1
|
Dong Y, Zhang K, Yao H, Jia T, Wang J, Zhu D, Xu F, Cheng M, Zhao S, Shi X. Clinical and genetic characteristics of 36 children with Joubert syndrome. Front Pediatr 2023; 11:1102639. [PMID: 37547106 PMCID: PMC10401045 DOI: 10.3389/fped.2023.1102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background and aims Joubert syndrome (JBTS, OMIM # 213300) is a group of ciliopathies characterized by mid-hindbrain malformation, developmental delay, hypotonia, oculomotor apraxia, and breathing abnormalities. Molar tooth sign in brain imaging is the hallmark for diagnosing JBTS. It is a clinically and genetically heterogeneous disorder involving mutations in more than 40 ciliopathy-related genes. However, long-term follow-up data are scarce, and further research is needed to determine the abundant phenotypes and genetics of this disorder. The study aimed to summarize clinical manifestations, particular appearance on cranial imaging, genetic data, and prognostic features of patients with JBTS. Methods A retrospective case review of 36 cases of JBTS from May 1986 to December 2021 was performed. Clinical data of JBTS patients with development retardation and molar tooth sign on cranial imaging as the main features were analyzed. Genetic testing was performed according to consent obtained from patients and their families. The Gesell Developmental Scale was used to evaluate the intelligence level before and after treatment. The children were divided into a purely neurological JBTS (pure JBTS) group and JBTS with multi-organ system involvement group and then followed up every 3-6 months. Results We enrolled 18 males and 18 females. Thirty-four (94.44%) cases had developmental delay, one patient (2.78%) had strabismus, and one patient (2.78%) had intermittent dizziness. There was one case co-morbid with Lesch-Nyhan syndrome. Three-quarters of cases had one or more other organ or system involvement, with a greater predilection for vision and hearing impairment. JBTS could also involve the skin. Thirty-one cases (86.11%) showed a typical molar tooth sign, and five cases showed a bat wing sign on cranial imaging. Abnormal video electroencephalogram (VEEG) result was obtained in 7.69% of cases. We found six JBTS-related novel gene loci variants: CPLANE1: c.4189 + 1G > A, c.3101T > C(p.Ile1034Thr), c.3733T > C (p.Cys1245Arg), c.4080G > A(p.Lys1360=); RPGRIP1l: c.1351-11A > G; CEP120: c.214 C > T(p.Arg72Cys). The CHD7 gene may be potentially related to the occurrence of JBTS. Analysis showed that the prognosis of pure JBTS was better than that of JBTS with neurological and non-neurological involvement after the formal rehabilitation treatment (P < 0.05). Of the three children with seizures, two cases had epilepsy with a poor prognosis, and another case had breath-holding spells. Conclusion Our findings indicate that early cranial imaging is helpful for the etiological diagnosis of children with unexplained developmental delay and multiple malformations. Patients with JBTS may have coexisting skin abnormalities. The novel gene loci of CPLANE1, RPGRIP1l, and CEP120 were associated with JBTS in our study and provided significant information to enrich the related genetic data. Future works investigating several aspects of the association between CHD7 gene and JBTS merit further investigation. The prognosis of children with pure JBTS is better than that of children with JBTS with non-neurological involvement.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Zhang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - He Yao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wang
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Falin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiying Cheng
- Department of Radiology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Zhao
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyi Shi
- Department of Pediatric Development and Behavior, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Abstract
The epidermis is a stratified squamous epithelium that forms the outermost layer of the skin. Its primary function is to act as a barrier, keeping pathogens and toxins out and moisture in. This physiological role has necessitated major differences in the organization and polarity of the tissue as compared to simple epithelia. We discuss four aspects of polarity in the epidermis - the distinctive polarities of basal progenitor cells as well as differentiated granular cells, the polarity of adhesions and the cytoskeleton across the tissue as keratinocytes differentiate, and the planar cell polarity of the tissue. These distinctive polarities are essential for the morphogenesis and the function of the epidermis and have also been implicated in regulating tumor formation.
Collapse
|
3
|
Anillin governs mitotic rounding during early epidermal development. BMC Biol 2022; 20:145. [PMID: 35710398 PMCID: PMC9205045 DOI: 10.1186/s12915-022-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01345-9.
Collapse
|
4
|
Wang Y, Kitahata H, Kosumi H, Watanabe M, Fujimura Y, Takashima S, Osada SI, Hirose T, Nishie W, Nagayama M, Shimizu H, Natsuga K. Collagen XVII deficiency alters epidermal patterning. J Transl Med 2022; 102:581-588. [PMID: 35145203 DOI: 10.1038/s41374-022-00738-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/09/2022] Open
Abstract
Vertebrates exhibit patterned epidermis, exemplified by scales/interscales in mice tails and grooves/ridges on the human skin surface (microtopography). Although the role of spatiotemporal regulation of stem cells (SCs) has been implicated in this process, the mechanism underlying the development of such epidermal patterns is poorly understood. Here, we show that collagen XVII (COL17), a niche for epidermal SCs, helps stabilize epidermal patterns. Gene knockout and rescue experiments revealed that COL17 maintains the width of the murine tail scale epidermis independently of epidermal cell polarity. Skin regeneration after wounding was associated with slender scale epidermis, which was alleviated by overexpression of human COL17. COL17-negative skin in human junctional epidermolysis bullosa showed a distinct epidermal pattern from COL17-positive skin that resulted from revertant mosaicism. These results demonstrate that COL17 contributes to defining mouse tail scale shapes and human skin microtopography. Our study sheds light on the role of the SC niche in tissue pattern formation.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Godsel LM, Roth-Carter QR, Koetsier JL, Tsoi LC, Huffine AL, Broussard JA, Fitz GN, Lloyd SM, Kweon J, Burks HE, Hegazy M, Amagai S, Harms PW, Xing X, Kirma J, Johnson JL, Urciuoli G, Doglio LT, Swindell WR, Awatramani R, Sprecher E, Bao X, Cohen-Barak E, Missero C, Gudjonsson JE, Green KJ. Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor. J Clin Invest 2022; 132:e144363. [PMID: 34905516 PMCID: PMC8803337 DOI: 10.1172/jci144363] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.
Collapse
Affiliation(s)
- Lisa M. Godsel
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Lam C. Tsoi
- Department of Dermatology
- Department of Computational Medicine & Bioinformatics, and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Joshua A. Broussard
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | - Sarah M. Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | | | | | | | - Paul W. Harms
- Department of Dermatology
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Jodi L. Johnson
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | - Lynn T. Doglio
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Rajeshwar Awatramani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xiaomin Bao
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Eran Cohen-Barak
- Department of Dermatology, “Emek” Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Biology, University of Naples, Naples, Italy
| | | | - Kathleen J. Green
- Department of Pathology and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
García P, Coll PM, Del Rey F, Geli MI, Pérez P, Vázquez de Aldana CR, Encinar Del Dedo J. Eng2, a new player involved in feedback loop regulation of Cdc42 activity in fission yeast. Sci Rep 2021; 11:17872. [PMID: 34504165 PMCID: PMC8429772 DOI: 10.1038/s41598-021-97311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Cell polarity and morphogenesis are regulated by the small GTPase Cdc42. Even though major advances have been done in the field during the last years, the molecular details leading to its activation in particular cellular contexts are not completely understood. In fission yeast, the β(1,3)-glucanase Eng2 is a "moonlighting protein" with a dual function, acting as a hydrolase during spore dehiscence, and as component of the endocytic machinery in vegetative cells. Here, we report that Eng2 plays a role in Cdc42 activation during polarized growth through its interaction with the scaffold protein Scd2, which brings Cdc42 together with its guanine nucleotide exchange factor (GEF) Scd1. eng2Δ mutant cells have defects in activation of the bipolar growth (NETO), remaining monopolar during all the cell cycle. In the absence of Eng2 the accumulation of Scd1 and Scd2 at the poles is reduced, the levels of Cdc42 activation decrease, and the Cdc42 oscillatory behavior, associated with bipolar growth in wild type cells, is altered. Furthermore, overexpression of Eng2 partially rescues the growth and polarity defects of a cdc42-L160S mutant. Altogether, our work unveils a new factor regulating the activity of Cdc42, which could potentially link the polarity and endocytic machineries.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Del Rey
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - M Isabel Geli
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Carlos R Vázquez de Aldana
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain.
| | - Javier Encinar Del Dedo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
7
|
Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, Knight SAB, Chan N, Wei M, Lovins V, Bugayev J, Horwinski J, Bradley C, Meyer J, Crumrine D, Sutter CH, Elias P, Mauldin E, Sutter TR, Grice EA. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021; 29:1235-1248.e8. [PMID: 34214492 DOI: 10.1016/j.chom.2021.05.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
The epidermis forms a barrier that defends the body from desiccation and entry of harmful substances, while also sensing and integrating environmental signals. The tightly orchestrated cellular changes needed for the formation and maintenance of this epidermal barrier occur in the context of the skin microbiome. Using germ-free mice, we demonstrate the microbiota is necessary for proper differentiation and repair of the epidermal barrier. These effects are mediated by microbiota signaling through the aryl hydrocarbon receptor (AHR) in keratinocytes, a xenobiotic receptor also implicated in epidermal differentiation. Mice lacking keratinocyte AHR are more susceptible to barrier damage and infection, during steady-state and epicutaneous sensitization. Colonization with a defined consortium of human skin isolates restored barrier competence in an AHR-dependent manner. We reveal a fundamental mechanism whereby the microbiota regulates skin barrier formation and repair, which has far-reaching implications for the numerous skin disorders characterized by epidermal barrier dysfunction.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Casey Bartow-McKenney
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Qi Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Laurice Flowers
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Amy Campbell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Simon A B Knight
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Neal Chan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Monica Wei
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Victoria Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Julia Bugayev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Joseph Horwinski
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Charles Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - Jason Meyer
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Debra Crumrine
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Carrie Hayes Sutter
- Department of Biological Sciences, W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN, USA
| | - Peter Elias
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - Thomas R Sutter
- Department of Biological Sciences, W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN, USA.
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
8
|
Castellano-Pellicena I, Morrison CG, Bell M, O’Connor C, Tobin DJ. Melanin Distribution in Human Skin: Influence of Cytoskeletal, Polarity, and Centrosome-Related Machinery of Stratum basale Keratinocytes. Int J Mol Sci 2021; 22:ijms22063143. [PMID: 33808676 PMCID: PMC8003549 DOI: 10.3390/ijms22063143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage. While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle movement during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated machinery in distributing melanin within KCs. Short-term cultures of human skin explants were treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively. Treatment effects on melanin distribution were assessed by the Warthin-Starry stain, on centrosome-associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centriolar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated by coordinated movement of centrosomes and centriolar satellites. This mechanism may control melanin's strategic position within UVR-exposed KCs.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Mike Bell
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Clare O’Connor
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)-1-716-6262
| |
Collapse
|
9
|
Persa OD, Koester J, Niessen CM. Regulation of Cell Polarity and Tissue Architecture in Epidermal Aging and Cancer. J Invest Dermatol 2021; 141:1017-1023. [PMID: 33531135 DOI: 10.1016/j.jid.2020.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The mammalian skin is essential to protect the organism from external damage while at the same time enabling communication with the environment. Aging compromises skin function and regeneration, which is further exacerbated by external influences, such as UVR from the sun. Aging and UVR are also major risk factors contributing to the development of skin cancer. Whereas aging research traditionally has focused on the role of DNA damage and metabolic and stress pathways, less is known about how aging affects tissue architecture and cell dynamics in skin homeostasis and regeneration and whether changes in these processes promote skin cancer. This review highlights how key regulators of cell polarity and adhesion affect epidermal mechanics, tissue architecture, and stem cell dynamics in skin aging and cancer.
Collapse
Affiliation(s)
- Oana D Persa
- Department Cell Biology of the Skin, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Department of Dermatology and Venerology, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Janis Koester
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carien M Niessen
- Department Cell Biology of the Skin, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Watanabe M, Kosumi H, Osada SI, Takashima S, Wang Y, Nishie W, Oikawa T, Hirose T, Shimizu H, Natsuga K. Type XVII collagen interacts with the aPKC-PAR complex and maintains epidermal cell polarity. Exp Dermatol 2021; 30:62-67. [PMID: 32970880 DOI: 10.1111/exd.14196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Type XVII collagen (COL17) is a transmembrane protein expressed in the basal epidermis. COL17 serves as a niche for epidermal stem cells, and although its reduction has been implicated in altering cell polarity and ageing of the epidermis, it is unknown how COL17 affects epidermal cell polarity. Here, we uncovered COL17 as a binding partner of the aPKC-PAR complex, which is a key regulating factor of cell polarity. Immunoprecipitation-immunoblot assay and protein-protein binding assay revealed that COL17 interacts with aPKC and PAR3. COL17 deficiency or epidermis-specific aPKCλ deletion destabilized PAR3 distribution in the epidermis, while aPKCζ knockout did not. Asymmetrical cell division was pronounced in COL17-null neonatal paw epidermis. These results show that COL17 is pivotal for maintaining epidermal cell polarity. Our study highlights the previously unrecognized role of COL17 in the basal keratinocytes.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Shota Takashima
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Kujawski S, Crespo C, Luz M, Yuan M, Winkler S, Knust E. Loss of Crb2b-lf leads to anterior segment defects in old zebrafish. Biol Open 2020; 9:bio047555. [PMID: 31988089 PMCID: PMC7044448 DOI: 10.1242/bio.047555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
Defects in the retina or the anterior segment of the eye lead to compromised vision and affect millions of people. Understanding how these ocular structures develop and are maintained is therefore of paramount importance. The maintenance of proper vision depends, among other factors, on the function of genes controlling apico-basal polarity. In fact, mutations in polarity genes are linked to retinal degeneration in several species, including human. Here we describe a novel zebrafish crb2b allele (crb2be40 ), which specifically affects the crb2b long isoform. crb2be40 mutants are viable and display normal ocular development. However, old crb2be40 mutant fish develop multiple defects in structures of the anterior segment, which includes the cornea, the iris and the lens. Phenotypes are characterised by smaller pupils due to expansion of the iris and tissues of the iridocorneal angle, an increased number of corneal stromal keratocytes, an abnormal corneal endothelium and an expanded lens capsule. These findings illustrate a novel role for crb2b in the maintenance of the anterior segment and hence add an important function to this polarity regulator, which may be conserved in other vertebrates including humans.
Collapse
Affiliation(s)
- Satu Kujawski
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Cátia Crespo
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marta Luz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
12
|
Tang L, Liang Y, Xie H, Yang X, Zheng G. Long non-coding RNAs in cutaneous biology and proliferative skin diseases: Advances and perspectives. Cell Prolif 2019; 53:e12698. [PMID: 31588640 PMCID: PMC6985680 DOI: 10.1111/cpr.12698] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Advances in transcriptome sequencing have revealed that the genome fraction largely encodes for thousands of non‐coding RNAs. Long non‐coding RNAs (lncRNAs), which are a class of non–protein‐coding RNAs longer than approximately 200 nucleotides in length, are emerging as key epigenetic regulators of gene expression recently. Intensive studies have characterized their crucial roles in cutaneous biology and diseases. In this review, we address the promotive or suppressive effects of lncRNAs on cutaneous physiological processes. Then, we focus on the pathogenic role of dysfunctional lncRNAs in a variety of proliferative skin diseases. These evidences suggest that lncRNAs have indispensable roles in the processes of skin biology. Additionally, lncRNAs might be promising biomarkers and therapeutic targets for cutaneous disorders.
Collapse
Affiliation(s)
- Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxin Liang
- School of Bioscience and Bio-pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hesong Xie
- School of Bioscience and Bio-pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaozhi Yang
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, China
| | - Guangjuan Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Natsuga K, Watanabe M, Nishie W, Shimizu H. Life before and beyond blistering: The role of collagen XVII in epidermal physiology. Exp Dermatol 2019; 28:1135-1141. [PMID: 29604146 DOI: 10.1111/exd.13550] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
Type XVII collagen (COL17) is a transmembranous protein that is mainly expressed in the epidermal basal keratinocytes. Epidermal-dermal attachment requires COL17 expression at the hemidesmosomes of the epidermal basement membrane zone because congenital COL17 deficiency leads to junctional epidermolysis bullosa and acquired autoimmunity to COL17 induces bullous pemphigoid. Recently, in addition to facilitating epidermal-dermal attachment, COL17 has been reported to serve as a niche for hair follicle stem cells, to regulate proliferation in the interfollicular epidermis and to be present along the non-hemidesmosomal plasma membrane of epidermal basal keratinocytes. This review focuses on the physiological properties of COL17 in the epidermis, its role in maintaining stem cells and its association with signalling pathways. We propose possible solutions to unanswered questions in this field.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Affiliation(s)
- Oana-Diana Persa
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
From cell shape to cell fate via the cytoskeleton - Insights from the epidermis. Exp Cell Res 2019; 378:232-237. [PMID: 30872138 DOI: 10.1016/j.yexcr.2019.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Animal cells exhibit a wide range of shapes that reflect their diverse functions. Cell shape is determined by a balance between internal and external forces and therefore involves the cytoskeleton and its associated adhesion structures. Cell shape dynamics during development and homeostasis are tightly regulated and closely coordinated with cell fate determination. Defects in cell shape are a hallmark of many pathological conditions including cancer and skin diseases. This review highlights the links between cell shape and cell fate in the epidermis, which have been studied for over 40 years both in vitro and in vivo. Briefly discussing seminal experiments showing the strong coupling between keratinocyte cell shape and their fate we primarily focus on recent studies uncovering novel cellular and molecular mechanisms linking epidermal cell shape with cell growth, differentiation, asymmetric division, and delamination.
Collapse
|
16
|
Rübsam M, Broussard JA, Wickström SA, Nekrasova O, Green KJ, Niessen CM. Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harb Perspect Biol 2018; 10:a029207. [PMID: 28893859 PMCID: PMC6211388 DOI: 10.1101/cshperspect.a029207] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cadherin-based adherens junctions (AJs) and desmosomes are crucial to couple intercellular adhesion to the actin or intermediate filament cytoskeletons, respectively. As such, these intercellular junctions are essential to provide not only integrity to epithelia and other tissues but also the mechanical machinery necessary to execute complex morphogenetic and homeostatic intercellular rearrangements. Moreover, these spatially defined junctions serve as signaling hubs that integrate mechanical and chemical pathways to coordinate tissue architecture with behavior. This review takes an evolutionary perspective on how the emergence of these two essential intercellular junctions at key points during the evolution of multicellular animals afforded metazoans with new opportunities to integrate adhesion, cytoskeletal dynamics, and signaling. We discuss known literature on cross-talk between the two junctions and, using the skin epidermis as an example, provide a model for how these two junctions function in concert to orchestrate tissue organization and function.
Collapse
Affiliation(s)
- Matthias Rübsam
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| | - Joshua A Broussard
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Sara A Wickström
- Paul Gerson Unna Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Oxana Nekrasova
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Northwestern University Feinberg School of Medicine, Departments of Pathology and Dermatology, the Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois 60611
| | - Carien M Niessen
- University of Cologne, Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) at the CECAD Research Center, 50931 Cologne, Germany
| |
Collapse
|
17
|
Zhuang L, Lawlor KT, Schlueter H, Pieterse Z, Yu Y, Kaur P. Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance 2018; 1:e201700009. [PMID: 30456360 PMCID: PMC6238533 DOI: 10.26508/lsa.201700009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
The cellular and molecular microenvironment of epithelial stem/progenitor cells is critical for their long-term self-renewal. We demonstrate that mesenchymal stem cell-like dermal microvascular pericytes are a critical element of the skin's microenvironment influencing human skin regeneration using organotypic models. Specifically, pericytes were capable of promoting homeostatic skin tissue renewal by conferring more planar cell divisions generating two basal cells within the proliferative compartment of the human epidermis, while ensuring complete maturation of the tissue both spatially and temporally. Moreover, we provide evidence supporting the notion that BMP-2, a secreted protein preferentially expressed by pericytes in human skin, confers cell polarity and planar divisions on epidermal cells in organotypic cultures. Our data suggest that human skin regeneration is regulated by highly conserved mechanisms at play in other rapidly renewing tissues such as the bone marrow and in lower organisms such as Drosophila. Our work also provides the means to significantly improve ex vivo skin tissue regeneration for autologous transplantation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Zalitha Pieterse
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Pritinder Kaur
- Peter MacCallum Cancer Centre, Melbourne, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
18
|
The regulation of junctional actin dynamics by cell adhesion receptors. Histochem Cell Biol 2018; 150:341-350. [DOI: 10.1007/s00418-018-1691-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
|
19
|
Vangl2 regulates spermatid planar cell polarity through microtubule (MT)-based cytoskeleton in the rat testis. Cell Death Dis 2018; 9:340. [PMID: 29497043 PMCID: PMC5832773 DOI: 10.1038/s41419-018-0339-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
During spermatogenesis, developing elongating/elongated spermatids are highly polarized cells, displaying unique apico-basal polarity. For instance, the heads of spermatids align perpendicular to the basement membrane with their tails pointing to the tubule lumen. Thus, the maximal number of spermatids are packed within the limited space of the seminiferous epithelium to support spermatogenesis. Herein, we reported findings that elongating/elongated spermatids displayed planar cell polarity (PCP) in adult rat testes in which the proximal end of polarized spermatid heads were aligned uniformly across the plane of the seminiferous epithelium based on studies using confocal microscopy and 3-dimensional (D) reconstruction of the seminiferous tubules. We also discovered that spermatid PCP was regulated by PCP protein Vangl2 (Van Gogh-like protein 2) since Vangl2 knockdown by RNAi was found to perturb spermatid PCP. More important, Vangl2 exerted its regulatory effects through changes in the organization of the microtubule (MT)-based cytoskeleton in the seminiferous epithelium. These changes were mediated via the downstream signaling proteins atypical protein kinase C ξ (PKCζ) and MT-associated protein (MAP)/microtubule affinity-regulating kinase 2 (MARK2). These findings thus provide new insights regarding the biology of spermatid PCP during spermiogenesis.
Collapse
|
20
|
Das S, Knust E. A dual role of the extracellular domain of Drosophila Crumbs for morphogenesis of the embryonic neuroectoderm. Biol Open 2018; 7:7/1/bio031435. [PMID: 29374056 PMCID: PMC5829512 DOI: 10.1242/bio.031435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Epithelia are highly polarised tissues and several highly conserved polarity protein complexes serve to establish and maintain polarity. The transmembrane protein Crumbs (Crb), the central component of the Crb protein complex, is required, among others, for the maintenance of polarity in most epithelia in the Drosophila embryo. However, different epithelia exhibit different phenotypic severity upon loss of crb. Using a transgenomic approach allowed us to more accurately define the role of crb in different epithelia. In particular, we provide evidence that the loss of epithelial tissue integrity in the ventral epidermis of crb mutant embryos is due to impaired actomyosin activity and an excess number of neuroblasts. We demonstrate that the intracellular domain of Crb could only partially rescue this phenotype, while it is able to completely restore tissue integrity in other epithelia. Based on these results we suggest a dual role of the extracellular domain of Crb in the ventral neuroectoderm. First, it is required for apical enrichment of the Crb protein, which in turn regulates actomyosin activity and thereby ensures tissue integrity; and second, the extracellular domain of Crb stabilises the Notch receptor and thereby ensures proper Notch signalling and specification of the correct number of neuroblasts. Summary: Using a transgenomic approach we determine specific roles of the intra- and extracellular domain of the Crumbs protein for the maintenance of apico-basal epithelial polarity and epithelial morphogenesis in Drosophila embryos.
Collapse
Affiliation(s)
- Shradha Das
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
21
|
Rübsam M, Mertz AF, Kubo A, Marg S, Jüngst C, Goranci-Buzhala G, Schauss AC, Horsley V, Dufresne ER, Moser M, Ziegler W, Amagai M, Wickström SA, Niessen CM. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun 2017; 8:1250. [PMID: 29093447 PMCID: PMC5665913 DOI: 10.1038/s41467-017-01170-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Generation of a barrier in multi-layered epithelia like the epidermis requires restricted positioning of functional tight junctions (TJ) to the most suprabasal viable layer. This positioning necessitates tissue-level polarization of junctions and the cytoskeleton through unknown mechanisms. Using quantitative whole-mount imaging, genetic ablation, and traction force microscopy and atomic force microscopy, we find that ubiquitously localized E-cadherin coordinates tissue polarization of tension-bearing adherens junction (AJ) and F-actin organization to allow formation of an apical TJ network only in the uppermost viable layer. Molecularly, E-cadherin localizes and tunes EGFR activity and junctional tension to inhibit premature TJ complex formation in lower layers while promoting increased tension and TJ stability in the granular layer 2. In conclusion, our data identify an E-cadherin-dependent mechanical circuit that integrates adhesion, contractile forces and biochemical signaling to drive the polarized organization of junctional tension necessary to build an in vivo epithelial barrier.
Collapse
Affiliation(s)
- Matthias Rübsam
- Department of Dermatology, University of Cologne, Cologne, 50931, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne, Cologne, 50931, Germany
| | - Aaron F Mertz
- Department of Physics, Yale University, New Haven, CT, 06520, USA
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, 10065, USA
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Susanna Marg
- Hannover Medical School, 30625, Hannover, Germany
| | - Christian Jüngst
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
| | - Gladiola Goranci-Buzhala
- Department of Dermatology, University of Cologne, Cologne, 50931, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne, Cologne, 50931, Germany
| | - Astrid C Schauss
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Eric R Dufresne
- Department of Physics, Yale University, New Haven, CT, 06520, USA
- Departments of Mechanical Engineering and Materials Science, Chemical and Environmental Engineering, and Cell Biology, Yale University, New Haven, CT, 06520, USA
| | - Markus Moser
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | | | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sara A Wickström
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany
- Paul Gerson Unna Group 'Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Carien M Niessen
- Department of Dermatology, University of Cologne, Cologne, 50931, Germany.
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Cologne, 50931, Germany.
- Center for Molecular Medicine Cologne (CMMC) University of Cologne, Cologne, 50931, Germany.
| |
Collapse
|
22
|
Watanabe M, Natsuga K, Nishie W, Kobayashi Y, Donati G, Suzuki S, Fujimura Y, Tsukiyama T, Ujiie H, Shinkuma S, Nakamura H, Murakami M, Ozaki M, Nagayama M, Watt FM, Shimizu H. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife 2017; 6:e26635. [PMID: 28693719 PMCID: PMC5505703 DOI: 10.7554/elife.26635] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Type XVII collagen (COL17) is a transmembrane protein located at the epidermal basement membrane zone. COL17 deficiency results in premature hair aging phenotypes and in junctional epidermolysis bullosa. Here, we show that COL17 plays a central role in regulating interfollicular epidermis (IFE) proliferation. Loss of COL17 leads to transient IFE hypertrophy in neonatal mice owing to aberrant Wnt signaling. The replenishment of COL17 in the neonatal epidermis of COL17-null mice reverses the proliferative IFE phenotype and the altered Wnt signaling. Physical aging abolishes membranous COL17 in IFE basal cells because of inactive atypical protein kinase C signaling and also induces epidermal hyperproliferation. The overexpression of human COL17 in aged mouse epidermis suppresses IFE hypertrophy. These findings demonstrate that COL17 governs IFE proliferation of neonatal and aged skin in distinct ways. Our study indicates that COL17 could be an important target of anti-aging strategies in the skin.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yu Fujimura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
23
|
Bryant D, Johnson A. Meeting report - Intercellular interactions in context: towards a mechanistic understanding of cells in organs. J Cell Sci 2017; 130:2083-2085. [PMID: 28738319 DOI: 10.1242/jcs.205740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Company of Biologists held the workshop 'Intercellular interactions in context: towards a mechanistic understanding of cells in organs' at historic Wiston House in West Sussex, UK, 5-8 February 2017. The meeting brought together around 30 scientists from disparate backgrounds - yet with a common interest of how tissue morphogenesis occurs and its dysregulation leads to pathologies - to intensively discuss their latest research, the current state of the field, as well as any challenges for the future. This report summarises the concepts and challenges that arose as key questions for the fields of cell, cancer and developmental biology. By design of the organizers - Andrew Ewald (John Hopkins University, MA), John Wallingford (University of Texas at Austin, TX) and Peter Friedl (Radboud University, Nijmegen, The Netherlands) - the attendee makeup was cross-sectional: both in terms of career stage and scientific background. This intermingling was mirrored in the workshop format; all participants - irrespective of career stage - were given equal speaking and question time, and all early-career researchers also chaired a session, which promoted an atmosphere for discussions that were open, egalitarian and supportive. This was particularly evident in the scheduled 'out-of-the-box' sessions, which provided an avenue for participants to raise ideas and concepts or to discuss specific problems they wanted feedback or clarification on. In the following, rather than act as court reporters and convey chronological accounting of presentations, we present the questions that arose from the workshop and should be posed to the field at large, by discussing the presentations as they relate to these concepts.
Collapse
Affiliation(s)
- David Bryant
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Aaron Johnson
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
24
|
Dor-On E, Raviv S, Cohen Y, Adir O, Padmanabhan K, Luxenburg C. T-plastin is essential for basement membrane assembly and epidermal morphogenesis. Sci Signal 2017; 10:10/481/eaal3154. [PMID: 28559444 DOI: 10.1126/scisignal.aal3154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment of epithelial architecture is a complex process involving cross-talk between cells and the basement membrane. Basement membrane assembly requires integrin activity but the role of the associated actomyosin cytoskeleton is poorly understood. Here, we identify the actin-bundling protein T-plastin (Pls3) as a regulator of basement membrane assembly and epidermal morphogenesis. In utero depletion of Pls3 transcripts in mouse embryos caused basement membrane and polarity defects in the epidermis but had little effect on cell adhesion and differentiation. Loss-of-function experiments demonstrated that the apicobasal polarity defects were secondary to the disruption of the basement membrane. However, the basement membrane itself was profoundly sensitive to subtle perturbations in the actin cytoskeleton. We further show that Pls3 localized to the cell cortex, where it was essential for the localization and activation of myosin II. Inhibition of myosin II motor activity disrupted basement membrane organization. Our results provide insights into the regulation of cortical actomyosin and its importance for basement membrane assembly and skin morphogenesis.
Collapse
Affiliation(s)
- Eyal Dor-On
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yonatan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
25
|
Luxenburg C, Geiger B. Multiscale View of Cytoskeletal Mechanoregulation of Cell and Tissue Polarity. Handb Exp Pharmacol 2017; 235:263-284. [PMID: 27807694 DOI: 10.1007/164_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of cells to generate, maintain, and repair tissues with complex architecture, in which distinct cells function as coherent units, relies on polarity cues. Polarity can be described as an asymmetry along a defined axis, manifested at the molecular, structural, and functional levels. Several types of cell and tissue polarities were described in the literature, including front-back, apical-basal, anterior-posterior, and left-right polarity. Extensive research provided insights into the specific regulators of each polarization process, as well as into generic elements that affect all types of polarities. The actin cytoskeleton and the associated adhesion structures are major regulators of most, if not all, known forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to bind many proteins including the mechanosensitive adhesion and motor proteins, such as myosins, play key roles in cell polarization. The actin cytoskeleton can generate mechanical forces and together with the associated adhesions, probe the mechanical, structural, and chemical properties of the environment, and transmit signals that impact numerous biological processes, including cell polarity. In this article we highlight novel mechanisms whereby the mechanical forces and actin-adhesion complexes regulate cell and tissue polarity in a variety of natural and experimental systems.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
26
|
Gao Y, Cheng CY. Does cell polarity matter during spermatogenesis? SPERMATOGENESIS 2016; 6:e1218408. [PMID: 27635303 DOI: 10.1080/21565562.2016.1218408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
Abstract
Cell polarity is crucial to development since apico-basal polarity conferred by the 3 polarity protein modules (or complexes) is essential during embryogenesis, namely the Par (partition defective)-, the CRB (Crumbs)-, and the Scribble-based polarity protein modules. While these protein complexes and their component proteins have been extensively studied in Drosophila and C. elegans and also other mammalian tissues and/or cells, their presence and physiological significance in the testis remain unexplored until the first paper on the Par-based protein published in 2008. Since then, the Par-, the Scribble- and the CRB-based protein complexes and their component proteins in the testis have been studied. These proteins are known to confer Sertoli and spermatid polarity in the seminiferous epithelium, and they are also integrated components of the tight junction (TJ) and the basal ectoplasmic specialization (ES) at the Sertoli cell-cell interface near the basement membrane, which in turn constitute the blood-testis barrier (BTB). These proteins are also found at the apical ES at the Sertoli-spermatid interface. Thus, these polarity proteins also play a significant role in regulating Sertoli and spermatid adhesion in the testis through their actions on actin-based cytoskeletal function. Recent studies have shown that these polarity proteins are having antagonistic effects on the BTB integrity in which the Par6- and CRB3-based polarity complexes promotes the integrity of the Sertoli cell TJ-permeability barrier, whereas the Scribble-based complex promotes restructuring/remodeling of the Sertoli TJ-barrier function. Herein, we carefully evaluate these findings and provide a hypothetic model regarding their role in the testis in the context of the functions of these polarity proteins in other epithelia, so that better experiments can be designed in future studies to explore their significance in spermatogenesis.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, NY, USA
| |
Collapse
|
27
|
Chen H, Mruk DD, Lee WM, Cheng CY. Planar Cell Polarity (PCP) Protein Vangl2 Regulates Ectoplasmic Specialization Dynamics via Its Effects on Actin Microfilaments in the Testes of Male Rats. Endocrinology 2016; 157:2140-59. [PMID: 26990065 PMCID: PMC4870864 DOI: 10.1210/en.2015-1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Planar cell polarity (PCP) proteins confer polarization of a field of cells (eg, elongating/elongated spermatids) within the plane of an epithelium such as the seminiferous epithelium of the tubule during spermatogenesis. In adult rat testes, Sertoli and germ cells were found to express PCP core proteins (eg, Van Gogh-like 2 [Vangl2]), effectors, ligands, and signaling proteins. Vangl2 expressed predominantly by Sertoli cells was localized at the testis-specific, actin-rich ectoplasmic specialization (ES) at the Sertoli-spermatid interface in the adluminal compartment and also Sertoli-Sertoli interface at the blood-testis barrier (BTB) and structurally interacted with actin, N-cadherin, and another PCP/polarity protein Scribble. Vangl2 knockdown (KD) by RNA interference in Sertoli cells cultured in vitro with an established tight junction-permeability barrier led to BTB tightening, whereas its overexpression using a full-length cDNA construct perturbed the barrier function. These changes were mediated through an alteration on the organization actin microfilaments at the ES in Sertoli cells, involving actin-regulatory proteins, epidermal growth factor receptor pathway substrate 8, actin-related protein 3, and Scribble, which in turn affected the function of adhesion protein complexes at the ES during the epithelial cycle of spermatogenesis. Using Polyplus in vivo-jetPEI reagent as a transfection medium to silence Vangl2 in the testis in vivo by RNA interference with high efficacy, Vangl2 KD led to changes in F-actin organization at the ES in the epithelium, impeding spermatid and phagosome transport and spermatid polarity, meiosis, and BTB dynamics. For instance, step 19 spermatids remained embedded in the epithelium alongside with step 9 and 10 spermatids in stages IX-X tubules. In summary, the PCP protein Vangl2 is an ES regulator through its effects on actin microfilaments in the testis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - Will M Lee
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (H.C., D.D.M., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|