural progenitor cells, cortical neurogenesis and expansion; and understand how its deregulation leads to neurological disorders. METHODS We screened the literature and conducted a time point analysis of AUTS2 expression during cortical development. We used in utero electroporation to acutely modulate the expression level of AUTS2 in the developing cerebral cortex in vivo, and thoroughly characterized cortical neurogenesis and morphogenesis using immunofluorescence, cell tracing and sorting, transcriptomic profiling, and gene ontology enrichment analyses. RESULTS In addition to its expression in postmitotic neurons, we showed that AUTS2 is also expressed in neural progenitor cells at the peak of neurogenesis. Upregulation of AUTS2 dramatically altered the differentiation program and fate determination of cortical progenitors. Notably, it increased the number of basal progenitors and neurons and changed the expression of hundreds of genes, among which 444 have not been implicated in mouse brain development or function. CONCLUSION The study provides evidence that AUTS2 is expressed in germinal zones and plays a key role in fate decision of neural progenitor cells with impact on corticogenesis. It also presents comprehensive lists of AUTS2 target genes thus advancing the molecular mechanisms underlying AUTS2-associated diseases and the evolutionary expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Cédric Boucherie
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Maisa Alkailani
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Yves Jossin
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Asma Mahdi
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Arwa Aldaalis
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Mohamed Aittaleb
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium; Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar.
| |
Collapse
|
3
|
Zheng S, Chen C. Auditory processing deficits in autism spectrum disorder: mechanisms, animal models, and therapeutic directions. J Neural Transm (Vienna) 2025; 132:781-791. [PMID: 40353881 DOI: 10.1007/s00702-025-02919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025]
Abstract
Auditory processing abnormalities are a prominent feature of Autism Spectrum Disorder (ASD), significantly affecting sensory integration, communication, and social interaction. This review delves into the neurobiological mechanisms underlying these deficits, including structural and functional disruptions in the auditory cortex, imbalances in excitatory and inhibitory signaling, and synaptic dysfunction. Genetic contributions from mutations in CNTNAP2, SHANK3, FMR1, and FOXP2 are explored, highlighting their roles in auditory abnormalities. Animal models, such as BTBRT+tf/J mice (BTBR) and valproic acid (VPA)-exposed rodents, provide critical insights into the sensory abnormalities observed in ASD. In addition, the review discusses current pharmacological strategies and emerging interventions targeting neurotransmitter systems and synaptic plasticity. Notably, future directions are emphasized, highlighting the need for integrated pharmacological and auditory-specific therapies to enhance sensory processing and communication outcomes in ASD. Overall, this review aims to bridge the gap between basic neurobiological research and clinical application, guiding future studies and therapeutic developments in ASD-related auditory processing deficits.
Collapse
Affiliation(s)
- Shuyu Zheng
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
- Department of Traditional Chinese Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Chen Chen
- Department of Traditional Chinese Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Sader M, Harris HA, Waiter GD, Jansen PW, Williams JH, White T. Neural correlates of children with avoidant restrictive food intake disorder symptoms: large-scale neuroanatomical analysis of a paediatric population. J Child Psychol Psychiatry 2025; 66:785-795. [PMID: 39623765 PMCID: PMC12062856 DOI: 10.1111/jcpp.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 05/11/2025]
Abstract
BACKGROUND Avoidant restrictive food intake disorder (ARFID) is a recently recognised feeding and eating disorder and is characterised by a lack of interest and motivation to eat. Despite burgeoning research, few studies to date have explored the underlying neurobiology of ARFID. Research examining the neural underpinnings of ARFID can greatly assist in understanding different mechanisms that play disorder-specific roles. METHODS We studied a total of 1,977 10-year-old participants from the Generation R Study, a population-based Dutch cohort, to cross-sectionally examine neuroanatomical differences between those with versus without ARFID-like symptoms. Children were classified with versus without ARFID symptoms using the ARFID Index, a validated evaluative tool comprised of parent-reported and researcher-assessed measurements of picky eating, energy intake, diet quality, growth and psychosocial impact to characterise ARFID symptoms in the paediatric population. Global and regional values of surface area, cortical thickness, and volume from T1-weighted structural magnetic resonance imaging (MRI) scans in those with ARFID symptoms were compared with children not exhibiting symptoms. RESULTS We identified 121 (6.1%) individuals with ARFID symptoms relative to 1,865 (93.9%) individuals without ARFID symptoms. Neuroanatomical findings identified significantly greater frontal (p = .00743; d = 0.21) and superior frontal (p = 6.56E-04; d = 0.28) cortical thickness among children with ARFID symptoms. CONCLUSIONS This first large-scale study of the neural correlates of ARFID identified greater thickness of frontal cortical regions in children with ARFID symptoms, suggesting a role for executive function in the aetiology of the condition.
Collapse
Affiliation(s)
| | - Holly A. Harris
- Erasmus MCUniversity Medical Centre RotterdamRotterdamThe Netherlands
- Erasmus University RotterdamRotterdamThe Netherlands
| | | | - Pauline W. Jansen
- Erasmus MCUniversity Medical Centre RotterdamRotterdamThe Netherlands
- Erasmus University RotterdamRotterdamThe Netherlands
| | - Justin H.G. Williams
- University of AberdeenAberdeenUK
- Griffith UniversityGold CoastQueenslandAustralia
- Gold Coast Mental Health and Specialist ServicesGold CoastQueenslandAustralia
| | - Tonya White
- Erasmus Medical Centre RotterdamRotterdamThe Netherlands
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental HealthBethesdaMarylandUSA
| |
Collapse
|
5
|
Xia J, Bajpai AK, Liu Y, Yu L, Dong Y, Li F, Chen F, Lu L, Feng S. Systems Genetics Reveals the Gene Regulatory Mechanisms of Arrb2 in the Development of Autism Spectrum Disorders. Genes (Basel) 2025; 16:605. [PMID: 40428426 PMCID: PMC12111057 DOI: 10.3390/genes16050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/06/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex interactions between genetic and environmental factors. Recent studies suggest that dysregulation of β-arrestin2 (Arrb2) in the central nervous system is linked to ASD. However, its specific mechanisms remain unknown. METHODS This study employs a systems genetics approach to comprehensively investigate Arrb2 in multiple brain tissues, including the amygdala, cerebellum, hippocampus, and prefrontal cortex, using BXD recombinant inbred (RI) strains. In addition, genetic variance analysis, correlation analysis, expression quantitative trait loci (eQTL) mapping, and functional annotation were used to identify the key downstream targets of Arrb2, validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). RESULTS Arrb2 exhibited expression variations across the four brain regions in BXD mice. eQTL mapping revealed that Arrb2 is cis-regulated, and increased Arrb2 expression levels were significantly correlated with ASD-like symptoms, such as impaired social interactions and abnormal learning and memory. Furthermore, protein-protein interaction (PPI) network analysis, tissue correlation, functional relevance to autism, and differential expression identified eight downstream candidate genes regulated by Arrb2. The experimental results demonstrated that deletion of Arrb2 led to the downregulation of Myh9, Dnmt1, and Brd4 expression, along with protein kinase A (PKA)-induced hyperactivation of Synapsin I. These findings suggest that Arrb2 may contribute to the pathogenesis of autism by modulating the expression of these genes. CONCLUSIONS This study highlights the role of Arrb2 in ASD pathogenesis and identifies Myh9, Dnmt1, and Brd4 as key downstream regulators. These findings provide new insights into the molecular mechanisms of ASD and pave the way for novel therapeutic targets.
Collapse
Affiliation(s)
- Junyu Xia
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lele Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yating Dong
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Shini Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Vankwani S, Mirza MR, Tahir M, Wasim M, Rajput SA, Khan HN, Larsen MR, Choudhary MI, Awan FR. Exploring Proteomic Alterations in Intellectual Disability: Insights from Hyperlipidemia and Hyperphosphatasia Subgroups. Neuromolecular Med 2025; 27:38. [PMID: 40394346 DOI: 10.1007/s12017-025-08855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/19/2025] [Indexed: 05/22/2025]
Abstract
A significant increase of neurodevelopment disorders (NDDs) among children presents growing healthcare challenge worldwide. Owing to heterogenic, multifactorial nature of NDDs, understanding pathophysiology of disease, finding effective methods for the early detection and intervention of NDDs has become extremely complex. This study aims to investigate the molecular mechanisms of NDDs, focusing on the associations between hyperphosphatasia (HPP) and hyperlipidemia (HLD) in patients with intellectual disability (ID). Blood samples from 800 study participants (ID patients and healthy individuals, HC) were analyzed for the biochemical differences. Among them, 105 ID patients with uniquely altered biochemical profiles (ID-HPP, n = 28; ID-HLD, n = 77) and 65 HC samples were further investigated for nLC-MS/MS-based proteomic analysis. A total of 354 proteins were identified in label-free quantitative proteomic analysis of the all groups (ID-HPP, ID-HLD, and HC). The ID-HPP and ID-HLD groups each had distinct protein profiles compared to HC, with 28 and 85 differentially expressed proteins, respectively. The ID-HLD group had 66 unique proteins, whereas ID-HPP had 9 unique proteins, with 19 proteins common among the subgroups of ID. Pathway analysis of common proteins revealed shared pathways as the complement system and lipoprotein metabolism disruptions, but distinct pathway disturbances: toll-like receptor and integrin signaling in ID-HPP, and hemostatic pathway dysregulation in ID-HLD. These findings elucidate systemic pathway abnormalities in NDDs, including ID.
Collapse
Affiliation(s)
- Soma Vankwani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Wasim
- Health Biotechnology Division, Human Molecular Genetics and Metabolic Disorders Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Sajid Ali Rajput
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Allama I. I. Kazi Campus, Jamshoro, 76080, Sindh, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, Human Molecular Genetics and Metabolic Disorders Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, Human Molecular Genetics and Metabolic Disorders Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan.
| |
Collapse
|
7
|
Delvendahl I, Daswani R, Winterer J, Germain PL, Uhr NM, Schratt G, Müller M. MicroRNA-138-5p suppresses excitatory synaptic strength at the cerebellar input layer. J Physiol 2025. [PMID: 40349307 DOI: 10.1113/jp288019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
MicroRNAs are small, highly conserved non-coding RNAs that negatively regulate mRNA translation and stability. In the brain, miRNAs contribute to neuronal development, synaptogenesis, and synaptic plasticity. MicroRNA 138-5p (miR-138-5p) controls inhibitory synaptic transmission in the hippocampus and is highly expressed in cerebellar excitatory neurons. However, its specific role in cerebellar synaptic transmission remains unknown. Here, we investigated excitatory transmission in the cerebellum of mice expressing a sponge construct that sequesters endogenous miR-138-5p. Mossy fibre stimulation-evoked EPSCs in granule cells were ∼40% larger in miR-138-5p sponge mice compared to controls. Furthermore, we observed larger miniature EPSC amplitudes, suggesting an increased number of functional postsynaptic AMPA receptors. High-frequency train stimulation revealed enhanced short-term depression following miR-138-5p downregulation. Together with computational modelling, this suggests a negative regulation of presynaptic release probability. Overall, our results demonstrate that miR-138-5p suppresses synaptic strength through pre- and postsynaptic mechanisms, providing a potentially powerful mechanism for tuning excitatory synaptic input into the cerebellum. KEY POINTS: MicroRNAs are powerful regulators of mRNA translation and control key cell biological processes including synaptic transmission, but their role in regulating synaptic function in the cerebellum has remained elusive. In this study, we investigated how microRNA-138-5p (miR-138-5p) modulates excitatory transmission at adult murine cerebellar mossy fibre to granule cell synapses. Downregulation of miR-138-5p enhances excitatory synaptic strength at the cerebellar input layer and increases short-term depression. miR-138-5p exerts its regulatory function through both pre- and postsynaptic mechanisms by negatively regulating release probability at mossy fibre boutons, as well as functional AMPA receptor numbers in granule cells. These findings provide insights into the role of miR-138-5p in the cerebellum and expand our understanding of microRNA-dependent control of excitatory synaptic transmission and short-term plasticity.
Collapse
Affiliation(s)
- Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reetu Daswani
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
- Present address: Sixfold Bioscience Ltd, Translation and Innovation Hub, London, UK
| | - Jochen Winterer
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Pierre-Luc Germain
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Nora Maria Uhr
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Gerhard Schratt
- Neuroscience Center Zurich, Zurich, Switzerland
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Kaljusto HK, Wilson E, Fletcher-Watson S. Do Influential Articles on the Genetics of Autism Show Evidence of Engagement With the Autistic Community? Am J Med Genet B Neuropsychiatr Genet 2025:e33030. [PMID: 40271759 DOI: 10.1002/ajmg.b.33030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Investigations into the etiology and genetic basis of autism continue to drive much autism research, yet reports are emerging of this research not aligning with priorities of autistic people. Engagement of autistic people in the research process is a key way to take their perspectives on board. We investigated whether influential genetic autism research shows evidence of engagement with the autistic community via indicators in published article texts. Through text mining of the abstracts of articles mentioning the words "autism" or "autistic," we found minimal prevalence of progressive terminology associated with autism. We also devised a novel rating system to assess three hallmarks of autistic community engagement: presence of non-stigmatizing language, referencing community priorities, and the use of participatory methods. We reviewed 149 articles within leading autism and genetic journals. Minimal evidence of engagement with the autistic community was found within all three hallmarks. Genetics researchers focused on autism should embrace opportunities to engage with the autistic community to bring their work into closer alignment with their priorities, yielding scientific and moral benefits.
Collapse
Affiliation(s)
| | - Emma Wilson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
9
|
Mei Y, Gosztyla ML, Tan X, Dozier LE, Wilkinson B, McKetney J, Lee J, Chen M, Tsai D, Kopalle H, Gritsenko MA, Hartel N, Graham NA, Flores I, Gilmore-Hall SK, Xu S, Marquez CA, Liu SN, Fong D, Chen J, Licon K, Hong D, Wright SN, Kreisberg JF, Nott A, Smith RD, Qian WJ, Swaney DL, Iakoucheva LM, Krogan NJ, Patrick GN, Zhou Y, Feng G, Coba MP, Yeo GW, Ideker T. Integrated multi-omic characterizations of the synapse reveal RNA processing factors and ubiquitin ligases associated with neurodevelopmental disorders. Cell Syst 2025; 16:101204. [PMID: 40054464 DOI: 10.1016/j.cels.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
The molecular composition of the excitatory synapse is incompletely defined due to its dynamic nature across developmental stages and neuronal populations. To address this gap, we apply proteomic mass spectrometry to characterize the synapse in multiple biological models, including the fetal human brain and human induced pluripotent stem cell (hiPSC)-derived neurons. To prioritize the identified proteins, we develop an orthogonal multi-omic screen of genomic, transcriptomic, interactomic, and structural data. This data-driven framework identifies proteins with key molecular features intrinsic to the synapse, including characteristic patterns of biophysical interactions and cross-tissue expression. The multi-omic analysis captures synaptic proteins across developmental stages and experimental systems, including 493 synaptic candidates supported by proteomics. We further investigate three such proteins that are associated with neurodevelopmental disorders-Cullin 3 (CUL3), DEAD-box helicase 3 X-linked (DDX3X), and Y-box binding protein-1 (YBX1)-by mapping their networks of physically interacting synapse proteins or transcripts. Our study demonstrates the potential of an integrated multi-omic approach to more comprehensively resolve the synaptic architecture.
Collapse
Affiliation(s)
- Yuan Mei
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lara E Dozier
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin McKetney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - John Lee
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dorothy Tsai
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hema Kopalle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ilse Flores
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen K Gilmore-Hall
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuhao Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Charlotte A Marquez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dylan Fong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kate Licon
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Derek Hong
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah N Wright
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, White City Campus, London W12 7RH, UK; UK Dementia Research Institute, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Gentry N Patrick
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA.
| | - Trey Ideker
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Milosavljevic S, Piroli MV, Sandago EJ, Piroli GG, Smith HH, Beggiato S, Frizzell N, Pocivavsek A. Parental kynurenine 3-monooxygenase genotype in mice directs sex-specific behavioral outcomes in offspring. Biol Sex Differ 2025; 16:22. [PMID: 40176166 PMCID: PMC11967062 DOI: 10.1186/s13293-025-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Disruptions in brain development can impact behavioral traits and increase the risk of neurodevelopmental conditions such as autism spectrum disorder, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder, often in sex-specific ways. Dysregulation of the kynurenine pathway (KP) of tryptophan metabolism has been implicated in cognitive and neurodevelopmental disorders. Increased brain kynurenic acid (KYNA), a neuroactive metabolite implicated in cognition and sleep homeostasis, and variations in the Kmo gene, which encodes kynurenine 3-monooxygenase (KMO), have been identified in these patients. We hypothesize that parental Kmo genetics influence KP biochemistry, sleep behavior and brain energy demands, contributing to impairments in cognition and sleep in offspring through the influence of parental genotype and genetic nurture mechanisms. METHODS A mouse model of partial Kmo deficiency, Kmo heterozygous (HET-Kmo+/-), was used to examine brain KMO activity, KYNA levels, and sleep behavior in HET-Kmo+/- compared to wild-type control (WT-Control) mice. Brain mitochondrial respiration was assessed, and KP metabolites and corticosterone levels were measured in breast milk. Behavioral assessments were conducted on wild-type offspring from two parental groups: (i) WT-Control from WT-Control parents, (ii) wild-type Kmo (WT-Kmo+/+) from Kmo heterozygous parents (HET-Kmo+/-). All mice were C57Bl/6J background strain. Adult female and male offspring underwent behavioral testing for learning, memory, anxiety-like behavior and sleep-wake patterns. RESULTS HET-Kmo+/- mice exhibited reduced brain KMO activity, increased KYNA levels, and disrupted sleep architecture and electroencephalogram (EEG) power spectra. Mitochondrial respiration (Complex I and Complex II activity) and electron transport chain protein levels were impaired in the hippocampus of HET-Kmo+/- females. Breast milk from HET-Kmo+/- mothers increased kynurenine exposure during lactation but corticosterone levels were unchanged. Compared to WT-Control offspring, WT-Kmo+/+ females showed impaired spatial learning, heightened anxiety, reduced sleep and abnormal EEG spectral power. WT-Kmo+/+ males had deficits in reversal learning but no sleep disturbances or anxiety-like behaviors. CONCLUSIONS These findings suggest that Kmo deficiency impacts KP biochemistry, sleep behavior, and brain mitochondrial function. Even though WT-Kmo+/+ inherit identical genetic material as WT-Control, their development might be shaped by the parent's physiology, behavior, or metabolic state influenced by their Kmo genotype, leading to phenotypic sex-specific differences in offspring.
Collapse
Affiliation(s)
- Snezana Milosavljevic
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Maria V Piroli
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Emma J Sandago
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Holland H Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Norma Frizzell
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Building 1, D26, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA.
| |
Collapse
|
11
|
Arizono M, Idziak A, Nägerl UV. Live STED imaging of functional neuroanatomy. Nat Protoc 2025:10.1038/s41596-024-01132-6. [PMID: 40087378 DOI: 10.1038/s41596-024-01132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/11/2024] [Indexed: 03/17/2025]
Abstract
In the mammalian brain, a large network of excitable and modulatory cells efficiently processes, analyzes and stores vast amounts of information. The brain's anatomy influences the flow of neural information between neurons and glia, from which all thought, emotion and action arises. Consequently, one of the grand challenges in neuroscience is to uncover the finest structural details of the brain in the context of its overall architecture. Recent developments in microscopy and biosensors have enabled the investigation of brain microstructure and function with unprecedented specificity and resolution, dendritic spines being an exemplary case, which has provided deep insights into neuronal mechanisms of higher brain function, such as learning and memory. As diffraction-limited light microscopy methods cannot resolve the fine details of brain cells (the 'anatomical ground truth'), electron microscopy is used instead to contextualize functional signals. This approach can be quite unsatisfying given the fragility and dynamic nature of the structures under investigation. We have recently developed a method for combining super-resolution stimulated emission depletion microscopy with functional measurements in brain slices, offering nanoscale resolution in functioning brain structures. We describe how to concurrently perform morphological and functional imaging with a confocal STED microscope. Specifically, the procedure guides the user on how to record astrocytic Ca2+ signals at tripartite synapses, outlining a framework for analyzing structure-function relationships of brain cells at nanoscale resolution. The imaging requires 2-3 h and the image analysis between 2 h and 2 d.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, Bordeaux, France.
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Agata Idziak
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, Bordeaux, France
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, Bordeaux, France.
- Department of Anatomy and Cell Biology, University Medical Center, Georg-August-University of Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Street AL, Thakkar VP, Lemke SW, Schoenbeck LM, Schumacher KM, Sathyanesan M, Newton SS, Kloth AD. Carbamoylated Erythropoietin Rescues Autism-Relevant Social Deficits in BALB/cJ Mice. NEUROSCI 2025; 6:25. [PMID: 40137869 PMCID: PMC11944669 DOI: 10.3390/neurosci6010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects over 2% of the population worldwide and is characterized by repetitive behaviors, restricted areas of interest, deficits in social communication, and high levels of anxiety. Currently, there are no known effective treatments for the core features of ASD. The previous literature has established erythropoietin (EPO) as a promising antidepressant, working as a potent neurogenic and neurotrophic agent with hematopoietic side effects. Carbamoylated erythropoietin (CEPO), a chemically engineered non-hematopoietic derivative of EPO, appears to retain the neuroprotective factors of EPO without the hematologic properties. Recent evidence shows that CEPO corrects stress-related depressive behaviors in BALB/cJ (BALB) mice, which also have face validity as an ASD mouse model. We investigated whether CEPO can recover deficient social and anxiety-related behavioral deficits compared to C57BL/6J controls. After administering CEPO (40 μg/kg in phosphate-buffered saline) or vehicle over 21 days, we analyzed the mice's performance in the three-chamber social approach, the open field, the elevated plus maze, and the Porsolt's forced swim tasks. CEPO appeared to correct sociability in the three-chamber social approach task to C57 levels, increasing the amount of time the mice interacted with novel, social mice overall rather than altering the overall amount of exploratory activity in the maze. Consistent with this finding, there was no concomitant increase in the distance traveled in the open field, nor were there any alterations in the anxiety-related measures in the task. On the other hand, CEPO administration improved exploratory behavior in the elevated plus maze. This study marks the first demonstration of the benefits of a non-erythropoietic EPO derivative for social behavior in a mouse model of autism and merits further investigation into the mechanisms by which this action occurs.
Collapse
Affiliation(s)
- Amaya L. Street
- Department of Biology, Augustana University, Sioux Falls, SD 57197, USA; (A.L.S.); (V.P.T.); (K.M.S.)
| | - Vedant P. Thakkar
- Department of Biology, Augustana University, Sioux Falls, SD 57197, USA; (A.L.S.); (V.P.T.); (K.M.S.)
| | - Sean W. Lemke
- Department of Biology, Augustana University, Sioux Falls, SD 57197, USA; (A.L.S.); (V.P.T.); (K.M.S.)
| | - Liza M. Schoenbeck
- Department of Biology, Augustana University, Sioux Falls, SD 57197, USA; (A.L.S.); (V.P.T.); (K.M.S.)
| | - Kevin M. Schumacher
- Department of Biology, Augustana University, Sioux Falls, SD 57197, USA; (A.L.S.); (V.P.T.); (K.M.S.)
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (M.S.); (S.S.N.)
- Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (M.S.); (S.S.N.)
- Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
| | - Alexander D. Kloth
- Department of Biology, Augustana University, Sioux Falls, SD 57197, USA; (A.L.S.); (V.P.T.); (K.M.S.)
| |
Collapse
|
13
|
O'Neill PS, Baccino-Calace M, Rupprecht P, Lee S, Hao YA, Lin MZ, Friedrich RW, Mueller M, Delvendahl I. A deep learning framework for automated and generalized synaptic event analysis. eLife 2025; 13:RP98485. [PMID: 40042890 PMCID: PMC11882139 DOI: 10.7554/elife.98485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Quantitative information about synaptic transmission is key to our understanding of neural function. Spontaneously occurring synaptic events carry fundamental information about synaptic function and plasticity. However, their stochastic nature and low signal-to-noise ratio present major challenges for the reliable and consistent analysis. Here, we introduce miniML, a supervised deep learning-based method for accurate classification and automated detection of spontaneous synaptic events. Comparative analysis using simulated ground-truth data shows that miniML outperforms existing event analysis methods in terms of both precision and recall. miniML enables precise detection and quantification of synaptic events in electrophysiological recordings. We demonstrate that the deep learning approach generalizes easily to diverse synaptic preparations, different electrophysiological and optical recording techniques, and across animal species. miniML provides not only a comprehensive and robust framework for automated, reliable, and standardized analysis of synaptic events, but also opens new avenues for high-throughput investigations of neural function and dysfunction.
Collapse
Affiliation(s)
- Philipp S O'Neill
- Department of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
- Neuroscience Center ZurichZurichSwitzerland
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | | | - Peter Rupprecht
- Neuroscience Center ZurichZurichSwitzerland
- Brain Research Institute, University of ZurichZurichSwitzerland
| | - Sungmoo Lee
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Yukun A Hao
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Michael Z Lin
- Department of Neurobiology, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Martin Mueller
- Department of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
- Neuroscience Center ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of ZurichZurichSwitzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
- Neuroscience Center ZurichZurichSwitzerland
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| |
Collapse
|
14
|
Mattingly Z, Chetty S. Untangling the Molecular Mechanisms Contributing to Autism Spectrum Disorder Using Stem Cells. Autism Res 2025; 18:476-485. [PMID: 39989339 DOI: 10.1002/aur.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neuro developmental condition characterized by significant genetic and phenotypic variability, making diagnosis and treatment challenging. The heterogeneity of ASD-associated genetic variants and the absence of clear causal factors in many cases complicate personalized care. Traditional models, such as postmortem brain tissue and animal studies, have provided valuable insights but are limited in capturing the dynamic processes and human-specific aspects of ASD pathology. Recent advances in human induced pluripotent stem cell (iPSC) technology have transformed ASD research by enabling the generation of patient-derived neural cells in both two-dimensional cultures and three-dimensional brain organoid models. These models retain the donor's genetic background, allowing researchers to investigate disease-specific cellular and molecular mechanisms while identifying potential therapeutic targets tailored to individual patients. This commentary highlights how stem cell-based approaches are advancing our understanding of ASD and paving the way for more personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zoe Mattingly
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sundari Chetty
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
15
|
O'Grady K, Grabrucker AM. Metal Dyshomeostasis as a Driver of Gut Pathology in Autism Spectrum Disorders. J Neurochem 2025; 169:e70041. [PMID: 40108935 PMCID: PMC11923526 DOI: 10.1111/jnc.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Despite being classified as neurodevelopmental disorders, in recent years, there has been a growing interest in the association between autism spectrum disorders (ASDs) and gut pathology. This comprehensive and systematic review explores a potential mechanism underlying gut pathology in ASDs, including alterations in gut microbiota, intestinal permeability, immune dysregulation, and gastrointestinal (GI) symptoms. Specifically, it delves into the role of toxic and essential metals and their interplay, affecting the development and function of the GI tract. The review also discusses the potential implications of this gut pathology in the development and management of ASDs. Studies have shown that heavy metal exposure, whether through environmental sources or dietary intake, can disrupt the delicate balance of trace elements in the gut. This disruption can adversely affect zinc homeostasis, potentially exacerbating gut pathology in individuals with ASDs. The impaired zinc absorption resulting from heavy metal exposure may contribute to the immune dysregulation, oxidative stress, and inflammation observed in the gut of individuals with ASDs. By shedding light on the multifaceted nature of gut pathology, including the impact of metal dyshomeostasis as a non-genetic factor in ASD, this review underscores the significance of the gut-brain axis in the etiology and management of ASDs.
Collapse
Affiliation(s)
- Katelyn O'Grady
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Bernal InstituteUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| | - Andreas M. Grabrucker
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Bernal InstituteUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| |
Collapse
|
16
|
Chen H, Ferguson CJ, Mitchell DC, Risch I, Titus A, Paulo JA, Hwang A, Beck LK, Lin TH, Gu W, Song SK, Yuede CM, Yano H, Griffith OL, Griffith M, Gygi SP, Bonni A, Kim AH. The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway. Cell Rep 2025; 44:115231. [PMID: 39862434 PMCID: PMC11922642 DOI: 10.1016/j.celrep.2025.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 11/14/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss. Strikingly, USP7 deletion perturbs the synaptic proteome and dendritic spinogenesis independent of p53. Integrated proteomics and biochemical analyses identify the RNA splicing factor Ppil4 as a key substrate of USP7. Ppil4 knockdown phenocopies the effect of USP7 loss on dendritic spines. Accordingly, USP7 loss disrupts splicing of synaptic genes. These findings reveal that USP7-Ppil4 signaling regulates neuronal connectivity in the developing brain with implications for our understanding of HAFOUS pathogenesis and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cole J Ferguson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dylan C Mitchell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabel Risch
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Amanda Titus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Hwang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loren K Beck
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Obi L Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Roche Pharma Research and Early Development, Neuroscience and Rare Disease Discovery and Translational Area, Roche Innovation Center, 4070 Basel, Switzerland.
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Boggess SC, Gandhi V, Tsai MC, Marzette E, Teyssier N, Chou JYY, Hu X, Cramer A, Yadanar L, Shroff K, Jeong CG, Eidenschenk C, Hanson JE, Tian R, Kampmann M. A Massively Parallel CRISPR-Based Screening Platform for Modifiers of Neuronal Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.28.582546. [PMID: 39990495 PMCID: PMC11844385 DOI: 10.1101/2024.02.28.582546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Understanding the complex interplay between gene expression and neuronal activity is crucial for unraveling the molecular mechanisms underlying cognitive function and neurological disorders. Here, we developed pooled screens for neuronal activity, using CRISPR interference (CRISPRi) and the fluorescent calcium integrator CaMPARI2. Using this screening method, we evaluated 1343 genes for their effect on excitability in human iPSC-derived neurons, revealing potential links to neurodegenerative and neurodevelopmental disorders. These genes include known regulators of neuronal excitability, such as TARPs and ion channels, as well as genes associated with autism spectrum disorder and Alzheimer's disease not previously described to affect neuronal excitability. This CRISPRi-based screening platform offers a versatile tool to uncover molecular mechanisms controlling neuronal activity in health and disease.
Collapse
|
18
|
Xie W, Liao B, Shuai M, Liu R, Hong M, He S. Novel De Novo Intronic Variant of SYNGAP1 Associated With the Neurodevelopmental Disorders. Mol Genet Genomic Med 2025; 13:e70066. [PMID: 39878419 PMCID: PMC11775916 DOI: 10.1002/mgg3.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant. METHODS A novel de novo intronic variant in SYNGAP1 was identified by Whole exome sequencing (WES) and confirmed by Sanger sequencing. Minigene assays were conducted to assess whether the intronic variant in SYNGAP1 influenced the normal splicing of mRNA. RESULTS A novel de novo intronic variant in SYNGAP1 (c.3582+2T>G) was indentified with clinical features suggestive of neurodevelopmental related disorders. Minigene splicing analysis demonstrated that this noncanonical splice site variant led to the activation of a cryptic acceptor splice site. Consequently, 101 base pairs of intron 16 were aberrantly retained in the mRNA, leading to a frameshift. This frameshift resulted in the introduction of a premature stop codon (TGA) in the coding sequence and the production of a truncated SYNGAP1 protein, potentially leding to loss of function and subsequent disruption of its biological roles. CONCLUSION Our findings highlight the significance of de novo pathogenic SYNGAP1 variants at the intron 16/exon 17 junction in the SYNGAP1-related neurodevelopmental disorders, providing novel insights into the genetic basis and diagnosis of these disabilities.
Collapse
Affiliation(s)
- Wuming Xie
- Ganzhou People's HospitalGanzhouJiangxiChina
| | - Baoqiong Liao
- Ganzhou Maternal and Child Health HospitalGanzhouJiangxiChina
- Fujian Medical UniversityFuzhouFujianChina
| | - Mei Shuai
- Ganzhou Maternal and Child Health HospitalGanzhouJiangxiChina
| | - Rutian Liu
- Ganzhou Maternal and Child Health HospitalGanzhouJiangxiChina
| | - Min Hong
- Ganzhou Maternal and Child Health HospitalGanzhouJiangxiChina
| | - Shuwen He
- Department of Chemistry and Molecular BiologyGothenburg UniversityGothenburgSweden
| |
Collapse
|
19
|
Stanton JE, Hans S, Zabetakis I, Grabrucker AM. Zinc signaling controls astrocyte-dependent synapse modulation via the PAF receptor pathway. J Neurochem 2025; 169:e16252. [PMID: 39450676 PMCID: PMC11808829 DOI: 10.1111/jnc.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function. Accordingly, astrocyte activation has been linked to neurodegenerative and neurodevelopmental disorders. Therefore, the attenuation of astrocyte activation may be an important approach for preventing and treating these disorders. Since zinc deficiency has been consistently linked to increased pro-inflammatory signaling, we aimed to identify cellular zinc-dependent signaling pathways that may lead to astrocyte activation using techniques such as immunocytochemistry and protein biochemistry to detect astrocyte GFAP expression, fluorescent imaging to detect oxidative stress levels in activated astrocytes, cytokine profiling, and analysis of primary neurons subjected to astrocyte secretomes. Our results reveal a so far not well-described pathway in astrocytes, the platelet activation factor receptor (PAFR) pathway, as a critical zinc-dependent signaling pathway that is sufficient to control astrocyte reactivity. Low zinc levels activate PAFR signaling-driven crosstalk between astrocytes and neurons, which alters excitatory synapse formation during development in a PAFR-dependent manner. We conclude that zinc is a crucial signaling ion involved in astrocyte activation and an important dietary factor that controls astrocytic pro-inflammatory processes. Thus, targeting zinc homeostasis may be an important approach in several neuroinflammatory conditions.
Collapse
Affiliation(s)
- Janelle E. Stanton
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
| | - Sakshi Hans
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
| | - Ioannis Zabetakis
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| | - Andreas M. Grabrucker
- Bernal InstituteUniversity of LimerickLimerickIreland
- Department of Biological SciencesUniversity of LimerickLimerickIreland
- Health Research Institute (HRI)University of LimerickLimerickIreland
| |
Collapse
|
20
|
Benli ET, Babur E, Dursun N, Saray H, Barutçu Ö, Süer C. Genetic machinery which accompanies metaplasticity operates differentially in experimental model of autism. Int J Dev Neurosci 2025; 85:e10398. [PMID: 39617393 DOI: 10.1002/jdn.10398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The present study investigated metaplasticity-related mRNA expressions in valproic acid (VPA)-rats, focusing on the PI3K/AKT pathway. Wistar dams were treated with a single intraperitoneal injection of 600 mg/kg VPA or saline on embryonic day E12.5 or an equal volume of saline solution. Three behavioral tests were conducted on these males' offspring: grid-walking test, negative geotaxis test, and three-chamber social interaction test. Metaplasticity was induced in 60-day-old male progeny by giving high-frequency stimulation for 5 minutes following low-frequency stimulation to the perforant pathway. For the baseline stimulation protocol (n = 6), stimulation was delivered to the dentate gyrus at the previously determined stimulation intensity (0.33 Hz 0.175 msec 30 s) for 75 min. The percent change of slope of field excitatory postsynaptic potential (fEPSP) and amplitude of population spike were calculated 55-60 min after induction protocol. The mRNA levels of PI3K, PTEN, AKT, GSK-3β, and MAPT were measured in the hippocampus by using quantitative rt-PCR. We found that offspring of VPA-treated rats showed significantly impaired sensorimotor coordination, decreased sociability, impaired preference for social novelty, and reduced input-output curve of fEPSP slope, compared to control animals. Despite a similar metaplastic response, mRNA levels of genes of interest were similar but considerably down-regulated after induction in offspring of VPA-treated dams. Our study provides evidence that the induced expression of autism-related genes has evolved to enable an adaptation mechanism during metaplastic control of long-term potentiation.
Collapse
Affiliation(s)
- Esra Tufan Benli
- Faculty of Medicine, Department of Physiology, Institute of Health Sciences COHE 100/2000 Doctorate Program, Human Brain and Neuroscience Sub-Field, Recites University, Kayseri, Turkey
| | - Ercan Babur
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Nurcan Dursun
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Hatice Saray
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Özlem Barutçu
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| | - Cem Süer
- Physiology Department of Medical School, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
21
|
Carbonell-Roig J, Aaltonen A, Wilson K, Molinari M, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. Cell Rep 2024; 43:114997. [PMID: 39607825 DOI: 10.1016/j.celrep.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) consists of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine (DA) neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine DA neurotransmission in a mouse model of ASD characterized by elevated expression of eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal DA release. The loss of normal DA neurotransmission is due to a defect in nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions by revealing the intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility.
Collapse
Affiliation(s)
| | - Alina Aaltonen
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Karin Wilson
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Veronica Cartocci
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Avery McGuirt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Eugene Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jan Kehr
- Pronexus Analytical AB, 16733 Stockholm-Bromma, Sweden
| | - Ori J Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
22
|
Raul P, Rowe E, van Boxtel JJ. High neural noise in autism: A hypothesis currently at the nexus of explanatory power. Heliyon 2024; 10:e40842. [PMID: 39687175 PMCID: PMC11648220 DOI: 10.1016/j.heliyon.2024.e40842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Autism is a neurodevelopmental difference associated with specific autistic experiences and characteristics. Early models such as Weak Central Coherence and Enhanced Perceptual Functioning have tried to capture complex autistic behaviours in a single framework, however, these models lacked a neurobiological explanation. Conversely, current neurobiological theories of autism at the cellular and network levels suggest excitation/inhibition imbalances lead to high neural noise (or, a 'noisy brain') but lack a thorough explanation of how autistic behaviours occur. Critically, around 15 years ago, it was proposed that high neural noise in autism produced a stochastic resonance (SR) effect, a phenomenon where optimal amounts of noise improve signal quality. High neural noise can thus capture both the enhanced (through SR) and reduced performance observed in autistic individuals during certain tasks. Here, we provide a review and perspective that positions the "high neural noise" hypothesis in autism as best placed to provide research direction and impetus. Emphasis is placed on evidence for SR in autism, as this promising prediction has not yet been reviewed in the literature. Using this updated approach towards autism, we can explain a spectrum of autistic experiences all through a neurobiological lens. This approach can further aid in developing specific support or services for autism.
Collapse
Affiliation(s)
- Pratik Raul
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
| | - Elise Rowe
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Jeroen J.A. van Boxtel
- Discipline of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Lehr AW, McDaniel KF, Roche KW. Analyses of Human Genetic Data to Identify Clinically Relevant Domains of Neuroligins. Genes (Basel) 2024; 15:1601. [PMID: 39766868 PMCID: PMC11675371 DOI: 10.3390/genes15121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on NLGN rare variants. In addition, we introduce a new approach to analyze human variation within NLGN genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function. Methods: To identify critical protein subdomains within the NLGN gene family, we developed an algorithm that assesses tolerance to missense mutations in human genetic variation by comparing clinical variants from ClinVar to reference variants from gnomAD. This approach provides tolerance values to subdomains within the protein. Results: Our algorithm identified several critical regions that were conserved across multiple NLGN isoforms. Importantly, this approach also identified a previously reported cluster of pathogenic variants in NLGN4X (also conserved in NLGN1 and NLGN3) as well as a region around the highly characterized NLGN3 R451C ASD-associated mutation. Additionally, we highlighted other, as of yet, uncharacterized regions enriched with mutations. Conclusions: The systematic analysis of NLGN ASD-associated variants compared to variants identified in the unaffected population (gnomAD) reveals conserved domains in NLGN isoforms that are tolerant to variation or are enriched in clinically relevant variants. Examination of databases also allows for predictions of the presumed tolerance to loss of an allele. The use of the algorithm we developed effectively allowed the evaluation of subdomains of NLGNs and can be used to examine other ASD-associated genes.
Collapse
Affiliation(s)
- Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Kathryn F. McDaniel
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
| |
Collapse
|
24
|
Jin F, Wang Z. Mapping the structure of biomarkers in autism spectrum disorder: a review of the most influential studies. Front Neurosci 2024; 18:1514678. [PMID: 39734494 PMCID: PMC11671500 DOI: 10.3389/fnins.2024.1514678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Autism spectrum disorder is a distinctive developmental condition which is caused by an interaction between genetic vulnerability and environmental factors. Biomarkers play a crucial role in understanding disease characteristics for diagnosis, prognosis, and treatment. This study employs bibliometric analysis to identify and review the 100 top-cited articles' characteristics, current research hotspots and future directions of autism biomarkers. METHODS A comprehensive search of autism biomarkers studies was retrieved from the Web of Science Core Collection database with a combined keyword search strategy. A comprehensive analysis of the top 100 articles was conducted with CiteSpace, VOSviewer, and Excel, including citations, countries, authors, and keywords. RESULTS The top 100 cited studies were published between 1988 and 2021, with the United States led in productivity. Core biomarkers such as genetics, children, oxidative stress, and mitochondrial dysfunction are well-established. Potential trends for future research may include brain studies, metabolomics, and associations with other psychiatric disorders. CONCLUSION This pioneering bibliometric analysis provides a comprehensive compilation of the 100 most-cited studies on autism, which not only offers a valuable resource for doctors, and researchers but shedding insights into current shortcomings and future endeavors. Future research should prioritize the application of emerging technologies for biomarkers, longitudinal study of biomarkers, and specificity of autism biomarkers to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Zhidan Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
25
|
Shamapari R, Nagaraj K. Upregulation of ACSL, ND75, Vha26 and sesB genes by antiepileptic drugs resulted in genotoxicity in drosophila. Toxicol Res (Camb) 2024; 13:tfae180. [PMID: 39507589 PMCID: PMC11535366 DOI: 10.1093/toxres/tfae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/13/2024] [Indexed: 11/08/2024] Open
Abstract
Clobazam (CLB) and Vigabatrin (VGB) are commonly used antiepileptic drugs (AEDs) in the treatment of epilepsy. Here, we have examined the genotoxic effect of these AEDs in Drosophila melanogaster. The Drosophila larvae were exposed to different concentrations of CLB and VGB containing food media. The assessment encompassed oxidative stress, DNA damage, protein levels, and gene expression profiles. In the CLB-treated group, a reduction in reactive oxygen species (ROS) and lipid peroxidation (LPO) levels was observed, alongside increased levels of superoxide dismutase (SOD), catalase (CAT), and nitric oxide (NO). Conversely, the VGB-treated group displayed contrasting results, with increased ROS and LPO and decreased SOD, CAT, and NO levels. However, both CLB and VGB induced DNA damage in Drosophila. Proteomic analysis (SDS-PAGE and OHRLCMS) in the CLB and VGB groups identified numerous proteins, including Acyl-CoA synthetase long-chain, NADH-ubiquinone oxidoreductase 75 kDa subunit, V-type proton ATPase subunit E, ADP/ATP carrier protein, malic enzyme, and DNA-binding protein modulo. These proteins were found to be associated with pathways like growth promotion, notch signaling, Wnt signaling, neuromuscular junction (NMJ) signaling, bone morphogenetic protein (BMP) signaling, and other GABAergic mechanisms. Furthermore, mRNA levels of ACSL, ND75, Vha26, sesB, and Men genes were upregulated in both CLB and VGB-treated groups. These findings suggest that CLB and VGB could have the potential to induce genotoxicity and post-transcriptional modifications in humans, highlighting the importance of monitoring their effects when used as AEDs.
Collapse
Affiliation(s)
- R Shamapari
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| | - K Nagaraj
- Department of PG Studies and Research in Applied Zoology, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Karnataka 577451, India
| |
Collapse
|
26
|
Valle-Bautista R, Olivera-Acevedo M, Horta-Brussolo VR, Díaz NF, Ávila-González D, Molina-Hernández A. From songbird to humans: The multifaceted roles of FOXP2 in speech and motor learning. Neurosci Biobehav Rev 2024; 167:105936. [PMID: 39510218 DOI: 10.1016/j.neubiorev.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Motor learning involves a complex network of brain structures and is crucial for tasks like speech. The cerebral cortex, subcortical nuclei, and cerebellum are involved in motor learning and vocalization. Vocal learning has been demonstrated across species. However, it is a task that should be further studied and reevaluated, particularly in species considered non-vocal learners, to potentially uncover new insights. FOXP2, a transcription factor, has been implicated in speech learning and execution. Several variants have been involved in speech and cognitive impairments; the most studied is the R553H, found in the KE family, where more than half of the members show verbal dyspraxia. Brain FOXP2 expression shows consistent patterns across species in regions associated with motor learning and execution. Animal models expressing mutated FOXP2 showed impaired motor learning and vocalization. Genes regulated by FOXP2 are related to neural differentiation, connectivity, and synaptic plasticity, indicating its role in brain development and function. This review explores the intricate relationship between FOXP2, motor learning, and speech in an anatomical and functional context.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Monserrath Olivera-Acevedo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Instituto Tecnológico de Monterrey Campus Ciudad de México, Escuela de Medicina y Ciencias de la Salud, Colombia
| | - Victoria Regina Horta-Brussolo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV-IPN, Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Daniela Ávila-González
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico.
| |
Collapse
|
27
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
28
|
Rydzanicz M, Kuzniewska B, Magnowska M, Wójtowicz T, Stawikowska A, Hojka A, Borsuk E, Meyza K, Gewartowska O, Gruchota J, Miłek J, Wardaszka P, Chojnicka I, Kondrakiewicz L, Dymkowska D, Puścian A, Knapska E, Dziembowski A, Płoski R, Dziembowska M. Mutation in the mitochondrial chaperone TRAP1 leads to autism with more severe symptoms in males. EMBO Mol Med 2024; 16:2976-3004. [PMID: 39333440 PMCID: PMC11554806 DOI: 10.1038/s44321-024-00147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
There is increasing evidence of mitochondrial dysfunction in autism spectrum disorders (ASD), but the causal relationships are unclear. In an ASD patient whose identical twin was unaffected, we identified a postzygotic mosaic mutation p.Q639* in the TRAP1 gene, which encodes a mitochondrial chaperone of the HSP90 family. Additional screening of 176 unrelated ASD probands revealed an identical TRAP1 variant in a male patient who had inherited it from a healthy mother. Notably, newly generated knock-in Trap1 p.Q641* mice display ASD-related behavioral abnormalities that are more pronounced in males than in females. Accordingly, Trap1 p.Q641* mutation also resulted in sex-specific changes in synaptic plasticity, the number of presynaptic mitochondria, and mitochondrial respiration. Thus, the TRAP1 p.Q639* mutation is the first example of a monogenic ASD caused by impaired mitochondrial protein homeostasis.
Collapse
Affiliation(s)
| | - Bozena Kuzniewska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Magnowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Aleksandra Stawikowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Hojka
- Bioinformatics Core Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Borsuk
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Olga Gewartowska
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Miłek
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Patrycja Wardaszka
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Izabela Chojnicka
- Department of Health and Rehabilitation Psychology, Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Ludwika Kondrakiewicz
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alicja Puścian
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.
| | - Magdalena Dziembowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
29
|
Yenkoyan K, Grigoryan A, Kutna V, Shorter S, O'Leary VB, Asadollahi R, Ovsepian SV. Cerebellar impairments in genetic models of autism spectrum disorders: A neurobiological perspective. Prog Neurobiol 2024; 242:102685. [PMID: 39515458 DOI: 10.1016/j.pneurobio.2024.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive. Studies in experimental animals have been critical in uncovering molecular pathology and neuro-behavioural correlates, providing a model for investigating complex disease conditions. Herein, we review commonalities and differences of the most extensively characterised genetic lines of ASD with reference to the cerebellum. We revisit structural, functional, and molecular alterations which may contribute to neurobehavioral phenotypes. The cross-model analysis of this study provides an integrated outlook on the role of cerebellar alterations in pathobiology of ASD that may benefit future translational research and development of therapies.
Collapse
Affiliation(s)
- Konstantin Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia.
| | - Artem Grigoryan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University after M. Heratsi, Yerevan 0025, Armenia
| | - Viera Kutna
- Experimental Neurobiology Program, National Institute of Mental Health, Klecany, Czech Republic
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Prague 10000, Czech Republic
| | - Reza Asadollahi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, United Kingdom.
| |
Collapse
|
30
|
Xie C, Kessi M, Yin F, Peng J. Roles of KCNA2 in Neurological Diseases: from Physiology to Pathology. Mol Neurobiol 2024; 61:8491-8517. [PMID: 38517617 DOI: 10.1007/s12035-024-04120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Potassium voltage-gated channel subfamily a member 2 (Kv1.2, encoded by KCNA2) is highly expressed in the central and peripheral nervous systems. Based on the patch clamp studies, gain-of function (GOF), loss-of-function (LOF), and a mixed type (GOF/LOF) variants can cause different conditions/disorders. KCNA2-related neurological diseases include epilepsy, intellectual disability (ID), attention deficit/hyperactive disorder (ADHD), autism spectrum disorder (ASD), pain as well as autoimmune and movement disorders. Currently, the molecular mechanisms for the reported variants in causing diverse disorders are unknown. Consequently, this review brings up to date the related information regarding the structure and function of Kv1.2 channel, expression patterns, neuronal localizations, and tetramerization as well as important cell and animal models. In addition, it provides updates on human genetic variants, genotype-phenotype correlations especially highlighting the deep insight into clinical prognosis of KCNA2-related developmental and epileptic encephalopathy, mechanisms, and the potential treatment targets for all KCNA2-related neurological disorders.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China.
- Hunan Intellectual and Development Disabilities Research Center, Hunan, Changsha, 410008, China.
| |
Collapse
|
31
|
Falkovich R, Aryal S, Wang J, Sheng M, Bathe M. Synaptic composition, activity, mRNA translation and dynamics in combined single-synapse profiling using multimodal imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620504. [PMID: 39554017 PMCID: PMC11565908 DOI: 10.1101/2024.10.28.620504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The function of neuronal circuits, and its perturbation by psychoactive molecules or disease-associated genetic variants, is governed by the interplay between synapse activity and synaptic protein localization and synthesis across a heterogeneous synapse population. Here, we combine in situ measurement of synaptic multiprotein compositions and activation states, synapse activity in calcium traces or glutamate spiking, and local translation of specific genes, across the same individual synapses. We demonstrate how this high-dimensional data enables identification of interdependencies in the multiprotein-activity network, and causal dissection of complex synaptic phenotypes in disease-relevant chemical and genetic NMDAR loss of function that translate in vivo . We show how this method generalizes to other subcellular systems by deriving mitochondrial protein networks, and, using support vector machines, its value in overcoming animal variability in phenotyping. Integrating multiple synapse information modalities enables deep structure-function characterization of synapse populations and their responses to genetic and chemical perturbations.
Collapse
|
32
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
33
|
Michelini G, Carlisi CO, Eaton NR, Elison JT, Haltigan JD, Kotov R, Krueger RF, Latzman RD, Li JJ, Levin-Aspenson HF, Salum GA, South SC, Stanton K, Waldman ID, Wilson S. Where do neurodevelopmental conditions fit in transdiagnostic psychiatric frameworks? Incorporating a new neurodevelopmental spectrum. World Psychiatry 2024; 23:333-357. [PMID: 39279404 PMCID: PMC11403200 DOI: 10.1002/wps.21225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Features of autism spectrum disorder, attention-deficit/hyperactivity disorder, learning disorders, intellectual disabilities, and communication and motor disorders usually emerge early in life and are associated with atypical neurodevelopment. These "neurodevelopmental conditions" are grouped together in the DSM-5 and ICD-11 to reflect their shared characteristics. Yet, reliance on categorical diagnoses poses significant challenges in both research and clinical settings (e.g., high co-occurrence, arbitrary diagnostic boundaries, high within-disorder heterogeneity). Taking a transdiagnostic dimensional approach provides a useful alternative for addressing these limitations, accounting for shared underpinnings across neurodevelopmental conditions, and characterizing their common co-occurrence and developmental continuity with other psychiatric conditions. Neurodevelopmental features have not been adequately considered in transdiagnostic psychiatric frameworks, although this would have fundamental implications for research and clinical practices. Growing evidence from studies on the structure of neurodevelopmental and other psychiatric conditions indicates that features of neurodevelopmental conditions cluster together, delineating a "neurodevelopmental spectrum" ranging from normative to impairing profiles. Studies on shared genetic underpinnings, overlapping cognitive and neural profiles, and similar developmental course and efficacy of support/treatment strategies indicate the validity of this neurodevelopmental spectrum. Further, characterizing this spectrum alongside other psychiatric dimensions has clinical utility, as it provides a fuller view of an individual's needs and strengths, and greater prognostic utility than diagnostic categories. Based on this compelling body of evidence, we argue that incorporating a new neurodevelopmental spectrum into transdiagnostic frameworks has considerable potential for transforming our understanding, classification, assessment, and clinical practices around neurodevelopmental and other psychiatric conditions.
Collapse
Affiliation(s)
- Giorgia Michelini
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Christina O Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nicholas R Eaton
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - John D Haltigan
- Department of Psychiatry, Division of Child and Youth Mental Health, University of Toronto, Toronto, ON, Canada
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - James J Li
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Giovanni A Salum
- Child Mind Institute, New York, NY, USA
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para a Infância e Adolescência, São Paulo, Brazil
| | - Susan C South
- Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Kasey Stanton
- Department of Psychology, University of Wyoming, Laramie, WY, USA
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
34
|
Mace K, Zimmerman A, Chesi A, Doldur-Balli F, Kim H, Almeraya Del Valle E, Pack AI, Grant SFA, Kayser MS. Cross-species evidence for a developmental origin of adult hypersomnia with loss of synaptic adhesion molecules beat-Ia/CADM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615048. [PMID: 39386457 PMCID: PMC11463363 DOI: 10.1101/2024.09.25.615048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Idiopathic hypersomnia (IH) is a poorly-understood sleep disorder characterized by excessive daytime sleepiness despite normal nighttime sleep. Combining human genomics with behavioral and mechanistic studies in fish and flies, we uncover a role for beat-Ia/CADM2 , synaptic adhesion molecules of the immunoglobulin superfamily, in excessive sleepiness. Neuronal knockdown of Drosophila beat-Ia results in sleepy flies and loss of the vertebrate ortholog of beat-Ia , CADM2 , results in sleepy fish. We delineate a developmental function for beat-Ia in synaptic elaboration of neuropeptide F (NPF) neurites projecting to the suboesophageal zone (SEZ) of the fly brain. Brain connectome and experimental evidence demonstrate these NPF outputs synapse onto a subpopulation of SEZ GABAergic neurons to stabilize arousal. NPF is the Drosophila homolog of vertebrate neuropeptide Y (NPY), and an NPY receptor agonist restores sleep to normal levels in zebrafish lacking CADM2 . These findings point towards NPY modulation as a treatment target for human hypersomnia.
Collapse
|
35
|
Vermaercke B, Iwata R, Wierda K, Boubakar L, Rodriguez P, Ditkowska M, Bonin V, Vanderhaeghen P. SYNGAP1 deficiency disrupts synaptic neoteny in xenotransplanted human cortical neurons in vivo. Neuron 2024; 112:3058-3068.e8. [PMID: 39111306 PMCID: PMC11446607 DOI: 10.1016/j.neuron.2024.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2024] [Accepted: 07/10/2024] [Indexed: 09/28/2024]
Abstract
Human brain ontogeny is characterized by a considerably prolonged neotenic development of cortical neurons and circuits. Neoteny is thought to be essential for the acquisition of advanced cognitive functions, which are typically altered in intellectual disability (ID) and autism spectrum disorders (ASDs). Human neuronal neoteny could be disrupted in some forms of ID and/or ASDs, but this has never been tested. Here, we use xenotransplantation of human cortical neurons into the mouse brain to model SYNGAP1 haploinsufficiency, one of the most prevalent genetic causes of ID/ASDs. We find that SYNGAP1-deficient human neurons display strong acceleration of morphological and functional synaptic formation and maturation alongside disrupted synaptic plasticity. At the circuit level, SYNGAP1-haploinsufficient neurons display precocious acquisition of responsiveness to visual stimulation months ahead of time. Our findings indicate that SYNGAP1 is required cell autonomously for human neuronal neoteny, providing novel links between human-specific developmental mechanisms and ID/ASDs.
Collapse
Affiliation(s)
- Ben Vermaercke
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Ryohei Iwata
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Leïla Boubakar
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Paula Rodriguez
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium
| | - Martyna Ditkowska
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium; Department of Biology, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; imec, 3001 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences & Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
36
|
Elu N, Subash S, R Louros S. Crosstalk between ubiquitination and translation in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1398048. [PMID: 39286313 PMCID: PMC11402904 DOI: 10.3389/fnmol.2024.1398048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Ubiquitination is one of the most conserved post-translational modifications and together with mRNA translation contributes to cellular protein homeostasis (proteostasis). Temporal and spatial regulation of proteostasis is particularly important during synaptic plasticity, when translation of specific mRNAs requires tight regulation. Mutations in genes encoding regulators of mRNA translation and in ubiquitin ligases have been associated with several neurodevelopmental disorders. RNA metabolism and translation are regulated by RNA-binding proteins, critical for the spatial and temporal control of translation in neurons. Several ubiquitin ligases also regulate RNA-dependent mechanisms in neurons, with numerous ubiquitination events described in splicing factors and ribosomal proteins. Here we will explore how ubiquitination regulates translation in neurons, from RNA biogenesis to alternative splicing and how dysregulation of ubiquitin signaling can be the underlying cause of pathology in neurodevelopmental disorders, such as Fragile X syndrome. Finally we propose that targeting ubiquitin signaling is an attractive novel therapeutic strategy for neurodevelopmental disorders where mRNA translation and ubiquitin signaling are disrupted.
Collapse
Affiliation(s)
- Nagore Elu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Srividya Subash
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Ji Y, McLean JL, Xu R. Emerging Human Pluripotent Stem Cell-Based Human-Animal Brain Chimeras for Advancing Disease Modeling and Cell Therapy for Neurological Disorders. Neurosci Bull 2024; 40:1315-1332. [PMID: 38466557 PMCID: PMC11365908 DOI: 10.1007/s12264-024-01189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 03/13/2024] Open
Abstract
Human pluripotent stem cell (hPSC) models provide unprecedented opportunities to study human neurological disorders by recapitulating human-specific disease mechanisms. In particular, hPSC-based human-animal brain chimeras enable the study of human cell pathophysiology in vivo. In chimeric brains, human neural and immune cells can maintain human-specific features, undergo maturation, and functionally integrate into host brains, allowing scientists to study how human cells impact neural circuits and animal behaviors. The emerging human-animal brain chimeras hold promise for modeling human brain cells and their interactions in health and disease, elucidating the disease mechanism from molecular and cellular to circuit and behavioral levels, and testing the efficacy of cell therapy interventions. Here, we discuss recent advances in the generation and applications of using human-animal chimeric brain models for the study of neurological disorders, including disease modeling and cell therapy.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
38
|
Fuchs C, ‘t Hoen PAC, Müller AR, Ehrhart F, Van Karnebeek CDM. Drug repurposing in Rett and Rett-like syndromes: a promising yet underrated opportunity? Front Med (Lausanne) 2024; 11:1425038. [PMID: 39135718 PMCID: PMC11317438 DOI: 10.3389/fmed.2024.1425038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful neurodevelopmental disorders (NDDs). The severity and complexity of symptoms associated with these disorders, including cognitive impairment, motor dysfunction, seizures and other neurological features significantly affect the quality of life of patients and families. Despite ongoing research efforts to identify potential therapeutic targets and develop novel treatments, current therapeutic options remain limited. Here the potential of drug repurposing (DR) as a promising avenue for addressing the unmet medical needs of individuals with RTT and related disorders is explored. Leveraging existing drugs for new therapeutic purposes, DR presents an attractive strategy, particularly suited for neurological disorders given the complexities of the central nervous system (CNS) and the challenges in blood-brain barrier penetration. The current landscape of DR efforts in these syndromes is thoroughly examined, with partiuclar focus on shared molecular pathways and potential common drug targets across these conditions.
Collapse
Affiliation(s)
| | - Peter A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annelieke R. Müller
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics – BiGCaT, Research Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Clara D. M. Van Karnebeek
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, Netherlands
- Department of Human Genetics, Amsterdam Reproduction and Development, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
40
|
Wang L, Xu M, Wang Y, Wang F, Deng J, Wang X, Zhao Y, Liao A, Yang F, Wang S, Li Y. Melatonin improves synapse development by PI3K/Akt signaling in a mouse model of autism spectrum disorder. Neural Regen Res 2024; 19:1618-1624. [PMID: 38051907 PMCID: PMC10883500 DOI: 10.4103/1673-5374.387973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00043/figure1/v/2023-11-20T171125Z/r/image-tiff
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes, including Ctnnd2 as a candidate gene. Ctnnd2 knockout mice, serving as an animal model of autism, have been demonstrated to exhibit decreased density of dendritic spines. The role of melatonin, as a neurohormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines, in Ctnnd2 deletion-induced nerve injury remains unclear. In the present study, we discovered that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits, spine loss, impaired inhibitory neurons, and suppressed phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signal pathway in the prefrontal cortex. Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice. Furthermore, the administration of melatonin in the prefrontal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region. The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor, wortmannin, and melatonin receptor antagonists, luzindole and 4-phenyl-2-propionamidotetralin, prevented the melatonin-induced enhancement of GABAergic synaptic function. These findings suggest that melatonin treatment can ameliorate GABAergic synaptic function by activating the PI3K/Akt signal pathway, which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
Collapse
Affiliation(s)
- Luyi Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Man Xu
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Pediatric, Chongqing University Fuling Hospital, Chongqing, China
| | - Yan Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Feifei Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jing Deng
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoya Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yu Zhao
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ailing Liao
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shali Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yingbo Li
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Chen H, Ferguson CJ, Mitchell DC, Titus A, Paulo JA, Hwang A, Lin TH, Yano H, Gu W, Song SK, Yuede CM, Gygi SP, Bonni A, Kim AH. The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563880. [PMID: 37961719 PMCID: PMC10634808 DOI: 10.1101/2023.10.24.563880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Precise control of protein ubiquitination is essential for brain development, and hence, disruption of ubiquitin signaling networks can lead to neurological disorders. Mutations of the deubiquitinase USP7 cause the Hao-Fountain syndrome (HAFOUS), characterized by developmental delay, intellectual disability, autism, and aggressive behavior. Here, we report that conditional deletion of USP7 in excitatory neurons in the mouse forebrain triggers diverse phenotypes including sensorimotor deficits, learning and memory impairment, and aggressive behavior, resembling clinical features of HAFOUS. USP7 deletion induces neuronal apoptosis in a manner dependent of the tumor suppressor p53. However, most behavioral abnormalities in USP7 conditional mice persist despite p53 loss. Strikingly, USP7 deletion in the brain perturbs the synaptic proteome and dendritic spine morphogenesis independently of p53. Integrated proteomics analysis reveals that the neuronal USP7 interactome is enriched for proteins implicated in neurodevelopmental disorders and specifically identifies the RNA splicing factor Ppil4 as a novel neuronal substrate of USP7. Knockdown of Ppil4 in cortical neurons impairs dendritic spine morphogenesis, phenocopying the effect of USP7 loss on dendritic spines. These findings reveal a novel USP7-Ppil4 ubiquitin signaling link that regulates neuronal connectivity in the developing brain, with implications for our understanding of the pathogenesis of HAFOUS and other neurodevelopmental disorders.
Collapse
|
42
|
Xavier AM, Lin Q, Kang CJ, Cheadle L. A single-cell transcriptomic atlas of sensory-dependent gene expression in developing mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600673. [PMID: 38979325 PMCID: PMC11230371 DOI: 10.1101/2024.06.25.600673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensory experience drives the refinement and maturation of neural circuits during postnatal brain development through molecular mechanisms that remain to be fully elucidated. One likely mechanism involves the sensory-dependent expression of genes that encode direct mediators of circuit remodeling within developing cells. However, while studies in adult systems have begun to uncover crucial roles for sensory-induced genes in modifying circuit connectivity, the gene programs induced by brain cells in response to sensory experience during development remain to be fully characterized. Here, we present a single-nucleus RNA-sequencing dataset describing the transcriptional responses of cells in mouse visual cortex to sensory deprivation or sensory stimulation during a developmental window when visual input is necessary for circuit refinement. We sequenced 118,529 individual nuclei across sixteen neuronal and non-neuronal cortical cell types isolated from control, sensory deprived, and sensory stimulated mice, identifying 1,268 unique sensory-induced genes within the developing brain. To demonstrate the utility of this resource, we compared the architecture and ontology of sensory-induced gene programs between cell types, annotated transcriptional induction and repression events based upon RNA velocity, and discovered Neurexin and Neuregulin signaling networks that underlie cell-cell interactions via CellChat . We find that excitatory neurons, especially layer 2/3 pyramidal neurons, are highly sensitive to sensory stimulation, and that the sensory-induced genes in these cells are poised to strengthen synapse-to-nucleus crosstalk by heightening protein serine/threonine kinase activity. Altogether, we expect this dataset to significantly broaden our understanding of the molecular mechanisms through which sensory experience shapes neural circuit wiring in the developing brain.
Collapse
|
43
|
Yao X, Chen R, Chen H, Koleske A, Xiao X. Impact of Abl2/Arg deficiency on anxiety and depressive behaviors in mice. Behav Brain Res 2024; 468:115022. [PMID: 38697301 DOI: 10.1016/j.bbr.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Abl2/Arg (ABL-related gene) is a member of the Abelson family of nonreceptor tyrosine kinases, known for its role in tumor progression, metastasis, tissue injury responses, inflammation, neural degeneration, and other diseases. In this study, we developed Abl2/Arg knockout (abl2-/-) mice to explore its impact on sensory/motor functions and emotion-related behaviors. Our findings show that abl2-/- mice exhibit normal growth and phenotypic characteristics, closely resembling their wild-type (WT) counterparts. Behavioral tests, including the elevated plus maze, marble-burying behavior test, and open field test, indicated pronounced anxiety-like behaviors in abl2-/- mice compared to WT mice. Furthermore, in the tail suspension test, abl2-/- mice showed a significant decrease in mobility time, suggesting depressive-like behavior. Conversely, in the Y-maze and cliff avoidance reaction tests, no notable differences were observed between abl2-/- and WT mice, suggesting the absence of working memory deficits and impulsivity in abl2-/- mice. Proteomic analysis of the hippocampus in abl2-/- mice highlighted significant alterations in proteins related to anxiety and depression, especially those associated with the GABAergic synapse in inhibitory neurotransmission. The expression of Gabbr2 was significantly reduced in the hippocampus of abl2-/- compared to WT mice, and intraperitoneal treatment of GABA receptor agonist Gaboxadol normalized anxiety/depression-related behaviors of abl2-/- mice. These findings underscore the potential role of Abl2/Arg in influencing anxiety and depressive-like behaviors, thereby contributing valuable insights into its broader physiological and pathological functions.
Collapse
Affiliation(s)
- Xiaojuan Yao
- Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China
| | - Ruiying Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China
| | - Hongting Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China
| | - Anthony Koleske
- Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Xiao Xiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai 200433, China.
| |
Collapse
|
44
|
Martins-Costa C, Wiegers A, Pham VA, Sidhaye J, Doleschall B, Novatchkova M, Lendl T, Piber M, Peer A, Möseneder P, Stuempflen M, Chow SYA, Seidl R, Prayer D, Höftberger R, Kasprian G, Ikeuchi Y, Corsini NS, Knoblich JA. ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum. Cell Stem Cell 2024; 31:866-885.e14. [PMID: 38718796 DOI: 10.1016/j.stem.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.
Collapse
Affiliation(s)
- Catarina Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Balint Doleschall
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marielle Piber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
45
|
Singh K, Das S, Sutradhar S, Howard J, Ray K. Insulin signaling accelerates the anterograde movement of Rab4 vesicles in axons through Klp98A/KIF16B recruitment via Vps34-PI3Kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590898. [PMID: 38895253 PMCID: PMC11185528 DOI: 10.1101/2024.04.24.590898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.
Collapse
Affiliation(s)
- Kamaldeep Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Semanti Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
| | - Sabyasachi Sutradhar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- National Brain Research Centre, Manesar, Haryana – 122051, India
| |
Collapse
|
46
|
Zhang J, Xu Y, Liu Y, Yue L, Jin H, Chen Y, Wang D, Wang M, Chen G, Yang L, Zhang G, Zhang X, Li S, Zhao H, Zhao Y, Niu G, Gao Y, Cai Z, Yang F, Zhu C, Zhu D. Genetic Testing for Global Developmental Delay in Early Childhood. JAMA Netw Open 2024; 7:e2415084. [PMID: 38837156 PMCID: PMC11154162 DOI: 10.1001/jamanetworkopen.2024.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
Importance Global developmental delay (GDD) is characterized by a complex etiology, diverse phenotypes, and high individual heterogeneity, presenting challenges for early clinical etiologic diagnosis. Cognitive impairment is the core symptom, and despite the pivotal role of genetic factors in GDD development, the understanding of them remains limited. Objectives To assess the utility of genetic detection in patients with GDD and to examine the potential molecular pathogenesis of GDD to identify targets for early intervention. Design, Setting, and Participants This multicenter, prospective cohort study enrolled patients aged 12 to 60 months with GDD from 6 centers in China from July 4, 2020, to August 31, 2023. Participants underwent trio whole exome sequencing (trio-WES) coupled with copy number variation sequencing (CNV-seq). Bioinformatics analysis was used to unravel pathogenesis and identify therapeutic targets. Main Outcomes and Measures The main outcomes of this study involved enhancing the rate of positive genetic diagnosis for GDD, broadening the scope of genetic testing indications, and investigating the underlying pathogenesis. The classification of children into levels of cognitive impairment was based on the developmental quotient assessed using the Gesell scale. Results The study encompassed 434 patients with GDD (262 [60%] male; mean [SD] age, 25.75 [13.24] months) with diverse degrees of cognitive impairment: mild (98 [23%]), moderate (141 [32%]), severe (122 [28%]), and profound (73 [17%]). The combined use of trio-WES and CNV-seq resulted in a 61% positive detection rate. Craniofacial abnormalities (odds ratio [OR], 2.27; 95% CI, 1.45-3.56), moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70), and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35) were associated with a higher risk of carrying genetic variants. Additionally, bioinformatics analysis suggested that genetic variants may induce alterations in brain development and function, which may give rise to cognitive impairment. Moreover, an association was found between the dopaminergic pathway and cognitive impairment. Conclusions and Relevance In this cohort study of patients with GDD, combining trio-WES with CNV-seq was a demonstrable, instrumental strategy for advancing the diagnosis of GDD. The close association among genetic variations, brain development, and clinical phenotypes contributed valuable insights into the pathogenesis of GDD. Notably, the dopaminergic pathway emerged as a promising focal point for potential targets in future precision medical interventions for GDD.
Collapse
Affiliation(s)
- Jiamei Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Liu
- Kunming Children’s Hospital, Kunming, China
| | - Ling Yue
- Department of Neurological Rehabilitation, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Hongfang Jin
- Qinghai Provincial Women and Children’s Hospital, Xining, China
| | | | - Dong Wang
- Department of Pediatric Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Mingmei Wang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongxun Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatric Neurology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sansong Li
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunxia Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Niu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijun Cai
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Dengna Zhu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Denisova K. Neurobiology of cognitive abilities in early childhood autism. JCPP ADVANCES 2024; 4:e12214. [PMID: 38827984 PMCID: PMC11143961 DOI: 10.1002/jcv2.12214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/12/2023] [Indexed: 06/05/2024] Open
Abstract
This perspective considers complexities in the relationship between impaired cognitive abilities and autism from a maturational, developmental perspective, and aims to serve as a helpful guide for the complex and growing investigation of cognitive abilities and Autism Spectrum Disorder (ASD). Low Intelligence Quotient (IQ) and ASD are frequently co-occurring. About 37% of 8-year old children and 48% of 4-year old children diagnosed with ASD also have Intellectual Disability, with IQ below 70. And, low IQ in early infancy, including below 1 year of age, carries a 40% greater chance of receiving ASD diagnosis in early childhood. We consider the evidence that may explain this co-occurrence, including the possibility that high IQ may "rescue" the social communication issues, as well as the possible role of critical periods during growth and development. We consider how early low IQ may subsume a part of a subgroup of individuals with ASD, in particular, those diagnosed with autism in very early childhood, and we provide neurobiological evidence in support of this subtype. Moreover, we distinguish the concept of early low IQ from the delay in speech onset in preschool and school-aged children, based on (i) age and (ii) impairments in both verbal and non-verbal domains. The etiology of these early-diagnosed, early low IQ ASD cases is different from later-diagnosed, average or higher-IQ cases, and from children with speech delay onset. Given recent interest in formulating new subtypes of autism, rather than continuing to conceive of ASD as a spectrum, as well as new subtypes that vary in the degree of severity along the spectrum, we identify gaps in knowledge and directions for future work in this complex and growing area.
Collapse
Affiliation(s)
- Kristina Denisova
- Division of Math and Natural SciencesDepartment of PsychologyAutism Origins LabCity University of New YorkQueens College and Graduate CenterQueensNew YorkUSA
| |
Collapse
|
48
|
Wang L, Mirabella VR, Dai R, Su X, Xu R, Jadali A, Bernabucci M, Singh I, Chen Y, Tian J, Jiang P, Kwan KY, Pak C, Liu C, Comoletti D, Hart RP, Chen C, Südhof TC, Pang ZP. Analyses of the autism-associated neuroligin-3 R451C mutation in human neurons reveal a gain-of-function synaptic mechanism. Mol Psychiatry 2024; 29:1620-1635. [PMID: 36280753 PMCID: PMC10123180 DOI: 10.1038/s41380-022-01834-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/11/2022]
Abstract
Mutations in many synaptic genes are associated with autism spectrum disorders (ASD), suggesting that synaptic dysfunction is a key driver of ASD pathogenesis. Among these mutations, the R451C substitution in the NLGN3 gene that encodes the postsynaptic adhesion molecule Neuroligin-3 is noteworthy because it was the first specific mutation linked to ASDs. In mice, the corresponding Nlgn3 R451C-knockin mutation recapitulates social interaction deficits of ASD patients and produces synaptic abnormalities, but the impact of the NLGN3 R451C mutation on human neurons has not been investigated. Here, we generated human knockin neurons with the NLGN3 R451C and NLGN3 null mutations. Strikingly, analyses of NLGN3 R451C-mutant neurons revealed that the R451C mutation decreased NLGN3 protein levels but enhanced the strength of excitatory synapses without affecting inhibitory synapses; meanwhile NLGN3 knockout neurons showed reduction in excitatory synaptic strengths. Moreover, overexpression of NLGN3 R451C recapitulated the synaptic enhancement in human neurons. Notably, the augmentation of excitatory transmission was confirmed in vivo with human neurons transplanted into mouse forebrain. Using single-cell RNA-seq experiments with co-cultured excitatory and inhibitory NLGN3 R451C-mutant neurons, we identified differentially expressed genes in relatively mature human neurons corresponding to synaptic gene expression networks. Moreover, gene ontology and enrichment analyses revealed convergent gene networks associated with ASDs and other mental disorders. Our findings suggest that the NLGN3 R451C mutation induces a gain-of-function enhancement in excitatory synaptic transmission that may contribute to the pathophysiology of ASD.
Collapse
Affiliation(s)
- Le Wang
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Vincent R Mirabella
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiao Su
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Azadeh Jadali
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Matteo Bernabucci
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ishnoor Singh
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Jianghua Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, China
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kevin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - ChangHui Pak
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- School of Psychology, Shaanxi Normal University, 710000, Xi'an, Shaanxi, China
| | - Davide Comoletti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410008, Changsha, Hunan, China.
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Zhiping P Pang
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
49
|
Lin LH, Wu QY, Zeng K, Chen ZY, Wang ZP, Li WM, Zhang B, Gao TM, Liu JH. Medial amygdala NRG1 signaling mediates adolescent social isolation-induced autistic-like behaviors. Sci Bull (Beijing) 2024; 69:1375-1379. [PMID: 38423877 DOI: 10.1016/j.scib.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Lian-Hong Lin
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Qian-Yun Wu
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Kai Zeng
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Zi-Yu Chen
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Zi-Ping Wang
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Wei-Min Li
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhang
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| | - Tian-Ming Gao
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| | - Ji-Hong Liu
- Department of Psychiatry, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
50
|
Guo J, Zou Z, Dou X, Zhao X, Wang Y, Wei L, Pi Y, Wang Y, He C, Guo S. Zebrafish Mbd5 binds to RNA m5C and regulates histone deubiquitylation and gene expression in development metabolism and behavior. Nucleic Acids Res 2024; 52:4257-4275. [PMID: 38366571 PMCID: PMC11077058 DOI: 10.1093/nar/gkae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Complex biological processes are regulated by both genetic and epigenetic programs. One class of epigenetic modifications is methylation. Evolutionarily conserved methyl-CpG-binding domain (MBD)-containing proteins are known as readers of DNA methylation. MBD5 is linked to multiple human diseases but its mechanism of action remains unclear. Here we report that the zebrafish Mbd5 does not bind to methylated DNA; but rather, it directly binds to 5-methylcytosine (m5C)-modified mRNAs and regulates embryonic development, erythrocyte differentiation, iron metabolism, and behavior. We further show that Mbd5 facilitates removal of the monoubiquitin mark at histone H2A-K119 through an interaction with the Polycomb repressive deubiquitinase (PR-DUB) complex in vivo. The direct target genes of Mbd5 are enriched with both RNA m5C and H2A-K119 ubiquitylation signals. Together, we propose that zebrafish MBD5 is an RNA m5C reader that potentially links RNA methylation to histone modification and in turn transcription regulation in vivo.
Collapse
Affiliation(s)
- Jianhua Guo
- State Key Laboratory of Genetic Engineering, National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhongyu Zou
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Dou
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| | - Yimin Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399, Wanyuan Road, Minhang District, Shanghai, China
| | - Liqiang Wei
- State Key Laboratory of Genetic Engineering, National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399, Wanyuan Road, Minhang District, Shanghai, China
| | - Chuan He
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|