1
|
Wang Y, Wang D, Huang S, Wu J, Xiong Y, Liu F, Shi X, Liao X, Xiao J, Zhang S, Lu H. Analysis of cardiac developmental toxicity induced by m-cresol in early life of zebrafish and its mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110123. [PMID: 39778668 DOI: 10.1016/j.cbpc.2025.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
The compound m-Cresol, also referred to as 3-methylphenol,acts as a precursor in the creation of pesticides and plasticizers. This research has conducted a thorough evaluation of the toxic effects of m-cresol on the cardiac development of juvenile zebrafish, from 6 to 72 hpf. The study's results reveal that higher concentrations of m-Cresol, compared to lower ones, result in more severe heart abnormalities in zebrafish larvae. The pericardial edema becomes more pronounced, the atrial-ventricular distance gradually increases, and the absorption of nutrients is delayed. Furthermore, experimental studies have shown that m-cresol can cause excessive oxidative stress and apoptosis in juvenile zebrafish during their early developmental stages. Additionally, our transcriptomic analysis indicates that m-Cresol exposure may cause cardiac developmental toxicity in zebrafish larvae by affecting the expression levels of genes (Myosin VIIa:my17,Myosin XIV:my14, Alpha-cardiac actin:actc1a,and Non-muscular myosin heavy chain 9 A:myh9a) involved in the ion channel signaling pathway and cardiomyocyte development. These findings collectively demonstrate the developmental toxicity of m-Cresol to the hearts of larval zebrafish.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, China
| | - Dagang Wang
- Center for Clinical Medicine Research, Affiliated Hospital of Jinggangshan University, Jian 343000, Jiangxi Province, China
| | - Shouqiang Huang
- Center for Clinical Medicine Research, Affiliated Hospital of Jinggangshan University, Jian 343000, Jiangxi Province, China
| | - Jie Wu
- Center for Clinical Medicine Research, Affiliated Hospital of Jinggangshan University, Jian 343000, Jiangxi Province, China
| | - Yuanzhen Xiong
- College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, China
| | - Fasheng Liu
- Center for Clinical Medicine Research, Affiliated Hospital of Jinggangshan University, Jian 343000, Jiangxi Province, China
| | - Xiaowen Shi
- Center for Clinical Medicine Research, Affiliated Hospital of Jinggangshan University, Jian 343000, Jiangxi Province, China
| | - Xinjun Liao
- Center for Clinical Medicine Research, Affiliated Hospital of Jinggangshan University, Jian 343000, Jiangxi Province, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China.
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
| |
Collapse
|
2
|
Yuri S, Arisawa N, Kitamuro K, Isotani A. Blastocyst complementation-based rat-derived heart generation reveals cardiac anomaly barriers to interspecies chimera development. iScience 2024; 27:111414. [PMID: 39687030 PMCID: PMC11647242 DOI: 10.1016/j.isci.2024.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
The use of pluripotent stem cells (PSCs) to generate functional organs via blastocyst complementation is a cutting-edge strategy in regenerative medicine. However, existing models that use this method for heart generation do not meet expectations owing to the complexity of heart development. Here, we investigated a Mesp1/2 deficient mouse model, which is characterized by abnormalities in the cardiac mesodermal cells. The injection of either mouse or rat PSCs into Mesp1/2 deficient mouse blastocysts led to successful heart generation. In chimeras, the resulting hearts were predominantly composed of rat cells; however, their functionality was limited to the embryonic developmental stage on day 12.5. These results present the functional limitation of the xenogeneic heart, which poses a significant challenge to the development in mouse-rat chimeras.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Laboratory of Experimental Animals, Research Institution, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan
| | - Norie Arisawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kohei Kitamuro
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
3
|
Pollitt EJG, Sánchez-Posada J, Snashall CM, Derrick CJ, Noël ES. Llgl1 mediates timely epicardial emergence and establishment of an apical laminin sheath around the trabeculating cardiac ventricle. Development 2024; 151:dev202482. [PMID: 38940292 PMCID: PMC11234374 DOI: 10.1242/dev.202482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
During heart development, the embryonic ventricle becomes enveloped by the epicardium, which adheres to the outer apical surface of the heart. This is concomitant with onset of ventricular trabeculation, where a subset of cardiomyocytes lose apicobasal polarity and delaminate basally from the ventricular wall. Llgl1 regulates the formation of apical cell junctions and apicobasal polarity, and we investigated its role in ventricular wall maturation. We found that llgl1 mutant zebrafish embryos exhibit aberrant apical extrusion of ventricular cardiomyocytes. While investigating apical cardiomyocyte extrusion, we identified a basal-to-apical shift in laminin deposition from the internal to the external ventricular wall. We find that epicardial cells express several laminin subunits as they adhere to the ventricle, and that the epicardium is required for laminin deposition on the ventricular surface. In llgl1 mutants, timely establishment of the epicardial layer is disrupted due to delayed emergence of epicardial cells, resulting in delayed apical deposition of laminin on the ventricular surface. Together, our analyses reveal an unexpected role for Llgl1 in correct timing of epicardial development, supporting integrity of the ventricular myocardial wall.
Collapse
Affiliation(s)
- Eric J. G. Pollitt
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Juliana Sánchez-Posada
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Corinna M. Snashall
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Christopher J. Derrick
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Emily S. Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Cadosch N, Gil-Cruz C, Perez-Shibayama C, Ludewig B. Cardiac Fibroblastic Niches in Homeostasis and Inflammation. Circ Res 2024; 134:1703-1717. [PMID: 38843287 PMCID: PMC11149942 DOI: 10.1161/circresaha.124.323892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.
Collapse
Affiliation(s)
- Nadine Cadosch
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Perez-Shibayama
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Xu J, Deng Y, Li G. Keratin 19 (Krt19) is a novel marker gene for epicardial cells. Front Genet 2024; 15:1385867. [PMID: 38831775 PMCID: PMC11145414 DOI: 10.3389/fgene.2024.1385867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Epicardial cells regulate heart growth by secreting numerous growth factors and undergoing lineage specification into other cardiac lineages. However, the lack of specific marker genes for epicardial cells has hindered the understanding of this cell type in heart development. Through the analysis of a cardiac single cell mRNA sequencing dataset, we identified a novel epicardial gene named Keratin 19 (Krt19). Further analysis of the expression patterns of Krt19 and Wt1, a well-known epicardial gene, revealed their preferences in major cardiac cell types. Using lineage-tracing analysis, we analyzed Krt19-CreER labeled cells at multiple time windows and found that it labels epicardial cells at both embryonic and neonatal stages. Furthermore, we studied the function of epicardial cells using a diphtheria toxin A chain (DTA)-based cell ablation system. We discovered that Krt19-CreER labeled cells are essential for fetal heart development. Finally, we investigated the function of Krt19-CreER and Wt1-CreER labeled cells in neonatal mouse development. We observed that the Krt19-CreER; Rosa-DTA mice displayed a smaller size after tamoxifen treatment, suggesting the potential importance of Krt19-CreER labeled cells in neonatal mouse development. Additionally, we found that Wt1-CreER; Rosa-DTA mice died at early stages, likely due to defects in the kidney and spleen. In summary, we have identified Krt19 as a new epicardial cell marker gene and further explored the function of epicardial cells using the Krt19-CreER and Wt1-CreER-mediated DTA ablation system.
Collapse
Affiliation(s)
| | | | - Guang Li
- Department of Cell Biology, Center for Integrative Organ Systems, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
7
|
Roset-Altadill A, Domenech-Ximenos B, Cañete N, Juanpere S, Rodriguez-Eyras L, Hidalgo A, Vargas D, Pineda V. Epicardial Space: Comprehensive Anatomy and Spectrum of Disease. Radiographics 2024; 44:e230160. [PMID: 38483831 DOI: 10.1148/rg.230160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The epicardial space (ES) is the anatomic region located between the myocardium and the pericardium. This space includes the visceral pericardium and the epicardial fat that contains the epicardial coronary arteries, cardiac veins, lymphatic channels, and nerves. The epicardial fat represents the main component of the ES. This fat deposit has been a focus of research in recent years owing to its properties and relationship with coronary gossypiboma plaque and atrial fibrillation. Although this region is sometimes forgotten, a broad spectrum of lesions can be found in the ES and can be divided into neoplastic and nonneoplastic categories. Epicardial neoplastic lesions include lipoma, paraganglioma, metastases, angiosarcoma, and lymphoma. Epicardial nonneoplastic lesions encompass inflammatory infiltrative disorders, such as immunoglobulin G4-related disease and Erdheim-Chester disease, along with hydatidosis, abscesses, coronary abnormalities, pseudoaneurysms, hematoma, lipomatosis, and gossypiboma. Initial imaging of epicardial lesions may be performed with echocardiography, but CT and cardiac MRI are the best imaging modalities to help characterize epicardial lesions. Due to the nonspecific onset of signs and symptoms, the clinical history of a patient can play a crucial role in the diagnosis. A history of malignancy, multisystem diseases, prior trauma, myocardial infarction, or cardiac surgery can help narrow the differential diagnosis. The diagnostic approach to epicardial lesions should be made on the basis of the specific location, characteristic imaging features, and clinical background. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Adria Roset-Altadill
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| | - Blanca Domenech-Ximenos
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| | - Noemi Cañete
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| | - Sergi Juanpere
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| | - Lucia Rodriguez-Eyras
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| | - Alberto Hidalgo
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| | - Daniel Vargas
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| | - Victor Pineda
- From the Department of Radiology, Hospital Universitari de Girona Doctor Josep Trueta, Av França S/N, 17007, Girona, Spain (A.R.A., N.C., S.J., A.H., V.P.); Department of Radiology, Hospital Clinic de Barcelona, Barcelona, Spain (B.D.X.); Department of Cardiology, Clinica Colon, Buenos Aires, Argentina (L.R.E.); and Division of Cardiothoracic Imaging, Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colo (D.V.)
| |
Collapse
|
8
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Ghosh M, Khanam R, Sengupta A, Chakraborty S. Oxidative-stress induced Bmp2-Smad1/5/8 signaling dependent differentiation of early cardiomyocytes from embryonic and adult epicardial cells. Differentiation 2024; 136:100756. [PMID: 38471281 DOI: 10.1016/j.diff.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
Heart failure has become a major life-threatening cause affecting millions globally, characterized by the permanent loss of adult functional cardiomyocytes leading to fibrosis which ultimately deprives the heart of its functional efficacy. Here we investigated the reparative property of embryonic and adult epicardial cells towards cardiomyocyte differentiation under oxidative stress-induced conditions along with the identification of a possible molecular signaling pathway. Isolated epicardial cells from embryonic chick hearts subjected to oxidative stress and hypoxia induction. Initial assessment of successful injury induction reveals hypertrophy of isolated epicardial cells. Detailed marker gene expression analyses and inhibitor studies reveal Bone morphogenic protein (Bmp)2-Smad1/5/8 signaling dependent cardiomyocyte lineage specification via epithelial to mesenchymal transition (EMT) post-injury. EMT is further confirmed by increased proliferation, migration, and differentiation towards cardiomyocyte lineage. We have also established an in-vivo model in adult male rats using Isoproterenol. Successful oxidative stress-mediated injury induction in adult heart was marked by increased activated fibroblasts followed by apoptosis of adult cardiomyocytes. The detailed characterization of adult epicardial cells reveals similar findings to our avian in-vitro data. Both in-vitro and in-vivo results show a significant increase in the expression of cardiomyocyte specific markers indicative of lineage specificity and activation of epicardial cells post oxidative stress mediated injury. Our findings suggest an EMT-induced reactivation of epicardial cells and early cardiomyocyte lineage specification following oxidative stress in a Bmp2- Smad1/5/8 dependent manner. Overall, this regulatory mechanism of cardiomyocyte differentiation induced by oxidative stress may contribute to the field of cardiac repair and regenerative therapeutics.
Collapse
Affiliation(s)
- Madhurima Ghosh
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Riffat Khanam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | | |
Collapse
|
10
|
Shin K, Begeman IJ, Cao J, Kang J. leptin b and its regeneration enhancer illustrate the regenerative features of zebrafish hearts. Dev Dyn 2024; 253:91-106. [PMID: 36495292 PMCID: PMC10256838 DOI: 10.1002/dvdy.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zebrafish possess a remarkable regenerative capacity, which is mediated by the induction of various genes upon injury. Injury-dependent transcription is governed by the tissue regeneration enhancer elements (TREEs). Here, we utilized leptin b (lepb), an injury-specific factor, and its TREE to dissect heterogeneity of noncardiomyocytes (CMs) in regenerating hearts. RESULTS Our single-cell RNA sequencing (scRNA-seq) analysis demonstrated that the endothelium/endocardium(EC) is activated to induce distinct subpopulations upon injury. We demonstrated that lepb can be utilized as a regeneration-specific marker to subset injury-activated ECs. lepb+ ECs robustly induce pro-regenerative factors, implicating lepb+ ECs as a signaling center to interact with other cardiac cells. Our scRNA-seq analysis identified that lepb is also produced by subpopulation of epicardium (Epi) and epicardium-derived cells (EPDCs). To determine whether lepb labels injury-emerging non-CM cells, we tested the activity of lepb-linked regeneration enhancer (LEN) with chromatin accessibility profiles and transgenic lines. While nondetectable in uninjured hearts, LEN directs EC and Epi/EPDC expression upon injury. The endogenous LEN activity was assessed using LEN deletion lines, demonstrating that LEN deletion abolished injury-dependent expression of lepb, but not other nearby genes. CONCLUSIONS Our integrative analyses identify regeneration-emerging cell-types and factors, leading to the discovery of regenerative features of hearts.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| |
Collapse
|
11
|
Harvey AB, Wolters RA, Deepe RN, Tarolli HG, Drummond JR, Trouten A, Zandi A, Barth JL, Mukherjee R, Romeo MJ, Vaena SG, Tao G, Muise-Helmericks R, Ramos PS, Norris RA, Wessels A. Epicardial deletion of Sox9 leads to myxomatous valve degeneration and identifies Cd109 as a novel gene associated with valve development. J Mol Cell Cardiol 2024; 186:16-30. [PMID: 37935281 PMCID: PMC10843603 DOI: 10.1016/j.yjmcc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.
Collapse
Affiliation(s)
- Andrew B Harvey
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Renélyn A Wolters
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Raymond N Deepe
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Hannah G Tarolli
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jenna R Drummond
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Allison Trouten
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Auva Zandi
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA.
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Silvia G Vaena
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Robin Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Paula S Ramos
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
12
|
Carmona R, López-Sánchez C, Garcia-Martinez V, Garcia-López V, Muñoz-Chápuli R, Lozano-Velasco E, Franco D. Novel Insights into the Molecular Mechanisms Governing Embryonic Epicardium Formation. J Cardiovasc Dev Dis 2023; 10:440. [PMID: 37998498 PMCID: PMC10672416 DOI: 10.3390/jcdd10110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
The embryonic epicardium originates from the proepicardium, an extracardiac primordium constituted by a cluster of mesothelial cells. In early embryos, the embryonic epicardium is characterized by a squamous cell epithelium resting on the myocardium surface. Subsequently, it invades the subepicardial space and thereafter the embryonic myocardium by means of an epithelial-mesenchymal transition. Within the myocardium, epicardial-derived cells present multilineage potential, later differentiating into smooth muscle cells and contributing both to coronary vasculature and cardiac fibroblasts in the mature heart. Over the last decades, we have progressively increased our understanding of those cellular and molecular mechanisms driving proepicardial/embryonic epicardium formation. This study provides a state-of-the-art review of the transcriptional and emerging post-transcriptional mechanisms involved in the formation and differentiation of the embryonic epicardium.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Human Anatomy, Legal Medicine and History of Science, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-López
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain;
| | - Estefanía Lozano-Velasco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| |
Collapse
|
13
|
Moazzen H, Bolaji MD, Leube RE. Desmosomes in Cell Fate Determination: From Cardiogenesis to Cardiomyopathy. Cells 2023; 12:2122. [PMID: 37681854 PMCID: PMC10487268 DOI: 10.3390/cells12172122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Desmosomes play a vital role in providing structural integrity to tissues that experience significant mechanical tension, including the heart. Deficiencies in desmosomal proteins lead to the development of arrhythmogenic cardiomyopathy (AC). The limited availability of preventative measures in clinical settings underscores the pressing need to gain a comprehensive understanding of desmosomal proteins not only in cardiomyocytes but also in non-myocyte residents of the heart, as they actively contribute to the progression of cardiomyopathy. This review focuses specifically on the impact of desmosome deficiency on epi- and endocardial cells. We highlight the intricate cross-talk between desmosomal proteins mutations and signaling pathways involved in the regulation of epicardial cell fate transition. We further emphasize that the consequences of desmosome deficiency differ between the embryonic and adult heart leading to enhanced erythropoiesis during heart development and enhanced fibrogenesis in the mature heart. We suggest that triggering epi-/endocardial cells and fibroblasts that are in different "states" involve the same pathways but lead to different pathological outcomes. Understanding the details of the different responses must be considered when developing interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Hoda Moazzen
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (M.D.B.); (R.E.L.)
| | | | | |
Collapse
|
14
|
Du J, Yuan X, Deng H, Huang R, Liu B, Xiong T, Long X, Zhang L, Li Y, She Q. Single-cell and spatial heterogeneity landscapes of mature epicardial cells. J Pharm Anal 2023; 13:894-907. [PMID: 37719196 PMCID: PMC10499659 DOI: 10.1016/j.jpha.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Tbx18, Wt1, and Tcf21 have been identified as epicardial markers during the early embryonic stage. However, the gene markers of mature epicardial cells remain unclear. Single-cell transcriptomic analysis was performed with the Seurat, Monocle, and CellphoneDB packages in R software with standard procedures. Spatial transcriptomics was performed on chilled Visium Tissue Optimization Slides (10x Genomics) and Visium Spatial Gene Expression Slides (10x Genomics). Spatial transcriptomics analysis was performed with Space Ranger software and R software. Immunofluorescence, whole-mount RNA in situ hybridization and X-gal staining were performed to validate the analysis results. Spatial transcriptomics analysis revealed distinct transcriptional profiles and functions between epicardial tissue and non-epicardial tissue. Several gene markers specific to postnatal epicardial tissue were identified, including Msln, C3, Efemp1, and Upk3b. Single-cell transcriptomic analysis revealed that cardiac cells from wildtype mouse hearts (from embryonic day 9.5 to postnatal day 9) could be categorized into six major cell types, which included epicardial cells. Throughout epicardial development, Wt1, Tbx18, and Upk3b were consistently expressed, whereas genes including Msln, C3, and Efemp1 exhibited increased expression during the mature stages of development. Pseudotime analysis further revealed two epicardial cell fates during maturation. Moreover, Upk3b, Msln, Efemp1, and C3 positive epicardial cells were enriched in extracellular matrix signaling. Our results suggested Upk3b, Efemp1, Msln, C3, and other genes were mature epicardium markers. Extracellular matrix signaling was found to play a critical role in the mature epicardium, thus suggesting potential therapeutic targets for heart regeneration in future clinical practice.
Collapse
Affiliation(s)
- Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rongzhong Huang
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tianhua Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ling Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
15
|
Deng Y, He Y, Xu J, He H, Li G. Heterogeneity and Functional Analysis of Cardiac Fibroblasts in Heart Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.30.551164. [PMID: 37577541 PMCID: PMC10418062 DOI: 10.1101/2023.07.30.551164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background As one of the major cell types in the heart, fibroblasts play critical roles in multiple biological processes. Cardiac fibroblasts are known to develop from multiple sources, but their transcriptional profiles have not been systematically compared. Furthermore, while the function of a few genes in cardiac fibroblasts has been studied, the overall function of fibroblasts as a cell type remains uninvestigated. Methods Single-cell mRNA sequencing (scRNA-seq) and bioinformatics approaches were used to analyze the genome-wide genes expression and extracellular matrix genes expression in fibroblasts, as well as the ligand-receptor interactions between fibroblasts and cardiomyocytes. Single molecular in situ hybridization was employed to analyze the expression pattern of fibroblast subpopulation-specific genes. The Diphtheria toxin fragment A (DTA) system was utilized to ablate fibroblasts at each developmental phase. Results Using RNA staining of Col1a1 at different stages, we grouped cardiac fibroblasts into four developmental phases. Through the analysis of scRNA-seq profiles of fibroblasts at 18 stages from two mouse strains, we identified significant heterogeneity, preserving lineage gene expression in their precursor cells. Within the main fibroblast population, we found differential expressions of Wt1, Tbx18, and Aldh1a2 genes in various cell clusters. Lineage tracing studies showed Wt1- and Tbx18-positive fibroblasts originated from respective epicardial cells. Furthermore, using a conditional DTA system-based elimination, we identified the crucial role of fibroblasts in early embryonic and heart growth, but not in neonatal heart growth. Additionally, we identified the zone- and stage-associated expression of extracellular matrix genes and fibroblast-cardiomyocyte ligand-receptor interactions. This comprehensive understanding sheds light on fibroblast function in heart development. Conclusion We observed cardiac fibroblast heterogeneity at embryonic and neonatal stages, with preserved lineage gene expression. Ablation studies revealed their distinct roles during development, likely influenced by varying extracellular matrix genes and ligand-receptor interactions at different stages.
Collapse
|
16
|
Jiang H, Bai L, Song S, Yin Q, Shi A, Zhou B, Lian H, Chen H, Xu CR, Wang Y, Nie Y, Hu S. EZH2 controls epicardial cell migration during heart development. Life Sci Alliance 2023; 6:e202201765. [PMID: 37037595 PMCID: PMC10087097 DOI: 10.26508/lsa.202201765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is an important transcriptional regulator in development that catalyzes H3K27me3. The role of EZH2 in epicardial development is still unknown. In this study, we show that EZH2 is expressed in epicardial cells during both human and mouse heart development. Ezh2 epicardial deletion resulted in impaired epicardial cell migration, myocardial hypoplasia, and defective coronary plexus development, leading to embryonic lethality. By using RNA sequencing, we identified that EZH2 controls the transcription of tissue inhibitor of metalloproteinase 3 (TIMP3) in epicardial cells during heart development. Loss-of-function studies revealed that EZH2 promotes epicardial cell migration by suppressing TIMP3 expression. We also found that epicardial Ezh2 deficiency-induced TIMP3 up-regulation leads to extracellular matrix reconstruction in the embryonic myocardium by mass spectrometry. In conclusion, our results demonstrate that EZH2 is required for epicardial cell migration because it blocks Timp3 transcription, which is vital for heart development. Our study provides new insight into the function of EZH2 in cell migration and epicardial development.
Collapse
Affiliation(s)
- Haobin Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Yin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanchun Wang
- Haidian Maternal & Child Health Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Rawat H, Kornherr J, Zawada D, Bakhshiyeva S, Kupatt C, Laugwitz KL, Bähr A, Dorn T, Moretti A, Nowak-Imialek M. Recapitulating porcine cardiac development in vitro: from expanded potential stem cell to embryo culture models. Front Cell Dev Biol 2023; 11:1111684. [PMID: 37261075 PMCID: PMC10227949 DOI: 10.3389/fcell.2023.1111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.
Collapse
Affiliation(s)
- Hilansi Rawat
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sara Bakhshiyeva
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Bock-Marquette I, Maar K, Maar S, Lippai B, Faskerti G, Gallyas F, Olson EN, Srivastava D. Thymosin beta-4 denotes new directions towards developing prosperous anti-aging regenerative therapies. Int Immunopharmacol 2023; 116:109741. [PMID: 36709593 DOI: 10.1016/j.intimp.2023.109741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Our dream of defeating the processes of organ damage and aging remains a challenge scientists pursued for hundreds of years. Although the goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. Since initial approaches utilizing only progenitor cells appear limited, we propose interconnecting our collective knowledge regarding aging and embryonic development may lead to the discovery of molecules which provide alternatives to effectively reverse cellular damage. In this review, we introduce and summarize our results regarding Thymosin beta-4 (TB4) to support our hypothesis using the heart as model system. Accordingly, we investigated the developmental expression of TB4 in mouse embryos and determined the impact of the molecule in adult animals by systemically injecting the peptide following acute cardiac infarction or with no injury. Our results proved, TB4 is expressed in the developing heart and promotes cardiac cell migration and survival. In adults, the peptide enhances myocyte survival and improves cardiac function after coronary artery ligation. Moreover, intravenous injections of TB4 alter the morphology of the adult epicardium, and the changes resemble the characteristics of the embryo. Reactivation of the embryonic program became equally reflected by the increased number of cardiac vessels and by the alteration of the gene expression profile typical of the embryonic state. Moreover, we discovered TB4 is capable of epicardial progenitor activation, and revealed the effect is independent of hypoxic injury. By observing the above results, we believe, further discoveries and consequential postnatal administration of developmentally relevant candidate molecules such as TB4 may likely result in reversing aging processes and accelerate organ regeneration in the human body.
Collapse
Affiliation(s)
- Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary.
| | - Klaudia Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Balint Lippai
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs H-7624, Hungary; Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Pecs H-7624, Hungary
| | - Eric N Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center, Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
19
|
Sigaroodi F, Rahmani M, Parandakh A, Boroumand S, Rabbani S, Khani MM. Designing cardiac patches for myocardial regeneration–a review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2180510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Wang T, Chen X, Wang K, Ju J, Yu X, Wang S, Liu C, Wang K. Cre-loxP-mediated genetic lineage tracing: Unraveling cell fate and origin in the developing heart. Front Cardiovasc Med 2023; 10:1085629. [PMID: 36923960 PMCID: PMC10008892 DOI: 10.3389/fcvm.2023.1085629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
The Cre-loxP-mediated genetic lineage tracing system is essential for constructing the fate mapping of single-cell progeny or cell populations. Understanding the structural hierarchy of cardiac progenitor cells facilitates unraveling cell fate and origin issues in cardiac development. Several prospective Cre-loxP-based lineage-tracing systems have been used to analyze precisely the fate determination and developmental characteristics of endocardial cells (ECs), epicardial cells, and cardiomyocytes. Therefore, emerging lineage-tracing techniques advance the study of cardiovascular-related cellular plasticity. In this review, we illustrate the principles and methods of the emerging Cre-loxP-based genetic lineage tracing technology for trajectory monitoring of distinct cell lineages in the heart. The comprehensive demonstration of the differentiation process of single-cell progeny using genetic lineage tracing technology has made outstanding contributions to cardiac development and homeostasis, providing new therapeutic strategies for tissue regeneration in congenital and cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xue Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shaocong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuiyun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun 2022; 13:7960. [PMID: 36575170 PMCID: PMC9794824 DOI: 10.1038/s41467-022-35691-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.
Collapse
|
22
|
Jang J, Song G, Pettit SM, Li Q, Song X, Cai CL, Kaushal S, Li D. Epicardial HDAC3 Promotes Myocardial Growth Through a Novel MicroRNA Pathway. Circ Res 2022; 131:151-164. [PMID: 35722872 PMCID: PMC9308743 DOI: 10.1161/circresaha.122.320785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Establishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells instruct myocardial growth by secreting essential factors including FGF (fibroblast growth factor) 9 and IGF (insulin-like growth factor) 2. However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation. The current study is to investigate whether and how HDAC (histone deacetylase) 3 in the developing epicardium regulates myocardial growth. METHODS Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of HDAC3 in the developing epicardium. RESULTS We deleted Hdac3 in the developing murine epicardium, and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of epicardium-derived cells. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly downregulated in Hdac3 KO mouse epicardial cells. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO mouse epicardial cells and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO mouse epicardial cells. CONCLUSIONS Our findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322 or miR-503, providing novel insights in elucidating the etiology of congenital heart defects and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Guang Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarah M. Pettit
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qinshan Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiaosu Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Chen-leng Cai
- Department of Pediatrics, Herman Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46201
| | - Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deqiang Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
23
|
Lewis‐Israeli YR, Abdelhamid M, Olomu I, Aguirre A. Modeling the Effects of Maternal Diabetes on the Developing Human Heart Using Pluripotent Stem Cell-Derived Heart Organoids. Curr Protoc 2022; 2:e461. [PMID: 35723517 PMCID: PMC9219413 DOI: 10.1002/cpz1.461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital heart defects (CHD) constitute the most common type of birth defect in humans. Maternal diabetes during the first trimester of pregnancy (pregestational diabetes, or PGD) is one of the most prominent factors contributing to CHD, and is present in a significant population of female patients with diabetes in reproductive age. PGD is challenging to manage clinically due to the extreme sensitivity of the developing embryo to glucose oscillations, and constitutes a critical health problem for the mother and the fetus. The prevalence of PGD-induced CHD is increasing due to the ongoing diabetes epidemic. While studies using animal models and cells in culture have demonstrated that PGD alters critical cellular and developmental processes, the mechanisms remain obscure, and it is unclear to what extent these models recapitulate PGD-induced CHD in humans. Clinical practice precludes direct studies in developing human embryos, further highlighting the need for physiologically relevant models. To bypass many of these technical and ethical limitations, we describe here a human pluripotent stem cell (hPSC)-based method to generate developmentally relevant self-organizing human heart organoids. By using glucose and insulin to mimic the diabetic environment that the embryo faces in PGD, this system allows modeling critical features of PGD in a human system with relevant physiology, structure, and cell types. The protocol starts with the generation of hPSC-derived embryoid bodies in a 96-well plate, followed by a small molecule-based three-step Wnt activation/inhibition/activation strategy. Organoids are then differentiated under healthy (normal insulin and glucose) and diabetic conditions (high insulin and glucose) over time, allowing for the study of the effects of pregestational diabetes on the developing human heart. We also provide an immunofluorescence protocol for comparing, characterizing, and analyzing the differences between the healthy and diabetic organoids, and comment on additional steps for preparing the organoids for analysis by other techniques after differentiation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of hPSC-derived embryoid bodies Basic Protocol 2: Differentiation of EBs into heart organoids under healthy and diabetes-like conditions Basic Protocol 3: Immunofluorescence and organoid preparation for other assays.
Collapse
Affiliation(s)
- Yonatan R. Lewis‐Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan
- Department of Biomedical Engineering, College of EngineeringMichigan State UniversityEast LansingMichigan
| | - Mishref Abdelhamid
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human MedicineMichigan State UniversityEast LansingMichigan
| | - Isoken Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human MedicineMichigan State UniversityEast LansingMichigan
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan
- Department of Biomedical Engineering, College of EngineeringMichigan State UniversityEast LansingMichigan
| |
Collapse
|
24
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
25
|
Miyamoto M, Nam L, Kannan S, Kwon C. Heart organoids and tissue models for modeling development and disease. Semin Cell Dev Biol 2021; 118:119-128. [PMID: 33775518 PMCID: PMC8513373 DOI: 10.1016/j.semcdb.2021.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Organoids, or miniaturized organs formed in vitro, hold potential to revolutionize how researchers approach and answer fundamental biological and pathological questions. In the context of cardiac biology, development of a bona fide cardiac organoid enables study of heart development, function, and pathogenesis in a dish, providing insight into the nature of congenital heart disease and offering the opportunity for high-throughput probing of adult heart disease and drug discovery. Recently, multiple groups have reported novel methods for generating in vitro models of the heart; however, there are substantial conceptual and methodological differences. In this review we will evaluate recent cardiac organoid studies through the lens of the core principles of organoid technology: patterned self-organization of multiple cell types resembling the in vivo organ. Based on this, we will classify systems into the following related types of tissues: developmental cardiac organoids, chamber cardiac organoids, microtissues, and engineered heart tissues. Furthermore, we highlight the interventions which allow for organoid formation, such as modulation of highly conserved cardiogenic signaling pathways mediated by developmental morphogens. We expect that consolidation and categorization of existing organoid models will help eliminate confusion in the field and facilitate progress towards creation of an ideal cardiac organoid.
Collapse
Affiliation(s)
- Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Lucy Nam
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States; Heart and Vascular Institute, Cellular and Molecular Medicine, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Department of Cell Biology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
26
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
27
|
Maar K, Hetenyi R, Maar S, Faskerti G, Hanna D, Lippai B, Takatsy A, Bock-Marquette I. Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State-New Directions in Anti-Aging Regenerative Therapies. Cells 2021; 10:1343. [PMID: 34071596 PMCID: PMC8228050 DOI: 10.3390/cells10061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Our dream of defeating the processes of aging has occupied the curious and has challenged scientists globally for hundreds of years. The history is long, and sadly, the solution is still elusive. Our endeavors to reverse the magnitude of damaging cellular and molecular alterations resulted in only a few, yet significant advancements. Furthermore, as our lifespan increases, physicians are facing more mind-bending questions in their routine practice than ever before. Although the ultimate goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. As our initial approach to enhance the endogenous restorative capacity by delivering exogenous progenitor cells appears limited, we propose, utilizing small molecules critical during embryonic development may prove to be a powerful tool to increase regeneration and to reverse the processes associated with aging. In this review, we introduce Thymosin beta-4, a 43aa secreted peptide fulfilling our hopes and capable of numerous regenerative achievements via systemic administration in the heart. Observing the broad capacity of this small, secreted peptide, we believe it is not the only molecule which nature conceals to our benefit. Hence, the discovery and postnatal administration of developmentally relevant agents along with other approaches may result in reversing the aging process.
Collapse
Affiliation(s)
- Klaudia Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Roland Hetenyi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Daniel Hanna
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Balint Lippai
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Aniko Takatsy
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| |
Collapse
|
28
|
Brezitski KD, Goff AW, DeBenedittis P, Karra R. A Roadmap to Heart Regeneration Through Conserved Mechanisms in Zebrafish and Mammals. Curr Cardiol Rep 2021; 23:29. [PMID: 33655359 DOI: 10.1007/s11886-021-01459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The replenishment of lost or damaged myocardium has the potential to reverse heart failure, making heart regeneration a goal for cardiovascular medicine. Unlike adult mammals, injury to the zebrafish or neonatal mouse heart induces a robust regenerative program with minimal scarring. Recent insights into the cellular and molecular mechanisms of heart regeneration suggest that the machinery for regeneration is conserved from zebrafish to mammals. Here, we will review conserved mechanisms of heart regeneration and their translational implications. RECENT FINDINGS Based on studies in zebrafish and neonatal mice, cardiomyocyte proliferation has emerged as a primary strategy for effecting regeneration in the adult mammalian heart. Recent work has revealed pathways for stimulating cardiomyocyte cell cycle reentry; potential developmental barriers for cardiomyocyte proliferation; and the critical role of additional cell types to support heart regeneration. Studies in zebrafish and neonatal mice have established a template for heart regeneration. Continued comparative work has the potential to inform the translation of regenerative biology into therapeutics.
Collapse
Affiliation(s)
- Kyla D Brezitski
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA
| | - Alexander W Goff
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA
| | - Paige DeBenedittis
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA.,Regeneration Next, Durham, NC, USA
| | - Ravi Karra
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Box 102152, Durham, NC, 27710, USA. .,Regeneration Next, Durham, NC, USA. .,Department of Pathology, Durham, NC, USA. .,Center for Aging, Durham, NC, USA.
| |
Collapse
|
29
|
Christoffels V, Jensen B. Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037143. [PMID: 31932321 DOI: 10.1101/cshperspect.a037143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early heart morphogenesis involves a process in which embryonic precursor cells are instructed to form a cyclic contracting muscle tube connected to blood vessels, pumping fluid. Subsequently, the heart becomes structurally complex and its size increases several orders of magnitude to functionally keep up with the demands of the growing organism. Programmed transcriptional regulatory networks control the early steps of cardiac development. However, already during the early stages of its assembly, the heart tube starts to produce electrochemical potentials, contractions, and flow, which are transduced into signals that feed back into the process of morphogenesis itself. Heart morphogenesis, thus, involves the interplay between progressively changing genetic networks, function, and shape. Morphogenesis is evolutionarily conserved, but species-specific differences occur and in mouse, for instance, distinct phases of development become overlapping and compounded in an extremely fast gestation. Here, we review the early morphogenesis of the chambered heart that maintains a circulation supporting development of an organism rapidly growing in size and requirements.
Collapse
Affiliation(s)
- Vincent Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
30
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
31
|
Hu H, Lin S, Wang S, Chen X. The Role of Transcription Factor 21 in Epicardial Cell Differentiation and the Development of Coronary Heart Disease. Front Cell Dev Biol 2020; 8:457. [PMID: 32582717 PMCID: PMC7290112 DOI: 10.3389/fcell.2020.00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcription factor 21 (TCF21) is specific for mesoderm and is expressed in the embryos' mesenchymal derived tissues, such as the epicardium. It plays a vital role in regulating cell differentiation and cell fate specificity through epithelial-mesenchymal transformation during cardiac development. For instance, TCF21 could promote cardiac fibroblast development and inhibit vascular smooth muscle cells (VSMCs) differentiation of epicardial cells. Recent large-scale genome-wide association studies have identified a mass of loci associated with coronary heart disease (CHD). There is mounting evidence that TCF21 polymorphism might confer genetic susceptibility to CHD. However, the molecular mechanisms of TCF21 in heart development and CHD remain fundamentally problematic. In this review, we are committed to providing a detailed introduction of the biological roles of TCF21 in epicardial fate determination and the development of CHD.
Collapse
Affiliation(s)
- Haochang Hu
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | - Shaoyi Lin
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | | | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| |
Collapse
|