1
|
Silva D, Mendes FC, Stanzani V, Moreira R, Pinto M, Beltrão M, Sokhatska O, Severo M, Padrão P, Garcia-Larsen V, Delgado L, Moreira A, Moreira P. The Acute Effects of a Fast-Food Meal Versus a Mediterranean Food Meal on the Autonomic Nervous System, Lung Function, and Airway Inflammation: A Randomized Crossover Trial. Nutrients 2025; 17:614. [PMID: 40004945 PMCID: PMC11858349 DOI: 10.3390/nu17040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to assess the acute effects of two isoenergetic but micronutrient-diverse meals-a Mediterranean-like meal (MdM) and a fast food-like meal (FFM)-on the autonomic nervous system (ANS), lung function, and airway inflammation response. METHODS Forty-six participants were enrolled in a randomized crossover clinical trial, consuming two isoenergetic meals: FFM (burger, fries, and sugar-sweetened drink) and MdM (vegetable soup, whole-wheat pasta, salad, olive oil, sardines, fruit, and water). Pupillometry assessed parasympathetic (MaxD, MinD, Con, ACV, MCV) and sympathetic (ADV, T75) nervous system outcomes. Lung function and airway inflammation were measured before and after each meal through spirometry and fractional exhaled nitric oxide (FeNO), respectively. RESULTS Mixed-effects model analysis showed that the MdM was associated with a hegemony of parasympathetic responses, with a significant increase of MaxD associated with a faster constriction velocity (ACV and MCV); on the other side, the FFM was associated with changes in the sympathetic response, showing a quicker redilation velocity (a decrease in T75). After adjusting for confounders, the mixed-effects models revealed that the FFM significantly decreased T75. Regarding lung function, a meal negatively impacted FVC (ae = -0.079, p < 0.001) and FEV1 (ae = -0.04, p = 0.017); however, FeNO increased, although after adjusting, no difference between meals was seen. CONCLUSIONS Our study showed that the FFM counteracted the parasympathetic activity of a meal, while a meal, irrespective of the type, decreased lung function and increased airway inflammation.
Collapse
Affiliation(s)
- Diana Silva
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- Serviço de Imunoalergologia, Unidade Local de Saúde de São João, 4202-451 Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
| | - Francisca Castro Mendes
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Vânia Stanzani
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Rita Moreira
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Mariana Pinto
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Marília Beltrão
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Oksana Sokhatska
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
| | - Milton Severo
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto, 4050-321 Porto, Portugal
| | - Patrícia Padrão
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Luís Delgado
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- Serviço de Imunoalergologia, Unidade Local de Saúde de São João, 4202-451 Porto, Portugal
- RISE-Health, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - André Moreira
- Basic and Clinical Immunology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (F.C.M.); (V.S.); (R.M.); (M.P.); (M.B.); (O.S.); (L.D.); (A.M.)
- Serviço de Imunoalergologia, Unidade Local de Saúde de São João, 4202-451 Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Pedro Moreira
- EPIUnit-Institute of Public Health, University of Porto, 4050-600 Porto, Portugal; (M.S.); (P.P.); (P.M.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| |
Collapse
|
2
|
Kumar A, Ashawat MS, Pandit V, Kumar P. Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch. Curr Pharm Des 2025; 31:163-178. [PMID: 39313906 DOI: 10.2174/0113816128326489240827100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/19/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways. OBJECTIVE Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders. METHODOLOGY The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine. CONCLUSION The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field's applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Vinay Pandit
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| | - Pravin Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Jwalamukhi, H.P., India
| |
Collapse
|
3
|
Wang W, Jia H, Hua X, Song J. New insights gained from cellular landscape changes in myocarditis and inflammatory cardiomyopathy. Heart Fail Rev 2024; 29:883-907. [PMID: 38896377 DOI: 10.1007/s10741-024-10406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Advances in the etiological classification of myocarditis and inflammatory cardiomyopathy (ICM) have reached a consensus. However, the mechanism of myocarditis/ICM remains unclear, which affects the development of treatment and the improvement of outcome. Cellular transcription and metabolic reprogramming, and the interactions between cardiomyocytes and non-cardiomyocytes, such as the immune cells, contribute to the process of myocarditis/ICM. Recent efforts have been made by multi-omics techniques, particularly in single-cell RNA sequencing, to gain a better understanding of the cellular landscape alteration occurring in disease during the progression. This article aims to provide a comprehensive overview of the latest studies in myocarditis/ICM, particularly as revealed by single-cell sequencing.
Collapse
Affiliation(s)
- Weiteng Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
4
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
5
|
Das S, Ghosh B, Sahoo RN, Nayak AK. Recent Advancements in Bioelectronic Medicine: A Review. Curr Drug Deliv 2024; 21:1445-1459. [PMID: 38173212 DOI: 10.2174/0115672018286832231218112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.
Collapse
Affiliation(s)
- Sudipta Das
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Baishali Ghosh
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
6
|
Gallagher J, Rosh JR, Sahn B. The Future of Advanced Therapies for Pediatric Crohn's Disease. Paediatr Drugs 2023; 25:621-633. [PMID: 37612580 DOI: 10.1007/s40272-023-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Pediatric Crohn's disease commonly presents with moderate-to-severe intestinal inflammation with a greater risk of complications if remission is not achieved. Anti-tumor necrosis factor therapies have offered the possibility of deep and durable remission; however, many children do not respond or no longer respond over time. Further, some children do not require broader systemic immunosuppression to achieve remission and are better served by an alternative treatment strategy. Proper utilization of advanced biologic and small-molecule therapies, which have become available for adult patients since anti-tumor necrosis factor medications, is paramount for tighter disease control for a large proportion of children. Newer advanced therapies such as anti-integrin and anti-interleukin biologics, and several small-molecule agents capitalize on various mechanisms through narrower immunologic targets and reduced immunogenicity. Given limited regulatory approvals of these agents for use in children with Crohn's disease, clinicians continue to rely on data extrapolated from clinical trials in adult patients, sparse pediatric studies, and a growing real-world experience for treatment selection and optimization. In this article, we discuss currently available treatment options, pipeline drugs, and relevant data as they pertain to some of the most pressing clinical challenges faced in treating pediatric Crohn's disease.
Collapse
Affiliation(s)
- Julie Gallagher
- Division of Pediatric Gastroenterology, Liver Diseases, and Nutrition, Steven and Alexandra Cohen Children's Medical Center, Northwell Health, 1991 Marcus Ave, Suite M100, New Hyde Park, NY, 11042, USA
| | - Joel R Rosh
- Division of Pediatric Gastroenterology, Liver Diseases, and Nutrition, Steven and Alexandra Cohen Children's Medical Center, Northwell Health, 1991 Marcus Ave, Suite M100, New Hyde Park, NY, 11042, USA
| | - Benjamin Sahn
- Division of Pediatric Gastroenterology, Liver Diseases, and Nutrition, Steven and Alexandra Cohen Children's Medical Center, Northwell Health, 1991 Marcus Ave, Suite M100, New Hyde Park, NY, 11042, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
7
|
Güemes Gonzalez A, Carnicer-Lombarte A, Hilton S, Malliaras G. A multivariate physiological model of vagus nerve signalling during metabolic challenges in anaesthetised rats for diabetes treatment. J Neural Eng 2023; 20:056033. [PMID: 37757803 DOI: 10.1088/1741-2552/acfdcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Objective.This study aims to develop a comprehensive decoding framework to create a multivariate physiological model of vagus nerve transmission that reveals the complex interactions between the nervous and metabolic systems.Approach.Vagus nerve activity was recorded in female Sprague-Dawley rats using gold hook microwires implanted around the left cervical vagus nerve. The rats were divided into three experimental cohorts (intact nerve, ligation nerve for recording afferent activation, and ligation for recording efferent activation) and metabolic challenges were administered to change glucose levels while recording the nerve activity. The decoding methodology involved various techniques, including continuous wavelet transformation, extraction of breathing rate (BR), and correlation of neural metrics with physiological signals.Main results.Decrease in glucose level was consistently negatively correlated with an increase in the firing activity of the intact vagus nerve that was found to be conveyed by both afferent and efferent pathways, with the afferent response being more similar to the one on the intact nerve. A larger variability was observed in the sensory and motor responses to hyperglycaemia. A novel strategy to extract the BR over time based on inter-burst-interval is also presented. The vagus afferent was found to encode breathing information through amplitude and firing rate modulation. Modulations of the signal amplitude were also observed due to changes in heart rate in the intact and efferent recordings, highlighting the parasympathetic control of the heart.Significance.The analytical framework presented in this study provides an integrative understanding that considers the relationship between metabolic, cardiac, and breathing signals and contributes to the development of a multivariable physiological model for the transmission of vagus nerve signals. This work progresses toward the development of closed-loop neuro-metabolic therapeutic systems for diabetes.
Collapse
Affiliation(s)
- Amparo Güemes Gonzalez
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - George Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| |
Collapse
|
8
|
Panda AK, Basu B. Regenerative bioelectronics: A strategic roadmap for precision medicine. Biomaterials 2023; 301:122271. [PMID: 37619262 DOI: 10.1016/j.biomaterials.2023.122271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
In the past few decades, stem cell-based regenerative engineering has demonstrated its significant potential to repair damaged tissues and to restore their functionalities. Despite such advancement in regenerative engineering, the clinical translation remains a major challenge. In the stance of personalized treatment, the recent progress in bioelectronic medicine likewise evolved as another important research domain of larger significance for human healthcare. Over the last several years, our research group has adopted biomaterials-based regenerative engineering strategies using innovative bioelectronic stimulation protocols based on either electric or magnetic stimuli to direct cellular differentiation on engineered biomaterials with a range of elastic stiffness or functional properties (electroactivity/magnetoactivity). In this article, the role of bioelectronics in stem cell-based regenerative engineering has been critically analyzed to stimulate futuristic research in the treatment of degenerative diseases as well as to address some fundamental questions in stem cell biology. Built on the concepts from two independent biomedical research domains (regenerative engineering and bioelectronic medicine), we propose a converging research theme, 'Regenerative Bioelectronics'. Further, a series of recommendations have been put forward to address the current challenges in bridging the gap in stem cell therapy and bioelectronic medicine. Enacting the strategic blueprint of bioelectronic-based regenerative engineering can potentially deliver the unmet clinical needs for treating incurable degenerative diseases.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bengaluru, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
9
|
Zouali M. Pharmacological and Electroceutical Targeting of the Cholinergic Anti-Inflammatory Pathway in Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:1089. [PMID: 37631004 PMCID: PMC10459025 DOI: 10.3390/ph16081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Continuous dialogue between the immune system and the brain plays a key homeostatic role in various immune responses to environmental cues. Several functions are under the control of the vagus nerve-based inflammatory reflex, a physiological mechanism through which nerve signals regulate immune functions. In the cholinergic anti-inflammatory pathway, the vagus nerve, its pivotal neurotransmitter acetylcholine, together with the corresponding receptors play a key role in modulating the immune response of mammals. Through communications of peripheral nerves with immune cells, it modulates proliferation and differentiation activities of various immune cell subsets. As a result, this pathway represents a potential target for treating autoimmune diseases characterized by overt inflammation and a decrease in vagal tone. Consistently, converging observations made in both animal models and clinical trials revealed that targeting the cholinergic anti-inflammatory pathway using pharmacologic approaches can provide beneficial effects. In parallel, bioelectronic medicine has recently emerged as an alternative approach to managing systemic inflammation. In several studies, nerve electrostimulation was reported to be clinically relevant in reducing chronic inflammation in autoimmune diseases, including rheumatoid arthritis and diabetes. In the future, these new approaches could represent a major therapeutic strategy for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
10
|
Lin PH, Nien HH, Li BR. Wearable Microfluidics for Continuous Assay. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:181-203. [PMID: 36888989 DOI: 10.1146/annurev-anchem-091322-082930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of wearable devices provides approaches for the realization of self-health care. Easily carried wearable devices allow individual health monitoring at any place whenever necessary. There are various interesting monitoring targets, including body motion, organ pressure, and biomarkers. An efficient use of space in one small device is a promising resolution to increase the functions of wearable devices. Through integration of a microfluidic system into wearable devices, embedding complicated structures in one design becomes possible and can enable multifunction analyses within a limited device volume. This article reviews the reported microfluidic wearable devices, introduces applications to different biofluids, discusses characteristics of the design strategies and sensing principles, and highlights the attractive configurations of each device. This review seeks to provide a detailed summary of recent advanced microfluidic wearable devices. The overview of advanced key components is the basis for the development of future microfluidic wearable devices.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Hua Nien
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter of Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
11
|
Falvey A, Palandira SP, Chavan SS, Brines M, Tracey KJ, Pavlov VA. Electrical stimulation of the dorsal motor nucleus of the vagus regulates inflammation without affecting the heart rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541191. [PMID: 37292846 PMCID: PMC10245723 DOI: 10.1101/2023.05.17.541191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN) as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications, but the anti-inflammatory efficacy of electrical DMN stimulation (eDMNS) was not previously investigated. Here, we examined the effects of eDMNS on heart rate (HR) and cytokine levels in murine endotoxemia as well as the cecal ligation and puncture (CLP) model of sepsis. Methods Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (50, 250 or 500 μA and 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 μA or 50 μA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24h after CLP. CLP survival was monitored for 14 days. Results Either left or right eDMNS at 250 μA and 500 μA decreased HR, compared with pre- and post-stimulation. This effect was not observed at 50 μA. Left side eDMNS at 50 μA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and were not associated with serum corticosterone alterations. Right side eDMNS suppressed serum TNF levels but had no effects on serum IL-10 and on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum TNF and IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. Conclusions For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation and these effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.
Collapse
Affiliation(s)
- Aidan Falvey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Santhoshi P. Palandira
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sangeeta S. Chavan
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | - Valentin A. Pavlov
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11549, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
12
|
Salgado HC, Brognara F, Ribeiro AB, Lataro RM, Castania JA, Ulloa L, Kanashiro A. Autonomic Regulation of Inflammation in Conscious Animals. Neuroimmunomodulation 2023; 30:102-112. [PMID: 37232031 DOI: 10.1159/000530908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Bioelectronic medicine is a novel field in modern medicine based on the specific neuronal stimulation to control organ function, cardiovascular, and immune homeostasis. However, most studies addressing neuromodulation of the immune system have been conducted on anesthetized animals, which can affect the nervous system and neuromodulation. Here, we review recent studies involving conscious experimental rodents (rats and mice) to better understand the functional organization of neural control of immune homeostasis. We highlight typical experimental models of cardiovascular regulation, such as electrical activation of the aortic depressor nerve or the carotid sinus nerve, bilateral carotid occlusion, the Bezold-Jarisch reflex, and intravenous administration of the bacterial endotoxin lipopolysaccharide. These models have been used to investigate the relationship between neuromodulation of the cardiovascular and immune systems in conscious rodents (rats and mice). These studies provide critical information about the neuromodulation of the immune system, particularly the role of the autonomic nervous system, i.e., the sympathetic and parasympathetic branches acting both centrally (hypothalamus, nucleus ambiguus, nucleus tractus solitarius, caudal ventrolateral medulla, and rostral ventrolateral medulla), and peripherally (particularly spleen and adrenal medulla). Overall, the studies in conscious experimental models have certainly highlighted to the reader how the methodological approaches used to investigate cardiovascular reflexes in conscious rodents (rats and mice) can also be valuable for investigating the neural mechanisms involved in inflammatory responses. The reviewed studies have clinical implications for future therapeutic approaches of bioelectronic modulation of the nervous system to control organ function and physiological homeostasis in conscious physiology.
Collapse
Affiliation(s)
- Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fernanda Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Renata Maria Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Luis Ulloa
- Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, North Carolina, USA
| | - Alexandre Kanashiro
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin Medical Sciences Center, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Leitzke M. Is the post-COVID-19 syndrome a severe impairment of acetylcholine-orchestrated neuromodulation that responds to nicotine administration? Bioelectron Med 2023; 9:2. [PMID: 36650574 PMCID: PMC9845100 DOI: 10.1186/s42234-023-00104-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Following a SARS-CoV-2 infection, many individuals suffer from post-COVID-19 syndrome. It makes them unable to proceed with common everyday activities due to weakness, memory lapses, pain, dyspnea and other unspecific physical complaints. Several investigators could demonstrate that the SARS-CoV-2 related spike glycoprotein (SGP) attaches not only to ACE-2 receptors but also shows DNA sections highly affine to nicotinic acetylcholine receptors (nAChRs). The nAChR is the principal structure of cholinergic neuromodulation and is responsible for coordinated neuronal network interaction. Non-intrinsic viral nAChR attachment compromises integrative interneuronal communication substantially. This explains the cognitive, neuromuscular and mood impairment, as well as the vegetative symptoms, characterizing post-COVID-19 syndrome. The agonist ligand nicotine shows an up to 30-fold higher affinity to nACHRs than acetylcholine (ACh). We therefore hypothesize that this molecule could displace the virus from nAChR attachment and pave the way for unimpaired cholinergic signal transmission. Treating several individuals suffering from post-COVID-19 syndrome with a nicotine patch application, we witnessed improvements ranging from immediate and substantial to complete remission in a matter of days.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Anesthesiology, Helios Clinics, Colditzer Straße 48, 04703, Leisnig, Germany.
| |
Collapse
|
14
|
Zhao Z, Li L, Xin C, Yin Y, Zhang R, Guo J. A bibliometric analysis of 100 top-cited journal articles related to acupuncture regulation of the autonomic nervous system. Front Neurosci 2022; 16:1086087. [PMID: 36620457 PMCID: PMC9813952 DOI: 10.3389/fnins.2022.1086087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Research on the effects of acupuncture on autonomic function has been conducted for several decades, and a few notable studies have emerged in recent years. This study used bibliometric analysis to assess 100 top-cited articles to characterize the current status and research trends over the last three decades. Methods The 100 top-cited publications were identified from the Web of Science Core Collection database. The bibliometrix package in R was used for quantitative and qualitative analyses of the publication patterns and the country/region, institution, and author contributions. VOSviewer was used to construct networks based on co-citation analysis of the journals and the keyword co-occurrence. Results The 100 top-cited articles were identified with a total of 8,123 citations (range: 37-345). The majority of the articles came from the USA (n = 42), followed by Japan (n = 14) and mainland China (n = 13). Articles from the USA exhibited the largest number of citations (3,582 citations), followed by articles from Japan (1,189 citations), then articles from mainland China (755 citations). Neurosciences/Neurology was the most studied research area (n = 41). The Autonomic Neuroscience: Basic and Clinical published the largest number of papers (n = 14), while Brain Research received the largest number of citations (205 citations). Longhurst JC was the most productive author (10 publications), and Sato A was first among the cited authors (87 citations). The most frequently cited articles that focused on gastrointestinal, cardiovascular, or gynecologic responses to acupuncture regulation of the autonomic nervous system first appeared in the 1990s, peaked in the 2000s, then decreased after 2010. Publication of articles focused on the anti-inflammatory effects of acupuncture associated with autonomic function demonstrated an increasing trend over the last three decades. Conclusion From the initial studies focusing on the autonomic mechanism of visceral responses to acupuncture, researchers concentrated on exploring the autonomic mechanism of acupuncture in the control of systemic inflammation. Non-invasive electrical methods that activate somato-autonomic reflexes are current translational directions in clinical practice. Additional investigation of the underlying neuroanatomical basis of somato-autonomic reflexes also is needed.
Collapse
Affiliation(s)
- Zhanhao Zhao
- Danyang Hospital of Traditional Chinese Medicine, Teaching Hospital of Nanjing University of Chinese Medicine, Danyang, China
| | - Li Li
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China,Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Xin
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaqun Yin
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Zhang
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Jing Guo
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Jing Guo,
| |
Collapse
|
15
|
Donahue MJ, Ejneby MS, Jakešová M, Caravaca AS, Andersson G, Sahalianov I, Đerek V, Hult H, Olofsson PS, Głowacki ED. Wireless optoelectronic devices for vagus nerve stimulation in mice. J Neural Eng 2022; 19. [PMID: 36356313 DOI: 10.1088/1741-2552/aca1e3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/10/2022] [Indexed: 11/12/2022]
Abstract
Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.
Collapse
Affiliation(s)
- Mary J Donahue
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Malin Silverå Ejneby
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
| | - Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - April S Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden
| | | | - Ihor Sahalianov
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Vedran Đerek
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
| | - Henrik Hult
- Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Department of Mathematics, KTH, 11428 Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
16
|
Payne SC, Romas E, Hyakumura T, Muntz F, Fallon JB. Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats. Front Neurosci 2022; 16:1012133. [PMID: 36478876 PMCID: PMC9721112 DOI: 10.3389/fnins.2022.1012133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease. Despite therapeutic advances, a significant proportion of RA patients are resistant to pharmacological treatment. Stimulation of the cervical vagus nerve is a promising alternative bioelectric neuromodulation therapeutic approach. However, recent clinical trials show cervical vagus nerve stimulation (VNS) was not effective in a significant proportion of drug resistant RA patients. Here we aim to assess if abdominal vagus nerve stimulation reduces disease severity in a collagen-induced arthritis (CIA) rat model. The abdominal vagus nerve of female Dark Agouti rats was implanted and CIA induced using collagen type II injection. VNS (1.6 mA, 200 μs pulse width, 50 μs interphase gap, 27 Hz frequency) was applied to awake freely moving rats for 3 h/day (days 11-17). At 17 days following the collagen injection, unstimulated CIA rats (n = 8) had significantly worse disease activity index, tumor necrosis factor-alpha (TNF-α) and receptor activator of NFκB ligand (RANKL) levels, synovitis and cartilage damage than normal rats (n = 8, Kruskal-Wallis: P < 0.05). However, stimulated CIA rats (n = 5-6) had significantly decreased inflammatory scores and ankle swelling (Kruskal-Wallis: P < 0.05) compared to unstimulated CIA rats (n = 8). Levels of tumor necrosis factor-alpha (TNF-α) remained at undetectable levels in stimulated CIA rats while levels of receptor activator of NFκB ligand (RANKL) were significantly less in stimulated CIA rats compared to unstimulated CIA rats (P < 0.05). Histopathological score of inflammation and cartilage loss in stimulated CIA rats were no different from that of normal (P > 0.05). In conclusion, abdominal VNS alleviates CIA and could be a promising therapy for patients with RA.
Collapse
Affiliation(s)
- Sophie C. Payne
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Evange Romas
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Rheumatology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Fenella Muntz
- Experimental Sciences Medical Unit, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
- Department of Otolaryngology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Pavlov VA, Tracey KJ. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron 2022; 110:3627-3644. [PMID: 36174571 PMCID: PMC10155266 DOI: 10.1016/j.neuron.2022.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The nervous system maintains homeostasis and health. Homeostatic disruptions underlying the pathobiology of many diseases can be controlled by bioelectronic devices targeting CNS and peripheral neural circuits. New insights into the regulatory functions of the nervous system and technological developments in bioelectronics drive progress in the emerging field of bioelectronic medicine. Here, we provide an overview of key aspects of preclinical research, translation, and clinical advances in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
18
|
Mota CMD, Madden CJ. Neural control of the spleen as an effector of immune responses to inflammation: mechanisms and treatments. Am J Physiol Regul Integr Comp Physiol 2022; 323:R375-R384. [PMID: 35993560 PMCID: PMC9485006 DOI: 10.1152/ajpregu.00151.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Immune system responses are a vital defense mechanism against pathogens. Inflammatory mediators finely regulate complex inflammatory responses from initiation to resolution. However, in certain conditions, the inflammation is initiated and amplified, but not resolved. Understanding the biological mechanisms underlying the regulation of the immune response is critical for developing therapeutic alternatives, including pharmaceuticals and bioelectronic tools. The spleen is an important immune effector organ since it orchestrates innate and adaptive immune responses such as pathogen clearance, cytokine production, and differentiation of cells, therefore playing a modulatory role that balances pro- and anti-inflammatory responses. However, modulation of splenic immune activity is a largely unexplored potential therapeutic tool that could be used for the treatment of inflammatory and life-threatening conditions. This review discusses some of the mechanisms controlling neuroimmune communication and the brain-spleen axis.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
19
|
Abstract
Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.
Collapse
Affiliation(s)
- John R Lukens
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Andersson U, Yang H. HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. JOURNAL OF INTENSIVE MEDICINE 2022; 2:156-166. [PMID: 36789020 PMCID: PMC9924014 DOI: 10.1016/j.jointm.2022.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 04/12/2023]
Abstract
Gram-negative sepsis is a severe clinical syndrome associated with significant morbidity and mortality. Lipopolysaccharide (LPS), expressed on Gram-negative bacteria, is a potent pro-inflammatory toxin that induces inflammation and coagulation via two separate receptor systems. One is Toll-like receptor 4 (TLR4), expressed on cell surfaces and in endosomes, and the other is the cytosolic receptor caspase-11 (caspases-4 and -5 in humans). Extracellular LPS binds to high mobility group box 1 (HMGB1) protein, a cytokine-like molecule. The HMGB1-LPS complex is transported via receptor for advanced glycated end products (RAGE)-endocytosis to the endolysosomal system to reach the cytosolic LPS receptor caspase-11 to induce HMGB1 release, inflammation, and coagulation that may cause multi-organ failure. The insight that LPS needs HMGB1 assistance to generate severe inflammation has led to successful therapeutic results in preclinical Gram-negative sepsis studies targeting HMGB1. However, to date, no clinical studies have been performed based on this strategy. HMGB1 is also actively released by peripheral sensory nerves and this mechanism is fundamental for the initiation and propagation of inflammation during tissue injury. Homeostasis is achieved when other neurons actively restrict the inflammatory response via monitoring by the central nervous system and the vagus nerve through the cholinergic anti-inflammatory pathway. The neuronal control in Gram-negative sepsis needs further studies since a deeper understanding of the interplay between HMGB1 and acetylcholine may have beneficial therapeutic implications. Herein, we review the synergistic overlapping mechanisms of LPS and HMGB1 and discuss future treatment opportunities in Gram-negative sepsis.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden
- Corresponding author: Ulf Andersson, Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden.
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| |
Collapse
|
21
|
Koh RGL, Zariffa J, Jabban L, Yen SC, Donaldson N, Metcalfe BW. Tutorial: A guide to techniques for analysing recordings from the peripheral nervous system. J Neural Eng 2022; 19. [PMID: 35772397 DOI: 10.1088/1741-2552/ac7d74] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
The nervous system, through a combination of conscious and automatic processes, enables the regulation of the body and its interactions with the environment. The peripheral nervous system is an excellent target for technologies that seek to modulate, restore or enhance these abilities as it carries sensory and motor information that most directly relates to a target organ or function. However, many applications require a combination of both an effective peripheral nerve interface and effective signal processing techniques to provide selective and stable recordings. While there are many reviews on the design of peripheral nerve interfaces, reviews of data analysis techniques and translational considerations are limited. Thus, this tutorial aims to support new and existing researchers in the understanding of the general guiding principles, and introduces a taxonomy for electrode configurations, techniques and translational models to consider.
Collapse
Affiliation(s)
- Ryan G L Koh
- IBBME, University of Toronto, Rosebrugh Bldg, 164 College St Room 407, Toronto, Ontario, M5S 3G9, CANADA
| | - Jose Zariffa
- Research, Toronto Rehabilitation Institute - University Health Network, 550 University Ave, #12-102, Toronto, Ontario, M5G 2A2, CANADA
| | - Leen Jabban
- Electronic and Electrical Engineering, University of Bath, Electronic and Electrical Engineering, Claverton Down, Bath, Bath, BA2 7AY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Shih-Cheng Yen
- Engineering Design and Innovation Centre, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, SINGAPORE
| | - Nick Donaldson
- Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Benjamin W Metcalfe
- Electronics & Electrical Engineering, University of Bath, Claverton Down, Bath, Somerset, BA2 7JY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
22
|
Ma Q. Somatotopic organization of autonomic reflexes by acupuncture. Curr Opin Neurobiol 2022; 76:102602. [PMID: 35780689 DOI: 10.1016/j.conb.2022.102602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022]
Abstract
Acupuncture has been practiced for more than 2000 years in China and now all over the world. One core idea behind this medical practice is that stimulation at specific body regions (acupoints) can distantly modulate organ physiology, but the underlying scientific basis has been long debated. Here, I summarize evidence supporting that long-distant acupuncture effects operate partly through somato-autonomic reflexes, leading to activation of sympathetic and/or parasympathetic pathways. I then discuss how the patterning of the somatosensory system along the rostro-caudal axis and the cutaneous-deep tissue axis might explain acupoint specificity and selectivity in driving specific autonomic pathways, particularly those modulating gastrointestinal motility and systemic inflammation.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Abstract
Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
24
|
Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:379-394. [PMID: 35301456 DOI: 10.1038/s41569-022-00678-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, Sapienza University, Rome, Italy. .,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
25
|
Cheng Y, Yu W, Zhou Y, Zhang T, Chi H, Xu C. Novel predictor of the occurrence of DKA in T1DM patients without infection: A combination of neutrophil/lymphocyte ratio and white blood cells. Open Life Sci 2022; 16:1365-1376. [PMID: 35071771 PMCID: PMC8760182 DOI: 10.1515/biol-2021-0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 12/28/2022] Open
Abstract
The role of inflammation has been identified in the pathogenesis of diabetic ketoacidosis (DKA). The neutrophil/lymphocyte ratio (NLR) and white blood cells (WBC) can be used to predict a systemic inflammatory response. Changes in NLR and WBC levels have never been explored in type 1 diabetes mellitus (T1DM) patients with DKA and an uninfected state. This retrospective study included a total of 644 participants. NLR and WBC were measured in the control group (n = 316) and in T1DM patients with mild-DKA (n = 92), severe-DKA (n = 52), and non-DKA (n = 184) in an uninfected state. Then, we assessed the independent predictors of DKA occurrence in T1DM patients in an uninfected state. The diagnostic performance of variables was determined by receiver operating characteristic curve analysis. Serum NLR of T1DM patients is significantly higher than that of normal controls, and if DKA occurs, NLR increases further and increases with the severity of DKA. In addition to diastolic blood pressure, blood urea nitrogen, glycated hemoglobin (HbA1c), and WBC, NLR was also independently associated with DKA in T1DM patients with an uninfected state (OR = 1.386, 95% CI: 1.127-1.705, p = 0.002). Furthermore, the diagnosis analysis showed that except for NLR and WBC, the area under the curve (AUC) of indicators with a statistical difference in patients with and without DKA were 0.747 for DKA diagnosis, and after the addition of NLR and WBC, the AUC was 0.806. The increased NLR level represents a low-cost and highly accessible predictor for DKA in T1DM patients with an uninfected state. The addition of inflammation indicators can play a statistically significant role in the prediction model of the DKA occurrence.
Collapse
Affiliation(s)
- Yiping Cheng
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| | - Wenhao Yu
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Yuping Zhou
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital, 70, Heping Road, Weihai, 264299, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, 44 Wenhuaxi Road, Jinan 250012, China
| | - Haiyan Chi
- Department of Endocrinology and Metabolism, Weihai Municipal Hospital, 70, Heping Road, Weihai, 264299, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324, Jing 5 Road, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan 250021, Shandong, China
| |
Collapse
|
26
|
Tynan A, Brines M, Chavan SS. Control of inflammation using non-invasive neuromodulation: past, present and promise. Int Immunol 2022; 34:119-128. [PMID: 34558623 PMCID: PMC8783606 DOI: 10.1093/intimm/dxab073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The nervous system has been increasingly recognized as a novel and accessible target in the regulation of inflammation. The use of implantable and invasive devices targeting neural circuits has yielded successful results in clinical settings but does have some risk or adverse effects. Recent advances in technology and understanding of mechanistic pathways have opened new avenues of non-invasive neuromodulation. Through this review we discuss the novel research and outcomes of major modalities of non-invasive neuromodulation in the context of inflammation including transcutaneous electrical, magnetic and ultrasound neuromodulation. In addition to highlighting the scientific observations and breakthroughs, we discuss the underlying mechanisms and pathways for neural regulation of inflammation.
Collapse
Affiliation(s)
- Aisling Tynan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Michael Brines
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra University, Hempstead, NY, USA
| |
Collapse
|
27
|
Honke N, Lowin T, Opgenoorth B, Shaabani N, Lautwein A, Teijaro JR, Schneider M, Pongratz G. Endogenously produced catecholamines improve the regulatory function of TLR9-activated B cells. PLoS Biol 2022; 20:e3001513. [PMID: 35073310 PMCID: PMC8786184 DOI: 10.1371/journal.pbio.3001513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 01/02/2023] Open
Abstract
The sympathetic nervous system (SNS) contributes to immune balance by promoting anti-inflammatory B cells. However, whether B cells possess a self-regulating mechanism by which they modulate regulatory B cell (Breg) function is not well understood. In this study, we investigated the ability of B cells to synthesize their own catecholamines upon stimulation with different B cell activators and found that expression of the enzyme tyrosine hydroxylase (TH), required to generate catecholamines, is up-regulated by Toll-like receptor (TLR)9. This TLR9-dependent expression of TH correlated with up-regulation of adrenergic receptors (ADRs), enhanced interleukin (IL)-10 production, and overexpression of the co-inhibitory ligands programmed death ligand 1 (PD-L1) and Fas ligand (FasL). Moreover, concomitant stimulation of ß1-3-ADRs together with a B cell receptor (BCR)/TLR9 stimulus clearly enhances the anti-inflammatory potential of Bregs to suppress CD4 T cells, a crucial population in the pathogenesis of autoimmune diseases, like rheumatoid arthritis (RA). Furthermore, TH up-regulation was also demonstrated in B cells during the course of collagen-induced arthritis (CIA), a mouse model for the investigation of RA. In conclusion, our data show that B cells possess an autonomous mechanism to modulate their regulatory function in an autocrine and/or paracrine manner. These findings help to better understand the function of B cells in the regulation of autoimmune diseases and the interplay of SNS. The sympathetic nervous system produces neurotransmitters such as catecholamines which contribute to immune balance by promoting anti-inflammatory B cells. This study shows that mouse B cells can themselves synthesize, sense, and transport catecholamines, which in turn modulate regulatory B cell function in an autocrine and/or paracrine manner to suppress T cell proliferation.
Collapse
Affiliation(s)
- Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
- * E-mail: (NH); (GP)
| | - Torsten Lowin
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
| | - Birgit Opgenoorth
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
| | - Namir Shaabani
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Alexander Lautwein
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
| | - John R. Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthias Schneider
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
| | - Georg Pongratz
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
- * E-mail: (NH); (GP)
| |
Collapse
|
28
|
Fischer L, Barop H, Ludin SM, Schaible HG. Regulation of acute reflectory hyperinflammation in viral and other diseases by means of stellate ganglion block. A conceptual view with a focus on Covid-19. Auton Neurosci 2022; 237:102903. [PMID: 34894589 PMCID: PMC9761017 DOI: 10.1016/j.autneu.2021.102903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
Whereas the autonomic nervous system (ANS) and the immune system used to be assigned separate functions, it has now become clear that the ANS and the immune system (and thereby inflammatory cascades) work closely together. During an acute immune response (e. g., in viral infection like Covid-19) the ANS and the immune system establish a fast interaction resulting in "physiological" inflammation. Based on our knowledge of the modulation of inflammation by the ANS we propose that a reflectory malfunction of the ANS with hyperactivity of the sympathetic nervous system (SNS) may be involved in the generation of acute hyperinflammation. We believe that sympathetic hyperactivity triggers a hyperresponsiveness of the immune system ("cytokine storm") with consecutive tissue damage. These reflectory neuroimmunological and inflammatory cascades constitute a general reaction principle of the organism under the leadership of the ANS and does not only occur in viral infections, although Covid-19 is a typical current example therefore. Within the overreaction several interdependent pathological positive feedback loops can be detected in which the SNS plays an important part. Consequently, there is a chance to regulate the hyperinflammation by influencing the SNS. This can be achieved by a stellate ganglion block (SGB) with local anesthetics, temporarily disrupting the pathological positive feedback loops. Thereafter, the complex neuroimmune system has the chance to reorganize itself. Previous clinical and experimental data have confirmed a favorable outcome in hyperinflammation (including pneumonia) after SGB (measurable e. g. by a reduction in proinflammatory cytokines).
Collapse
Affiliation(s)
- Lorenz Fischer
- University of Bern, Interventional Pain Management, General Internal Medicine, Schwanengasse 5/7, 3011 Bern, Switzerland.
| | - Hans Barop
- Neural Therapy, Friedrich-Legahn-Str. 2, 22587 Hamburg, Germany
| | | | - Hans-Georg Schaible
- University Hospital Jena, Institute of Physiology1/Neurophysiology, Teichgraben 8, 07743 Jena, Germany.
| |
Collapse
|
29
|
Andersson U, Tracey KJ, Yang H. Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells 2021; 10:cells10123323. [PMID: 34943830 PMCID: PMC8699546 DOI: 10.3390/cells10123323] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: ; Tel.: +46-(70)-7401740
| | - Kevin J. Tracey
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| |
Collapse
|
30
|
Luis Araujo Minari A, Avila F, Missae Oyama L, Vagner Thomatieli Dos Santos R. Inflammatory response of the peripheral neuroendocrine system following downhill running. Cytokine 2021; 149:155746. [PMID: 34678553 DOI: 10.1016/j.cyto.2021.155746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Exploring the relationship between exercise inflammation and the peripheral neuroendocrine system is essential for understanding how acute or repetitive bouts of exercise can contribute to skeletal muscle adaption. In severe damage, some evidence demonstrates that peripheral neuroendocrine receptors might contribute to inflammatory resolution, supporting the muscle healing process through myogenesis. In this sense, the current study aimed to evaluate two classic peripheral neuronal receptors along with skeletal muscle inflammation and adaptation parameters in triceps brachii after exercise. We euthanized C57BL (10 to 12 weeks old) male mice before, and one, two, and three days after a downhill running protocol. The positive Ly6C cells, along with interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), glucocorticoid receptor (GR), α7 subunits of the nicotinic acetylcholine receptor (nAChRs), and myonuclei accretion were analyzed. Our main results demonstrated that nAChRs increased with the inflammatory and myonuclei accretion responses regardless of NF-κB and GR protein expression. These results indicate that increased nAChR may contribute to skeletal muscle adaption after downhill running in mice.
Collapse
Affiliation(s)
| | - Felipe Avila
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ronaldo Vagner Thomatieli Dos Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; Departamento de Biociências - Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
31
|
Brognara F, Castania JA, Ribeiro AB, Santos-Júnior NN, Salgado HC. The Bezold-Jarisch Reflex and The Inflammatory Response Modulation in Unanesthetized Endotoxemic Rats. Front Physiol 2021; 12:745285. [PMID: 34616312 PMCID: PMC8488195 DOI: 10.3389/fphys.2021.745285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Evidence indicates that the activation of the parasympathetic branch of the autonomic nervous system may be effective in treating inflammatory diseases. Previously, we have described that baroreflex activation displays anti-inflammatory properties. Analogous to the baroreflex, the Bezold-Jarisch reflex also promotes parasympathetic activation with simultaneous inhibition of the sympathetic system. Thus, the present study aimed to evaluate whether the activation of the Bezold-Jarisch reflex would also have the ability to reduce inflammation in unanesthetized rats. We used lipopolysaccharide (LPS) injection (5mg/kg, i.p.) to induce systemic inflammation in male Wistar Hannover rats and phenylbiguanide (PBG) administration (5μg/kg, i.v.) to activate the Bezold-Jarisch reflex. Spleen, heart, hypothalamus, and blood samples were collected to determine the levels of cytokines. Compared to baseline, PBG reduced the arterial pressure (115±2 vs. 88±5mmHg) and heart rate (380±7 vs. 114±26bpm), immediately after its administration, confirming the activation of the parasympathetic system and inhibition of the sympathetic system. From the immunological point of view, the activation of the Bezold-Jarisch reflex decreased the plasma levels of TNF (LPS: 775±209 vs. PBG + LPS: 248±30pg/ml) and IL-6 levels in the spleen (LPS: 39±6 vs. PBG + LPS: 24±4pg/mg of tissue). However, it did not change the other cytokines in the plasma or the other tissues evaluated. These findings confirm that the activation of the Bezold-Jarisch reflex can modulate inflammation and support the understanding that the cardiovascular reflexes regulate the immune system.
Collapse
Affiliation(s)
- Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Aline Barbosa Ribeiro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Helio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
32
|
Metz CN, Pavlov VA. Treating disorders across the lifespan by modulating cholinergic signaling with galantamine. J Neurochem 2021; 158:1359-1380. [PMID: 33219523 PMCID: PMC10049459 DOI: 10.1111/jnc.15243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Advances in understanding the regulatory functions of the nervous system have revealed neural cholinergic signaling as a key regulator of cytokine responses and inflammation. Cholinergic drugs, including the centrally acting acetylcholinesterase inhibitor, galantamine, which are in clinical use for the treatment of Alzheimer's disease and other neurodegenerative and neuropsychiatric disorders, have been rediscovered as anti-inflammatory agents. Here, we provide a timely update on this active research and clinical developments. We summarize the involvement of cholinergic mechanisms and inflammation in the pathobiology of Alzheimer's disease, Parkinson's disease, and schizophrenia, and the effectiveness of galantamine treatment. We also highlight recent findings demonstrating the effects of galantamine in preclinical and clinical settings of numerous conditions and diseases across the lifespan that are characterized by immunological, neurological, and metabolic dysfunction.
Collapse
Affiliation(s)
- Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
33
|
Rangon CM, Barruet R, Mazouni A, Le Cossec C, Thevenin S, Guillaume J, Léguillier T, Huysman F, Luis D. Auricular Neuromodulation for Mass Vagus Nerve Stimulation: Insights From SOS COVID-19 a Multicentric, Randomized, Controlled, Double-Blind French Pilot Study. Front Physiol 2021; 12:704599. [PMID: 34408665 PMCID: PMC8365750 DOI: 10.3389/fphys.2021.704599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Importance: An exacerbated inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is believed to be one of the major causes of the morbidity and mortality of the coronavirus disease 2019 (COVID-19). Neuromodulation therapy, based on vagus nerve stimulation, was recently hypothesized to control both the SARS-CoV-2 replication and the ensuing inflammation likely through the inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway and could improve the clinical outcomes as an adjunct treatment. We proposed to test it by the stimulation of the auricular branch of the vagus nerve, i.e., auricular neuromodulation (AN), a non-invasive procedure through the insertion of semipermanent needles on the ears. Objective: The aim of this study was to assess the effect of AN on the clinical outcomes in patients affected by COVID-19. Design, Setting, and Participants: A multicenter, randomized, placebo-controlled, double-blind clinical trial included 31 patients with respiratory failure due to COVID-19 requiring hospitalization. Within 72 h after admission, patients received either AN (n = 14) or sham neuromodulation (SN, n = 15) in addition to the conventional treatments. Main Outcome and Measures: The primary endpoint of the study was the rate of a clinical benefit conferred by AN at Day 14 (D14) as assessed by a 7-point Clinical Progression Scale. The secondary endpoint of the study was the impact of AN on the rate of transfer to the intensive care unit (ICU) and on the survival rate at D14. Results: The AN procedure was well-tolerated without any reported side effects but with no significant improvement for the measures of both primary (p > 0.3) and secondary (p > 0.05) endpoints at the interim analysis. None of the AN-treated patients died but one in the SN group did (81 years). Two AN-treated patients (73 and 79 years, respectively) and one SN-treated patient (59 years) were transferred to ICU. Remarkably, AN-treated patients were older with more representation by males than in the SN arm (i.e., the median age of 75 vs. 65 years, 79% male vs. 47%). Conclusion: The AN procedure, which was used within 72 h after the admission of patients with COVID-19, was safe and could be successfully implemented during the first two waves of COVID-19 in France. Nevertheless, AN did not significantly improve the outcome of the patients in our small preliminary study. It is pertinent to explore further to validate AN as the non-invasive mass vagal stimulation solution for the forthcoming pandemics. Clinical Trial Registration: [https://clinicaltrials.gov/], identifier [NCT04341415].
Collapse
Affiliation(s)
- Claire-Marie Rangon
- Pain and Neuromodulation Unit, Neurosurgery Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Régine Barruet
- Infectious Diseases Department, Centre Hospitalier Simone Veil, Beauvais, France
| | | | - Chloé Le Cossec
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Sophie Thevenin
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Jessica Guillaume
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Teddy Léguillier
- Clinical Research Department, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Fabienne Huysman
- Clinical Research Department, Centre Hospitalier Simone Veil, Beauvais, France
| | - David Luis
- Clinical Research Department, Centre Hospitalier Simone Veil, Beauvais, France
- Intensive Care Unit, Centre Hospitalier Simone Veil, Beauvais, France
| |
Collapse
|
34
|
Lucido MJ, Bekhbat M, Goldsmith DR, Treadway MT, Haroon E, Felger JC, Miller AH. Aiding and Abetting Anhedonia: Impact of Inflammation on the Brain and Pharmacological Implications. Pharmacol Rev 2021; 73:1084-1117. [PMID: 34285088 PMCID: PMC11060479 DOI: 10.1124/pharmrev.120.000043] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Exogenous administration of inflammatory stimuli to humans and laboratory animals and chronic endogenous inflammatory states lead to motivational deficits and ultimately anhedonia, a core and disabling symptom of depression present in multiple other psychiatric disorders. Inflammation impacts neurotransmitter systems and neurocircuits in subcortical brain regions including the ventral striatum, which serves as an integration point for reward processing and motivational decision-making. Many mechanisms contribute to these effects of inflammation, including decreased synthesis, release and reuptake of dopamine, increased synaptic and extrasynaptic glutamate, and activation of kynurenine pathway metabolites including quinolinic acid. Neuroimaging data indicate that these inflammation-induced neurotransmitter effects manifest as decreased activation of ventral striatum and decreased functional connectivity in reward circuitry involving ventral striatum and ventromedial prefrontal cortex. Neurocircuitry changes in turn mediate nuanced effects on motivation that include decreased willingness to expend effort for reward while maintaining the ability to experience reward. Taken together, the data reveal an inflammation-induced pathophysiologic phenotype that is agnostic to diagnosis. Given the many mechanisms involved, this phenotype represents an opportunity for development of novel and/or repurposed pharmacological strategies that target inflammation and associated cellular and systemic immunometabolic changes and their downstream effects on the brain. To date, clinical trials have failed to capitalize on the unique nature of this transdiagnostic phenotype, leaving the field bereft of interpretable data for meaningful clinical application. However, novel trial designs incorporating established targets in the brain and/or periphery using relevant outcome variables (e.g., anhedonia) are the future of targeted therapy in psychiatry. SIGNIFICANCE STATEMENT: Emerging understanding of mechanisms by which peripheral inflammation can affect the brain and behavior has created unprecedented opportunities for development of pharmacological strategies to treat deficits in motivation including anhedonia, a core and disabling symptom of depression well represented in multiple psychiatric disorders. Mechanisms include inflammation and cellular and systemic immunometabolism and alterations in dopamine, glutamate, and kynurenine metabolites, revealing a target-rich environment that nevertheless has yet to be fully exploited by current clinical trial designs and drugs employed.
Collapse
Affiliation(s)
- Michael J Lucido
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Mandy Bekhbat
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - David R Goldsmith
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Michael T Treadway
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Ebrahim Haroon
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Jennifer C Felger
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| | - Andrew H Miller
- Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia (M.J.L., M.B., D.R.G., E.H., J.C.F., A.H.M.); and Department of Psychology, Emory University, Atlanta, Georgia (M.T.T.)
| |
Collapse
|
35
|
Liu W, Liu Z, Li YC. COVID-19-related myocarditis and cholinergic anti-inflammatory pathways. Hellenic J Cardiol 2021; 62:265-269. [PMID: 33301863 PMCID: PMC7722500 DOI: 10.1016/j.hjc.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 01/10/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2, is currently in a pandemic outbreak and has become a global health issue. In addition to the primarily involvement of the respiratory system, myocarditis is considered an important and fatal lesion in patients with COVID-19. However, effective therapeutic methods are currently lacking. The cholinergic anti-inflammatory pathway (CAP) has been demonstrated to suppress pro-inflammatory cytokine production and control inflammation in sepsis and other medical conditions. Therefore, the CAP may be a potential and effective therapeutic method for COVID-19-related myocarditis. This article reviews the relationship between COVID-19-related myocarditis and the CAP and discusses the CAP as a potential therapeutic modality in the treatment of COVID-19-related myocarditis.
Collapse
Affiliation(s)
- Weike Liu
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhendong Liu
- Basic Medicine College, Shandong First Medical University, Jinan, Shandong, 250062, China.
| | - Yue-Chun Li
- Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
36
|
Drury RL, Jarczok M, Owens A, Thayer JF. Wireless Heart Rate Variability in Assessing Community COVID-19. Front Neurosci 2021; 15:564159. [PMID: 34168534 PMCID: PMC8217820 DOI: 10.3389/fnins.2021.564159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/07/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Marc Jarczok
- Clinic for Psychosomatic Medicine and Psychotherapy, University Clinic Ulm, Ulm, Germany
| | - Andrew Owens
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Julian F Thayer
- Psychological Sciences Faculty, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
37
|
Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther 2021; 222:107794. [PMID: 33310156 PMCID: PMC8027699 DOI: 10.1016/j.pharmthera.2020.107794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Obesity and the metabolic syndrome (MetS), which have reached pandemic proportions significantly increase the risk for type 2 diabetes, cardiovascular disease, and other serious conditions. Recent data with COVID-19 patients indicate that obesity also is a significant risk factor for this novel viral disease and poor outcome of associated critical illness. These findings considerably change the view of obesity as a driver of serious, but slowly-progressing chronic diseases, and emphasize the urgency to explore new therapeutic approaches. Inflammation is a recognized driver of metabolic derangements in obesity and MetS, and a core feature of COVID-19 pathobiology. Recent advances in our understanding of inflammatory regulation have highlighted the role of the nervous system and the vagus nerve-based inflammatory reflex. Current bioelectronic and pharmacological therapeutic explorations centered on the inflammatory reflex offer new approaches for conditions characterized by immune and metabolic dysregulation and for ameliorating the escalating burden of obesity, MetS, and COVID-19.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA.
| |
Collapse
|
38
|
Ramkissoon CM, Güemes A, Vehi J. Overview of therapeutic applications of non-invasive vagus nerve stimulation: a motivation for novel treatments for systemic lupus erythematosus. Bioelectron Med 2021; 7:8. [PMID: 34030736 PMCID: PMC8145832 DOI: 10.1186/s42234-021-00069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder that commonly affects the skin, joints, kidneys, and central nervous system. Although great progress has been made over the years, patients still experience unfavorable secondary effects from medications, increased economic burden, and higher mortality rates compared to the general population. To alleviate these current problems, non-invasive, non-pharmacological interventions are being increasingly investigated. One such intervention is non-invasive vagus nerve stimulation, which promotes the upregulation of the cholinergic anti-inflammatory pathway that reduces the activation and production of pro-inflammatory cytokines and reactive oxygen species, culpable processes in autoimmune diseases such as SLE. This review first provides a background on the important contribution of the autonomic nervous system to the pathogenesis of SLE. The gross and structural anatomy of the vagus nerve and its contribution to the inflammatory response are described afterwards to provide a general understanding of the impact of stimulating the vagus nerve. Finally, an overview of current clinical applications of invasive and non-invasive vagus nerve stimulation for a variety of diseases, including those with similar symptoms to the ones in SLE, is presented and discussed. Overall, the review presents neuromodulation as a promising strategy to alleviate SLE symptoms and potentially reverse the disease.
Collapse
Affiliation(s)
| | - Amparo Güemes
- Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Josep Vehi
- Institut d’Informàtica i Aplicacions, Universitat de Girona, Girona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
39
|
Alen NV, Parenteau AM, Sloan RP, Hostinar CE. Heart Rate Variability and Circulating Inflammatory Markers in Midlife. Brain Behav Immun Health 2021; 15. [PMID: 34268499 PMCID: PMC8277115 DOI: 10.1016/j.bbih.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Theoretical perspectives and empirical evidence suggest that the parasympathetic nervous system engages in active monitoring and moderating of inflammatory processes. A clearer understanding of the bidirectional communication between the parasympathetic nervous system and the immune system could lead to novel clinical interventions for inflammatory illnesses. The current study used a large (N = 836) nationally representative sample of adults in the United States to investigate the associations between resting parasympathetic modulation of the heart, indexed through both high frequency heart rate variability (HF-HRV) and low frequency heart rate variability (LF-HRV), and six circulating markers of inflammation. Statistical analyses revealed robust inverse associations of HF-HRV with interleukin-6 (IL6), C-reactive protein (CRP), and fibrinogen, with or without covariate adjustment. Similar inverse associations were observed between LF-HRV and IL6 and CRP. No significant associations were observed between HRV and either inflammatory adhesion molecules (E-selectin, intracellular adhesion molecule-1) or soluble IL6 receptor. Results are consistent with the cholinergic anti-inflammatory pathway and suggest that parasympathetic modulation of inflammation through the vagus nerve may act on specific inflammatory molecules more than others.
Collapse
|
40
|
Uchida M, Yamamoto R, Matsuyama S, Murakami K, Hasebe R, Hojyo S, Tanaka Y, Murakami M. Gateway reflexes, neuronal circuits that regulate the gateways for autoreactive T cells in organs that have blood barriers. Int Immunol 2021; 34:59-65. [PMID: 33978730 DOI: 10.1093/intimm/dxab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Gateway reflexes are neural circuits that maintain homeostasis of the immune system. They form gateways for autoreactive T cells to infiltrate the central nervous system in a noradrenaline-dependent manner despite the blood-brain barrier. This mechanism is critical not only for maintaining organ homeostasis but also for inflammatory disease development. Gateway reflexes can be regulated by environmental or artificial stimuli including electrical stimulation, suggesting that the infiltration of immune cells can be controlled by bioelectronic medicine. In this review, we describe the discovery of gateway reflexes and their future directions with special focus on bioelectronic medicine.
Collapse
Affiliation(s)
- Mona Uchida
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Reiji Yamamoto
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Shiina Matsuyama
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Kaoru Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Rie Hasebe
- Infectious Cancer, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
41
|
Azabou E, Bao G, Bounab R, Heming N, Annane D. Vagus Nerve Stimulation: A Potential Adjunct Therapy for COVID-19. Front Med (Lausanne) 2021; 8:625836. [PMID: 34026778 PMCID: PMC8137825 DOI: 10.3389/fmed.2021.625836] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through excessive end organ inflammation. Despite improved understanding of the pathophysiology, management, and the great efforts worldwide to produce effective drugs, death rates of COVID-19 patients remain unacceptably high, and effective treatment is unfortunately lacking. Pharmacological strategies aimed at modulating inflammation in COVID-19 are being evaluated worldwide. Several drug therapies targeting this excessive inflammation, such as tocilizumab, an interleukin (IL)-6 inhibitor, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, and intravenous immunoglobulin have been identified as potentially useful and reliable approaches to counteract the cytokine storm. However, little attention is currently paid for non-drug therapeutic strategies targeting inflammatory and immunological processes that may be useful for reducing COVID-19-induced complications and improving patient outcome. Vagus nerve stimulation attenuates inflammation both in experimental models and preliminary data in human. Modulating the activity of cholinergic anti-inflammatory pathways (CAPs) described by the group of KJ Tracey has indeed become an important target of therapeutic research strategies for inflammatory diseases and sepsis. Non-invasive transcutaneous vagal nerve stimulation (t-VNS), as a non-pharmacological adjuvant, may help reduce the burden of COVID-19 and deserve to be investigated. VNS as an adjunct therapy in COVID-19 patients should be investigated in clinical trials. Two clinical trials on this topic are currently underway (NCT04382391 and NCT04368156). The results of these trials will be informative, but additional larger studies are needed.
Collapse
Affiliation(s)
- Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Rania Bounab
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Nicholas Heming
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Djillali Annane
- General Intensive Care Unit - Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Assistance Publique- Hôpitaux de Paris, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles Saint-Quentin en Yvelines (UVSQ), Paris-Saclay University, Paris, France
| |
Collapse
|
42
|
Mughrabi IT, Hickman J, Jayaprakash N, Thompson D, Ahmed U, Papadoyannis ES, Chang YC, Abbas A, Datta-Chaudhuri T, Chang EH, Zanos TP, Lee SC, Froemke RC, Tracey KJ, Welle C, Al-Abed Y, Zanos S. Development and characterization of a chronic implant mouse model for vagus nerve stimulation. eLife 2021; 10:e61270. [PMID: 33821789 PMCID: PMC8051950 DOI: 10.7554/elife.61270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vagus nerve stimulation (VNS) suppresses inflammation and autoimmune diseases in preclinical and clinical studies. The underlying molecular, neurological, and anatomical mechanisms have been well characterized using acute electrophysiological stimulation of the vagus. However, there are several unanswered mechanistic questions about the effects of chronic VNS, which require solving numerous technical challenges for a long-term interface with the vagus in mice. Here, we describe a scalable model for long-term VNS in mice developed and validated in four research laboratories. We observed significant heart rate responses for at least 4 weeks in 60-90% of animals. Device implantation did not impair vagus-mediated reflexes. VNS using this implant significantly suppressed TNF levels in endotoxemia. Histological examination of implanted nerves revealed fibrotic encapsulation without axonal pathology. This model may be useful to study the physiology of the vagus and provides a tool to systematically investigate long-term VNS as therapy for chronic diseases modeled in mice.
Collapse
Affiliation(s)
- Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Jordan Hickman
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Dane Thompson
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
- The Elmezzi Graduate School of Molecular MedicineManhassetUnited States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eleni S Papadoyannis
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Sunhee C Lee
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Neuroscience and Physiology, Neuroscience Institute, Center for Neural Science, New York University School of Medicine, New York UniversityNew YorkUnited States
- Department of Otolaryngology, New York University School of Medicine, New York UniversityNew YorkUnited States
- Howard Hughes Medical Institute Faculty Scholar, New York University School of Medicine, New York UniversityNew YorkUnited States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Cristin Welle
- Departments of Neurosurgery, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell HealthManhassetUnited States
| |
Collapse
|
43
|
Sangaleti CT, Katayama KY, De Angelis K, Lemos de Moraes T, Araújo AA, Lopes HF, Camacho C, Bortolotto LA, Michelini LC, Irigoyen MC, Olofsson PS, Barnaby DP, Tracey KJ, Pavlov VA, Consolim Colombo FM. The Cholinergic Drug Galantamine Alleviates Oxidative Stress Alongside Anti-inflammatory and Cardio-Metabolic Effects in Subjects With the Metabolic Syndrome in a Randomized Trial. Front Immunol 2021; 12:613979. [PMID: 33776997 PMCID: PMC7991724 DOI: 10.3389/fimmu.2021.613979] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The metabolic syndrome (MetS) is an obesity-associated disorder of pandemic proportions and limited treatment options. Oxidative stress, low-grade inflammation and altered neural autonomic regulation, are important components and drivers of pathogenesis. Galantamine, an acetylcholinesterase inhibitor and a cholinergic drug that is clinically-approved (for Alzheimer's disease) has been implicated in neural cholinergic regulation of inflammation in several conditions characterized with immune and metabolic derangements. Here we examined the effects of galantamine on oxidative stress in parallel with inflammatory and cardio-metabolic parameters in subjects with MetS. Trial Design and Methods: The effects of galantamine treatment, 8 mg daily for 4 weeks or placebo, followed by 16 mg daily for 8 weeks or placebo were studied in randomly assigned subjects with MetS (n = 22 per group) of both genders. Oxidative stress, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase activities, lipid and protein peroxidation, and nitrite levels were analyzed before and at the end of the treatment. In addition, plasma cytokine and adipokine levels, insulin resistance (HOMA-IR) and other relevant cardio-metabolic indices were analyzed. Autonomic regulation was also examined by heart rate variability (HRV) before treatment, and at every 4 weeks of treatment. Results: Galantamine treatment significantly increased antioxidant enzyme activities, including SOD [+1.65 USOD/mg protein, [95% CI 0.39-2.92], P = 0.004] and CAT [+0.93 nmol/mg, [95% CI 0.34-1.51], P = 0.01], decreased lipid peroxidation [thiobarbituric acid reactive substances [log scale 0.72 pmol/mg, [95% CI 0.46-1.07], P = 0.05], and systemic nitrite levels [log scale 0.83 μmol/mg protein, [95% CI 0.57-1.20], P = 0.04] compared with placebo. In addition, galantamine significantly alleviated the inflammatory state and insulin resistance, and decreased the low frequency/high frequency ratio of HRV, following 8 and 12 weeks of drug treatment. Conclusion: Low-dose galantamine alleviates oxidative stress, alongside beneficial anti-inflammatory, and metabolic effects, and modulates neural autonomic regulation in subjects with MetS. These findings are of considerable interest for further studies with the cholinergic drug galantamine to ameliorate MetS.
Collapse
Affiliation(s)
- Carine Teles Sangaleti
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Postgraduate Program in Health Science, Midwestern State University (UNICENTRO), Paraná, Brazil
| | - Keyla Yukari Katayama
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Kátia De Angelis
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tércio Lemos de Moraes
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Heno F. Lopes
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Cleber Camacho
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | | | - Lisete Compagno Michelini
- Biomedical Sciences Institute Department of Physiology and Biophysics, University of São Paulo (USP), São Paulo, Brazil
| | | | - Peder S. Olofsson
- Laboratory of Immunobiology, Department of Medicine, Center for Bioelectronic Medicine, Karolinska Institutet, Stockholm, Sweden
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Douglas P. Barnaby
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Fernanda Marciano Consolim Colombo
- Hypertension Unit, University of São Paulo (USP), São Paulo, Brazil
- Nursing Department Graduate Program in Nanosciences and Biosciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| |
Collapse
|
44
|
Staats P, Giannakopoulos G, Blake J, Liebler E, Levy RM. The Use of Non-invasive Vagus Nerve Stimulation to Treat Respiratory Symptoms Associated With COVID-19: A Theoretical Hypothesis and Early Clinical Experience. Neuromodulation 2020; 23:784-788. [PMID: 32342609 PMCID: PMC7267613 DOI: 10.1111/ner.13172] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a pandemic with no specific therapeutic agents and substantial mortality, and finding new treatments is critical. Most cases are mild, but a significant minority of patients develop moderate to severe respiratory symptoms, with the most severe cases requiring intensive care and/or ventilator support. This respiratory compromise appears to be due to a hyperimmune reaction, often called a cytokine storm. Vagus nerve stimulation has been demonstrated to block production of cytokines in sepsis and other medical conditions. We hypothesize that non-invasive vagus nerve stimulation (nVNS) might provide clinical benefits in patients with respiratory symptoms similar to those associated with COVID-19. MATERIALS AND METHODS Information on two case reports was obtained via email correspondence and phone interviews with the patients. RESULTS Both patients reported clinically meaningful benefits from nVNS therapy. In case 1, the patient used nVNS to expedite symptomatic recovery at home after hospital discharge and was able to discontinue use of opioid and cough suppressant medications. In case 2, the patient experienced immediate and consistent relief from symptoms of chest tightness and shortness of breath, as well as an improved ability to clear his lungs. CONCLUSIONS Preliminary observations and a strong scientific foundation suggest that nVNS might provide clinical benefits in patients with COVID-19 via multiple mechanisms.
Collapse
|
45
|
Wang P, Velagapudi R, Kong C, Rodriguiz RM, Wetsel WC, Yang T, Berger M, Gelbard HA, Colton CA, Terrando N. Neurovascular and immune mechanisms that regulate postoperative delirium superimposed on dementia. Alzheimers Dement 2020; 16:734-749. [PMID: 32291962 PMCID: PMC7317948 DOI: 10.1002/alz.12064] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/04/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Objective The present work evaluates the relationship between postoperative immune and neurovascular changes and the pathogenesis of surgery‐induced delirium superimposed on dementia. Background and rationale Postoperative delirium is a common complication in many older adults and in patients with dementia including Alzheimer's disease (AD). The course of delirium can be particularly debilitating, while its pathophysiology remains poorly defined. Historical evolution As of 2019, an estimated 5.8 million people of all ages have been diagnosed with AD, 97% of whom are >65 years of age. Each year, many of these patients require surgery. However, anesthesia and surgery can increase the risk for further cognitive decline. Surgery triggers neuroinflammation both in animal models and in humans, and a failure to resolve this inflammatory state may contribute to perioperative neurocognitive disorders as well as neurodegenerative pathology. Updated hypothesis We propose an immunovascular hypothesis whereby dysregulated innate immunity negatively affects the blood‐brain interface, which triggers delirium and thereby exacerbates AD neuropathology. Early experimental data We have developed a translational model to study delirium superimposed on dementia in APPSwDI/mNos2−/− AD mice (CVN‐AD) after orthopedic surgery. At 12 months of age, CVN‐AD showed distinct neuroimmune and vascular impairments after surgery, including acute microgliosis and amyloid‐β deposition. These changes correlated with attention deficits, a core feature of delirium‐like behavior. Future experiments and validation studies Future research should determine the extent to which prevention of surgery‐induced microgliosis and/or neurovascular unit dysfunction can prevent or ameliorate postoperative memory and attention deficits in animal models. Translational human studies should evaluate perioperative indices of innate immunity and neurovascular integrity and assess their potential link to perioperative neurocognitive disorders. Major challenges for the hypothesis Understanding the complex relationships between delirium and dementia will require mechanistic studies aimed at evaluating the role of postoperative neuroinflammation and blood‐brain barrier changes in the setting of pre‐existing neurodegenerative and/or aging‐related pathology. Linkage to other major theories Non‐resolving inflammation with vascular disease that leads to cognitive impairments and dementia is increasingly important in risk stratification for AD in the aging population. The interdependence of these factors with surgery‐induced neuroinflammation and cognitive dysfunction is also becoming apparent, providing a strong platform for assessing the relationship between postoperative delirium and longer term cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Ping Wang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ravikanth Velagapudi
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Cuicui Kong
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, USA.,Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ting Yang
- Department of Medicine, Division of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, New York, USA
| | - Carol A Colton
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
46
|
Qureshi IS, Datta-Chaudhuri T, Tracey KJ, Pavlov VA, Chen ACH. Auricular neural stimulation as a new non-invasive treatment for opioid detoxification. Bioelectron Med 2020; 6:7. [PMID: 32266304 PMCID: PMC7110792 DOI: 10.1186/s42234-020-00044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The recent opioid crisis is one of the rising challenges in the history of modern health care. New and effective treatment modalities with less adverse effects to alleviate and manage this modern epidemic are critically needed. The FDA has recently approved two non-invasive electrical nerve stimulators for the adjunct treatment of symptoms of acute opioid withdrawal. These devices, placed behind the ear, stimulate certain cranial nerves with auricular projections. This neural stimulation reportedly generates a prompt effect in terms of alleviation of withdrawal symptoms resulting from acute discontinuation of opioid use. Current experimental evidence indicates that this type of non-invasive neural stimulation has excellent potential to supplement medication assisted treatment in opioid detoxification with lower side effects and increased adherence to treatment. Here, we review current findings supporting the use of non-invasive neural stimulation in detoxification from opioid use. We briefly outline the neurophysiology underlying this approach of auricular electrical neural stimulation and its role in enhancing medication assisted treatment in treating symptoms of opioid withdrawal. Considering the growing deleterious impact of addictive disorders on our society, further studies on this emerging treatment modality are warranted.
Collapse
Affiliation(s)
- Imran S. Qureshi
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA
- Chemical Dependency Dual Diagnosis Outpatient Facility, Department of Psychiatry, Staten Island University Hospital, Northwell Health, Staten Island, NY USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Timir Datta-Chaudhuri
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Kevin J. Tracey
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Valentin A. Pavlov
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Andrew C. H. Chen
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| |
Collapse
|
47
|
Caravaca AS, Centa M, Gallina AL, Tarnawski L, Olofsson PS. Neural reflex control of vascular inflammation. Bioelectron Med 2020; 6:3. [PMID: 32232111 PMCID: PMC7065709 DOI: 10.1186/s42234-020-0038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease that underlies myocardial infarction and stroke. Efficacious treatment for hyperlipidemia and hypertension has significantly reduced morbidity and mortality in cardiovascular disease. However, atherosclerosis still confers a considerable risk of adverse cardiovascular events. In the current mechanistic understanding of the pathogenesis of atherosclerosis, inflammation is pivotal both in disease development and progression. Recent clinical data provided support for this notion and treatment targeting inflammation is currently being explored. Interestingly, neural reflexes regulate cytokine production and inflammation. Hence, new technology utilizing implantable devices to deliver electrical impulses to activate neural circuits are currently being investigated in treatment of inflammation. Hopefully, it may become possible to target vascular inflammation in cardiovascular disease using bioelectronic medicine. In this review, we discuss neural control of inflammation and the potential implications of new therapeutic strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- A. S. Caravaca
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - M. Centa
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - A. L. Gallina
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - L. Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - P. S. Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
48
|
Affiliation(s)
- P S Olofsson
- Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden.,Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - C Bouton
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|