1
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Zhu JY, Duan J, van de Leemput J, Han Z. Dysfunction of Mitochondrial Dynamics Induces Endocytosis Defect and Cell Damage in Drosophila Nephrocytes. Cells 2024; 13:1253. [PMID: 39120284 PMCID: PMC11312102 DOI: 10.3390/cells13151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood. Given the significant structural, functional, and molecular similarities between mammalian podocytes and Drosophila nephrocytes, we employed fly nephrocytes to explore the roles of mitochondria in cellular function. Our study revealed that alterations in the Pink1-Park (mammalian PINK1-PRKN) pathway can disrupt mitochondrial dynamics in Drosophila nephrocytes. This disruption led to either fragmented or enlarged mitochondria, both of which impaired mitochondrial function. The mitochondrial dysfunction subsequently triggered defective intracellular endocytosis, protein aggregation, and cellular damage. These findings underscore the critical roles of mitochondria in nephrocyte functionality.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jianli Duan
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Zhu JY, van de Leemput J, Han Z. Promoting mitochondrial dynamics by inhibiting the PINK1-PRKN pathway to relieve diabetic nephropathy. Dis Model Mech 2024; 17:dmm050471. [PMID: 38602042 PMCID: PMC11095637 DOI: 10.1242/dmm.050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetes is a metabolic disorder characterized by high blood glucose levels and is a leading cause of kidney disease. Diabetic nephropathy has been attributed to dysfunctional mitochondria. However, many questions remain about the exact mechanism. The structure, function and molecular pathways are highly conserved between mammalian podocytes and Drosophila nephrocytes; therefore, we used flies on a high-sucrose diet to model type 2 diabetic nephropathy. The nephrocytes from flies on a high-sucrose diet showed a significant functional decline and decreased cell size, associated with a shortened lifespan. Structurally, the nephrocyte filtration structure, known as the slit diaphragm, was disorganized. At the cellular level, we found altered mitochondrial dynamics and dysfunctional mitochondria. Regulating mitochondrial dynamics by either genetic modification of the Pink1-Park (mammalian PINK1-PRKN) pathway or treatment with BGP-15, mitigated the mitochondrial defects and nephrocyte functional decline. These findings support a role for Pink1-Park-mediated mitophagy and associated control of mitochondrial dynamics in diabetic nephropathy, and demonstrate that targeting this pathway might provide therapeutic benefits for type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Kapil L, Kumar V, Kaur S, Sharma D, Singh C, Singh A. Role of Autophagy and Mitophagy in Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:367-383. [PMID: 36974405 DOI: 10.2174/1871527322666230327092855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.
Collapse
Affiliation(s)
- Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Srinagar - 246174, Garhwal (Uttarakhand), India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
5
|
Rai P, Ratnaparkhi A, Kumar Roy J. Rab11 rescues muscle degeneration and synaptic morphology in the park 13/+ Parkinson model of Drosophila melanogaster. Brain Res 2023; 1816:148442. [PMID: 37302569 DOI: 10.1016/j.brainres.2023.148442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Mutation in parkin and pink1 is associated with Parkinson's disease (PD), the most common movement disorder characterized by muscular dysfunction. In a previous study, we observed that Rab11, a member of the small Ras GTPase family, regulates the mitophagy pathway mediated by Parkin and Pink1 in the larval brain of the Drosophila PD model. Here, we describe that the expression and interaction of Rab11 in the PD model of Drosophila is highly conserved across different phylogenic groups. The loss of function in these two proteins, i.e., Parkin and Pink1, leads to mitochondrial aggregation. Rab11 loss of function results in muscle degeneration, movement disorder and synaptic morphological defects. We report that overexpression of Rab11 in park13 heterozygous mutant improves muscle and synaptic organization by reducing mitochondrial aggregations and improving cytoskeleton structural organization. We also show the functional relationship between Rab11 and Brp, apre-synaptic scaffolding protein, required for synaptic neurotransmission. Using park13 heterozygous mutant and pink1RNAi lines, we showed reduced expression of Brp and consequently, there were synaptic dysfunctions including impaired synaptic transmission, decreased bouton size, increase in the bouton numbers, and the length of axonal innervations at the larval neuromuscular junction (NMJ). These synaptic alterations were rescued with the over-expression of Rab11 in the park13 heterozygous mutants. In conclusion, this work emphasizes the importance of Rab11 in rescuing muscle degeneration, movement dysfunction and synaptic morphology by preserving mitochondrial function in the PD model of Drosophila.
Collapse
Affiliation(s)
- Pooja Rai
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | | | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
7
|
Sabharwal A, Campbell JM, Schwab TL, WareJoncas Z, Wishman MD, Ata H, Liu W, Ichino N, Hunter DE, Bergren JD, Urban MD, Urban RM, Holmberg SR, Kar B, Cook A, Ding Y, Xu X, Clark KJ, Ekker SC. A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish. Genes (Basel) 2022; 13:1317. [PMID: 35893052 PMCID: PMC9331066 DOI: 10.3390/genes13081317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington's disease and Parkinson's disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jarryd M. Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Hirotaka Ata
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Wiebin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Danielle E. Hunter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jake D. Bergren
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Rhianna M. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Shannon R. Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Alex Cook
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| |
Collapse
|
8
|
Neves PFR, Milanesi BB, Paz LV, de Miranda Monteiro VAC, Neves LT, da Veiga LC, da Silva RB, Sulzbach JH, Knijkik GP, de Revoredo Ribeiro EC, de Souza Silva EL, Vieira MQ, Bagatini PB, Wieck A, Mestriner RG, Xavier LL. Age-related tolerance to paraquat-induced parkinsonism in Drosophila melanogaster. Toxicol Lett 2022; 361:43-53. [DOI: 10.1016/j.toxlet.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
|
9
|
Munk SHN, Voutsinos V, Oestergaard VH. Large Intronic Deletion of the Fragile Site Gene PRKN Dramatically Lowers Its Fragility Without Impacting Gene Expression. Front Genet 2021; 12:695172. [PMID: 34354738 PMCID: PMC8329550 DOI: 10.3389/fgene.2021.695172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Common chromosomal fragile sites (CFSs) are genomic regions prone to form breaks and gaps on metaphase chromosomes during conditions of replication stress. Moreover, CFSs are hotspots for deletions and amplifications in cancer genomes. Fragility at CFSs is caused by transcription of extremely large genes, which contributes to replication problems. These extremely large genes do not encode large proteins, but the extreme sizes of the genes originate from vast introns. Intriguingly, the intron sizes of extremely large genes are conserved between mammals and birds. Here, we have used reverse genetics to address the function and significance of the largest intron in the extremely large gene PRKN, which is highly fragile in our model system. Specifically, we have introduced an 80-kilobase deletion in intron 7 of PRKN. We find that gene expression of PRKN is largely unaffected by this intronic deletion. Strikingly, the intronic deletion, which leads to a 12% reduction of the overall size of the PRKN gene body, results in an almost twofold reduction of the PRKN fragility. Our results stress that while the large intron clearly contributes to the fragility of PRKN, it does not play an important role for PRKN expression. Taken together, our findings further add to the mystery concerning conservation of the seemingly non-functional but troublesome large introns in PRKN.
Collapse
|
10
|
Zaman V, Shields DC, Shams R, Drasites KP, Matzelle D, Haque A, Banik NL. Cellular and molecular pathophysiology in the progression of Parkinson's disease. Metab Brain Dis 2021; 36:815-827. [PMID: 33599945 PMCID: PMC8170715 DOI: 10.1007/s11011-021-00689-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder etiologically linked to the loss of substantia nigra (SN) dopaminergic neurons in the mid-brain. The etiopathology of sporadic PD is still unclear; however, the interaction of extrinsic and intrinsic factors may play a critical role in the onset and progression of the disease. Studies in animal models and human post-mortem tissue have identified distinct cellular and molecular changes in the diseased brain, suggesting complex interactions between different glial cell types and various molecular pathways. Small changes in the expression of specific genes in a single pathway or cell type possibly influence others at the cellular and system levels. These molecular and cellular signatures like neuroinflammation, oxidative stress, and autophagy have been observed in PD patients' brain tissue. While the etiopathology of PD is still poorly understood, the interplay between glial cells and molecular events may play a crucial role in disease onset and progression.
Collapse
Affiliation(s)
- Vandana Zaman
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Suite 301, Charleston, SC, 29425, USA
| | - Donald C Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Suite 301, Charleston, SC, 29425, USA
| | - Ramsha Shams
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Suite 301, Charleston, SC, 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Kelsey P Drasites
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Suite 301, Charleston, SC, 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Denise Matzelle
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Narendra L Banik
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA.
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Suite 301, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
11
|
Ke M, Chong CM, Zhu Q, Zhang K, Cai CZ, Lu JH, Qin D, Su H. Comprehensive Perspectives on Experimental Models for Parkinson's Disease. Aging Dis 2021; 12:223-246. [PMID: 33532138 PMCID: PMC7801282 DOI: 10.14336/ad.2020.0331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/31/2020] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) ranks second among the most common neurodegenerative diseases, characterized by progressive and selective loss of dopaminergic neurons. Various cross-species preclinical models, including cellular models and animal models, have been established through the decades to study the etiology and mechanism of the disease from cell lines to nonhuman primates. These models are aimed at developing effective therapeutic strategies for the disease. None of the current models can replicate all major pathological and clinical phenotypes of PD. Selection of the model for PD largely relies on our interest of study. In this review, we systemically summarized experimental PD models, including cellular and animal models used in preclinical studies, to understand the pathogenesis of PD. This review is intended to provide current knowledge about the application of these different PD models, with focus on their strengths and limitations with respect to their contributions to the assessment of the molecular pathobiology of PD and identification of the therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Minjing Ke
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cheong-Meng Chong
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qi Zhu
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ke Zhang
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Cui-Zan Cai
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Hong Lu
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dajiang Qin
- 2Guangzhou Regenerative Medicine and Health Guangdong Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,3South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huanxing Su
- 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
12
|
Duan X, Tong C. Autophagy in Drosophila and Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:333-356. [PMID: 34260032 DOI: 10.1007/978-981-16-2830-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy is a highly conserved cellular process that delivers cellular contents to the lysosome for degradation. It not only serves as a bulk degradation system for various cytoplasmic components but also functions selectively to clear damaged organelles, aggregated proteins, and invading pathogens (Feng et al., Cell Res 24:24-41, 2014; Galluzzi et al., EMBO J 36:1811-36, 2017; Klionsky et al., Autophagy 12:1-222, 2016). The malfunction of autophagy leads to multiple developmental defects and diseases (Mizushima et al., Nature 451:1069-75, 2008). Drosophila and zebrafish are higher metazoan model systems with sophisticated genetic tools readily available, which make it possible to dissect the autophagic processes and to understand the physiological functions of autophagy (Lorincz et al., Cells 6:22, 2017a; Mathai et al., Cells 6:21, 2017; Zhang and Baehrecke, Trends Cell Biol 25:376-87, 2015). In this chapter, we will discuss recent progress that has been made in the autophagic field by using these animal models. We will focus on the protein machineries required for autophagosome formation and maturation as well as the physiological roles of autophagy in both Drosophila and zebrafish.
Collapse
Affiliation(s)
- Xiuying Duan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Guo S, Wang X, Kang L. Special Significance of Non- Drosophila Insects in Aging. Front Cell Dev Biol 2020; 8:576571. [PMID: 33072758 PMCID: PMC7536347 DOI: 10.3389/fcell.2020.576571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Aging is the leading risk factor of human chronic diseases. Understanding of aging process and mechanisms facilitates drug development and the prevention of aging-related diseases. Although many aging studies focus on fruit fly as a canonical insect system, minimal attention is paid to the potentially significant roles of other insects in aging research. As the most diverse group of animals, insects provide many aging types and important complementary systems for aging studies. Insect polyphenism represents a striking example of the natural variation in longevity and aging rate. The extreme intraspecific variations in the lifespan of social insects offer an opportunity to study how aging is differentially regulated by social factors. Insect flight, as an extremely high-intensity physical activity, is suitable for the investigation of the complex relationship between metabolic rate, oxidative stress, and aging. Moreover, as a "non-aging" state, insect diapause not only slows aging process during diapause phase but also affects adult longevity during/after diapause. In the past two decades, considerable progress has been made in understanding the molecular basis of aging regulation in insects. Herein, the recent research progress in non-Drosophila insect aging was reviewed, and its potential utilization in aging in the future was discussed.
Collapse
Affiliation(s)
- Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Yalgin C, Rovenko B, Andjelković A, Neefjes M, Oymak B, Dufour E, Hietakangas V, Jacobs HT. Effects on Dopaminergic Neurons Are Secondary in COX-Deficient Locomotor Dysfunction in Drosophila. iScience 2020; 23:101362. [PMID: 32738610 PMCID: PMC7394922 DOI: 10.1016/j.isci.2020.101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
Dopaminergic (DA) neurons have been implicated as key targets in neurological disorders, notably those involving locomotor impairment, and are considered to be highly vulnerable to mitochondrial dysfunction, a common feature of such diseases. Here we investigated a Drosophila model of locomotor disorders in which functional impairment is brought about by pan-neuronal RNAi knockdown of subunit COX7A of cytochrome oxidase (COX). Despite minimal neuronal loss by apoptosis, the expression and activity of tyrosine hydroxylase was decreased by half. Surprisingly, COX7A knockdown specifically targeted to DA neurons did not produce locomotor defect. Instead, using various drivers, we found that COX7A knockdown in specific groups of cholinergic and glutamatergic neurons underlay the phenotype. Based on our main finding, the vulnerability of DA neurons to mitochondrial dysfunction as a cause of impaired locomotion in other organisms, including mammals, warrants detailed investigation.
Collapse
Affiliation(s)
- Cagri Yalgin
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Bohdana Rovenko
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland; Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Ana Andjelković
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Margot Neefjes
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Burak Oymak
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland; Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland.
| |
Collapse
|
15
|
Luo H, Zhang R, Krigman J, McAdams A, Ozgen S, Sun N. A Healthy Heart and a Healthy Brain: Looking at Mitophagy. Front Cell Dev Biol 2020; 8:294. [PMID: 32435642 PMCID: PMC7218083 DOI: 10.3389/fcell.2020.00294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of aging and is a major contributor to neurodegenerative diseases and various cardiovascular disorders. Mitophagy, a specialized autophagic pathway to remove damaged mitochondria, provides a critical mechanism to maintain mitochondrial quality. This function has been implicated in a tissue's ability to appropriately respond to metabolic and to bioenergetic stress, as well as to recover from mitochondrial damage. A global decline in mitophagic flux has been postulated to be linked to pathological alterations that occur in the heart and the brain as well as a general age-dependent decline in organ function. Cellular observation suggests multiple mechanistically distinct pathways converge upon and activate mitophagy. Over the past decade, additional molecular components within mitophagy have been discovered, including several disease-associated genes that are functionally implicated in mitophagy. However, the pathophysiological role of mitophagy, and how it is regulated within normal physiology or various disease states, is less well established. Here, we will review the evidence that a decline in mitophagy contributes to impaired mitochondrial homeostasis and may be particularly detrimental to postmitotic neurons and cardiomyocytes. We will discuss mitophagy's pathological significance in both neurodegenerative diseases and cardiovascular disorders. Additionally, signaling pathways regulating mitophagy are reviewed, with emphasis placed on how these pathways might contribute to disease progression. Understanding mitophagy's role in the mechanisms of disease pathogenesis should allow for the development of more efficient strategies to battle pathological conditions associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hongke Luo
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ruohan Zhang
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Graduate Research, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Judith Krigman
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Allison McAdams
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Serra Ozgen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Nuo Sun
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
16
|
Zhang R, Krigman J, Luo H, Ozgen S, Yang M, Sun N. Mitophagy in cardiovascular homeostasis. Mech Ageing Dev 2020; 188:111245. [PMID: 32289324 DOI: 10.1016/j.mad.2020.111245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/24/2023]
Abstract
Mitochondria are essential organelles that generate energy to fuel myocardial contraction. Accumulating evidence also suggests that, in the heart, mitochondria may contribute to specific aspects of disease progression through the regulations of specific metabolic intermediates, as well as the transcriptional and epigenetic states of cells. If damaged, the mitochondria and their related pathways are hindered, which may result in or contribute to the development of a wide range of cardiovascular diseases. Therefore, the maintenance of cardiac mitochondrial function and integrity through specific mitochondrial quality control mechanisms is critical for cardiovascular health. Mitophagy is part of the overall mitochondrial quality control process, and acts as a specialized autophagic pathway that mediates the lysosomal clearance of damaged mitochondria. In response to cardiac stress and injury, the pathways associated with mitophagy are triggered resulting in the removal of damaged mitochondrial, thereby maintaining cardiac homeostasis. In addition, recent studies have demonstrated an essential role for mitophagy in both developmental and disease-related metabolic transitioning of cardiac mitochondria. Here, we discuss the physiological and the pathological roles of mitophagy in the heart, the underlying molecular mechanisms, as well as potential therapeutic strategies based on mitophagic modulation.
Collapse
Affiliation(s)
- Ruohan Zhang
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; College of Pharmacy, Department of Graduate Research, The Ohio State University, Columbus, Ohio, USA
| | - Judith Krigman
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hongke Luo
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Serra Ozgen
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mingchong Yang
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nuo Sun
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
17
|
Zhou J, Xu L, Duan X, Liu W, Zhao X, Wang X, Shang W, Fang X, Yang H, Jia L, Bai J, Zhao J, Wang L, Tong C. Large-scale RNAi screen identified Dhpr as a regulator of mitochondrial morphology and tissue homeostasis. SCIENCE ADVANCES 2019; 5:eaax0365. [PMID: 31555733 PMCID: PMC6750926 DOI: 10.1126/sciadv.aax0365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/23/2019] [Indexed: 05/10/2023]
Abstract
Mitochondria are highly dynamic organelles. Through a large-scale in vivo RNA interference (RNAi) screen that covered around a quarter of the Drosophila melanogaster genes (4000 genes), we identified 578 genes whose knockdown led to aberrant shapes or distributions of mitochondria. The complex analysis revealed that knockdown of the subunits of proteasomes, spliceosomes, and the electron transport chain complexes could severely affect mitochondrial morphology. The loss of Dhpr, a gene encoding an enzyme catalyzing tetrahydrobiopterin regeneration, leads to a reduction in the numbers of tyrosine hydroxylase neurons, shorter lifespan, and gradual loss of muscle integrity and climbing ability. The affected mitochondria in Dhpr mutants are swollen and have fewer cristae, probably due to lower levels of Drp1 S-nitrosylation. Overexpression of Drp1, but not of S-nitrosylation-defective Drp1, rescued Dhpr RNAi-induced mitochondrial defects. We propose that Dhpr regulates mitochondrial morphology and tissue homeostasis by modulating S-nitrosylation of Drp1.
Collapse
Affiliation(s)
- Jia Zhou
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingna Xu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiuying Duan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Liu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaocui Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xi Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuefei Fang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huan Yang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lijun Jia
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Bai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiayao Zhao
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Liquan Wang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
- Corresponding author.
| |
Collapse
|
18
|
BK Ca ( Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila melanogaster. Cells 2019; 8:cells8090945. [PMID: 31438578 PMCID: PMC6770356 DOI: 10.3390/cells8090945] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
BKCa channels, originally discovered in Drosophila melanogaster as slowpoke (slo), are recognized for their roles in cellular and organ physiology. Pharmacological approaches implicated BKCa channels in cellular and organ protection possibly for their ability to modulate mitochondrial function. However, the direct role of BKCa channels in regulating mitochondrial structure and function is not deciphered. Here, we demonstrate that BKCa channels are present in fly mitochondria, and slo mutants show structural and functional defects in mitochondria. slo mutants display an increase in reactive oxygen species and the modulation of ROS affected their survival. We also found that the absence of BKCa channels reduced the lifespan of Drosophila, and overexpression of human BKCa channels in flies extends life span in males. Our study establishes the presence of BKCa channels in mitochondria of Drosophila and ascertains its novel physiological role in regulating mitochondrial structural and functional integrity, and lifespan.
Collapse
|
19
|
Dalla Vecchia E, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, Schenck A, Norton WH. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr Genet 2019; 29:1-17. [PMID: 30376466 PMCID: PMC7654943 DOI: 10.1097/ypg.0000000000000211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Animal and cellular models are essential tools for all areas of biological research including neuroscience. Model systems can also be used to investigate the pathophysiology of psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In this review, we provide a summary of animal and cellular models for three genes linked to ADHD and ASD in human patients - CNTNAP2, ADGRL3, and PARK2. We also highlight the strengths and weaknesses of each model system. By bringing together behavioral and neurobiological data, we demonstrate how a cross-species approach can provide integrated insights into gene function and the pathogenesis of ADHD and ASD. The knowledge gained from transgenic models will be essential to discover and validate new treatment targets for these disorders.
Collapse
Affiliation(s)
- Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Niall Mortimer
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Viola S. Palladino
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - William H.J. Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Gustafsson ÅB, Dorn GW. Evolving and Expanding the Roles of Mitophagy as a Homeostatic and Pathogenic Process. Physiol Rev 2019; 99:853-892. [PMID: 30540226 PMCID: PMC6442924 DOI: 10.1152/physrev.00005.2018] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/10/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
The central functions fulfilled by mitochondria as both energy generators essential for tissue homeostasis and gateways to programmed apoptotic and necrotic cell death mandate tight control over the quality and quantity of these ubiquitous endosymbiotic organelles. Mitophagy, the targeted engulfment and destruction of mitochondria by the cellular autophagy apparatus, has conventionally been considered as the mechanism primarily responsible for mitochondrial quality control. However, our understanding of how, why, and under what specific conditions mitophagy is activated has grown tremendously over the past decade. Evidence is accumulating that nonmitophagic mitochondrial quality control mechanisms are more important to maintaining normal tissue homeostasis whereas mitophagy is an acute tissue stress response. Moreover, previously unrecognized mitophagic regulation of mitochondrial quantity control, metabolic reprogramming, and cell differentiation suggests that the mechanisms linking genetic or acquired defects in mitophagy to neurodegenerative and cardiovascular diseases or cancer are more complex than simple failure of normal mitochondrial quality control. Here, we provide a comprehensive overview of mitophagy in cellular homeostasis and disease and examine the most revolutionary concepts in these areas. In this context, we discuss evidence that atypical mitophagy and nonmitophagic pathways play central roles in mitochondrial quality control, functioning that was previously considered to be the primary domain of mitophagy.
Collapse
Affiliation(s)
- Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| | - Gerald W Dorn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, California ; and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
21
|
Grandi LC, Di Giovanni G, Galati S. Reprint of “Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms”. J Neurosci Methods 2018; 310:75-88. [DOI: 10.1016/j.jneumeth.2018.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
22
|
Mohite GM, Dwivedi S, Das S, Kumar R, Paluri S, Mehra S, Ruhela N, S A, Jha NN, Maji SK. Parkinson's Disease Associated α-Synuclein Familial Mutants Promote Dopaminergic Neuronal Death in Drosophila melanogaster. ACS Chem Neurosci 2018; 9:2628-2638. [PMID: 29906099 DOI: 10.1021/acschemneuro.8b00107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein (α-Syn) aggregation and amyloid formation are associated with loss of dopaminergic neurons in Parkinson's disease (PD). In addition, familial mutations in α-Syn are shown to be one of the definite causes of PD. Here we have extensively studied familial PD associated α-Syn G51D, H50Q, and E46K mutations using Drosophila model system. Our data showed that flies expressing α-Syn familial mutants have a shorter lifespan and exhibit more climbing defects compared to wild-type (WT) flies in an age-dependent manner. The immunofluorescence studies of the brain from the old flies showed more dopaminergic neuronal cell death in all mutants compared to WT. This adverse effect of α-Syn familial mutations is highly correlated with the sustained population of oligomer production and retention in mutant flies. Furthermore, this was supported by our in vitro studies, where significantly higher amount of oligomer was observed in mutants compared to WT. The data suggest that the sustained population of oligomer formation and retention could be a major cause of cell death in α-Syn familial mutants.
Collapse
Affiliation(s)
- Ganesh M. Mohite
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Saumya Dwivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhadeep Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sravya Paluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Neha Ruhela
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arunima S
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Narendra Nath Jha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
23
|
Shin M, Copeland JM, Venton BJ. Drosophila as a Model System for Neurotransmitter Measurements. ACS Chem Neurosci 2018; 9:1872-1883. [PMID: 29411967 DOI: 10.1021/acschemneuro.7b00456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drosophila melanogaster, the fruit fly, is an important, simple model organism for studying the effects of genetic mutations on neuronal activity and behavior. Biologists use Drosophila for neuroscience studies because of its genetic tractability, complex behaviors, well-known and simple neuroanatomy, and many orthologues to human genes. Neurochemical measurements in Drosophila are challenging due to the small size of the central nervous system. Recently, methods have been developed to measure real-time neurotransmitter release and clearance in both larvae and adults using electrochemistry. These studies have characterized dopamine, serotonin, and octopamine release in both wild type and genetic mutant flies. Tissue content measurements are also important, and separations are predominantly used. Capillary electrophoresis, with either electrochemical, laser-induced fluorescence, or mass spectrometry detection, facilitates tissue content measurements from single, isolated Drosophila brains or small samples of hemolymph. Neurochemical studies in Drosophila have revealed that flies have functioning transporters and autoreceptors, that their metabolism is different than in mammals, and that flies have regional, life stage, and sex differences in neurotransmission. Future studies will develop smaller electrodes, expand optical imaging techniques, explore physiological stimulations, and use advanced genetics to target single neuron release or study neurochemical changes in models of human diseases.
Collapse
Affiliation(s)
- Mimi Shin
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| | - Jeffrey M. Copeland
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
- Department of Biology, Eastern Mennonite University, Harrisonburg, Virginia 22802, United States
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22901, United States
| |
Collapse
|
24
|
Grandi LC, Di Giovanni G, Galati S. Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. J Neurosci Methods 2018; 308:205-218. [PMID: 30107207 DOI: 10.1016/j.jneumeth.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a common neurodegenerative disease characterized by a widely variety of motor and non-motor symptoms. While the motor deficits are only visible following a severe dopamine depletion, neurodegenerative process and some non-motor symptoms are manifested years before the motor deficits. Importantly, chronic degeneration of dopaminergic neurons leads to the development of compensatory mechanisms that play roles in the progression of the disease and the response to anti-parkinsonian therapies. The identification of these mechanisms will be of great importance for improving our understanding of factors with important contributions to the disease course and the underlying adaptive process. To date, most of the data obtained from animal models reflect the late, chronic, dopamine-depleted states, when compensatory mechanisms have already been established. Thus, adequate animal models with which researchers are able to dissect early- and late-phase mechanisms are necessary. Here, we reviewed the literature related to animal models of early-stage PD and pharmacological treatments capable of inducing acute dopamine impairments and/or depletion, such as reserpine, haloperidol and tetrodotoxin. We highlighted the advantages, limitations and the future prospective uses of these models, as well as their applications in the identification of novel agents for treating this neurological disorder.
Collapse
Affiliation(s)
- Laura Clara Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Switzerland
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Switzerland.
| |
Collapse
|
25
|
Mise A, Yoshino Y, Yamazaki K, Ozaki Y, Sao T, Yoshida T, Mori T, Mori Y, Ochi S, Iga JI, Ueno SI. TOMM40 and APOE Gene Expression and Cognitive Decline in Japanese Alzheimer's Disease Subjects. J Alzheimers Dis 2018; 60:1107-1117. [PMID: 28984592 DOI: 10.3233/jad-170361] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND TOMM40 is located on chromosome 19, is in linkage disequilibrium with apolipoprotein E (APOE), andis reported in several genome-wide association studies to be associated with Alzheimer's disease (AD). OBJECTIVE Assess APOE and TOM40 and mitochondrial genes as blood biomarkers for AD. METHODS We examined TOMM40, PTEN-induced putative kinase 1 (PINK1), Parkin RBR E3 ubiquitin protein ligase (PARK2), and APOE mRNA expression in relation to the methylation rates of CpG sites in the upstream region of TOMM40exon 1 in peripheral leukocytes and TOMM40523 polyT genotypes in 60 AD and age- and sex-matched control subjects. RESULTS TOMM40 mRNA expression was significantly lower in AD subjects (0.87±0.18 versus 1.0±0.23, p = 0.005), and PINK1 mRNA expression was higher in AD subjects (1.5±0.61 versus 1.0±0.52, p < 0.001). TOMM40 mRNA expression was significantly correlated with the Mini-Mental State Examination total score (r = 0.290, p = 0.027). There was no expressional change in peripheral APOE mRNA in either AD or control subjects (p = 0.32). Methylation rates in the upstream region of TOMM40exon 1 were not different between AD and control subjects (average rate: 1.37±0.99 versus 1.39±1.20, p = 0.885), and TOMM40523 polyT genotypes were also not different between AD and control subjects (p = 0.67). CONCLUSION TOMM40 mRNA expression was lower in AD subjects and was correlated with cognitive decline. Significant changes in both TOMM40 and PINK1 mRNA may be related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ayano Mise
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Tomoko Sao
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Taku Yoshida
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yoko Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
26
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
27
|
Siddique YH, Naz F, Khan W, Jyoti S, Raj Singh B, Naqvi AH. Effect of pramipexole alginate nanodispersion (PAND) on the transgenic Drosophila expressing human alpha synuclein in the brain. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Understanding Miro GTPases: Implications in the Treatment of Neurodegenerative Disorders. Mol Neurobiol 2018; 55:7352-7365. [PMID: 29411264 PMCID: PMC6096957 DOI: 10.1007/s12035-018-0927-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
Abstract
The Miro GTPases represent an unusual subgroup of the Ras superfamily and have recently emerged as important mediators of mitochondrial dynamics and for maintaining neuronal health. It is now well-established that these enzymes act as essential components of a Ca2+-sensitive motor complex, facilitating the transport of mitochondria along microtubules in several cell types, including dopaminergic neurons. The Miros appear to be critical for both anterograde and retrograde mitochondrial transport in axons and dendrites, both of which are considered essential for neuronal health. Furthermore, the Miros may be significantly involved in the development of several serious pathological processes, including the development of neurodegenerative and psychiatric disorders. In this review, we discuss the molecular structure and known mitochondrial functions of the Miro GTPases in humans and other organisms, in the context of neurodegenerative disease. Finally, we consider the potential human Miros hold as novel therapeutic targets for the treatment of such disease.
Collapse
|
29
|
Zanon A, Kalvakuri S, Rakovic A, Foco L, Guida M, Schwienbacher C, Serafin A, Rudolph F, Trilck M, Grünewald A, Stanslowsky N, Wegner F, Giorgio V, Lavdas AA, Bodmer R, Pramstaller PP, Klein C, Hicks AA, Pichler I, Seibler P. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila. Hum Mol Genet 2017; 26:2412-2425. [PMID: 28379402 DOI: 10.1093/hmg/ddx132] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/16/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Sreehari Kalvakuri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Marianna Guida
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Christine Schwienbacher
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Alice Serafin
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Franziska Rudolph
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Michaela Trilck
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany.,Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Nancy Stanslowsky
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy.,Department of Neurology, General Central Hospital, 39100 Bolzano, Italy.,Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
30
|
Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 2017; 149:457-464. [PMID: 29169114 DOI: 10.1016/j.jpba.2017.11.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/23/2022]
Abstract
Soluble epoxide hydrolase (sEH) inhibition is reported to elevate endogenous epoxyeicosatrienoic acids (EET's), which are known to play an important role in neuroprotection by inhibiting oxidative stress and neuroinflammation. In the present study, PTUPB, a dual inhibitor of sEH and COX-2, has been tested for its antiparkinson activity against rotenone (ROT) induced neurodegeneration in Drosophila model of Parkinson's disease (PD). To determine the efficacy and brain bioavailability of PTUPB a simple, rapid and sensitive LC-MS/MS method was developed and validated for the estimation of PTUPB (Method-I), dopamine (DA) and its metabolites (Method-II) in fly head. Mass spectrometric acquisitions of analytes signals were performed in positive and negative electron spray ionization MRM mode by monitoring the daughter ions. The isocratic elution using formic acid (0.1% v/v) and acetonitrile (20:80v/v) (for method I), and acetic acid (0.1% v/v) and methanol (for method II) on Jones C18 was carried out to achieve the separation. The results of brain PTUPB, DA and its metabolites estimation shows a dose dependent increase in PTUPB concentration and a dose dependent prevention of ROT induced changes in DA and its metabolites levels (p<0.05), indicating a significant neuroprotection activity of PTUPB. In the present study, we have successfully developed and validated LC-MS/MS methods to identify and quantify PTUPB, DA and its metabolites using a UFLC-ESI-QqQ mass spectrometer for the screening of neuroprotective agents in Drosophila Melanogaster.
Collapse
|
31
|
Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models. Front Genet 2017; 8:77. [PMID: 28659967 PMCID: PMC5468440 DOI: 10.3389/fgene.2017.00077] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, United States
| | - Barbara E Taylor
- Department of Biological Sciences, California State University, Long BeachLong Beach, CA, United States
| | - Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska FairbanksFairbanks, AK, United States
| |
Collapse
|
32
|
Mouton-Liger F, Jacoupy M, Corvol JC, Corti O. PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease. Front Mol Neurosci 2017; 10:120. [PMID: 28507507 PMCID: PMC5410576 DOI: 10.3389/fnmol.2017.00120] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA) neurons of the substantia nigra (SN) pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis. Over the last decade, PINK1/Parkin-dependent mitochondrial quality control emerged as a pleiotropic regulatory pathway. Loss of its function impinges on a number of physiological processes suspected to contribute to PD pathogenesis. Its role in the regulation of innate immunity and inflammatory processes stands out, providing compelling support to the contribution of non-cell-autonomous immune mechanisms in PD. In this review, we illustrate the central role of this multifunctional pathway at the crossroads between mitochondrial stress, neuroinflammation and metabolism. We discuss how its dysfunction may contribute to PD pathogenesis and pinpoint major unresolved questions in the field.
Collapse
Affiliation(s)
- Francois Mouton-Liger
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| | - Maxime Jacoupy
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| | - Jean-Christophe Corvol
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France.,Department of Neurology, Institut National de la Santé et de la Recherche Médicale, Assistance-Publique Hôpitaux de Paris, CIC-1422, Hôpital Pitié-SalpêtrièreParis, France
| | - Olga Corti
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France.,Centre National de la Recherche Scientifique, UMR 7225Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1127Paris, France.,Institut du Cerveau et de la Moelle épinière, ICMParis, France
| |
Collapse
|
33
|
Zhang T, Mishra P, Hay BA, Chan D, Guo M. Valosin-containing protein (VCP/p97) inhibitors relieve Mitofusin-dependent mitochondrial defects due to VCP disease mutants. eLife 2017; 6. [PMID: 28322724 PMCID: PMC5360448 DOI: 10.7554/elife.17834] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 02/13/2017] [Indexed: 11/13/2022] Open
Abstract
Missense mutations of valosin-containing protein (VCP) cause an autosomal dominant disease known as inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative disorders. The pathological mechanism of IBMPFD is not clear and there is no treatment. We show that endogenous VCP negatively regulates Mitofusin, which is required for outer mitochondrial membrane fusion. Because 90% of IBMPFD patients have myopathy, we generated an in vivo IBMPFD model in adult Drosophila muscle, which recapitulates disease pathologies. We show that common VCP disease mutants act as hyperactive alleles with respect to regulation of Mitofusin. Importantly, VCP inhibitors suppress mitochondrial defects, muscle tissue damage and cell death associated with IBMPFD models in Drosophila. These inhibitors also suppress mitochondrial fusion and respiratory defects in IBMPFD patient fibroblasts. These results suggest that VCP disease mutants cause IBMPFD through a gain-of-function mechanism, and that VCP inhibitors have therapeutic value.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angele, United States
| | - Prashant Mishra
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angele, United States.,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, United States
| |
Collapse
|
34
|
Abstract
Mitochondria are among a cell's most vital organelles. They not only produce the majority of the cell's ATP but also play a key role in Ca2+ buffering and apoptotic signaling. While proper allocation of mitochondria is critical to all cells, it is particularly important for the highly polarized neurons. Because mitochondria are mainly synthesized in the soma, they must be transported long distances to be distributed to the far-flung reaches of the neuron-up to 1 m in the case of some human motor neurons. Furthermore, damaged mitochondria can be detrimental to neuronal health, causing oxidative stress and even cell death, therefore the retrograde transport of damaged mitochondria back to the soma for proper disposal, as well as the anterograde transport of fresh mitochondria from the soma to repair damage, are equally critical. Intriguingly, errors in mitochondrial transport have been increasingly implicated in neurological disorders. Here, we describe how to investigate mitochondrial transport in three complementary neuronal systems: cultured induced pluripotent stem cell-derived neurons, cultured rat hippocampal and cortical neurons, and Drosophila larval neurons in vivo. These models allow us to uncover the molecular and cellular mechanisms underlying transport issues that may occur under physiological or pathological conditions.
Collapse
|
35
|
Li HN, Zimmerman M, Milledge GZ, Hou XL, Cheng J, Wang ZH, Li PA. Water-Soluble Coenzyme Q10 Reduces Rotenone-Induced Mitochondrial Fission. Neurochem Res 2017; 42:1096-1103. [PMID: 28190227 DOI: 10.1007/s11064-016-2143-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by mitochondrial dysfunction and oxidative stress. It is usually accompanied by an imbalance in mitochondrial dynamics and changes in mitochondrial morphology that are associated with impaired function. The objectives of this study were to identify the effects of rotenone, a drug known to mimic the pathophysiology of Parkinson's disease, on mitochondrial dynamics. Additionally, this study explored the protective effects of water-soluble Coenzyme Q10 (CoQ10) against rotenone-induced cytotoxicity in murine neuronal HT22 cells. Our results demonstrate that rotenone elevates protein expression of mitochondrial fission markers, Drp1 and Fis1, and causes an increase in mitochondrial fragmentation as evidenced through mitochondrial staining and morphological analysis. Water-soluble CoQ10 prevented mitochondrial dynamic imbalance by reducing Drp1 and Fis1 protein expression to pre-rotenone levels, as well as reducing rotenone treatment-associated mitochondrial fragmentation. Hence, water-soluble CoQ10 may have therapeutic potential in treating patients with Parkinson's disease.
Collapse
Affiliation(s)
- Hai-Ning Li
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, 750004, China
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA
| | - Mary Zimmerman
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA
| | - Gaolin Z Milledge
- Department of Mathematics and Computer Science, North Carolina Central University, Durham, NC, 27707, USA
| | - Xiao-Lin Hou
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, 750004, China
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA
| | - Jiang Cheng
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, 750004, China
| | - Zhen-Hai Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, 750004, China.
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
36
|
A comprehensive computational study on pathogenic mis-sense mutations spanning the RING2 and REP domains of Parkin protein. Gene 2017; 610:49-58. [PMID: 28189762 DOI: 10.1016/j.gene.2017.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/17/2017] [Accepted: 02/06/2017] [Indexed: 11/23/2022]
Abstract
Various mutations in PARK2 gene, which encodes the protein parkin, are significantly associated with the onset of autosomal recessive juvenile Parkinson (ARJP) in neuronal cells. Parkin is a multi domain protein, the N-terminal part contains the Ubl and the C-terminal part consists of four zinc coordinating domains, viz., RING0, RING1, in between ring (IBR) and RING2. Disease mutations are spread over all the domains of Parkin, although mutations in some regions may affect the functionality of Parkin more adversely. The mutations in the RING2 domain are seen to abolish the neuroprotective E3 ligase activity of Parkin. In this current work, we carried out detailed in silico analysis to study the extent of pathogenicity of mutations spanning the Parkin RING2 domain and the adjoining REP region by SIFT, Mutation Accessor, PolyPhen2, SNPs and GO, GV/GD and I-mutant. To study the structural and functional implications of these mutations on RING2-REP domain of Parkin, we studied the solvent accessibility (SASA/RSA), hydrophobicity, intra-molecular hydrogen bonding profile and domain analysis by various computational tools. Finally, we analysed the interaction energy profiles of the mutants and compared them to the wild type protein using Discovery studio 2.5. By comparing the various analyses it could be safely concluded that except P437L and A379V mutations, all other mutations were potentially deleterious affecting various structural aspects of RING2 domain architecture. This study is based purely on computational approach which has the potential to identify disease mutations and the information could further be used in treatment of diseases and prognosis.
Collapse
|
37
|
M'Angale PG, Staveley BE. Overexpression of Buffy enhances the loss of parkin and suppresses the loss of Pink1 phenotypes in Drosophila. Genome 2017; 60:241-247. [PMID: 28106473 DOI: 10.1139/gen-2016-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in parkin (PARK2) and Pink1 (PARK6) are responsible for autosomal recessive forms of early onset Parkinson's disease (PD). Attributed to the failure of neurons to clear dysfunctional mitochondria, loss of gene expression leads to loss of nigrostriatal neurons. The Pink1/parkin pathway plays a role in the quality control mechanism aimed at eliminating defective mitochondria, and the failure of this mechanism results in a reduced lifespan and impaired locomotor ability, among other phenotypes. Inhibition of parkin or Pink1 through the induction of stable RNAi transgene in the Ddc-Gal4-expressing neurons results in such phenotypes to model PD. To further evaluate the effects of the overexpression of the Bcl-2 homologue Buffy, we analysed lifespan and climbing ability in both parkin-RNAi- and Pink1-RNAi-expressing flies. In addition, the effect of Buffy overexpression upon parkin-induced developmental eye defects was examined through GMR-Gal4-dependent expression. Curiously, Buffy overexpression produced very different effects: the parkin-induced phenotypes were enhanced, whereas the Pink1-enhanced phenotypes were suppressed. Interestingly, the overexpression of Buffy along with the inhibition of parkin in the neuron-rich eye results in the suppression of the developmental eye defects.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
38
|
Song L, He Y, Ou J, Zhao Y, Li R, Cheng J, Lin CH, Ho MS. Auxilin Underlies Progressive Locomotor Deficits and Dopaminergic Neuron Loss in a Drosophila Model of Parkinson’s Disease. Cell Rep 2017; 18:1132-1143. [DOI: 10.1016/j.celrep.2017.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
|
39
|
Schopf K, Huber A. Membrane protein trafficking in Drosophila photoreceptor cells. Eur J Cell Biol 2016; 96:391-401. [PMID: 27964885 DOI: 10.1016/j.ejcb.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022] Open
Abstract
Membrane protein trafficking occurs throughout the lifetime of neurons and includes the initial protein synthesis and anterograde transport to the plasma membrane as well as internalization, degradation, and recycling of plasma membrane proteins. Defects in protein trafficking can result in neuronal degeneration and underlie blinding diseases such as retinitis pigmentosa as well as other neuronal disorders. Drosophila photoreceptor cells have emerged as a model system for identifying the components and mechanisms involved in membrane protein trafficking in neurons. Here we summarize the current knowledge about trafficking of three Drosophila phototransduction proteins, the visual pigment rhodopsin and the two light-activated ion channels TRP (transient receptor potential) and TRPL (TRP-like). Despite some common requirements shared by rhodopsin and TRP, details in the trafficking of these proteins differ considerably, suggesting the existence of several trafficking pathways for these photoreceptor proteins.
Collapse
Affiliation(s)
- Krystina Schopf
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany
| | - Armin Huber
- University of Hohenheim, Institute of Physiology, Department of Biosensorics, Stuttgart, Germany.
| |
Collapse
|
40
|
Low protein to carbohydrate ratio diet delays onset of Parkinsonism like phenotype in Drosophila melanogaster parkin null mutants. Mech Ageing Dev 2016; 160:19-27. [DOI: 10.1016/j.mad.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023]
|
41
|
Zhuang N, Li L, Chen S, Wang T. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control. Cell Death Dis 2016; 7:e2501. [PMID: 27906179 PMCID: PMC5261015 DOI: 10.1038/cddis.2016.396] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 02/04/2023]
Abstract
Mitochondrial dysfunction has been linked to the pathogenesis of a large number of inherited diseases in humans, including Parkinson's disease, the second most common neurodegenerative disorder. The Parkinson's disease genes pink1 and parkin, which encode a mitochondrially targeted protein kinase, and an E3 ubiquitin ligase, respectively, participate in a key mitochondrial quality-control pathway that eliminates damaged mitochondria. In the current study, we established an in vivo PINK1/Parkin-induced photoreceptor neuron degeneration model in Drosophila with the aim of dissecting the PINK1/Parkin pathway in detail. Using LC-MS/MS analysis, we identified Serine 346 as the sole autophosphorylation site of Drosophila PINK1 and found that substitution of Serine 346 to Alanine completely abolished the PINK1 autophosphorylation. Disruption of either PINK1 or Parkin phosphorylation impaired the PINK1/Parkin pathway, and the degeneration phenotype of photoreceptor neurons was obviously alleviated. Phosphorylation of PINK1 is not only required for the PINK1-mediated mitochondrial recruitment of Parkin but also induces its kinase activity toward Parkin. In contrast, phosphorylation of Parkin by PINK1 is dispensable for its translocation but required for its activation. Moreover, substitution with autophosphorylation-deficient PINK1 failed to rescue pink1 null mutant phenotypes. Taken together, our findings suggest that autophosphorylation of PINK1 is essential for the mitochondrial translocation of Parkin and for subsequent phosphorylation and activation of Parkin.
Collapse
Affiliation(s)
- Na Zhuang
- School of Life Sciences, Tsinghua University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
42
|
Kandul NP, Zhang T, Hay BA, Guo M. Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila. Nat Commun 2016; 7:13100. [PMID: 27841259 PMCID: PMC5114534 DOI: 10.1038/ncomms13100] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial DNA (mtDNA) often exists in a state of heteroplasmy, in which mutant mtDNA co-exists in cells with wild-type mtDNA. High frequencies of pathogenic mtDNA result in maternally inherited diseases; maternally and somatically acquired mutations also accumulate over time and contribute to diseases of ageing. Reducing heteroplasmy is therefore a therapeutic goal and in vivo models in post-mitotic tissues are needed to facilitate these studies. Here we describe a transgene-based model of a heteroplasmic lethal mtDNA deletion (mtDNAΔ) in adult Drosophila muscle. Stimulation of autophagy, activation of the PINK1/parkin pathway or decreased levels of mitofusin result in a selective decrease in mtDNAΔ. Decreased levels of mitofusin and increased levels of ATPIF1, an inhibitor of ATP synthase reversal-dependent mitochondrial repolarization, result in a further decrease in mtDNAΔ levels. These results show that an adult post-mitotic tissue can be cleansed of a deleterious genome, suggesting that therapeutic removal of mutant mtDNA can be achieved.
Collapse
Affiliation(s)
- Nikolay P. Kandul
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 156-29, 1200 E. California blvd., Pasadena, California 91125, USA
| | - Ting Zhang
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Bruce A. Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Mail Code 156-29, 1200 E. California blvd., Pasadena, California 91125, USA
| | - Ming Guo
- Department of Neurology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
43
|
Brooks DS, Vishal K, Kawakami J, Bouyain S, Geisbrecht ER. Optimization of wrMTrck to monitor Drosophila larval locomotor activity. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:11-17. [PMID: 27430166 PMCID: PMC5722213 DOI: 10.1016/j.jinsphys.2016.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 05/13/2023]
Abstract
An efficient and low-cost method of examining larval movement in Drosophila melanogaster is needed to study how mutations and/or alterations in the muscular, neural, and olfactory systems affect locomotor behavior. Here, we describe the implementation of wrMTrck, a freely available ImageJ plugin originally developed for examining multiple behavioral parameters in the nematode C. elegans. Our optimized method is rapid, reproducible and does not require automated microscope setups or the purchase of proprietary software. To demonstrate the utility of this method, we analyzed the velocity and crawling paths of two Drosophila mutants that affect muscle structure and/or function. Additionally, we show that this approach is useful for tracking the behavior of adult insects, including Tribolium castaneum and Drosophila melanogaster.
Collapse
Affiliation(s)
- David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Jessica Kawakami
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
44
|
M'Angale PG, Staveley BE. Bcl-2 homologue Debcl enhances α-synuclein-induced phenotypes in Drosophila. PeerJ 2016; 4:e2461. [PMID: 27672511 PMCID: PMC5028777 DOI: 10.7717/peerj.2461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson disease (PD) is a debilitating movement disorder that afflicts 1–2% of the population over 50 years of age. The common hallmark for both sporadic and familial forms of PD is mitochondrial dysfunction. Mammals have at least twenty proapoptotic and antiapoptotic Bcl-2 family members, in contrast, only two Bcl-2 family genes have been identified in Drosophila melanogaster, the proapoptotic mitochondrial localized Debcl and the antiapoptotic Buffy. The expression of the human transgene α-synuclein, a gene that is strongly associated with inherited forms of PD, in dopaminergic neurons (DA) of Drosophila, results in loss of neurons and locomotor dysfunction to model PD in flies. The altered expression of Debcl in the DA neurons and neuron-rich eye and along with the expression of α-synuclein offers an opportunity to highlight the role of Debcl in mitochondrial-dependent neuronal degeneration and death. Results The directed overexpression of Debcl using the Ddc-Gal4 transgene in the DA of Drosophila resulted in flies with severely decreased survival and a premature age-dependent loss in climbing ability. The inhibition of Debcl resulted in enhanced survival and improved climbing ability whereas the overexpression of Debcl in the α-synuclein-induced Drosophila model of PD resulted in more severe phenotypes. In addition, the co-expression of Debcl along with Buffy partially counteracts the Debcl-induced phenotypes, to improve the lifespan and the associated loss of locomotor ability observed. In complementary experiments, the overexpression of Debcl along with the expression of α-synuclein in the eye, enhanced the eye ablation that results from the overexpression of Debcl. The co-expression of Buffy along with Debcl overexpression results in the rescue of the moderate developmental eye defects. The co-expression of Buffy along with inhibition of Debcl partially restores the eye to a roughened eye phenotype. Discussion The overexpression of Debcl in DA neurons produces flies with shortened lifespan and impaired locomotor ability, phenotypes that are strongly associated with models of PD in Drosophila. The co-expression of Debcl along with α-synuclein enhanced the PD-like phenotypes. The co-expression of Debcl along with Buffy suppresses these phenotypes. Complementary experiments in the Drosophila eye show similar trends during development. Taken all together these results suggest a role for Debcl in neurodegenerative disorders.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador , Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador , Canada
| |
Collapse
|
45
|
Marycz K, Kornicka K, Marędziak M, Golonka P, Nicpoń J. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. J Cell Mol Med 2016; 20:2384-2404. [PMID: 27629697 PMCID: PMC5134411 DOI: 10.1111/jcmm.12932] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose‐derived mesenchymal stem cells (ASC) hold great promise in the treatment of many disorders including musculoskeletal system, cardiovascular and/or endocrine diseases. However, the cytophysiological condition of cells, used for engraftment seems to be fundamental factor that might determine the effectiveness of clinical therapy. In this study we investigated growth kinetics, senescence, accumulation of oxidative stress factors, mitochondrial biogenesis, autophagy and osteogenic differentiation potential of ASC isolated from horses suffered from equine metabolic syndrome (EMS). We demonstrated that EMS condition impairs multipotency/pluripotency in ASCs causes accumulation of reactive oxygen species and mitochondria deterioration. We found that, cytochrome c is released from mitochondria to the cytoplasm suggesting activation of intrinsic apoptotic pathway in those cells. Moreover, we observed up‐regulation of p21 and decreased ratio of Bcl‐2/BAX. Deteriorations in mitochondria structure caused alternations in osteogenic differentiation of ASCEMS resulting in their decreased proliferation rate and reduced expression of osteogenic markers BMP‐2 and collagen type I. During osteogenic differentiation of ASCEMS, we observed autophagic turnover as probably, an alternative way to generate adenosine triphosphate and amino acids required to increased protein synthesis during differentiation. Downregulation of PGC1α, PARKIN and PDK4 in differentiated ASCEMS confirmed impairments in mitochondrial biogenesis and function. Hence, application of ASCEMS into endocrinological or ortophedical practice requires further investigation and analysis in the context of safeness of their application.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Electron Microscopy Laboratory, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland.,Wroclaw Research Centre EIT+, Wrocław, Poland
| | - Katarzyna Kornicka
- Electron Microscopy Laboratory, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland.,Wroclaw Research Centre EIT+, Wrocław, Poland
| | - Monika Marędziak
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland
| | | | - Jakub Nicpoń
- Department of Surgery, Faculty of Veterinary Medicine, University of Environmental and Life Sciences Wroclaw, Wroclaw, Poland
| |
Collapse
|
46
|
M'Angale PG, Staveley BE. The HtrA2 Drosophila model of Parkinson's disease is suppressed by the pro-survival Bcl-2 Buffy. Genome 2016; 60:1-7. [PMID: 27848260 DOI: 10.1139/gen-2016-0069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mutations in High temperature requirement A2 (HtrA2), also designated PARK13, which lead to the loss of its protease activity, have been associated with Parkinson's disease (PD). HtrA2 is a mitochondrial protease that translocates to the cytosol upon the initiation of apoptosis where it participates in the abrogation of inhibitors of apoptosis (IAP) inhibition of caspases. Here, we demonstrate that the loss of the HtrA2 function in the dopaminergic neurons of Drosophila melanogaster results in PD-like phenotypes, and we attempt to restore the age-dependent loss in locomotor ability by co-expressing the sole pro-survival Bcl-2 homologue Buffy. The inhibition of HtrA2 in the dopaminergic neurons of Drosophila resulted in shortened lifespan and impaired climbing ability, and the overexpression of Buffy rescued the reduction in lifespan and the age-dependent loss of locomotor ability. In supportive experiments, the inhibition of HtrA2 in the Drosophila eye results in eye defects, marked by reduction in ommatidia number and increased disruption of the ommatidial array; phenotypes that are suppressed by the overexpression of Buffy.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
47
|
Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1960-91. [PMID: 27126807 PMCID: PMC6398603 DOI: 10.1161/res.0000000000000104] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.
Collapse
|
48
|
Clavier A, Rincheval-Arnold A, Mignotte B, Guénal I. [The comeback of mitochondria in Drosophila apoptosis]. Med Sci (Paris) 2016; 32:478-84. [PMID: 27225920 DOI: 10.1051/medsci/20163205014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans.
Collapse
Affiliation(s)
- Amandine Clavier
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France - Laboratoire de génétique moléculaire et physiologique, École pratique des hautes études, PSL research university, 78180 Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Bernard Mignotte
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France - Laboratoire de génétique moléculaire et physiologique, École pratique des hautes études, PSL research university, 78180 Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
49
|
M'Angale PG, Staveley BE. The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci 2016; 17:24. [PMID: 27192974 PMCID: PMC4872331 DOI: 10.1186/s12868-016-0261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
Background In contrast to the complexity found in mammals, only two Bcl-2 family genes have been found in Drosophila melanogaster including the pro-cell survival, human Bok-related orthologue, Buffy. The directed expression of α-synuclein, the first gene identified to contribute to inherited forms of Parkinson disease (PD), in the dopaminergic neurons (DA) of flies has provided a robust and well-studied Drosophila model of PD complete with the loss of neurons and accompanying motor defects. To more fully understand the biological basis of Bcl-2 genes in PD, we altered the expression of Buffy in the dopamine producing neurons with and without the expression of α-synuclein, and in the developing neuron-rich eye. Results To alter the expression of Buffy in the dopaminergic neurons of Drosophila, the Ddc-Gal4 transgene was used. The directed expression of Buffy in the dopamine producing neurons resulted in flies with increased climbing ability and enhanced survival, while the inhibition of Buffy in the dopaminergic neurons reduced climbing ability over time prematurely, similar to the phenotype observed in the α-synuclein-induced Drosophila model of PD. Subsequently, the expression of Buffy was altered in the α-synuclein-induced Drosophila model of PD. Analysis revealed that Buffy acted to rescue the associated loss of locomotor ability observed in the α-synuclein-induced model of PD, while Buffy RNA interference resulted in an enhanced α-synuclein-induced loss of climbing ability. In complementary experiments the overexpression of Buffy in the developing eye suppressed the mild rough eye phenotype that results from Gal4 expression and from α-synuclein expression. When Buffy is inhibited the roughened eye phenotype is enhanced. Conclusions The inhibition of Buffy in DA neurons produces a novel model of PD in Drosophila. The directed expression of Buffy in DA neurons provide protection and counteracts the α-synuclein-induced Parkinson disease-like phenotypes. Taken all together this demonstrates a role for Buffy, a Bcl-2 pro-cell survival gene, in neuroprotection.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
50
|
Siddique YH, Naz F, Jyoti S, Ali F, Fatima A, Khanam S. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson's disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:225-231. [PMID: 27026137 DOI: 10.1016/j.etap.2016.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
The role of Geraniol was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS) in the neurons. Geraniol at final concentration of 10, 20 and 40μM were mixed in the diet and the flies were allowed to feed on it for 24 days. The effect of geraniol was studied on the climbing ability, activity pattern, lipid peroxidation, protein carbonyl, glutathione, dopamine content, and glutathione-S-transferase activity in the brains of transgenic Drosophila. The exposure of PD model flies to 10, 20 and 40μM of geraniol results in a significant delay in the loss of climbing ability (p<0.05), improved activity pattern reduced the oxidative stress (p<0.05) in the brains of transgenic Drosophila as compared to unexposed PD model flies. The results suggest that geraniol is potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson's disease.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahad Ali
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saba Khanam
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|