1
|
Raina VB, Jessop A, Greene EC. Biochemical Mechanisms of Genetic Recombination and DNA Repair. Annu Rev Biochem 2025; 94:161-193. [PMID: 40153609 DOI: 10.1146/annurev-biochem-083024-113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Genetic recombination involves the exchange of genetic material between homologous sequences of DNA. It is employed during meiosis in sexually reproducing organisms or in somatic cells to accurately repair toxic DNA lesions like double-strand breaks and stalled replication forks. In these separate roles, recombination drives genetic diversity by enabling reshuffling of parental genetic information while also serving as a molecular safeguard against the deleterious effects of gross chromosomal rearrangements or mutagenic insults arising for either endogenous or exogenous reasons. In both cases, efficient recombination ensures faithful transmission of genetic information to subsequent generations. In this review, we provide an exploration of the biochemical mechanisms driving genetic recombination, elucidating the molecular intricacies of fundamental processes involved therein with a focus on mechanistic insights gained into these processes using biochemical and single-molecule techniques.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA;
| | - Aidan Jessop
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA;
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA;
| |
Collapse
|
2
|
Xu X, Gu J, Yang P, Huang L, Zhao N, Tang J, Liang Z, Li Q, Wen S, Jiang J, Zhang Q. Acetyl alkannin, a Shikonin monomer, inhibits the ATM/DDR pathway by targeting ATM and sensitizes cisplatin in solid tumors. Chem Biol Interact 2025; 417:111559. [PMID: 40389196 DOI: 10.1016/j.cbi.2025.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/21/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025]
Abstract
Platinum-based chemotherapy is limited by drug resistance and severe adverse effects. Although the DNA damage response (DDR) is known to affect drug sensitivity across cancer types, the role of its upstream regulator ATM in modulating cisplatin (DDP) resistance remains unclear. In this study, we investigated the role of the ATM/DDR pathway to DDP resistance and proposed a potential targeted strategy. Bioinformatics analysis revealed significant overexpression of ATM and RAD51 in liver and lung cancers, which correlated with poor survival (p < 0.05). In vitro assays showed that DDP activated ATM to initiate the downstream DDR, thereby promoting chemoresistance; inhibition of ATM using KU-55933 or siRNA enhanced the anticancer effect of DDP. Among screened Shikonin derivatives, acetyl alkannin emerged as the most potent ATM-targeting analogue. Combination treatment with low-dose acetyl alkannin (2.5 μM or 2.6 μM) and DDP increased DDP sensitivity 8.0-fold in Huh-7 liver cancer cells and 22.5-fold in A549 lung cancer cells. Mechanistically, acetyl alkannin targets ATM and induces its caspase-dependent degradation, suppressing DDR signaling and promoting apoptosis. In vivo xenograft experiments confirmed the superior tumor growth inhibition of the combination treatment. These findings establish ATM-mediated DDR activation as a central mechanism of DDP resistance and identify acetyl alkannin as a candidate sensitizer for platinum-based chemotherapy.
Collapse
Affiliation(s)
- Xinwen Xu
- Department of Breast Surgery, The Second People's Hospital of Foshan, Foshan, Guangdong, 528000, China; Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jianyi Gu
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou, 510632, China
| | - Peiwen Yang
- Department of Pulmonary and Critical Care Medicine, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523573, China
| | - Lifang Huang
- Department of Thyroid Gland Breast Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523573, China
| | - Na Zhao
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou, 510632, China
| | - Jingjing Tang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China; Department of Breast and Thyroid Surgery, The Central Hospital of Yongzhou, Yongzhou, Hunan, 425000, China
| | - Zifeng Liang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shunqian Wen
- Department of Hepatobiliary Surgery, The Second People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Jianwei Jiang
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou, 510632, China.
| | - Qing Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
3
|
Danilowicz C, Meron A, Prentiss M. During recombinase-mediated homology recognition RecQ helicases inhibit formation of toxic long-lived D-loops that could promote genomic instability. Nucleic Acids Res 2025; 53:gkaf426. [PMID: 40377216 PMCID: PMC12082448 DOI: 10.1093/nar/gkaf426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/21/2025] [Accepted: 05/14/2025] [Indexed: 05/18/2025] Open
Abstract
Mutations in RecQ family helicases underlie human genetic disorders associated with genomic instability and cancer predisposition, but questions remain about how properly functioning RecQ reduces these deleterious effects. Importantly, some of the deleterious effects may result from incorrect repair of DNA double-strand breaks (DSBs) by recombinase proteins. Displacement loops (D-loops) are three-strand intermediates formed by recombinases during repair of DSB. RecQ helicases might enhance genome stability by disassembling incorrect recombinase-mediated D-loops formed between mismatched sequences and/or between short regions of accidental homology. We used bulk FRET and gel electrophoresis assays to probe the effects of RecQ family helicases in the context of ongoing recombinase-mediated D-loop formation. We found that RecQ does not differentially promote disassembly of short D-loops or D-loops that include mismatched base pairs. Thus, RecQ does not reduce genomic instability by discriminating against incorrect D-loops. In contrast, our results suggest that RecQ intervenes during D-loop formation to limit the length of recombinase-mediated D-loops. Without that intervention, D-loops can become so long that they do not spontaneously reverse. We suggest that RecQ prevents undesirable long-lived connections between chromosomes that could compromise chromosome metabolism and/or segregation and promote genomic instability.
Collapse
Affiliation(s)
- Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Athalia Meron
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
4
|
Schatz D, Le Blevenec A, Moratti FG, Chung KP, Mercier P, Iqbal RK, Vallet E, Dietrich A, Bock R, Weber-Lotfi F, Gualberto JM. R-loop control and mitochondrial genome stability require the 5'-3' exonuclease/flap endonuclease OEX1. THE PLANT CELL 2025; 37:koaf104. [PMID: 40324391 PMCID: PMC12124402 DOI: 10.1093/plcell/koaf104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
Maintenance of the plant organelle genomes involves factors mostly inherited from their symbiotic ancestors. In bacteria, DNA polymerase I (Pol I) performs multiple replication and repair functions through its 5'-3'-exonuclease/flap-endonuclease domain. Plant organelles possess 2 DNA polymerases that are evolutionarily derived from Pol I but lack this key domain. ORGANELLAR EXONUCLEASES 1 and 2 (OEX1 and OEX2) compensate for this missing function and are targeted to mitochondria and chloroplasts, respectively, in Arabidopsis (Arabidopsis thaliana). Loss of OEX1 causes developmental and fertility defects that increase with increasing differential segregation of mitochondrial DNA (mtDNA) subgenomes generated by recombination. OEX1 activity is modulated by alternative splicing, which generates 2 isoforms that variably affect mtDNA stability and repair. OEX1 has 5'-3'-exonuclease and flap endonuclease activities, with a high affinity for RNA-DNA hybrids. It rapidly degrades RNA in Okazaki-like structures and R-loops. Consistent with a role in suppressing R-loops, oex1 mutant plants accumulate RNA-DNA hybrids in highly transcribed mtDNA regions. Taken together, our results identify OEX1 as an important factor that compensates for the missing activity of plant organellar polymerases, playing multiple important roles in the processing of replication and recombination intermediates, such as replication primers and R-loops, whose accumulation can lead to genome instability.
Collapse
Affiliation(s)
- Déborah Schatz
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| | - Anaïs Le Blevenec
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| | - Fabio G Moratti
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Kin Pan Chung
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Pierre Mercier
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| | - Rana Khalid Iqbal
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| | - Elody Vallet
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| | - André Dietrich
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| | - Ralph Bock
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Frédérique Weber-Lotfi
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| | - José M Gualberto
- CNRS, Institut de Biologie Moléculaire des Plantes, University of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Chu SSH, Xing G, Ling H. The role of human Shu complex in ATP-dependent regulation of RAD51 filaments during homologous recombination-associated DNA damage response. J Biol Chem 2025; 301:110212. [PMID: 40345587 PMCID: PMC12167799 DOI: 10.1016/j.jbc.2025.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025] Open
Abstract
Error-free DNA lesion bypass is an important pathway in DNA damage tolerance. The Shu complex facilitates this process by promoting homologous recombination (HR) to bypass DNA damage. Biochemical analysis of the human Shu complex homolog, hSWS1-SWSAP1, offers valuable insights into the HR-associated DNA damage response. Here, we biochemically characterized the human Shu complex and examined its interactions with RAD51 filaments, which are essential in HR. Using fluorescence polarization assays, we first revealed that hSWS1-SWSAP1 preferentially binds DNA with an exposed 5' end in the presence of adenine nucleotides. We then investigated and validated the DNA-stimulated ATPase activity of hSWS1-SWSAP1 through site-specific mutagenesis, revealing that DNA with an exposed 5' end is the most efficient in enhancing this activity. Furthermore, we showed that hSWS1-SWSAP1 initially interacts with RAD51 filaments at the 5' end and modulates the properties of the nucleoprotein filaments using fluorescence-based assays. Our findings revealed that hSWS1-SWSAP1 induces conformational changes in RAD51 filaments in an ATP hydrolysis-dependent manner, while its stabilization of the filaments depends on ATP binding. This work provides mechanistic insights into the regulation of RAD51 filaments in HR-associated DNA damage tolerance.
Collapse
Affiliation(s)
- Sam S H Chu
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Guangxin Xing
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Hong Ling
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
6
|
Du Y, Li Y, Tang W, Mo W, Ma T, Lin R. ESSENTIAL MEIOTIC ENDONUCLEASE 1 is required for chloroplast development and DNA repair in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333587 DOI: 10.1111/pbi.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Chloroplast development is fundamental to photosynthesis and plant growth but is sensitive to environmental stress. Chloroplast development and division require genome stability and DNA repair, but the underlying mechanisms have been unclear. Using a forward genetic approach, we identified the striped-leaf mutant k48 in the rice (Oryza sativa L. japonica) cultivar KY131 background. k48 displayed defects in chloroplast development and photosynthesis, especially under high-light conditions. Genetic and complementation studies revealed that the loss of ESSENTIAL MEIOTIC ENDONUCLEASE 1 (EME1) is responsible for the defects in k48. Transcriptomic analysis showed that OsEME1 globally regulates the expression of genes involved in photosynthesis and DNA repair. Furthermore, mutations in OsEME1 led to cell cycle arrest and a DNA damage response. An in vitro endonuclease activity assay indicated that OsEME1 directly binds to and cleaves DNA substrates with a specific structure and that four conserved amino acids are required for its activity. Notably, OsEME1 targeted DNA fragments of rice GOLDEN-LIKE 1 (GLK1) and GLK2. We also demonstrated that OsEME1 interacts with the structure-specific endonuclease methyl methanesulfonate (MMS) and UV-SENSITIVE PROTEIN 81 (MUS81). This study highlights the role of OsEME1 in regulating chloroplast development by modulating homologous recombination repair in response to damage to double-stranded DNA.
Collapse
Affiliation(s)
- Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Weiping Mo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
7
|
Vaisbourd E, Bren A, Alon U, Glass DS. Preventing Multimer Formation in Commonly Used Synthetic Biology Plasmids. ACS Synth Biol 2025; 14:1309-1315. [PMID: 40101192 PMCID: PMC12012879 DOI: 10.1021/acssynbio.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Plasmids are an essential tool for basic research and biotechnology applications. To optimize plasmid-based circuits, it is crucial to control plasmid integrity, including the formation of plasmid multimers. Multimers are tandem repeats of entire plasmids formed by failed dimer resolution during replication. Multimers can affect the behavior of synthetic circuits, especially ones that include DNA-editing enzymes. However, occurrence of multimers is not commonly assayed. Here we survey four commonly used plasmid backbones for occurrence of multimers in cloning (JM109) and wild-type (MG1655) strains of Escherichia coli. We find that multimers occur appreciably only in MG1655, with the fraction of plasmids existing as multimers increasing with both plasmid copy number and culture passaging. In contrast, transforming multimers into JM109 can yield strains that contain no singlet plasmids. We present an MG1655 ΔrecA single-locus knockout that avoids multimer production. These results can aid synthetic biologists in improving design and reliability of plasmid-based circuits.
Collapse
Affiliation(s)
- Elizabeth Vaisbourd
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Anat Bren
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - Uri Alon
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| | - David S. Glass
- Department
of Molecular Cell Biology, Weizmann Institute
of Science, Rehovot, Israel 76100
| |
Collapse
|
8
|
Shin Y, Petassi MT, Jessop AM, Kim SY, Matei R, Morse K, Raina VB, Roy U, Greene EC. Structural basis for Rad54- and Hed1-mediated regulation of Rad51 during the transition from mitotic to meiotic recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645561. [PMID: 40196570 PMCID: PMC11974805 DOI: 10.1101/2025.03.26.645561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Rad51 catalyzes the DNA pairing reactions that take place during homologous recombination (HR), and HR must be tightly regulated to ensure physiologically appropriate outcomes. Rad54 is an ATP-dependent DNA motor protein that stimulates Rad51 activity during mitosis. In meiosis Rad51 is downregulated by the protein Hed1, which blocks Rad54 binding to Rad51, and allows Dmc1 to function as the active recombinase. We currently have a poor understanding of the regulatory interplay between Rad54, Hed1, Rad51 and Dmc1. Here, we identify a conserved Rad51 interaction motif within Rad54, and we solve a CryoEM structure of this motif bound to Rad51. We also identify a distinct Rad51 interaction motif within Hed1 and solve its structure bound to Rad51. These structures explain how Rad54 engages Rad51 to promote recombination between sister chromatids during mitosis and how Rad51 is downregulated by Hed1 upon entry into meiosis such that its meiosis-specific homolog Dmc1 can promote recombination between homologous chromosomes.
Collapse
Affiliation(s)
- Yeonoh Shin
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael T Petassi
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Aidan M Jessop
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stefan Y Kim
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Razvan Matei
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katherine Morse
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Upasana Roy
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
9
|
Shin Y, Kim SY, Greene EC. ATP hydrolysis-driven structural transitions within the S. cerevisiae Rad51 and Dmc1 nucleoprotein filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644215. [PMID: 40166259 PMCID: PMC11957116 DOI: 10.1101/2025.03.19.644215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Homologous recombination (HR) is essential for the maintenance of genome stability and for generating genetic diversity during meiosis. The eukaryotic protein Rad51 is member of the Rad51/RecA family of DNA recombinases and is responsible for guiding the DNA pairing reactions that take place in HR during mitosis. Dmc1 is a meiosis-specific paralog of Rad51 and is responsible for the DNA pairing reactions that take place in HR during meiosis. Rad51 and Dmc1 are both ATP-dependent DNA-binding proteins and both form extended helical filaments on ssDNA which are key intermediates in HR. The stability of these nucleoprotein filaments is highly regulated and is also tightly coupled to nucleotide binding and hydrolysis. ATP binding promotes filament assembly whereas the hydrolysis of ATP to ADP reduces filament stability to promote filament disassembly. Here, we present CryoEM structures of the Saccharomyces cerevisiae recombinases Rad51 and Dmc1 in the ADP-bound states and provide a detailed structural comparison to the ATP-bound filaments. Our findings yield insights into the structural transitions that take place during the hydrolysis of ATP to ADP and suggest a new model for how these structural changes may be linked to nucleoprotein filament disassembly.
Collapse
Affiliation(s)
- Yeonoh Shin
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stefan Y Kim
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
10
|
Jiao X, Liang Z, Li J, Bai L, Xu J, Liu Y, Lu LY. Aberrant activation of chromosome asynapsis checkpoint triggers oocyte elimination. Nat Commun 2025; 16:2260. [PMID: 40050306 PMCID: PMC11885488 DOI: 10.1038/s41467-025-57702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
Chromosome synapsis is an evolutionarily conserved process essential for meiotic recombination. HORMAD1 and HORMAD2, which monitor chromosome asynapsis by localizing to unsynapsed chromosome axes, are removed from synapsed chromosome axes by TRIP13, though the biological significance of this process remains unclear. We show that when HORMAD1 and HORMAD2 are retained on synapsed chromosome axes, they recruit BRCA1, activate chromosome asynapsis checkpoint, and trigger oocyte elimination. Unexpectedly, N-terminal tagging retains HORMAD1 and HORMAD2 on synapsed chromosome axes without triggering oocyte elimination due to defective BRCA1 recruitment. Mechanistically, HORMAD1 co-immunoprecipitates with BRCA1 readily, not through the canonical closure motif-binding mode but via an interface on its HORMA domain near the N-terminus. HORMAD2 co-immunoprecipitates with BRCA1 weakly but also regulates its recruitment. Collectively, the TRIP13-dependent removal of HORMAD1 and HORMAD2 from synapsed chromosome axes is essential for female fertility, preventing aberrant chromosome asynapsis checkpoint activation and unintended oocyte elimination.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiwei Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Xu
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Genetics and Metabolism Department, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yidan Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Liu J, Gore S, Heyer WD. Local structural dynamics of Rad51 protomers revealed by cryo-electron microscopy of Rad51-ssDNA filaments. Nucleic Acids Res 2025; 53:gkaf052. [PMID: 39898551 PMCID: PMC11788929 DOI: 10.1093/nar/gkaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Homologous recombination (HR) is a high-fidelity repair mechanism for double-strand breaks. Rad51 is the key enzyme that forms filaments on single-stranded DNA (ssDNA) to catalyze homology search and DNA strand exchange in recombinational DNA repair. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) to ascertain the density map of the wild-type budding yeast Rad51-ssDNA filament bound to ADP-AlF3, achieving a resolution of 2.35 Å without imposing helical symmetry. The model assigned 6 Rad51 protomers, 24 nt of DNA, and 6 bound ADP-AlF3. It shows 6-fold symmetry implying monomeric building blocks, unlike the structure of the Rad51-I345T mutant filament with three-fold symmetry implying dimeric building blocks, for which the structural comparisons provide a satisfying mechanistic explanation. This image analysis enables comprehensive comparisons of individual Rad51 protomers within the filament and reveals local conformational movements of amino acid side chains. Notably, R293 in Loop 1 adopts multiple conformations to facilitate L296 and V331 in separating and twisting the DNA triplets. We also analyzed the crystal structure of Rad51-I345T and the predicted structure of yeast Rad51-K342E using the Rad51-ssDNA structure from this study as a reference.
Collapse
Affiliation(s)
- Jie Liu
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, United States
| | - Steven K Gore
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, United States
| | - Wolf-Dietrich Heyer
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, United States
- Department of Molecular & Cellular Biology, University of California, Davis, Davis CA 95616-8665, United States
| |
Collapse
|
12
|
Yoshioka S, Kurazono H, Ohshita K, Fukui K, Takemura M, Kato SI, Ohnishi K, Yano T, Wakamatsu T. The HNH endonuclease domain of the giant virus MutS7 specifically binds to branched DNA structures with single-stranded regions. DNA Repair (Amst) 2025; 145:103804. [PMID: 39742574 DOI: 10.1016/j.dnarep.2024.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory. MutS7 contains an N-terminal mismatched DNA-binding domain, which is similar to the mismatched DNA-recognizing protein MutS1, and a unique C-terminal HNH endonuclease domain absent in other MutS family proteins. MutS7 gene of the genus Mimivirus of the family Mimiviridae is encoded in the locus that is responsible for resistance against infection of a virophage. In the present study, we characterized the MutS7 HNH domain of Mimivirus shirakomae. The HNH domain preferentially bound to branched DNA structures containing single-stranded regions, especially the displacement-loop structure, which is a primary intermediate in homologous/homeologous recombination, rather than to linear DNAs and branched DNAs lacking single-stranded regions. However, the HNH domain exhibited no endonuclease activity. The site-directed mutagenesis analysis revealed that the Cys4-type zinc finger of the HNH domain was not essential, but was important for the DNA binding. Given that giant virus MutS7 contains a mismatch-binding domain in addition to the HNH domain, we propose that giant virus MutS7 may suppress homeologous recombination in the viral factory.
Collapse
Affiliation(s)
- Satoshi Yoshioka
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hirochika Kurazono
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Koki Ohshita
- Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Masaharu Takemura
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Shin-Ichiro Kato
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Taisuke Wakamatsu
- Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
13
|
Tang J, Nakamura M, Ng WY, Feng N, Ueno M. Novel pof1 mutation suppresses the sensitivity to DNA replication inhibitor in fission yeast RecQ helicase mutant. Biochem Biophys Res Commun 2024; 741:151014. [PMID: 39580958 DOI: 10.1016/j.bbrc.2024.151014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Homologous recombination is vital for DNA double-strand break repair. Dysfunction in homologous recombination can lead to cell death, mutations, and cancer. In fission yeast (Schizosaccharomyces pombe), RecQ helicase Rqh1 resolves recombination intermediates. We found that rqh1-hd strain impaired growth in media containing hydroxyurea and thiabendazole. Using this condition, we identified a novel pof1 mutation (pof1-A81T) that suppress the poor growth of the rqh1-hd strain on the plate containing hydroxyurea and thiabendazole. Compared to rqh1-hd, rqh1-hd pof1-A81T cells displayed reduced Replication Protein A foci on chromosome bridges after hydroxyurea treatment. This suggests that pof1-A81T mutation suppresses the accumulation of recombination intermediates in hydroxyurea-treated rqh1-hd cells. Additionally, pof1-A81T mutation rescued the segregation defect of nucleolar protein Gar2 observed in hydroxyurea-treated rqh1-hd cells, potentially by mitigating recombination intermediate accumulation in rDNA. These results suggest that the pof1-A81T mutation suppresses the accumulation of recombination intermediates, particularly in rDNA, and alleviates the rqh1 deficiency phenotype in S. pombe.
Collapse
Affiliation(s)
- Jiashen Tang
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Mikio Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Wai Yee Ng
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Naiwen Feng
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Japan.
| |
Collapse
|
14
|
Yoshizaki Y, Ouchi Y, Kurniawan D, Yumoto E, Yoneyama Y, Rizqullah FR, Sato H, Sarholz MH, Natsume T, Kanemaki MT, Ikeda M, Ui A, Iemura K, Tanaka K. CHAMP1 premature termination codon mutations found in individuals with intellectual disability cause a homologous recombination defect through haploinsufficiency. Sci Rep 2024; 14:31904. [PMID: 39738383 PMCID: PMC11686235 DOI: 10.1038/s41598-024-83435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
CHAMP1 (chromosome alignment-maintaining phosphoprotein 1) plays a role in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The CHAMP1 gene is one of the genes mutated in individuals with intellectual disability. The majority of the mutations are premature termination codon (PTC) mutations, while missense mutations have also been reported. How these mutations affect the functions of CHAMP1 has not been clarified yet. Here we investigated the effects of the CHAMP1 mutations on HR. In Epstein-Barr virus-induced lymphoblastoid cells and fibroblasts derived from individuals with CHAMP1 PTC mutations, truncated CHAMP1 proteins of the expected sizes were detected. When DSBs were induced in fibroblasts with PTC mutations, a defect in HR was detected. U2OS cells expressing the CHAMP1 mutants did not show an HR defect in the presence of endogenous wild-type (WT) CHAMP1, whereas they were unable to restore HR activity when CHAMP1 WT was depleted, suggesting that the PTC mutations are loss-of-function mutations. On the other hand, the CHAMP1 mutants with missense mutations restored HR activity when CHAMP1 WT was depleted. In DLD-1 cells, heterozygous depletion of CHAMP1 resulted in an HR defect, indicating haploinsufficiency. These results suggest that CHAMP1 PTC mutations cause an HR defect through a haploinsufficient mechanism, while CHAMP1 missense mutations do not affect the HR function of CHAMP1.
Collapse
Affiliation(s)
- Yujiro Yoshizaki
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yunosuke Ouchi
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Dicky Kurniawan
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Eisuke Yumoto
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Yoneyama
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Faiza Ramadhani Rizqullah
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiyori Sato
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mirjam Hanako Sarholz
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- IDAC Fellow Laboratory, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Molecular Oncology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
15
|
Kyriukha Y, Watkins MB, Redington JM, Chintalapati N, Ganti A, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. iScience 2024; 27:111259. [PMID: 39584160 PMCID: PMC11582789 DOI: 10.1016/j.isci.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The partner and localizer of BRCA2 (PALB2) is a scaffold protein linking BRCA1 with BRCA2 and RAD51 during homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR in cells, while the PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange in vitro. We determined that PALB2-DBD is intrinsically disordered beyond a single N-terminal α-helix. Coiled-coil mediated dimerization is stabilized by interaction between intrinsically disordered regions (IDRs) leading to a 2-fold structural compaction. Single-stranded (ss)DNA binding promotes additional structural compaction and protein tetramerization. Using confocal single-molecule FRET, we observed bimodal and oligomerization-dependent compaction of ssDNA bound to PALB2-DBD, suggesting a novel strand exchange mechanism. Bioinformatics analysis and preliminary observations indicate that PALB2 forms protein-nucleic acids condensates. Intrinsically disordered DBDs are prevalent in the human proteome. PALB2-DBD and similar IDRs may use a chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Maxwell B. Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Jennifer M. Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Nithya Chintalapati
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Abhishek Ganti
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jesse B. Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
16
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024; 12:eesp00012022. [PMID: 38864557 PMCID: PMC11636183 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K. Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Petassi M, Shin Y, Jessop AM, Morse K, Kim SY, Matei R, Raina VB, Greene EC. Lineage-specific amino acids define functional attributes of the protomer-protomer interfaces for the Rad51 and Dmc1 recombinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626531. [PMID: 39677717 PMCID: PMC11642858 DOI: 10.1101/2024.12.03.626531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Most eukaryotes possess two Rad51/RecA family DNA recombinases that are thought to have arisen from an ancient gene duplication event: Rad51, which is expressed in both mitosis and meiosis; and Dmc1, which is only expressed in meiosis. To explore the evolutionary relationship between these recombinases, here, we present high-resolution CryoEM structures of S. cerevisiae Rad51 filaments and S. cerevisiae Dmc1 filaments bound to ssDNA, which reveal a pair of stacked interfacial aromatic amino acid residues that are nearly universally conserved in Rad51 but are absent from Dmc1. We use a combination of bioinformatics, genetic analysis of natural sequence variation, and deep mutational analysis to probe the functionally tolerated sequence space for these stacked aromatic residues. Our findings demonstrate that the functional landscape of the interfacial aromatic residues within the Rad51 filament is highly constrained. In contrast, the amino acids at the equivalent positions within the Dmc1 filament exhibit a broad functional landscape. This work helps highlight the distinct evolutionary trajectories of these two eukaryotic recombinases, which may have contributed to their functional and mechanistic divergence.
Collapse
Affiliation(s)
- Mike Petassi
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Yeonoh Shin
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Aidan M Jessop
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katherine Morse
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stefan Y Kim
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Razvan Matei
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
18
|
Mudgal S, Goyal N, Kasi M, Saginela R, Singhal A, Nandi S, Mahmud AKMF, Muniyappa K, Sinha KM. Cyclic di-AMP regulates genome stability and drug resistance in Mycobacterium through RecA-dependent and RecA-independent recombination. PNAS NEXUS 2024; 3:pgae555. [PMID: 39697181 PMCID: PMC11653572 DOI: 10.1093/pnasnexus/pgae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
In Escherichia coli, RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability. Along these lines, we previously demonstrated that the second messenger cyclic di-AMP (c-di-AMP) binds to mycobacterial RecA proteins, but not to E. coli RecA, and inhibits its DNA strand exchange activity in vitro via the disassembly of RecA nucleoprotein filaments. Herein, we demonstrate that Mycobacterium smegmatis ΔdisA cells, which lack c-di-AMP, exhibit increased DNA recombination, higher frequency of mutation, and gene duplications during RecA-dependent and RecA-independent DSB repair. We also found that c-di-AMP regulates SOS response by inhibiting RecA-mediated self-cleavage of LexA repressor and its absence enhances drug resistance in M. smegmatis ΔdisA cells. Together, our results uncover a role of c-di-AMP in the maintenance of genomic stability through modulation of DSB repair in M. smegmatis.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Nisha Goyal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Manikandan Kasi
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Saginela
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Anusha Singhal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Soumyadeep Nandi
- Department of Plant Physiology, Umeå Plant Science Centre, Umea University, Umeå 901 87, Sweden
| | - A K M Firoj Mahmud
- CLINTEC, Karolinska Institutet, Alfred Nobels alle 8, 141 52 Huddinge, Stockholm, Sweden
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| |
Collapse
|
19
|
Wang Z, Wang C, Zhai Y, Bai Y, Wang H, Rong X. Loss of Brcc3 in Zebrafish Embryos Increases Their Susceptibility to DNA Damage Stress. Int J Mol Sci 2024; 25:12108. [PMID: 39596176 PMCID: PMC11594080 DOI: 10.3390/ijms252212108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe forms of genetic damage in organisms, yet vertebrate models capable of monitoring DSBs in real-time remain scarce. BRCA1/BRCA2-containing complex subunit 3 (BRCC3), also known as BRCC36, functions within various multiprotein complexes to mediate diverse biological processes. However, the physiological role of BRCC3 in vertebrates, as well as the underlying mechanisms that govern its activity, are not well understood. To explore these questions, we generated brcc3-knockout zebrafish using CRISPR/Cas9 gene-editing technology. While brcc3 mutant zebrafish appear phenotypically normal and remain fertile, they exhibit significantly increased rates of mortality and deformity following exposure to DNA damage. Furthermore, embryos lacking Brcc3 display heightened p53 signaling, elevated γ-H2AX levels, and increased apoptosis in response to DNA-damaging agents such as ultraviolet (UV) light and Etoposide (ETO). Notably, genetic inactivation of p53 or pharmacological inhibition of Ataxia-telangiectasia mutated (ATM) activity rescues the hypersensitivity to UV and ETO observed in Brcc3-deficient embryos. These findings suggest that Brcc3 plays a critical role in DNA damage response (DDR), promoting cell survival during embryogenesis. Additionally, brcc3-null mutant zebrafish offer a promising vertebrate model for real-time monitoring of DSBs.
Collapse
Affiliation(s)
- Zhengyang Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yanpeng Zhai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yan Bai
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hongying Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
20
|
Ito K, Maki T, Kanamaru S, Takahashi M, Iwasaki H. The Swi5-Sfr1 complex regulates Dmc1- and Rad51-driven DNA strand exchange proceeding through two distinct three-stranded intermediates by different mechanisms. Nucleic Acids Res 2024; 52:12517-12533. [PMID: 39340300 PMCID: PMC11551746 DOI: 10.1093/nar/gkae841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
In eukaryotes, Dmc1 and Rad51 are key proteins of homologous recombination. The Swi5-Sfr1 complex in fission yeast, a conserved auxiliary factor, stimulates DNA strand exchange driven by both Dmc1 and Rad51. Interestingly, biochemical analysis suggested that Swi5-Sfr1 regulates strand exchange activities of these recombinases differently, but the mechanisms were unclear. We previously developed a real-time system to analyze Rad51-driven DNA strand exchange and identified two topologically distinct three-stranded intermediates (complex 1 (C1) and complex 2 (C2)). Swi5-Sfr1 facilitates the C1-C2 transition and releases single-stranded DNA (ssDNA) from C2, acting as a strand exchange activator. In this study, we investigated fission yeast Dmc1-driven DNA strand exchange and the role of Swi5-Sfr1 in Dmc1 activity in real-time. Kinetic analysis revealed a three-step model for the Dmc1-driven reaction, similar to that of Rad51. Although Swi5-Sfr1 stimulated the Dmc1-driven reaction, it had a weaker impact than Rad51. Furthermore, Swi5-Sfr1 enhanced the association of Dmc1 with ssDNA by promoting filament nucleus formation, acting as a mediator, unlike its role with Rad51. This stimulation mechanism also differs from that of Ca2+ or ATP analog, AMP-PNP. Our findings suggest that Swi5-Sfr1 stimulates strand exchange activities of Dmc1 and Rad51 via different reaction steps.
Collapse
Affiliation(s)
- Kentaro Ito
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takahisa Maki
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Shuji Kanamaru
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Masayuki Takahashi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Iwasaki
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
21
|
Di Terlizzi M, Liberi G, Pellicioli A. Separation of function mutants underline multiple roles of the Srs2 helicase/translocase in break-induced replication in Saccharomyces cerevisiae. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001369. [PMID: 39583581 PMCID: PMC11582884 DOI: 10.17912/micropub.biology.001369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
All cells are commonly exposed to DNA double-strand breaks (DSBs), which must be properly repaired to avoid genomic instability. Break-Induced Replication (BIR) is a Homologous Recombination subpathway, which repairs DSBs resulting in mutagenesis, chromosome translocations and loss of heterozygosity. In budding yeast, the Srs2 DNA helicase/translocase plays both anti- and pro-recombination roles. Interestingly, Srs2 activities are required to support BIR completion. Here, we employ a interchromosomal BIR assay in S. cerevisiae to characterize Cdk1-dependent phosphorylation, ATPase and helicase activities of Srs2. Our results further expand our understanding of the multifaced role played by Srs2 in DSB recombination repair.
Collapse
Affiliation(s)
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza", National Research Council, Pavia, Italy
| | | |
Collapse
|
22
|
Danilowicz C, Fu J, Prentiss M. Insight into RecA-mediated repair of double strand breaks is provided by probing how contiguous heterology affects recombination. J Biol Chem 2024; 300:107887. [PMID: 39395797 PMCID: PMC11570958 DOI: 10.1016/j.jbc.2024.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Homologous recombination can promote correct repair of double strand breaks in DNA by aligning a sequence region in the broken chromosome with the corresponding sequence region in an unbroken chromosome. D-loops join the broken and unbroken chromosomes during homology testing. Previous work studied how some mismatches affect the stability of D-loops, but they did not probe whether the D-loops disrupt regions of contiguous mismatches or simply bypass them. Furthermore, previous work has not considered how the length of flanking homology affects D-loop disruption of regions of contiguous mismatches. Finally, there are conflicts about the polarity of D-loop extension. We demonstrate that with or without ATP hydrolysis invading strands with six contiguous mismatches and sufficient flanking homology readily form D-loops that disrupt the structure of the mismatched region and incorporate both flanking homologous regions. Unsurprisingly, the probability that D-loops will incorporate both flanking homologous regions decreases as the number of mismatched bases increases. Furthermore, though D-loops may progress through homologous regions initially and dominantly in the 5' to 3' direction with respect to the single strand in the broken chromosome, our results suggest that progress through contiguous mismatches proceeds dominantly in the 3' to 5' direction. These results may reconcile previous conflicts about the polarity of D-loop extension. Additionally, the results suggest that homology recognition is not characterized by any simple iterative decision tree model that considers each homology testing step separately. Instead, homology recognition involves collective interactions. Finally, we consider implications for double strand break repair.
Collapse
Affiliation(s)
- Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan Fu
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
23
|
Peng Y, Zhao P, Li Z, Mu N, Tao S, Feng Y, Cheng X, Zhang W. Genome-wide characterization of single-stranded DNA in rice. PLANT PHYSIOLOGY 2024; 196:1268-1283. [PMID: 38917225 DOI: 10.1093/plphys/kiae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to nonplant systems. Here, we conducted in situ S1-sequencing, with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.). We found that ssDNA loci were substantially associated with a subset of non-B DNA structures and functional genomic loci. Subtypes of ssDNA loci had distinct epigenetic features. Importantly, ssDNA may act alone or partly coordinate with non-B DNA structures, functional genomic loci, or epigenetic marks to actively or repressively modulate gene transcription, which is genomic region dependent and associated with the distinct accumulation of RNA Pol II. Moreover, distinct types of ssDNA had differential impacts on the activities and evolution of transposable elements (TEs) (especially common or conserved TEs) in the rice genome. Our study showcases an antibody-independent technique for characterizing non-B DNA structures or functional genomic loci in plants. It lays the groundwork and fills a crucial gap for further exploration of ssDNA, non-B DNA structures, or functional genomic loci, thereby advancing our understanding of their biology in plants.
Collapse
Affiliation(s)
- Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Pengtao Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Zhaoguo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ning Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
24
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
25
|
Li X, Yang C, Wu H, Chen H, Gao X, Zhou S, Zhang TC, Ma W. DSB-induced oxidative stress: Uncovering crosstalk between DNA damage response and cellular metabolism. DNA Repair (Amst) 2024; 141:103730. [PMID: 39018963 DOI: 10.1016/j.dnarep.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes participating in the initiation of the resection step of homologous recombination (HR), like the MRX complex, resulted in stimulation of ROS. In contrast, deleting genes acting downstream of HR resection suppressed ROS levels. Additionally, blocking non-homologous end joining (NHEJ) also suppressed ROS. Further analysis identified Rad53 as a key player that relays DNA damage signals to alter redox metabolism in an HR-specific manner. These results suggest both HR and NHEJ can drive metabolism changes and oxidative stress, with NHEJ playing a more prominent role in ROS stimulation. Further analysis revealed a correlation between DSB-induced ROS increase and enhanced activity of NADPH oxidase Yno1 and various antioxidant enzymes. Deleting the antioxidant gene SOD1 induced synthetic lethality in HR-deficient mutants like mre11Δ and rad51Δ upon DSB induction. These findings uncover a significant interplay between DNA repair mechanisms and cellular metabolism, providing insights into understanding the side effects of genotoxic therapies and potentially aiding development of more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Xinyu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Caini Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hengyu Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hongran Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Gao
- Qilu Institute of Technology, Shandong, China
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Tong-Cun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Qilu Institute of Technology, Shandong, China.
| |
Collapse
|
26
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
27
|
Xie Y, Xiao D, Li D, Peng M, Peng W, Duan H, Yang X. Combined strategies with PARP inhibitors for the treatment of BRCA wide type cancer. Front Oncol 2024; 14:1441222. [PMID: 39156700 PMCID: PMC11327142 DOI: 10.3389/fonc.2024.1441222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Genomic instability stands out as a pivotal hallmark of cancer, and PARP inhibitors (PARPi) emerging as a groundbreaking class of targeted therapy drugs meticulously crafted to inhibit the repair of DNA single-strand breaks(SSB) in tumor cells. Currently, PARPi have been approved for the treatment of ovarian cancer, pancreatic cancer, breast cancer, and prostate cancer characterized by homologous recombination(HR) repair deficiencies due to mutations in BRCA1/2 or other DNA repair associated genes and acquiring the designation of breakthrough therapy. Nonetheless, PARPi exhibit limited efficacy in the majority of HR-proficient BRCA1/2 wild-type cancers. At present, the synergistic approach of combining PARPi with agents that induce HR defects, or with chemotherapy and radiotherapy to induce substantial DNA damage, significantly enhances the efficacy of PARPi in BRCA wild-type or HR-proficient patients, supporting extension the use of PARPi in HR proficient patients. Therefore, we have summarized the effects and mechanisms of the combined use of drugs with PARPi, including the combination of PARPi with HR defect-inducing drugs such as ATRi, CHKi, HR indirectly inducing drugs like VEGFRi, CDKi, immune checkpoint inhibitors and drugs instigating DNA damage such as chemotherapy or radiotherapy. In addition, this review discusses several ongoing clinical trials aimed at analyzing the clinical application potential of these combined treatment strategies.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Di Xiao
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Duo Li
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Yang
- Department of Oncology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, Hunan, China
- Department of Pharmacy, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
28
|
Gurusaran M, Zhang J, Zhang K, Shibuya H, Davies OR. MEILB2-BRME1 forms a V-shaped DNA clamp upon BRCA2-binding in meiotic recombination. Nat Commun 2024; 15:6552. [PMID: 39095423 PMCID: PMC11297322 DOI: 10.1038/s41467-024-50920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
DNA double-strand break repair by homologous recombination has a specialised role in meiosis by generating crossovers that enable the formation of haploid germ cells. This requires meiosis-specific MEILB2-BRME1, which interacts with BRCA2 to facilitate loading of recombinases onto resected DNA ends. Here, we report the crystal structure of the MEILB2-BRME1 2:2 core complex, revealing a parallel four-helical assembly that recruits BRME1 to meiotic double-strand breaks in vivo. It forms an N-terminal β-cap that binds to DNA, and a MEILB2 coiled-coil that bridges to C-terminal ARM domains. Upon BRCA2-binding, MEILB2-BRME1 2:2 complexes dimerize into a V-shaped 2:4:4 complex, with rod-like MEILB2-BRME1 components arranged at right-angles. The β-caps located at the tips of the MEILB2-BRME1 limbs are separated by 25 nm, allowing them to bridge between DNA molecules. Thus, we propose that BRCA2 induces MEILB2-BRME1 to function as a DNA clamp, connecting resected DNA ends or homologous chromosomes to facilitate meiotic recombination.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Petiot V, White CI, Da Ines O. DNA-binding site II is required for RAD51 recombinogenic activity in Arabidopsis thaliana. Life Sci Alliance 2024; 7:e202402701. [PMID: 38803223 PMCID: PMC11106524 DOI: 10.26508/lsa.202402701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Homologous recombination is a major pathway for the repair of DNA double strand breaks, essential both to maintain genomic integrity and to generate genetic diversity. Mechanistically, homologous recombination involves the use of a homologous DNA molecule as a template to repair the break. In eukaryotes, the search for and invasion of the homologous DNA molecule is carried out by two recombinases, RAD51 in somatic cells and RAD51 and DMC1 in meiotic cells. During recombination, the recombinases bind overhanging single-stranded DNA ends to form a nucleoprotein filament, which is the active species in promoting DNA invasion and strand exchange. RAD51 and DMC1 carry two major DNA-binding sites-essential for nucleofilament formation and DNA strand exchange, respectively. Here, we show that the function of RAD51 DNA-binding site II is conserved in the plant, Arabidopsis. Mutation of three key amino acids in site II does not affect RAD51 nucleofilament formation but inhibits its recombinogenic activity, analogous to results from studies of the yeast and human proteins. We further confirm that recombinogenic function of RAD51 DNA-binding site II is not required for meiotic double-strand break repair when DMC1 is present. The Arabidopsis AtRAD51-II3A separation of function mutant shows a dominant negative phenotype, pointing to distinct biochemical properties of eukaryotic RAD51 proteins.
Collapse
Affiliation(s)
- Valentine Petiot
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Charles I White
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Olivier Da Ines
- Institut Génétique, Reproduction et Développement (iGReD), CNRS UMR 6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
30
|
Seru LV, Forde TL, Roberto-Charron A, Mavrot F, Niu YD, Kutz SJ. Genomic characterization and virulence gene profiling of Erysipelothrix rhusiopathiae isolated from widespread muskox mortalities in the Canadian Arctic Archipelago. BMC Genomics 2024; 25:691. [PMID: 39004696 PMCID: PMC11247837 DOI: 10.1186/s12864-024-10592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Taya L Forde
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | | | - Fabien Mavrot
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Yan D Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan J Kutz
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
31
|
Carreira R, Lama-Diaz T, Crugeiras M, Aguado F, Sebesta M, Krejci L, Blanco M. Concurrent D-loop cleavage by Mus81 and Yen1 yields half-crossover precursors. Nucleic Acids Res 2024; 52:7012-7030. [PMID: 38832625 PMCID: PMC11229367 DOI: 10.1093/nar/gkae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Homologous recombination involves the formation of branched DNA molecules that may interfere with chromosome segregation. To resolve these persistent joint molecules, cells rely on the activation of structure-selective endonucleases (SSEs) during the late stages of the cell cycle. However, the premature activation of SSEs compromises genome integrity, due to untimely processing of replication and/or recombination intermediates. Here, we used a biochemical approach to show that the budding yeast SSEs Mus81 and Yen1 possess the ability to cleave the central recombination intermediate known as the displacement loop or D-loop. Moreover, we demonstrate that, consistently with previous genetic data, the simultaneous action of Mus81 and Yen1, followed by ligation, is sufficient to recreate the formation of a half-crossover precursor in vitro. Our results provide not only mechanistic explanation for the formation of a half-crossover, but also highlight the critical importance for precise regulation of these SSEs to prevent chromosomal rearrangements.
Collapse
Affiliation(s)
- Raquel Carreira
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Tomas Lama-Diaz
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Maria Crugeiras
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - F Javier Aguado
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Marek Sebesta
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Lumir Krejci
- Department of Biology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
32
|
Sridalla K, Woodhouse MV, Hu J, Scheer J, Ferlez B, Crickard JB. The translocation activity of Rad54 reduces crossover outcomes during homologous recombination. Nucleic Acids Res 2024; 52:7031-7048. [PMID: 38828785 PMCID: PMC11229335 DOI: 10.1093/nar/gkae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Homologous recombination (HR) is a template-based DNA double-strand break repair pathway that requires the selection of an appropriate DNA sequence to facilitate repair. Selection occurs during a homology search that must be executed rapidly and with high fidelity. Failure to efficiently perform the homology search can result in complex intermediates that generate genomic rearrangements, a hallmark of human cancers. Rad54 is an ATP dependent DNA motor protein that functions during the homology search by regulating the recombinase Rad51. How this regulation reduces genomic exchanges is currently unknown. To better understand how Rad54 can reduce these outcomes, we evaluated several amino acid mutations in Rad54 that were identified in the COSMIC database. COSMIC is a collection of amino acid mutations identified in human cancers. These substitutions led to reduced Rad54 function and the discovery of a conserved motif in Rad54. Through genetic, biochemical and single-molecule approaches, we show that disruption of this motif leads to failure in stabilizing early strand invasion intermediates, causing increased crossovers between homologous chromosomes. Our study also suggests that the translocation rate of Rad54 is a determinant in balancing genetic exchange. The latch domain's conservation implies an interaction likely fundamental to eukaryotic biology.
Collapse
Affiliation(s)
- Krishay Sridalla
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell V Woodhouse
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jingyi Hu
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jessica Scheer
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Deparment of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Islam S, Sarkar O, Mukherjee S, Kamila S, Bhowmik AD, Chattopadhyay A. Chronic low-dose chromium VI exposure induces oxidative stress and apoptosis with altered expressions of DNA repair genes and promoter hypermethylation in the liver of Swiss albino mice. J Appl Toxicol 2024; 44:1014-1027. [PMID: 38523572 DOI: 10.1002/jat.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
The present investigation dealt with harmful effects of hexavalent chromium (Cr [VI]) on liver of Swiss albino mice. This variant exhibited cytotoxicity, mutagenicity, and carcinogenicity. Our study focused on elucidating the hepatotoxic effects of chronic low-dose exposure to Cr (VI) (2, 5, and 10 ppm) administered via drinking water for 4 and 8 months. The observed elevation in SGPT, ALP, and SGOT and increased oxidative stress markers unequivocally confirmed the severe disruption of liver homeostasis at these low treatment doses. Noteworthy alterations in histoarchitecture, body weight, and water intake provided further evidences of the harmful effects of Cr (VI). Production of reactive oxygen species (ROS) during metabolism led to DNA damages. Immunohistochemistry and qRT-PCR analyses revealed that chronic low-dose exposure of Cr (VI) induced apoptosis in liver tissue. Our study exhibited alterations in the expression pattern of DNA repair genes (Rad51, Mutyh, Mlh1, and Ogg1), coupled with promoter hypermethylation of Mutyh and Rad51, leading to transcriptional inhibition. Our findings underscored the potential of low-dose Cr (VI) exposure on hepatotoxicity by the intricate interplay between apoptosis induction and epigenetic alterations of DNA repair genes.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
34
|
Meyer D, Ceballos SJ, Gore S, Liu J, Reginato G, Cano-Linares MI, Maslowska KH, Villafañez F, Ede C, Pagès V, Prado F, Cejka P, Heyer WD. Rad51 determines pathway usage in post-replication repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599120. [PMID: 38915629 PMCID: PMC11195247 DOI: 10.1101/2024.06.14.599120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Stalled replication forks can be processed by several distinct mechanisms collectively called post-replication repair which includes homologous recombination, fork regression, and translesion DNA synthesis. However, the regulation of the usage between these pathways is not fully understood. The Rad51 protein plays a pivotal role in maintaining genomic stability through its roles in HR and in protecting stalled replication forks from degradation. We report the isolation of separation-of-function mutations in Saccharomyces cerevisiae Rad51 that retain their recombination function but display a defect in fork protection leading to a shift in post-replication repair pathway usage from HR to alternate pathways including mutagenic translesion synthesis. Rad51-E135D and Rad51-K305N show normal in vivo and in vitro recombination despite changes in their DNA binding profiles, in particular to dsDNA, with a resulting effect on their ATPase activities. The mutants lead to a defect in Rad51 recruitment to stalled forks in vivo as well as a defect in the protection of dsDNA from degradation by Dna2-Sgs1 and Exo1 in vitro . A high-resolution cryo-electron microscopy structure of the Rad51-ssDNA filament at 2.4 Å resolution provides a structural basis for a mechanistic understanding of the mutant phenotypes. Together, the evidence suggests a model in which Rad51 binding to duplex DNA is critical to control pathway usage at stalled replication forks.
Collapse
|
35
|
Joris S, Giron P, Olsen C, Seneca S, Gheldof A, Staessens S, Shahi RB, De Brakeleer S, Teugels E, De Grève J, Hes FJ. Identification of RAD17 as a candidate cancer predisposition gene in families with histories of pancreatic and breast cancers. BMC Cancer 2024; 24:723. [PMID: 38872153 PMCID: PMC11170902 DOI: 10.1186/s12885-024-12442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Among the 10% of pancreatic cancers that occur in a familial context, around a third carry a pathogenic variant in a cancer predisposition gene. Genetic studies of pancreatic cancer predisposition are limited by high mortality rates amongst index patients and other affected family members. The genetic risk for pancreatic cancer is often shared with breast cancer susceptibility genes, most notably BRCA2, PALB2, ATM and BRCA1. Therefore, we hypothesized that additional shared genetic etiologies might be uncovered by studying families presenting with both breast and pancreatic cancer. METHODS Focusing on a multigene panel of 276 DNA Damage Repair (DDR) genes, we performed next-generation sequencing in a cohort of 41 families with at least three breast cancer cases and one pancreatic cancer. When the index patient with pancreatic cancer was deceased, close relatives (first or second-degree) affected with breast cancer were tested (39 families). RESULTS We identified 27 variants of uncertain significance in DDR genes. A splice site variant (c.1605 + 2T > A) in the RAD17 gene stood out, as a likely loss of function variant. RAD17 is a checkpoint protein that recruits the MRN (MRE11-RAD50-NBS1) complex to initiate DNA signaling, leading to DNA double-strand break repair. CONCLUSION Within families with breast and pancreatic cancer, we identified RAD17 as a novel candidate predisposition gene. Further genetic studies are warranted to better understand the potential pathogenic effect of RAD17 variants and in other DDR genes.
Collapse
Affiliation(s)
- Sofie Joris
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium.
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Philippe Giron
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Catharina Olsen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Sara Seneca
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Alexander Gheldof
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Shula Staessens
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rajendra Bahadur Shahi
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sylvia De Brakeleer
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erik Teugels
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacques De Grève
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederik J Hes
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| |
Collapse
|
36
|
Chen R, Zhao MJ, Li YM, Liu AH, Wang RX, Mei YC, Chen X, Du HN. Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1089-1105. [PMID: 38842635 DOI: 10.1007/s11427-024-2543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 06/07/2024]
Abstract
Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.
Collapse
Affiliation(s)
- Runfa Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ao-Hui Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Ru-Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Yu-Chao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Hubei Clinical Research Center of Emergency and Resuscitation, Emergency Center of Zhongnan Hospital, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
37
|
Kyriukha Y, Watkins MB, Redington JM, Dastvan R, Uversky VN, Hopkins JB, Pozzi N, Korolev S. The strand exchange domain of tumor suppressor PALB2 is intrinsically disordered and promotes oligomerization-dependent DNA compaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.543259. [PMID: 37333393 PMCID: PMC10274692 DOI: 10.1101/2023.06.01.543259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The Partner and Localizer of BRCA2 (PALB2) is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency in cells. The PALB2 DNA-binding domain (PALB2-DBD) supports strand exchange, a complex multistep reaction conducted by only a few proteins such as RecA-like recombinases and Rad52. Using bioinformatics analysis, small-angle X-ray scattering, circular dichroism, and electron paramagnetic spectroscopy, we determined that PALB2-DBD is an intrinsically disordered region (IDR) forming compact molten globule-like dimer. IDRs contribute to oligomerization synergistically with the coiled-coil interaction. Using confocal single-molecule FRET we demonstrated that PALB2-DBD compacts single-stranded DNA even in the absence of DNA secondary structures. The compaction is bimodal, oligomerization-dependent, and is driven by IDRs, suggesting a novel strand exchange mechanism. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome. Novel DNA binding properties of PALB2-DBD and the complexity of strand exchange mechanism significantly expands the functional repertoire of IDPs. Multivalent interactions and bioinformatics analysis suggest that PALB2 function is likely to depend on formation of protein-nucleic acids condensates. Similar intrinsically disordered DBDs may use chaperone-like mechanism to aid formation and resolution of DNA and RNA multichain intermediates during DNA replication, repair and recombination.
Collapse
Affiliation(s)
- Yevhenii Kyriukha
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Maxwell B Watkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Jennifer M Redington
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Reza Dastvan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCat), Departments of Biology and Physics, Illinois Institute of Technology, Chicago, IL
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
38
|
Liu J, Gore S, Heyer WD. Local structural dynamics of Rad51 protomers revealed by cryo-electron microscopy of Rad51-ssDNA filaments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592824. [PMID: 38766236 PMCID: PMC11100689 DOI: 10.1101/2024.05.06.592824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Homologous recombination (HR) is a high-fidelity repair mechanism for double-strand breaks. Rad51 is the key enzyme that forms filaments on single-stranded DNA (ssDNA) to catalyze homology search and DNA strand exchange in recombinational DNA repair. In this study, we employed single-particle cryo-electron microscopy (cryo-EM) to ascertain the density map of the budding yeast Rad51-ssDNA filament bound to ADP-AlF 3 , achieving a resolution of 2.35 Å without imposing helical symmetry. The model assigned 6 Rad51 protomers, 24 nt of DNA, and 6 bound ADP-AlF 3 . It shows 6-fold symmetry implying monomeric building blocks, unlike the structure of the Rad51-I345T mutant filament with three-fold symmetry implying dimeric building blocks, for which the structural comparisons provide a satisfying mechanistic explanation. This image analysis enables comprehensive comparisons of individual Rad51 protomers within the filament and reveals local conformational movements of amino acid side chains. Notably, Arg293 in Loop1 adopts multiple conformations to facilitate Leu296 and Val331 in separating and twisting the DNA triplets. We also analyzed the predicted structures of yeast Rad51-K342E and two tumor-derived human RAD51 variants, RAD51-Q268P and RAD51-Q272L, using the Rad51-ssDNA structure from this study as a reference.
Collapse
|
39
|
Bai L, Li P, Xiang Y, Jiao X, Chen J, Song L, Liang Z, Liu Y, Zhu Y, Lu LY. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes. Proc Natl Acad Sci U S A 2024; 121:e2401386121. [PMID: 38696471 PMCID: PMC11087798 DOI: 10.1073/pnas.2401386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.
Collapse
Affiliation(s)
- Long Bai
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Peng Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yu Xiang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Xiaofei Jiao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Jiyuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Licun Song
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Zhongyang Liang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
| | - Yidan Liu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yimin Zhu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Zhejiang University Cancer Center, Hangzhou310029, China
| |
Collapse
|
40
|
Xu M, Yang N, Pan J, Hua Q, Li CX, Xu JH. Remodeling the Homologous Recombination Mechanism of Yarrowia lipolytica for High-Level Biosynthesis of Squalene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9984-9993. [PMID: 38635942 DOI: 10.1021/acs.jafc.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Nan Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
41
|
Pavankumar TL, Wong C, Wong YK, Spies M, Kowalczykowski S. Trans-complementation by the RecB nuclease domain of RecBCD enzyme reveals new insight into RecA loading upon χ recognition. Nucleic Acids Res 2024; 52:2578-2589. [PMID: 38261972 PMCID: PMC10954480 DOI: 10.1093/nar/gkae007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
The loading of RecA onto ssDNA by RecBCD is an essential step of RecBCD-mediated homologous recombination. RecBCD facilitates RecA-loading onto ssDNA in a χ-dependent manner via its RecB nuclease domain (RecBn). Before recognition of χ, RecBn is sequestered through interactions with RecBCD. It was proposed that upon χ-recognition, RecBn undocks, allowing RecBn to swing out via a contiguous 70 amino acid linker to reveal the RecA-loading surface, and then recruit and load RecA onto ssDNA. We tested this hypothesis by examining the interactions between RecBn (RecB928-1180) and truncated RecBCD (RecB1-927CD) lacking the nuclease domain. The reconstituted complex of RecB1-927CD and RecBn is functional in vitro and in vivo. Our results indicate that despite being covalently severed from RecB1-927CD, RecBn can still load RecA onto ssDNA, establishing that RecBn does not function while only remaining tethered to the RecBCD complex via the linker. Instead, RecBCD undergoes a χ-induced intramolecular rearrangement to reveal the RecA-loading surface.
Collapse
Affiliation(s)
- Theetha L Pavankumar
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - C Jason Wong
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Yun Ka Wong
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
43
|
Muhammad AA, Basto C, Peterlini T, Guirouilh-Barbat J, Thomas M, Veaute X, Busso D, Lopez B, Mazon G, Le Cam E, Masson JY, Dupaigne P. Human RAD52 stimulates the RAD51-mediated homology search. Life Sci Alliance 2024; 7:e202201751. [PMID: 38081641 PMCID: PMC10713436 DOI: 10.26508/lsa.202201751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.
Collapse
Affiliation(s)
- Ali Akbar Muhammad
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Clara Basto
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Thibaut Peterlini
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Josée Guirouilh-Barbat
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Melissa Thomas
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Xavier Veaute
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx Platform, INSERM, IRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Bernard Lopez
- INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, Université de Paris, Paris, France
| | - Gerard Mazon
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Eric Le Cam
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Quebec Research Center, HDQ Pavilion, Oncology Axis, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Canada
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR 9019 CNRS, Université Paris- Saclay, Gustave Roussy, Villejuif Cedex, France
| |
Collapse
|
44
|
Leal AF, Herreno-Pachón AM, Benincore-Flórez E, Karunathilaka A, Tomatsu S. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches. Int J Mol Sci 2024; 25:2456. [PMID: 38473704 PMCID: PMC10931195 DOI: 10.3390/ijms25052456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Since its discovery in 2012, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system has supposed a promising panorama for developing novel and highly precise genome editing-based gene therapy (GT) alternatives, leading to overcoming the challenges associated with classical GT. Classical GT aims to deliver transgenes to the cells via their random integration in the genome or episomal persistence into the nucleus through lentivirus (LV) or adeno-associated virus (AAV), respectively. Although high transgene expression efficiency is achieved by using either LV or AAV, their nature can result in severe side effects in humans. For instance, an LV (NCT03852498)- and AAV9 (NCT05514249)-based GT clinical trials for treating X-linked adrenoleukodystrophy and Duchenne Muscular Dystrophy showed the development of myelodysplastic syndrome and patient's death, respectively. In contrast with classical GT, the CRISPR/Cas9-based genome editing requires the homologous direct repair (HDR) machinery of the cells for inserting the transgene in specific regions of the genome. This sophisticated and well-regulated process is limited in the cell cycle of mammalian cells, and in turn, the nonhomologous end-joining (NHEJ) predominates. Consequently, seeking approaches to increase HDR efficiency over NHEJ is crucial. This manuscript comprehensively reviews the current alternatives for improving the HDR for CRISPR/Cas9-based GTs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Angelica María Herreno-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Eliana Benincore-Flórez
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
| | - Amali Karunathilaka
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA; (A.F.L.); (A.M.H.-P.); (E.B.-F.); (A.K.)
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
45
|
Chen J, Wu M, Yang Y, Ruan C, Luo Y, Song L, Wu T, Huang J, Yang B, Liu T. TFIP11 promotes replication fork reversal to preserve genome stability. Nat Commun 2024; 15:1262. [PMID: 38341452 PMCID: PMC10858868 DOI: 10.1038/s41467-024-45684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.
Collapse
Affiliation(s)
- Junliang Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China
| | - Mingjie Wu
- The Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chunyan Ruan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lizhi Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
46
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
47
|
Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC. The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nat Commun 2023; 14:8144. [PMID: 38065943 PMCID: PMC10709652 DOI: 10.1038/s41467-023-43918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Srs2 is an Sf1a helicase that helps maintain genome stability in Saccharomyces cerevisiae through its ability to regulate homologous recombination. Srs2 downregulates HR by stripping Rad51 from single-stranded DNA, and Srs2 is also thought to promote synthesis-dependent strand annealing by unwinding D-loops. However, it has not been possible to evaluate the relative contributions of these two distinct activities to any aspect of recombination. Here, we used a structure-based approach to design an Srs2 separation-of-function mutant that can dismantle Rad51-ssDNA filaments but is incapable of disrupting D-loops, allowing us to assess the relative contributions of these pro- and anti-recombinogenic functions. We show that this separation-of-function mutant phenocopies wild-type SRS2 in vivo, suggesting that the ability of Srs2 to remove Rad51 from ssDNA is its primary role during HR.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Carly E Rivera
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Léa Marie
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Institute of Pharmacology and Structural Biology (IPBS), French National Centre for Scientific Research (CNRS), Université Toulouse III, Toulouse, France
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
48
|
Liu S, Shinohara A, Furukohri A. Fanconi anemia-associated mutation in RAD51 compromises the coordinated action of DNA-binding and ATPase activities. J Biol Chem 2023; 299:105424. [PMID: 37924868 PMCID: PMC10716581 DOI: 10.1016/j.jbc.2023.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease caused by a defect in DNA repair pathway for DNA interstrand crosslinks. These crosslinks can potentially impede the progression of the DNA replication fork, consequently leading to DNA double-strand breaks. Heterozygous RAD51-Q242R mutation has been reported to cause FA-like symptoms. However, the molecular defect of RAD51 underlying the disease is largely unknown. In this study, we conducted a biochemical analysis of RAD51-Q242R protein, revealing notable deficiencies in its DNA-dependent ATPase activity and its ATP-dependent regulation of DNA-binding activity. Interestingly, although RAD51-Q242R exhibited the filament instability and lacked the ability to form displacement loop, it efficiently stimulated the formation of displacement loops mediated by wild-type RAD51. These findings facilitate understanding of the biochemical properties of the mutant protein and how RAD51 works in the FA patient cells.
Collapse
Affiliation(s)
- Sijia Liu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Asako Furukohri
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
49
|
Hu J, Ferlez B, Dau J, Crickard JB. Rad53 regulates the lifetime of Rdh54 at homologous recombination intermediates. Nucleic Acids Res 2023; 51:11688-11705. [PMID: 37850655 PMCID: PMC10681728 DOI: 10.1093/nar/gkad848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Rdh54 is a conserved DNA translocase that participates in homologous recombination (HR), DNA checkpoint adaptation, and chromosome segregation. Saccharomyces cerevisiae Rdh54 is a known target of the Mec1/Rad53 signaling axis, which globally protects genome integrity during DNA metabolism. While phosphorylation of DNA repair proteins by Mec1/Rad53 is critical for HR progression little is known about how specific post translational modifications alter HR reactions. Phosphorylation of Rdh54 is linked to protection of genomic integrity but the consequences of modification remain poorly understood. Here, we demonstrate that phosphorylation of the Rdh54 C-terminus by the effector kinase Rad53 regulates Rdh54 clustering activity as revealed by single molecule imaging. This stems from phosphorylation dependent and independent interactions between Rdh54 and Rad53. Genetic assays reveal that loss of phosphorylation leads to phenotypic changes resulting in loss-of-heterozygosity (LOH) outcomes. Our data highlight Rad53 as a key regulator of HR intermediates through activation and attenuation of Rdh54 motor function.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Bryan Ferlez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Dau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
50
|
Singh A, Patel G, Patel SS. Twinkle-Catalyzed Toehold-Mediated DNA Strand Displacement Reaction. J Am Chem Soc 2023:10.1021/jacs.3c04970. [PMID: 37917930 PMCID: PMC11063129 DOI: 10.1021/jacs.3c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Strand exchange between homologous nucleic acid sequences is the basis for cellular DNA repair, recombination, and genome editing technologies. Specialized enzymes catalyze cellular strand exchange; however, the reaction occurs spontaneously when a single-stranded DNA toehold can dock the invader strand on the target DNA to initiate strand exchange through branch migration. Due to its precise response, the spontaneous toehold-mediated strand displacement (TMSD) reaction is widely employed in DNA nanotechnology. However, enzyme-free TMSD suffers from slow rates, resulting in slow response times. Here, we show that human mitochondrial DNA helicase Twinkle can accelerate TMSD up to 6000-fold. Mechanistic studies indicate that Twinkle accelerates TMSD by catalyzing the docking step, which typically limits spontaneous reactions. The catalysis occurs without ATP, and Twinkle-catalyzed TMSD rates remain sensitive to base-pair mismatches. The simple catalysis, tunability, and speed improvement of the catalyzed TMSD can be leveraged in nanotechnology, requiring sensitive detection and faster response times.
Collapse
Affiliation(s)
- Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Gayatri Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|