1
|
Spritzer MD, Roy EA, Calhoun KMK, Schneider-Lynch ZE, Panella L, Michaelcheck C, Qian A, Kelly ED, Barr H, Hall E, Cunningham B, Nguyen HHM, Xu D, Barker JM, Galea LAM. Effects of Testosterone and Its Major Metabolites upon Different Stages of Neuron Survival in the Dentate Gyrus of Male Rats. Biomolecules 2025; 15:542. [PMID: 40305218 PMCID: PMC12024780 DOI: 10.3390/biom15040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Testosterone has been shown to enhance hippocampal neurogenesis through increased cell survival, but which stages of new neuron development are influenced by testosterone remains unclear. Therefore, we tested the effects of sex steroids administered during three different periods after cell division in the dentate gyrus of adult male rats to determine when they influence the survival of new neurons. Adult male rats were bilaterally castrated. After 7 days of recovery, a single injection of bromodeoxyuridine (BrdU) was given on the first day of the experiment (Day 0) to label actively dividing cells. All subjects received five consecutive days of hormone injections during one of three stages of new neuron development (days 1-5, 6-10, or 11-15) after BrdU labeling. Subjects were injected during these time periods with either testosterone propionate (0.250 or 0.500 mg/rat), dihydrotestosterone (0.250 or 0.500 mg/rat), or estradiol benzoate (1.0 or 10 µg/rat). All subjects were euthanized sixteen days later to assess the effects of these hormones on the number of BrdU-labeled cells. The high dose of testosterone caused a significant increase in the number of BrdU-labeled cells in the hippocampus compared to all other groups, with the strongest effect caused by later injections (11-15 days old). In contrast, neither DHT nor estradiol injections had any significant effects on number of BrdU-labeled cells. Fluorescent double-labeling and confocal microscopy reveal that the majority of BrdU-labeled cells were neurons. Our results add to past evidence that testosterone increases neurogenesis, but whether this involves an androgenic or estrogenic pathway remains unclear.
Collapse
Affiliation(s)
- Mark D. Spritzer
- Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA;
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Ethan A. Roy
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Kelsey M. K. Calhoun
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Zachary E. Schneider-Lynch
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Leslie Panella
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Charlotte Michaelcheck
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - April Qian
- Program in Molecular Biology and Biochemistry, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (A.Q.); (E.D.K.); (D.X.)
| | - Evan D. Kelly
- Program in Molecular Biology and Biochemistry, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (A.Q.); (E.D.K.); (D.X.)
| | - Hadley Barr
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Emma Hall
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Blaine Cunningham
- Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA;
| | - Hieu H. M. Nguyen
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Dani Xu
- Program in Molecular Biology and Biochemistry, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (A.Q.); (E.D.K.); (D.X.)
| | - Jennifer M. Barker
- Department of Biology, Faculty of Science and Technology, Douglas College, Coquitlam, BC V3L 5B2, Canada;
| | - Liisa A. M. Galea
- Treliving Family Chair in Women’s Mental Health, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
2
|
Norwood MF, Marsh CH, Pretty D, Hollins I, Shirota C, Chen B, Gustafsson L, Kendall E, Jones S, Zeeman H. The environment as an important component of neurorehabilitation: introducing the BEEhive - brain and enriched environment (BEE) lab (hive). Disabil Rehabil 2025:1-11. [PMID: 39937038 DOI: 10.1080/09638288.2025.2461266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE Contemporary healthcare design often overlooks the environment as a resource for supporting patient well-being and rehabilitation, particularly in neurotrauma care. The prioritisation of safety and efficiency has created stressful spaces that negatively impact patient needs. This paper explores whether environmental enrichment can enhance rehabilitation outcomes for individuals recovering from neurotrauma. It also introduces the BEEhive laboratory, a multidisciplinary initiative integrating environmental enrichment principles into healthcare. METHODOLOGY This paper reviews literature on the role of environmental enrichment in neurotrauma rehabilitation, synthesising empirical evidence on its benefits, and highlighting its potential to improve various aspects of neurorehabilitation. The findings are applied to the BEEhive laboratory's objectives. RESULTS Environmental enrichment is shown to stimulate neurogenesis, increase rehabilitation engagement, reduce disruptive behaviours and depressive symptoms, facilitate social relationships, improve cognitive functioning, reduce stress, and alleviate boredom. Despite these benefits, its application in neurotrauma rehabilitation remains underexplored. The BEEhive laboratory aims to address this gap through multidisciplinary collaboration, implementing strategies to enhance patient outcomes. CONCLUSION To optimise rehabilitation outcomes, healthcare environments must holistically support well-being. Environmentally focused, sustainable interventions in neurotrauma care, exemplified by the BEEhive initiative, are crucial for bridging the gap between research and practice, fostering innovative approaches to neurotrauma rehabilitation.
Collapse
Affiliation(s)
| | - Chelsea H Marsh
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- School of Applied Psychology, Griffith University, Gold Coast, Australia
| | - Danielle Pretty
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- School of Health Sciences and Social Work, Griffith University, Queensland, Australia
| | - Izak Hollins
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
| | - Camila Shirota
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
| | - Ben Chen
- Clinical Director, Allied Health and Rehabilitation, Emergency and Specialty Services, Gold Coast Health, Southport, Australia
| | | | - Elizabeth Kendall
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- Inclusive Futures: Reimagining Disability, Griffith University, Southport, Australia
| | - Susan Jones
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- Neurosciences Rehabilitation Unit, Gold Coast University Hospital, Gold Coast, Australia
| | - Heidi Zeeman
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
| |
Collapse
|
3
|
Hillerer KM, Gimsa U. Adult neurogenesis and the microbiota-gut-brain axis in farm animals: underestimated and understudied parameters for improving welfare in livestock farming. Front Neurosci 2024; 18:1493605. [PMID: 39664450 PMCID: PMC11631930 DOI: 10.3389/fnins.2024.1493605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Welfare in commercial livestock farming is becoming increasingly important in current agriculture research. Unfortunately, there is a lack of understanding about the neuronal mechanisms that underlie well-being on an individual level. Neuroplasticity in the hippocampus, the subventricular zone (SVZ), the olfactory bulb (OB) and the hypothalamus may be essential regulatory components in the context of farm animal behaviour and welfare that may be altered by providing environmental enrichment (EE). The importance of pre-and probiotics as a form of EE and the microbiota-gut-brain axis (MGBA) has come under the spotlight in the last 20 years, particularly in the contexts of research into stress and of stress resilience. However, it could also be an important regulatory system for animal welfare in livestock farming. This review aims to present a brief overview of the effects of EE on physiology and behaviour in farm animals and briefly discusses literature on behavioural flexibility, as well as inter-individual stress-coping styles and their relationship to animal welfare. Most importantly, we will summarise the literature on different forms of neural plasticity in farm animals, focusing on neurogenesis in various relevant brain regions. Furthermore, we will provide a brief outlook connecting these forms of neuroplasticity, stress, EE, the MGBA and welfare measures in modern livestock farming, concentrating on pigs.
Collapse
Affiliation(s)
- Katharina M. Hillerer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Mecklenburg-Vorpommern, Germany
| | | |
Collapse
|
4
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
5
|
Castro-Torres RD, Olloquequi J, Parcerisas A, Ureña J, Ettcheto M, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. JNK signaling and its impact on neural cell maturation and differentiation. Life Sci 2024; 350:122750. [PMID: 38801982 DOI: 10.1016/j.lfs.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.
Collapse
Affiliation(s)
- Rubén D Castro-Torres
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, 08028 Barcelona, Catalonia, Spain; Laboratory of Cellular and Molecular Pathology, Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Av. 5 Poniente 1670, 3460000 Talca, Chile
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - Jesús Ureña
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miren Ettcheto
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neurobiotechnology, C.U.C.B.A, Universidad de Guadalajara, Jalisco 44340, Mexico
| | - Antoni Camins
- Department de Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Avda. Diagonal 641, E-08028 Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ester Verdaguer
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carme Auladell
- Department de Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Catalonia, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
6
|
Duarte-Guterman P, Richard JE, Lieblich SE, Eid RS, Lamers Y, Galea LAM. Cellular and molecular signatures of motherhood in the adult and ageing rat brain. Open Biol 2023; 13:230217. [PMID: 37989220 PMCID: PMC10681025 DOI: 10.1098/rsob.230217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Pregnancy is marked by robust changes, including brain changes to volume, structure, connectivity and neuroplasticity. Although some brain changes are restricted to pregnancy and the postpartum, others are long-lasting. Few studies have examined possible mechanisms of these changes or the effects of multiple pregnancies. We characterized various cellular and molecular signatures of parity (nulliparous, primiparous, biparous) in the rat hippocampus. We investigated density of neural stems cells (Sox2), microglia (Iba-1) and levels of a synaptic protein (PSD-95), cell signalling pathways, neuroinflammation, and the tryptophan-kynurenine (TRP-KYN) pathway, one week after weaning their pups from the last pregnancy (age of dam: seven months) and in middle-age (age of dam: 13 months). Parity increased PSD-95 levels in both age groups and prevented the age-related decrease in neural stem cell density observed in nulliparous rats. Biparity increased cell signalling phosphoproteins (pp70S6K, S6RP) and number of microglia in the dentate gyrus, regardless of age. Parity resulted in transient changes to the TRP-KYN system. Thus, previous parity has lasting effects on synaptic plasticity with fewer lasting effects on inflammation and cell signalling phosphoproteins in the whole hippocampus.
Collapse
Affiliation(s)
- P. Duarte-Guterman
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - J. E. Richard
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - S. E. Lieblich
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - R. S. Eid
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Y. Lamers
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for Neuroscience and Physiology, University of Gothenburg, Sweden
| | - L. A. M. Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Alexandrovich YV, Antonov EV, Shikhevich SG, Kharlamova AV, Meister LV, Makovka YV, Shepeleva DV, Gulevich RG, Herbeck YE. The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes. Vavilovskii Zhurnal Genet Selektsii 2023; 27:651-661. [PMID: 38213464 PMCID: PMC10782033 DOI: 10.18699/vjgb-23-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2022] [Accepted: 06/30/2023] [Indexed: 01/13/2024] Open
Abstract
The hippocampus plays the key role in stress response regulation, and stress response appears to be weakened in domesticated animals compared to their wild relatives. The hippocampus is functionally heterogeneous along its dorsoventral axis, with its ventral compartment being more closely involved in stress regulation. An earlier series of experiments was conducted with a unique breeding model of animal domestication, the farm silver fox (Vulpes vulpes), which included tame, aggressive, and unselected animals. A decrease in many indices of the hypothalamic-pituitary-adrenal activity was observed in tame animals. Also, adult hippocampal neurogenesis was more intense in tame foxes, and this fact may relate to reduced stress levels in this experimental population of foxes. Nevertheless, the molecular mechanisms responsible for the reduced stress response in tame animals remain obscure. In this study, serum cortisol levels and the mRNA levels of 13 genes in the dorsal and ventral hippocampus have been measured and compared in tame, aggressive, and unselected foxes. At the current stage of domestication, stress-induced cortisol levels in tame, aggressive, and unselected animals differ significantly from each other: tame foxes show the lowest levels, and aggressive ones, the highest. Twelve genes tested demonstrate significant gene expression differences between the dorsal and ventral hippocampi. These differences are mainly consistent with those found in rodents and humans. In tame foxes, significantly elevated mRNA levels were recorded for several genes: CYP26B1 for cytochrome P450 26B1 and ADRA1A for α1A adrenergic receptor in the dorsal hippocampus, whereas the level of NR3C2 mRNA for mineralocorticoid receptor was higher in the ventral. It is presumed that these genes constitute an important part of the mechanism reducing stress induced by contacts with humans and contribute to linking stress regulation with adult neurogenesis in tame foxes and domesticated animals in general.
Collapse
Affiliation(s)
- Yu V Alexandrovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Antonov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Sirius University of Science and Technology, Scientific Center for Translational Medicine, Sochi, Russia
| | - S G Shikhevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kharlamova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L V Meister
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y V Makovka
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Shepeleva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R G Gulevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yu E Herbeck
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
8
|
Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, Knierim JJ, Rangel LM. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci 2023; 24:502-517. [PMID: 37316588 PMCID: PMC10529488 DOI: 10.1038/s41583-023-00710-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.
Collapse
Affiliation(s)
- Mia Borzello
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Helen Scharfman
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology and Psychiatry and the Neuroscience Institute, New York University Langone Health, New York, NY, USA
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Craig Stark
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, CA, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Lara M Rangel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Ghibaudi M, Amenta A, Agosti M, Riva M, Graïc JM, Bifari F, Bonfanti L. Consistency and Variation in Doublecortin and Ki67 Antigen Detection in the Brain Tissue of Different Mammals, including Humans. Int J Mol Sci 2023; 24:2514. [PMID: 36768845 PMCID: PMC9916846 DOI: 10.3390/ijms24032514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, a population of "immature" neurons generated prenatally, retaining immaturity for long periods and finally integrating in adult circuits has been described in the cerebral cortex. Moreover, comparative studies revealed differences in occurrence/rate of different forms of neurogenic plasticity across mammals, the "immature" neurons prevailing in gyrencephalic species. To extend experimentation from laboratory mice to large-brained mammals, including humans, it is important to detect cell markers of neurogenic plasticity in brain tissues obtained from different procedures (e.g., post-mortem/intraoperative specimens vs. intracardiac perfusion). This variability overlaps with species-specific differences in antigen distribution or antibody species specificity, making it difficult for proper comparison. In this work, we detect the presence of doublecortin and Ki67 antigen, markers for neuronal immaturity and cell division, in six mammals characterized by widely different brain size. We tested seven commercial antibodies in four selected brain regions known to host immature neurons (paleocortex, neocortex) and newly born neurons (hippocampus, subventricular zone). In selected human brains, we confirmed the specificity of DCX antibody by performing co-staining with fluorescent probe for DCX mRNA. Our results indicate that, in spite of various types of fixations, most differences were due to the use of different antibodies and the existence of real interspecies variation.
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Alessia Amenta
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Miriam Agosti
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| |
Collapse
|
10
|
Faykoo-Martinez M, Collins T, Peragine D, Malik M, Javed F, Kolisnyk M, Ziolkowski J, Jeewa I, Cheng AH, Lowden C, Mascarenhas B, Cheng HYM, Holmes MM. Protracted neuronal maturation in a long-lived, highly social rodent. PLoS One 2022; 17:e0273098. [PMID: 36107951 PMCID: PMC9477366 DOI: 10.1371/journal.pone.0273098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
Naked mole-rats are a long-lived rodent species (current lifespan >37 years) and an increasingly popular biomedical model. Naked mole-rats exhibit neuroplasticity across their long lifespan. Previous studies have begun to investigate their neurogenic patterns. Here, we test the hypothesis that neuronal maturation is extended in this long-lived rodent. We characterize cell proliferation and neuronal maturation in established rodent neurogenic regions over 12 months following seven days of consecutive BrdU injection. Given that naked mole-rats are eusocial (high reproductive skew where only a few socially-dominant individuals reproduce), we also looked at proliferation in brain regions relevant to the social-decision making network. Finally, we measured co-expression of EdU (newly-born cells), DCX (immature neuron marker), and NeuN (mature neuron marker) to assess the timeline of neuronal maturation in adult naked mole-rats. This work reaffirms the subventricular zone as the main source of adult cell proliferation and suggests conservation of the rostral migratory stream in this species. Our profiling of socially-relevant brain regions suggests that future work which manipulates environmental context can unveil how newly-born cells integrate into circuitry and facilitate adult neuroplasticity. We also find naked mole-rat neuronal maturation sits at the intersection of rodents and long-lived, non-rodent species: while neurons can mature by 3 weeks (rodent-like), most neurons mature at 5 months and hippocampal neurogenic levels are low (like long-lived species). These data establish a timeline for future investigations of longevity- and socially-related manipulations of naked mole-rat adult neurogenesis.
Collapse
Affiliation(s)
| | - Troy Collins
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Diana Peragine
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Manahil Malik
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Fiza Javed
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Matthew Kolisnyk
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Justine Ziolkowski
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Imaan Jeewa
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Arthur H. Cheng
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christopher Lowden
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Brittany Mascarenhas
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hai-Ying Mary Cheng
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Melissa M. Holmes
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Bartkowska K, Tepper B, Turlejski K, Djavadian R. Postnatal and Adult Neurogenesis in Mammals, Including Marsupials. Cells 2022; 11:cells11172735. [PMID: 36078144 PMCID: PMC9455070 DOI: 10.3390/cells11172735] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/11/2022] Open
Abstract
In mammals, neurogenesis occurs during both embryonic and postnatal development. In eutherians, most brain structures develop embryonically; conversely, in marsupials, a number of brain structures develop after birth. The exception is the generation of granule cells in the dentate gyrus, olfactory bulb, and cerebellum of eutherian species. The formation of these structures starts during embryogenesis and continues postnatally. In both eutherians and marsupials, neurogenesis continues in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus of the hippocampal formation throughout life. The majority of proliferated cells from the SVZ migrate to the olfactory bulb, whereas, in the dentate gyrus, cells reside within this structure after division and differentiation into neurons. A key aim of this review is to evaluate advances in understanding developmental neurogenesis that occurs postnatally in both marsupials and eutherians, with a particular emphasis on the generation of granule cells during the formation of the olfactory bulb, dentate gyrus, and cerebellum. We debate the significance of immature neurons in the piriform cortex of young mammals. We also synthesize the knowledge of adult neurogenesis in the olfactory bulb and the dentate gyrus of marsupials by considering whether adult-born neurons are essential for the functioning of a given area.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Beata Tepper
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
12
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
13
|
Terstege DJ, Addo-Osafo K, Campbell Teskey G, Epp JR. New neurons in old brains: implications of age in the analysis of neurogenesis in post-mortem tissue. Mol Brain 2022; 15:38. [PMID: 35501905 PMCID: PMC9063342 DOI: 10.1186/s13041-022-00926-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
Adult neurogenesis, the proliferation and integration of newly generated neurons, has been observed in the adult mammalian hippocampus of many species. Numerous studies have also found adult neurogenesis in the human hippocampus, but several recent high-profile studies have suggested that this process is considerably reduced in humans, occurring in children but not in adults. In comparison, rodent studies also show age-related decline but a greater degree of proliferation of new neurons in adult animals. These differences may represent biological species differences or could alternatively be explained by methodological differences in tissue handling and fixation. Here, we examine whether differences in the post-mortem interval between death and tissue fixation might impact subsequent detection of adult neurogenesis due to increased tissue degradation. Because there are fewer new neurons present in older subjects to begin with we hypothesized that, subject age might interact significantly with post-mortem interval in the detection of adult neurogenesis. We analyzed neurogenesis in the hippocampus of rats that were either perfusion-fixed or the brains extracted and immersion-fixed at various post-mortem intervals. We observed an interaction between animal age and the time delay between death and tissue fixation. While similar levels of neurogenesis were observed in young rats regardless of fixation, older rats had significantly fewer labeled neurons when fixation was not immediate. Furthermore, the morphological detail of the labeled neurons was significantly reduced in the delayed fixation conditions at all ages. This study highlights critical concerns that must be considered when using post-mortem tissue to quantify adult neurogenesis.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, HMRB 162, Health Sciences Centre, 3330 Hospital Drive NW, AB, T2N 4N1, Calgary, Canada
| | - Kwaku Addo-Osafo
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, HMRB 162, Health Sciences Centre, 3330 Hospital Drive NW, AB, T2N 4N1, Calgary, Canada
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, HMRB 162, Health Sciences Centre, 3330 Hospital Drive NW, AB, T2N 4N1, Calgary, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, HMRB 162, Health Sciences Centre, 3330 Hospital Drive NW, AB, T2N 4N1, Calgary, Canada.
| |
Collapse
|
14
|
Tetrahydrofolate Alleviates the Inhibitory Effect of Oxidative Stress on Neural Stem Cell Proliferation through PTEN/Akt/mTOR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9021474. [PMID: 35265266 PMCID: PMC8898800 DOI: 10.1155/2022/9021474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Neural stem cell (NSC) proliferation is the initial step for NSC participating in neurorehabilitation after central nervous system (CNS) injury. During this process, oxidative stress is always involved in restricting the regenerative ability of NSC. Tetrahydrofolate (THF) is susceptible to oxidative stress and exhibits a high antioxidant activity. While its effect on NSC proliferation under oxidative stress condition remains obscure. Here, NSC were isolated from embryonic mice and identified using immunofluorescent staining. Meanwhile, the results showed that THF (5 μM and 10 μM) attenuated oxidative stress induced by 50 μM hydrogen peroxide (H2O2) in NSC using mitochondrial hydroxyl radical detection and Western blotting assays. Afterward, administration of THF markedly alleviated the inhibitory effect of oxidative stress on NSC proliferation, which was evidenced by Cell Counting Kit-8 (CCK8), neurosphere formation, and immunofluorescence of Ki67 assays. Thereafter, the results revealed that PTEN/Akt/mTOR signaling pathway played a pivotal role in counteracting oxidative stress to rescue the inhibitory effect of oxidative stress on NSC proliferation using Western blotting assays and gene knockdown techniques. Collectively, these results demonstrate that THF mitigates the inhibitory effect of oxidative stress on NSC proliferation via PTEN/Akt/mTOR signaling pathway, which provides evidence for administrating THF to potentiate the neuro-reparative capacity of NSC in the treatment of CNS diseases with the presence of oxidative stress.
Collapse
|
15
|
Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 2022; 23:173-186. [PMID: 35027710 DOI: 10.1038/s41583-021-00548-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.
Collapse
Affiliation(s)
- Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. .,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland. .,Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria, Australia. .,Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| | - Paul W Frankland
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada. .,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Abrous DN, Koehl M, Lemoine M. A Baldwin interpretation of adult hippocampal neurogenesis: from functional relevance to physiopathology. Mol Psychiatry 2022; 27:383-402. [PMID: 34103674 PMCID: PMC8960398 DOI: 10.1038/s41380-021-01172-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Hippocampal adult neurogenesis has been associated to many cognitive, emotional, and behavioral functions and dysfunctions, and its status as a selected effect or an "appendix of the brain" has been debated. In this review, we propose to understand hippocampal neurogenesis as the process underlying the "Baldwin effect", a particular situation in evolution where fitness does not rely on the natural selection of genetic traits, but on "ontogenetic adaptation" to a changing environment. This supports the view that a strong distinction between developmental and adult hippocampal neurogenesis is made. We propose that their functions are the constitution and the lifelong adaptation, respectively, of a basic repertoire of cognitive and emotional behaviors. This lifelong adaptation occurs through new forms of binding, i.e., association or dissociation of more basic elements. This distinction further suggests that a difference is made between developmental vulnerability (or resilience), stemming from dysfunctional (or highly functional) developmental hippocampal neurogenesis, and adult vulnerability (or resilience), stemming from dysfunctional (or highly functional) adult hippocampal neurogenesis. According to this hypothesis, developmental and adult vulnerability are distinct risk factors for various mental disorders in adults. This framework suggests new avenues for research on hippocampal neurogenesis and its implication in mental disorders.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000, Bordeaux, France.
| | - Muriel Koehl
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000 Bordeaux, France
| | - Maël Lemoine
- grid.412041.20000 0001 2106 639XUniversity Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
17
|
Ogawa B, Nakanishi Y, Wakamatsu M, Takahashi Y, Shibutani M. Repeated administration of acrylamide for 28 days reduces late-stage progenitor cells and immature granule cells accompanying impaired neurite outgrowth in the adult hippocampal neurogenesis in young-adult rats. J Toxicol Sci 2022; 47:467-482. [DOI: 10.2131/jts.47.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bunichiro Ogawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yutaka Nakanishi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Masaki Wakamatsu
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
18
|
Wan L, Huang RJ, Yang C, Ai JQ, Zhou Q, Gong JE, Li J, Zhang Y, Luo ZH, Tu E, Pan A, Xiao B, Yan XX. Extracranial 125I Seed Implantation Allows Non-invasive Stereotactic Radioablation of Hippocampal Adult Neurogenesis in Guinea Pigs. Front Neurosci 2021; 15:756658. [PMID: 34916901 PMCID: PMC8670234 DOI: 10.3389/fnins.2021.756658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) is important for multiple cognitive functions. We sort to establish a minimal or non-invasive radiation approach to ablate AHN using guinea pigs as an animal model. 125I seeds with different radiation dosages (1.0, 0.8, 0.6, 0.3 mCi) were implanted unilaterally between the scalp and skull above the temporal lobe for 30 and 60 days, with the radiation effect on proliferating cells, immature neurons, and mature neurons in the hippocampal formation determined by assessment of immunolabeled (+) cells for Ki67, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN), as well as Nissl stain cells. Spatially, the ablation effect of radiation occurred across the entire rostrocaudal and largely the dorsoventral dimensions of the hippocampus, evidenced by a loss of DCX+ cells in the subgranular zone (SGZ) of dentate gyrus (DG) in the ipsilateral relative to contralateral hemispheres in reference to the 125I seed implant. Quantitatively, Ki67+ and DCX+ cells at the SGZ in the dorsal hippocampus were reduced in all dosage groups at the two surviving time points, more significant in the ipsilateral than contralateral sides, relative to sham controls. NeuN+ neurons and Nissl-stained cells were reduced in the granule cell layer of DG and the stratum pyramidale of CA1 in the groups with 0.6-mCi radiation for 60 days and 1.0 mCi for 30 and 60 days. Minimal cranial trauma was observed in the groups with 0.3– 1.0-mCi radiation at 60 days. These results suggest that extracranial radiation with 125I seed implantation can be used to deplete HAN in a radioactivity-, duration-, and space-controllable manner, with a “non-invasive” stereotactic ablation achievable by using 125I seeds with relatively low radioactivity dosages.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qian Zhou
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiao-E Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Jian Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhang
- Department of Anesthesiology, The 2nd Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
19
|
Bonfanti L, Seki T. The PSA-NCAM-Positive "Immature" Neurons: An Old Discovery Providing New Vistas on Brain Structural Plasticity. Cells 2021; 10:2542. [PMID: 34685522 PMCID: PMC8534119 DOI: 10.3390/cells10102542] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Studies on brain plasticity have undertaken different roads, tackling a wide range of biological processes: from small synaptic changes affecting the contacts among neurons at the very tip of their processes, to birth, differentiation, and integration of new neurons (adult neurogenesis). Stem cell-driven adult neurogenesis is an exception in the substantially static mammalian brain, yet, it has dominated the research in neurodevelopmental biology during the last thirty years. Studies of comparative neuroplasticity have revealed that neurogenic processes are reduced in large-brained mammals, including humans. On the other hand, large-brained mammals, with respect to rodents, host large populations of special "immature" neurons that are generated prenatally but express immature markers in adulthood. The history of these "immature" neurons started from studies on adhesion molecules carried out at the beginning of the nineties. The identity of these neurons as "stand by" cells "frozen" in a state of immaturity remained un-detected for long time, because of their ill-defined features and because clouded by research ef-forts focused on adult neurogenesis. In this review article, the history of these cells will be reconstructed, and a series of nuances and confounding factors that have hindered the distinction between newly generated and "immature" neurons will be addressed.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 160-8402, Japan
| |
Collapse
|
20
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
21
|
Constitutive Neurogenesis in the Brain of Different Vertebrate Groups. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Bartkowska K, Turlejski K, Tepper B, Rychlik L, Vogel P, Djavadian R. Effects of Brain Size on Adult Neurogenesis in Shrews. Int J Mol Sci 2021; 22:7664. [PMID: 34299282 PMCID: PMC8303847 DOI: 10.3390/ijms22147664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Shrews are small animals found in many different habitats. Like other mammals, adult neurogenesis occurs in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus (DG) of the hippocampal formation. We asked whether the number of new generated cells in shrews depends on their brain size. We examined Crocidura russula and Neomys fodiens, weighing 10-22 g, and Crocidura olivieri and Suncus murinus that weigh three times more. We found that the density of proliferated cells in the SVZ was approximately at the same level in all species. These cells migrated from the SVZ through the rostral migratory stream to the olfactory bulb (OB). In this pathway, a low level of neurogenesis occurred in C. olivieri compared to three other species of shrews. In the DG, the rate of adult neurogenesis was regulated differently. Specifically, the lowest density of newly generated neurons was observed in C. russula, which had a substantial number of new neurons in the OB compared with C. olivieri. We suggest that the number of newly generated neurons in an adult shrew's brain is independent of the brain size, and molecular mechanisms of neurogenesis appeared to be different in two neurogenic structures.
Collapse
Affiliation(s)
- Katarzyna Bartkowska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland; (K.B.); (B.T.)
| | - Krzysztof Turlejski
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland;
| | - Beata Tepper
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland; (K.B.); (B.T.)
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Adam Mickiewicz University, 61-712 Poznan, Poland;
| | - Peter Vogel
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Ruzanna Djavadian
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland; (K.B.); (B.T.)
| |
Collapse
|
23
|
Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 2021; 22:223-236. [PMID: 33633402 DOI: 10.1038/s41583-021-00433-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Neural stem cells (NSCs) generate new neurons throughout life in the mammalian brain. Adult-born neurons shape brain function, and endogenous NSCs could potentially be harnessed for brain repair. In this Review, focused on hippocampal neurogenesis in rodents, we highlight recent advances in the field based on novel technologies (including single-cell RNA sequencing, intravital imaging and functional observation of newborn cells in behaving mice) and characterize the distinct developmental steps from stem cell activation to the integration of newborn neurons into pre-existing circuits. Further, we review current knowledge of how levels of neurogenesis are regulated, discuss findings regarding survival and maturation of adult-born cells and describe how newborn neurons affect brain function. The evidence arguing for (and against) lifelong neurogenesis in the human hippocampus is briefly summarized. Finally, we provide an outlook of what is needed to improve our understanding of the mechanisms and functional consequences of adult neurogenesis and how the field may move towards more translational relevance in the context of acute and chronic neural injury and stem cell-based brain repair.
Collapse
|
24
|
Harris L, Rigo P, Stiehl T, Gaber ZB, Austin SHL, Masdeu MDM, Edwards A, Urbán N, Marciniak-Czochra A, Guillemot F. Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. Cell Stem Cell 2021; 28:863-876.e6. [PMID: 33581058 PMCID: PMC8110946 DOI: 10.1016/j.stem.2021.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Neural stem cell numbers fall rapidly in the hippocampus of juvenile mice but stabilize during adulthood, ensuring lifelong hippocampal neurogenesis. We show that this stabilization of stem cell numbers in young adults is the result of coordinated changes in stem cell behavior. Although proliferating neural stem cells in juveniles differentiate rapidly, they increasingly return to a resting state of shallow quiescence and progress through additional self-renewing divisions in adulthood. Single-cell transcriptomics, modeling, and label retention analyses indicate that resting cells have a higher activation rate and greater contribution to neurogenesis than dormant cells, which have not left quiescence. These changes in stem cell behavior result from a progressive reduction in expression of the pro-activation protein ASCL1 because of increased post-translational degradation. These cellular mechanisms help reconcile current contradictory models of hippocampal neural stem cell (NSC) dynamics and may contribute to the different rates of decline of hippocampal neurogenesis in mammalian species, including humans. More proliferating hippocampal stem cells return to shallow quiescence with age Dormant stem cells enter deeper quiescence with age These changes drive the transition from developmental to adult neurogenesis Increasing degradation of ASCL1 protein by HUWE1 coordinates these changes
Collapse
Affiliation(s)
- Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Piero Rigo
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Thomas Stiehl
- Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Zachary B Gaber
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sophie H L Austin
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Del Mar Masdeu
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Amelia Edwards
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Noelia Urbán
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
25
|
Maden M, Serrano N, Bermudez M, Sandoval AGW. A profusion of neural stem cells in the brain of the spiny mouse, Acomys cahirinus. J Anat 2020; 238:1191-1202. [PMID: 33277722 PMCID: PMC8053588 DOI: 10.1111/joa.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022] Open
Abstract
The vast majority of neural stem cell studies have been conducted on the brains of mice and rats, the classical model rodent. Non-model organisms may, however, give us some important insights into how to increase neural stem cell numbers for regenerative purposes and with this in mind we have characterized these cells in the brain of the spiny mouse, Acomys cahirinus. This unique mammal is highly regenerative and damaged tissue does not scar or fibrose. We find that there are more than three times as many stem cells in the SVZ and more than 3 times as many proliferating cells compared to the CD-1 outbred strain of lab mouse. These additional cells create thick stem cell regions in the wall of the SVZ and very obvious columns of cells moving into the rostral migratory stream. In the dentate gyrus, there are more than 10 times as many cells proliferating in the sub-granular layer and twice the number of doublecortin expressing neuroblasts. A preliminary analysis of some stem cell niche genes has identified Sox2, Notch1, Shh, and Noggin as up-regulated in the SVZ of Acomys and Bmp2 as being down-regulated. The highly increased neural stem cell numbers in Acomys may endow this animal with increased regenerative properties in the brain or improved physiological performance important for its survival.
Collapse
Affiliation(s)
- Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Nicole Serrano
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Monica Bermudez
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Aaron G W Sandoval
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Cushman JD, Drew MR, Krasne FB. The environmental sculpting hypothesis of juvenile and adult hippocampal neurogenesis. Prog Neurobiol 2020; 199:101961. [PMID: 33242572 DOI: 10.1016/j.pneurobio.2020.101961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.
Collapse
Affiliation(s)
- Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, United States.
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States.
| | - Franklin B Krasne
- Department of Psychology, University of California Los Angeles, Box 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
27
|
LaDage LD. Broadening the functional and evolutionary understanding of postnatal neurogenesis using reptilian models. ACTA ACUST UNITED AC 2020; 223:223/15/jeb210542. [PMID: 32788272 DOI: 10.1242/jeb.210542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The production of new neurons in the brains of adult animals was first identified by Altman and Das in 1965, but it was not until the late 20th century when methods for visualizing new neuron production improved that there was a dramatic increase in research on neurogenesis in the adult brain. We now know that adult neurogenesis is a ubiquitous process that occurs across a wide range of taxonomic groups. This process has largely been studied in mammals; however, there are notable differences between mammals and other taxonomic groups in how, why and where new neuron production occurs. This Review will begin by describing the processes of adult neurogenesis in reptiles and identifying the similarities and differences in these processes between reptiles and model rodent species. Further, this Review underscores the importance of appreciating how wild-caught animals vary in neurogenic properties compared with laboratory-reared animals and how this can be used to broaden the functional and evolutionary understanding of why and how new neurons are produced in the adult brain. Studying variation in neural processes across taxonomic groups provides an evolutionary context to adult neurogenesis while also advancing our overall understanding of neurogenesis and brain plasticity.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| |
Collapse
|
28
|
Luján MÁ, Valverde O. The Pro-neurogenic Effects of Cannabidiol and Its Potential Therapeutic Implications in Psychiatric Disorders. Front Behav Neurosci 2020; 14:109. [PMID: 32676014 PMCID: PMC7333542 DOI: 10.3389/fnbeh.2020.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
During the last decades, researchers have investigated the functional relevance of adult hippocampal neurogenesis in normal brain function as well as in the pathogenesis of diverse psychiatric conditions. Although the underlying mechanisms of newborn neuron differentiation and circuit integration have yet to be fully elucidated, considerable evidence suggests that the endocannabinoid system plays a pivotal role throughout the processes of adult neurogenesis. Thus, synthetic, and natural cannabinoid compounds targeting the endocannabinoid system have been utilized to modulate the proliferation and survival of neural progenitor cells and immature neurons. Cannabidiol (CBD), a constituent of the Cannabis Sativa plant, interacts with the endocannabinoid system by inhibiting fatty acid amide hydrolase (FAAH) activity (the rate-limiting enzyme for anandamide hydrolysis), allosterically modulating CB1 and CB2 receptors, and activating components of the "extended endocannabinoid system." Congruently, CBD has shown prominent pro-neurogenic effects, and, unlike Δ9-tetrahydrocannabinol, it has the advantage of being devoid of psychotomimetic effects. Here, we first review pre-clinical studies supporting the facilitating effects of CBD on adult hippocampal neurogenesis and available data disclosing cannabinoid mechanisms by which CBD can induce neural proliferation and differentiation. We then review the respective implications for its neuroprotective, anxiolytic, anti-depressant, and anti-reward actions. In conclusion, accumulating evidence reveals that, in rodents, adult neurogenesis is key to understand the behavioral manifestation of symptomatology related to different mental disorders. Hence, understanding how CBD promotes adult neurogenesis in rodents could shed light upon translational therapeutic strategies aimed to ameliorate psychiatric symptomatology dependent on hippocampal function in humans.
Collapse
Affiliation(s)
- Miguel Á. Luján
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
29
|
La Rosa C, Parolisi R, Bonfanti L. Brain Structural Plasticity: From Adult Neurogenesis to Immature Neurons. Front Neurosci 2020; 14:75. [PMID: 32116519 PMCID: PMC7010851 DOI: 10.3389/fnins.2020.00075] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Brain structural plasticity is an extraordinary tool that allows the mature brain to adapt to environmental changes, to learn, to repair itself after lesions or disease, and to slow aging. A long history of neuroscience research led to fascinating discoveries of different types of plasticity, involving changes in the genetically determined structure of nervous tissue, up to the ultimate dream of neuronal replacement: a stem cell-driven “adult neurogenesis” (AN). Yet, this road does not seem a straight one, since mutable dogmas, conflicting results and conflicting interpretations continue to warm the field. As a result, after more than 10,000 papers published on AN, we still do not know its time course, rate or features with respect to other kinds of structural plasticity in our brain. The solution does not appear to be behind the next curve, as differences among mammals reveal a very complex landscape that cannot be easily understood from rodents models alone. By considering evolutionary aspects, some pitfalls in the interpretation of cell markers, and a novel population of undifferentiated cells that are not newly generated [immature neurons (INs)], we address some conflicting results and controversies in order to find the right road forward. We suggest that considering plasticity in a comparative framework might help assemble the evolutionary, anatomical and functional pieces of a very complex biological process with extraordinary translational potential.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
30
|
Spritzer MD, Roy EA. Testosterone and Adult Neurogenesis. Biomolecules 2020; 10:biom10020225. [PMID: 32028656 PMCID: PMC7072323 DOI: 10.3390/biom10020225] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
It is now well established that neurogenesis occurs throughout adulthood in select brain regions, but the functional significance of adult neurogenesis remains unclear. There is considerable evidence that steroid hormones modulate various stages of adult neurogenesis, and this review provides a focused summary of the effects of testosterone on adult neurogenesis. Initial evidence came from field studies with birds and wild rodent populations. Subsequent experiments with laboratory rodents have tested the effects of testosterone and its steroid metabolites upon adult neurogenesis, as well as the functional consequences of induced changes in neurogenesis. These experiments have provided clear evidence that testosterone increases adult neurogenesis within the dentate gyrus region of the hippocampus through an androgen-dependent pathway. Most evidence indicates that androgens selectively enhance the survival of newly generated neurons, while having little effect on cell proliferation. Whether this is a result of androgens acting directly on receptors of new neurons remains unclear, and indirect routes involving brain-derived neurotrophic factor (BDNF) and glucocorticoids may be involved. In vitro experiments suggest that testosterone has broad-ranging neuroprotective effects, which will be briefly reviewed. A better understanding of the effects of testosterone upon adult neurogenesis could shed light on neurological diseases that show sex differences.
Collapse
Affiliation(s)
- Mark D. Spritzer
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
- Correspondence: ; Tel.: 802-443-5676
| | - Ethan A. Roy
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
31
|
Kedrov AV, Mineyeva OA, Enikolopov GN, Anokhin KV. Involvement of Adult-born and Preexisting Olfactory Bulb and Dentate Gyrus Neurons in Single-trial Olfactory Memory Acquisition and Retrieval. Neuroscience 2019; 422:75-87. [DOI: 10.1016/j.neuroscience.2019.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/24/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
32
|
Terranova JI, Ogawa SK, Kitamura T. Adult hippocampal neurogenesis for systems consolidation of memory. Behav Brain Res 2019; 372:112035. [DOI: 10.1016/j.bbr.2019.112035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|
33
|
van Dijk RM, Wiget F, Wolfer DP, Slomianka L, Amrein I. Consistent within-group covariance of septal and temporal hippocampal neurogenesis with behavioral phenotypes for exploration and memory retention across wild and laboratory small rodents. Behav Brain Res 2019; 372:112034. [DOI: 10.1016/j.bbr.2019.112034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
|
34
|
Petrik D, Encinas JM. Perspective: Of Mice and Men - How Widespread Is Adult Neurogenesis? Front Neurosci 2019; 13:923. [PMID: 31555083 PMCID: PMC6727861 DOI: 10.3389/fnins.2019.00923] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
These are exciting times for research on adult hippocampal neurogenesis (AHN). Debate and controversy regarding the existence of generation of new neurons in the adult, and even diseased human brain flourishes as articles against and in favor accumulate. Adult neurogenesis in the human brain is a phenomenon that does not share the qualities of quantum mechanics. The scientific community should agree that human AHN exists or does not, but not both at the same time. In this commentary, we discuss the latest research articles about hAHN and what their findings imply for the neurogenesis field.
Collapse
Affiliation(s)
- David Petrik
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Institute of Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Department of Physiological Genomics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juan M Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
35
|
Lazutkin A, Podgorny O, Enikolopov G. Modes of division and differentiation of neural stem cells. Behav Brain Res 2019; 374:112118. [PMID: 31369774 DOI: 10.1016/j.bbr.2019.112118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 01/09/2023]
Abstract
Hippocampal neurogenesis presents an unorthodox form of neuronal plasticity and may be relevant for the normal or abnormal functioning of the human and animal brain. As production of new neurons decreases after birth, purposefully activating stem cells to create additional new neurons may augment brain function or slow a disease's progression. Here, we describe current models of hippocampal stem cell maintenance and differentiation, and emphasize key features of neural stem cells' turnover that may define hippocampal neurogenesis enhancement attempts' long-term consequences. We argue that even the basic blueprint of how stem cells are maintained, divide, differentiate, and are eliminated is still contentious, with different models potentially leading to vastly different outcomes in regard to neuronal production and stem cell pool preservation. We propose that to manipulate neurogenesis for a long-term benefit, we must first understand the outline of the neural stem cells' lifecycle.
Collapse
Affiliation(s)
- Alexander Lazutkin
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Moscow Institute of Physics and Technology, Moscow, Russia; P.K. Anokhin Institute for Normal Physiology, Moscow, Russia
| | - Oleg Podgorny
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States; Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
36
|
La Rosa C, Ghibaudi M, Bonfanti L. Newly Generated and Non-Newly Generated "Immature" Neurons in the Mammalian Brain: A Possible Reservoir of Young Cells to Prevent Brain Aging and Disease? J Clin Med 2019; 8:jcm8050685. [PMID: 31096632 PMCID: PMC6571946 DOI: 10.3390/jcm8050685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023] Open
Abstract
Brain plasticity is important for translational purposes since most neurological disorders and brain aging problems remain substantially incurable. In the mammalian nervous system, neurons are mostly not renewed throughout life and cannot be replaced. In humans, the increasing life expectancy explains the increase in brain health problems, also producing heavy social and economic burden. An exception to the “static” brain is represented by stem cell niches leading to the production of new neurons. Such adult neurogenesis is dramatically reduced from fish to mammals, and in large-brained mammals with respect to rodents. Some examples of neurogenesis occurring outside the neurogenic niches have been reported, yet these new neurons actually do not integrate in the mature nervous tissue. Non-newly generated, “immature” neurons (nng-INs) are also present: Prenatally generated cells continuing to express molecules of immaturity (mostly shared with the newly born neurons). Of interest, nng-INs seem to show an inverse phylogenetic trend across mammals, being abundant in higher-order brain regions not served by neurogenesis and providing structural plasticity in rather stable areas. Both newly generated and nng-INs represent a potential reservoir of young cells (a “brain reserve”) that might be exploited for preventing the damage of aging and/or delay the onset/reduce the impact of neurological disorders.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, 10095 Torino, Italy.
| |
Collapse
|
37
|
Oppenheim RW. Adult Hippocampal Neurogenesis in Mammals (and Humans): The Death of a Central Dogma in Neuroscience and its Replacement by a New Dogma. Dev Neurobiol 2019; 79:268-280. [DOI: 10.1002/dneu.22674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Ronald W. Oppenheim
- Department of Neurobiology and Anatomy, The Neuroscience Program Wake Forest School of Medicine Medical Center Blvd. Winston‐Salem NC 27157‐1010
| |
Collapse
|
38
|
Pregnancy Promotes Maternal Hippocampal Neurogenesis in Guinea Pigs. Neural Plast 2019; 2019:5765284. [PMID: 31097956 PMCID: PMC6487096 DOI: 10.1155/2019/5765284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) modulates cognition and behavior in mammals, while motherhood is associated with cognitive and behavioral changes essential for the care of the young. In mice and rats, hippocampal neurogenesis is reported to be reduced or unchanged during pregnancy, with few data available from other species. In guinea pigs, pregnancy lasts ~9 weeks; we set to explore if hippocampal neurogenesis is altered in these animals, relative to gestational stages. Time-pregnant primigravidas (3-5 months old) and age-matched nonpregnant females were examined, with neurogenic potential evaluated via immunolabeling of Ki67, Sp8, doublecortin (DCX), and neuron-specific nuclear antigen (NeuN) combined with bromodeoxyuridine (BrdU) birth-dating. Relative to control, subgranular Ki67, Sp8, and DCX-immunoreactive (+) cells tended to increase from early gestation to postpartum and peaked at the late gestational stage. In BrdU pulse-chasing experiments in nonpregnant females surviving for different time points (2-120 days), BrdU+ cells in the DG colocalized with DCX partially from 2 to 42 days (most frequently at 14-30 days) and with NeuN increasingly from 14 to 120 days. In pregnant females that received BrdU at early, middle, and late gestational stages and survived for 42 days, the density of BrdU+ cells in the DG was mostly high in the late gestational group. The rates of BrdU/DCX and BrdU/NeuN colocalization were similar among these groups and comparable to those among the corresponding control group. Together, the findings suggest that pregnancy promotes maternal hippocampal neurogenesis in guinea pigs, at least among primigravidas.
Collapse
|
39
|
Corredor VH, da Silva FT, Baran LCP, Ventura DF, Joselevitch C. Distribution and density of mixed-input ON bipolar cells of the goldfish (Carassius auratus) during growth. J Comp Neurol 2019; 527:903-915. [PMID: 30408167 DOI: 10.1002/cne.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022]
Abstract
Neurons are continuously produced at different rates and locations in the teleost retina. Goldfish rods are homogeneously distributed and maintain a stable density throughout growth, whereas little is known about their postsynaptic partners. We examined the distribution and density of mixed-input ON bipolar cells (ON mBCs) in 57 goldfish of various sizes by immunolabeling their retinas with an antibody against PKCα and counting PKCα-positive neurons in wholemounts. Cell densities were correlated with morphometric data for the same animals, and the spatial resolution of the ON mBC mosaic was calculated in each case. The distribution of ON mBCs is homogeneous throughout growth. For a 10-fold change in body size (i.e., from 20 to 200 mm), the total number of ON mBCs increases 2.8 times, while retinal area expands around 10 times. As a consequence, the density of ON mBCs in large fish falls to ∼1/3 of that of small animals, and intercellular spacing doubles. The eye and the lens become around three times larger from small to large fish. This causes the retinal magnification factor (and thereby the image projected onto retina) to augment by the same amount. Because the retinal magnification factor rises more than the intercellular spacing in the same animals, the spatial resolution of the ON mBC mosaic improves from 0.8 to 1.4 cycles/degree as the body size increases from 20 to 200 mm. As ON mBCs are mostly rod-driven, our results suggest that the scotopic acuity of the goldfish may improve as the animal grows.
Collapse
Affiliation(s)
- Vitor H Corredor
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Flávio T da Silva
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Luiz C P Baran
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Dora F Ventura
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| | - Christina Joselevitch
- Department of Experimental Psychology, University of São Paulo, São Paulo - SP, Brazil.,Graduate Program in Neurosciences and Behavior, University of São Paulo, São Paulo - SP, Brazil
| |
Collapse
|
40
|
Umeoka EHL, Robinson EJ, Turimella SL, van Campen JS, Motta-Teixeira LC, Sarabdjitsingh RA, Garcia-Cairasco N, Braun K, de Graan PN, Joëls M. Hyperthermia-induced seizures followed by repetitive stress are associated with age-dependent changes in specific aspects of the mouse stress system. J Neuroendocrinol 2019; 31:e12697. [PMID: 30773738 DOI: 10.1111/jne.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/28/2022]
Abstract
Stress is among the most frequently self-reported factors provoking epileptic seizures in children and adults. It is still unclear, however, why some people display stress-sensitive seizures and others do not. Recently, we showed that young epilepsy patients with stress-sensitive seizures exhibit a dysregulated hypothalamic-pituitary-adrenal (HPA)-axis. Most likely, this dysregulation gradually develops, and is triggered by stressors occurring early in life (early-life stress [ELS]). ELS may be particularly impactful when overlapping with the period of epileptogenesis. To examine this in a controlled and prospective manner, the present study investigated the effect of repetitive variable stressors or control treatment between postnatal day (PND) 12 and 24 in male mice exposed on PND10 to hyperthermia (HT)-induced prolonged seizures (control: normothermia). A number of peripheral and central indices of HPA-axis activity were evaluated at pre-adolescent and young adult age (ie, at PND25 and 90, respectively). At PND25 but not at PND90, body weight gain and absolute as well as relative (to body weight) thymus weight were reduced by ELS (vs control), whereas relative adrenal weight was enhanced, confirming the effectiveness of the stress treatment. Basal and stress-induced corticosterone levels were unaffected, though, by ELS at both ages. HT by itself did not affect any of these peripheral markers of HPA-axis activity, nor did it interact with ELS. However, centrally we did observe age-specific interaction effects of HT and ELS with regard to hippocampal glucocorticoid receptor mRNA expression, neurogenesis with the immature neurone marker doublecortin and the number of hilar (ectopic) granule cells using Prox1 staining. This lends some support to the notion that exposure to repetitive stress after HT-induced seizures may dysregulate central components of the stress system in an age-dependent manner. Such dysregulation could be one of the mechanisms conferring higher vulnerability of individuals with epilepsy to develop seizures in the face of stress.
Collapse
Affiliation(s)
- Eduardo H L Umeoka
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Edward J Robinson
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sada Lakshmi Turimella
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jolien S van Campen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lívia C Motta-Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kees Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre N de Graan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Ngwenya LB, Danzer SC. Impact of Traumatic Brain Injury on Neurogenesis. Front Neurosci 2019; 12:1014. [PMID: 30686980 PMCID: PMC6333744 DOI: 10.3389/fnins.2018.01014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
New neurons are generated in the hippocampal dentate gyrus from early development through adulthood. Progenitor cells and immature granule cells in the subgranular zone are responsive to changes in their environment; and indeed, a large body of research indicates that neuronal interactions and the dentate gyrus milieu regulates granule cell proliferation, maturation, and integration. Following traumatic brain injury (TBI), these interactions are dramatically altered. In addition to cell losses from injury and neurotransmitter dysfunction, patients often show electroencephalographic evidence of cortical spreading depolarizations and seizure activity after TBI. Furthermore, treatment for TBI often involves interventions that alter hippocampal function such as sedative medications, neuromodulating agents, and anti-epileptic drugs. Here, we review hippocampal changes after TBI and how they impact the coordinated process of granule cell adult neurogenesis. We also discuss clinical TBI treatments that have the potential to alter neurogenesis. A thorough understanding of the impact that TBI has on neurogenesis will ultimately be needed to begin to design novel therapeutics to promote recovery.
Collapse
Affiliation(s)
- Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, United States.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, United States.,Neurotrauma Center, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, United States
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Anesthesia, University of Cincinnati, Cincinnati, OH, United States.,Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
42
|
DeCostanzo AJ, Fung CCA, Fukai T. Hippocampal Neurogenesis Reduces the Dimensionality of Sparsely Coded Representations to Enhance Memory Encoding. Front Comput Neurosci 2019; 12:99. [PMID: 30666194 PMCID: PMC6330828 DOI: 10.3389/fncom.2018.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse activity compared to other systems, however, whether sparseness and neurogenesis interact during memory encoding remains elusive. We implement a novel learning rule consistent with experimental findings of competition among adult-born neurons in a supervised multilayer feedforward network trained to discriminate between contexts. From this rule, the DG population partitions into neuronal ensembles each of which is biased to represent one of the contexts. This corresponds to a low dimensional representation of the contexts, whereby the fastest dimensionality reduction is achieved in sparse models. We then modify the rule, showing that equivalent representations and performance are achieved when neurons compete for synaptic stability rather than neuronal survival. Our results suggest that competition for stability in sparse models is well-suited to developing ensembles of what may be called memory engram cells.
Collapse
Affiliation(s)
- Anthony J DeCostanzo
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan.,Ascent Robotics Inc., Tokyo, Japan
| | - Chi Chung Alan Fung
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomoki Fukai
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
43
|
La Rosa C, Bonfanti L. Brain Plasticity in Mammals: An Example for the Role of Comparative Medicine in the Neurosciences. Front Vet Sci 2018; 5:274. [PMID: 30443551 PMCID: PMC6221904 DOI: 10.3389/fvets.2018.00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022] Open
Abstract
Comparative medicine deals with similarities and differences between veterinary and human medicine. All mammals share most basic cellular and molecular mechanisms, thus justifying murine animal models in a translational perspective; yet “mice are not men,” thus some biases can emerge when complex biological processes are concerned. Brain plasticity is a cutting-edge, expanding topic in the field of Neurosciences with important translational implications, yet, with remarkable differences among mammals, as emerging from comparative studies. In particular, adult neurogenesis (the genesis of new neurons from brain stem cell niches) is a life-long process in laboratory rodents but a vestigial, mostly postnatal remnant in humans and dolphins. Another form of “whole cell” plasticity consisting of a population of “immature” neurons which are generated prenatally but continue to express markers of immaturity during adulthood has gained interest more recently, as a reservoir of young neurons in the adult brain. The distribution of the immature neurons also seems quite heterogeneous among different animal species, being confined within the paleocortex in rodents while extending into neocortex in other mammals. A recent study carried out in sheep, definitely showed that gyrencephalic, large-sized brains do host higher amounts of immature neurons, also involving subcortical, white, and gray matter regions. Hence, “whole cell” plasticity such as adult neurogenesis and immature neurons are biological processes which, as a whole, cannot be studied exclusively in laboratory rodents, but require investigation in comparative medicine, involving large-sized, long-living mammals, in order to gain insights for translational purposes.
Collapse
Affiliation(s)
- Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Reyes-Garcia SZ, de Almeida ACG, Ortiz-Villatoro NN, Scorza FA, Cavalheiro EA, Scorza CA. Robust Network Inhibition and Decay of Early-Phase LTP in the Hippocampal CA1 Subfield of the Amazon Rodent Proechimys. Front Neural Circuits 2018; 12:81. [PMID: 30337859 PMCID: PMC6180286 DOI: 10.3389/fncir.2018.00081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Diverse forms of long-term potentiation (LTP) have been described, but one of the most investigated is encountered in the glutamatergic synapses of the hippocampal cornu Ammonis (CA1) subfield. However, little is known about synaptic plasticity in wildlife populations. Laboratory animals are extremely inbred populations that have been disconnected from their natural environment and so their essential ecological aspects are entirely absent. Proechimys are small rodents from Brazil’s Amazon rainforest and their nervous systems have evolved to carry out specific tasks of their unique ecological environment. It has also been shown that long-term memory duration did not persist for 24-h in Proechimys, in contrast to Wistar rats, when both animal species were assessed by the plus-maze discrimination avoidance task and object recognition test. Methods: In this work, different protocols, such as theta burst, single tetanic burst or multiple trains of high frequency stimulation (HFS), were used to induce LTP in hippocampal brain slices of Proechimys and Wistar rats. Results: A protocol-independent fast decay of early-phase LTP at glutamatergic synapses of the CA1 subfield was encountered in Proechimys. Long-term depression (LTD) and baseline paired-pulse facilitation (PPF) were investigated but no differences were found between animal species. Input/output (I/O) relationships suggested lower excitability in Proechimys in comparison to Wistar rats. Bath application of d-(-)-2-amino-5-phosphonopentanoicacid (D-AP5) and CNQX prevented the induction of LTP in both Proechimys and Wistar. However, in marked contrast to Wistar rats, LTP induction was not facilitated by the GABAA antagonist in the Amazon rodents, even higher concentrations failed to facilitate LTP in Proechimys. Next, the effects of GABAA inhibition on spontaneous activity as well as evoked field potentials (FPs) were evaluated in CA1 pyramidal cells. Likewise, much lower activity was detected in Proechimys brain slices in comparison to those of the Wistar rats. Conclusions: These findings suggest a possible high inhibitory tone in the CA1 network mediated by GABAA receptors in the Amazon rodents. Currently, neuroscience research still seeks to reveal molecular pathways that control learning and memory processes, Proechimys may prove useful in identifying such mechanisms in complement to traditional animal models.
Collapse
Affiliation(s)
- Selvin Z Reyes-Garcia
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Nancy N Ortiz-Villatoro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fulvio A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esper A Cavalheiro
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Parolisi R, Cozzi B, Bonfanti L. Humans and Dolphins: Decline and Fall of Adult Neurogenesis. Front Neurosci 2018; 12:497. [PMID: 30079011 PMCID: PMC6062615 DOI: 10.3389/fnins.2018.00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical research is carried out on animal models, mostly laboratory rodents, with the ultimate aim of translating the acquired knowledge to humans. In the last decades, adult neurogenesis (AN) has been intensively studied since it is viewed as a tool for fostering brain plasticity, possibly repair. Yet, occurrence, location, and rate of AN vary among mammals: the capability for constitutive neuronal production is substantially reduced when comparing small-brained, short living (laboratory rodents) and large-brained, long-living species (humans, dolphins). Several difficulties concerning scarce availability of fresh tissues, technical limits and ethical concerns did contribute in delaying and diverting the achievement of the picture of neurogenic plasticity in large-brained mammals. Some reports appeared in the last few years, starting to shed more light on this issue. Despite technical limits, data from recent studies mostly converge to indicate that neurogenesis is vestigial, or possibly absent, in regions of the adult human brain where in rodents neuronal addition continues into adult life. Analyses carried out in dolphins, mammals devoid of olfaction, but descendant of ancestors provided with olfaction, has shown disappearance of neurogenesis in both neonatal and adult individuals. Heterogeneity in mammalian structural plasticity remains largely underestimated by scientists focusing their research in rodents. Comparative studies are the key to understand the function of AN and the possible translational significance of neuronal replacement in humans. Here, we summarize comparative studies on AN and discuss the evolutionary implications of variations on the recruitment of new neurons in different regions and different species.
Collapse
Affiliation(s)
- Roberta Parolisi
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Luca Bonfanti
- NICO - Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.,Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
46
|
Disruption of adult olfactory neurogenesis induces deficits in maternal behavior in sheep. Behav Brain Res 2018; 347:124-131. [DOI: 10.1016/j.bbr.2018.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/18/2023]
|
47
|
Lázaro J, Hertel M, Sherwood CC, Muturi M, Dechmann DKN. Profound seasonal changes in brain size and architecture in the common shrew. Brain Struct Funct 2018; 223:2823-2840. [PMID: 29663134 PMCID: PMC5995987 DOI: 10.1007/s00429-018-1666-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 11/28/2022]
Abstract
The seasonal changes in brain size of some shrews represent the most drastic reversible transformation in the mammalian central nervous system known to date. Brain mass decreases 10-26% from summer to winter and regrows 9-16% in spring, but the underlying structural changes at the cellular level are not yet understood. Here, we describe the volumetric differences in brain structures between seasons and sexes of the common shrew (Sorex araneus) in detail, confirming that changes in different brain regions vary in the magnitude of change. Notably, shrews show a decrease in hypothalamus, thalamus, and hippocampal volume and later regrowth in spring, whereas neocortex and striatum volumes decrease in winter and do not recover in size. For some regions, males and females showed different patterns of seasonal change from each other. We also analyzed the underlying changes in neuron morphology. We observed a general decrease in soma size and total dendrite volume in the caudoputamen and anterior cingulate cortex. This neuronal retraction may partially explain the overall tissue shrinkage in winter. While not sufficient to explain the entire seasonal process, it represents a first step toward understanding the mechanisms beneath this remarkable phenomenon.
Collapse
Affiliation(s)
- Javier Lázaro
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315, Radolfzell, Germany.
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Moritz Hertel
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, 20052, Washington, DC, USA
| | - Marion Muturi
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315, Radolfzell, Germany
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Dina K N Dechmann
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315, Radolfzell, Germany
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
48
|
Akers KG, Chérasse Y, Fujita Y, Srinivasan S, Sakurai T, Sakaguchi M. Concise Review: Regulatory Influence of Sleep and Epigenetics on Adult Hippocampal Neurogenesis and Cognitive and Emotional Function. Stem Cells 2018; 36:969-976. [DOI: 10.1002/stem.2815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/02/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine; Osaka University; Suita Osaka Japan
| | - Sakthivel Srinivasan
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba; Tsukuba Ibaraki Japan
| |
Collapse
|
49
|
Seong KJ, Kim HJ, Cai B, Kook MS, Jung JY, Kim WJ. Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:145-153. [PMID: 29520167 PMCID: PMC5840073 DOI: 10.4196/kjpp.2018.22.2.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 01/27/2023]
Abstract
The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.
Collapse
Affiliation(s)
- Kyung-Joo Seong
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Hyeong-Jun Kim
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Bangrong Cai
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Min-Suk Kook
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Won-Jae Kim
- Dental Science Research Institute, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
50
|
Implantation of Neuronal Stem Cells Enhances Object Recognition without Increasing Neurogenesis after Lateral Fluid Percussion Injury in Mice. Stem Cells Int 2018. [PMID: 29531536 PMCID: PMC5818962 DOI: 10.1155/2018/4209821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cognitive deficits after traumatic brain injury (TBI) are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis. We performed lateral fluid percussion injury (LFPI) in adult mice and transplanted embryonic stem cell-derived neural progenitor cells (NPC). Our data confirm an injury-induced cognitive deficit in novel object recognition, a hippocampal-dependent learning task, which is reversed one week after NPC transplantation. While LFPI alone promotes hippocampal neurogenesis, as revealed by doublecortin immunolabeling of immature neurons, subsequent NPC transplantation prevents increased neurogenesis and is not associated with morphological maturation of endogenous injury-induced immature neurons. Thus, NPC transplantation enhances cognitive recovery early after LFPI without a concomitant increase in neuron numbers or maturation.
Collapse
|