1
|
Chen J, Zhou Q, Su L, Ni L. Mitochondrial dysfunction: the hidden catalyst in chronic kidney disease progression. Ren Fail 2025; 47:2506812. [PMID: 40441691 PMCID: PMC12123951 DOI: 10.1080/0886022x.2025.2506812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025] Open
Abstract
Chronic kidney disease (CKD) represents a global health epidemic, with approximately one-third of affected individuals ultimately necessitating renal replacement therapy or transplantation. The kidney, characterized by its exceptionally high energy demands, exhibits significant sensitivity to alterations in energy supply and mitochondrial function. In CKD, a compromised capacity for mitochondrial ATP synthesis has been documented. As research advances, the multifaceted roles of mitochondria, extending beyond their traditional functions in oxygen sensing and energy production, are increasingly acknowledged. Empirical studies have demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of fibrosis and cellular apoptosis in CKD. Targeting mitochondrial dysfunction holds substantial therapeutic promise, with emerging insights into its epigenetic regulation in CKD, particularly involving non-coding RNAs and DNA methylation. This article presents a comprehensive review of contemporary research on mitochondrial dysfunction in relation to the onset and progression of CKD. It elucidates the associated molecular mechanisms across various renal cell types and proposes novel research avenues for CKD treatment.
Collapse
Affiliation(s)
- Jinhu Chen
- Department of Nephrology, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuyuan Zhou
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, Liang Ping People’s Hospital of Chongqing, Chongqing, People’s Republic of China
| | - Lianjiu Su
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
- Department of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Zhang S, Wang YS, Li Y, To KI, Zhang ET, Jin YH. Annexin A2 binds the 3'-UTR of H2AX mRNA and regulates histone-H2AX-derived hypoxia-inducible factor 1-alpha activation. Cell Signal 2025; 132:111781. [PMID: 40164417 DOI: 10.1016/j.cellsig.2025.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Annexin A2 (Anxa2), a multifunctional protein with RNA-binding capabilities, is frequently overexpressed in various tumors, and its expression is highly correlated with malignant progression. In this study, we demonstrate for the first time that Anxa2 was co-expressed with glycolytic genes, suggesting its potential role as a regulator of glycolysis. RNA-protein interaction assay revealed that Anxa2 interacted with 3'-UTR of H2AX mRNA and protected it from miRNA-mediated degradation. Up-regulated Histone-H2AX enhances the expression of glycolytic genes including GLUT1, HK2, PGK1, ENO1, PKM2, GAPDH and LDHA via stabilizing hypoxia-inducible factor 1-alpha (HIF1α), thereby accelerating lactic acid production and secretion. (20S) G-Rh2, a natural compound targeting Anxa2, significantly interfered the Anxa2-H2AX mRNA interaction, and inhibited subsequent glycolysis progression. We propose that Anxa2 acts as a novel regulator in glycolysis via enhancing H2AX expression, and (20S) G-Rh2 may exert its anti-cancer activity by targeting Anxa2-H2AX-HIF1α-glycolysis axis in human hepatoma HepG2 cells.
Collapse
Affiliation(s)
- Shiyin Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yu-Shi Wang
- Department of Criminal Science and Technology, Jilin Police College, Changchun 130117, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kwang-Il To
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - En-Ting Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 PMCID: PMC11759019 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijie Yang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wanrong Jiang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xinyuan Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhaohui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
5
|
Chakraborty S, Chandra S, Pandit S, Raj S, Gill HS, Sharma K, Bhattacharya D, Nag M, Lahiri D. Harnessing the power: the role of dissimilatory metal-reducing bacteria in microbial fuel cells. Arch Microbiol 2025; 207:176. [PMID: 40526314 DOI: 10.1007/s00203-025-04319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 06/19/2025]
Abstract
Dissimilatory metal-reducing bacteria (DMRB) have been considered very important contributors in developing and operating microbial fuel cells that represent one promising technology for waste treatment and sustainable energy generation. In keeping with this spirit, this review paper will scrutinise the elementary mechanisms whereby the unique metabolic processes of DMRB enable their role in facilitating the extracellular transmission of electrons to the anode from organic substrates. Important species like Shewanella and Geobacter are referred to because of their contributions toward improving the stability and efficiency of MFCs. The paper also discusses the benefits of using DMRB, such as their potential in bioremediation and increased electron transfer efficiency. Difficulties examined include preserving microbial stability, competing with other species, and improving operating conditions. The recent developments in materials science, genetic engineering, and integration with other renewable technologies are discussed to demonstrate the potential for future breakthroughs. The last section of this paper discusses the wider implications of DMRB in developing MFC technology for energy and environmental applications.
Collapse
Affiliation(s)
- Soumyadeep Chakraborty
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, U.P., India
| | - Soumyajit Chandra
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, U.P., India
| | - Soumya Pandit
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, U.P., India.
| | - Swetha Raj
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Harjot Singh Gill
- Institute of Engineering and E-Governance, Chandigarh University, Gharuan, Mohali, India
| | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Rajpura, Punjab, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India
| | - Moupriya Nag
- Department of Basic Science and Humanities, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Basic Science and Humanities, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India.
| |
Collapse
|
6
|
Zhang B, Zhang L, Liu J, Cai C, Zhou Y. Community succession and protein enhancement in a mixed methanotroph-microalgae system with stepwise increase of ammonium loading - Inhibition and adaptation. WATER RESEARCH 2025; 284:123995. [PMID: 40513457 DOI: 10.1016/j.watres.2025.123995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/21/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
The integration of methanotrophs and microalgae in coculture systems presents a promising approach for sustainable biogas valorization and single-cell protein (SCP) production, offering dual benefits of greenhouse gas mitigation and nutrient recovery from waste streams. However, the resilience and metabolic interplay of these consortia under ammonium stress, common in industrial wastewater, remain poorly understood, limiting their scalability. This study systematically investigated the performance of a microalgae-methanotroph consortium under stepwise ammonium concentrations (130, 200 and 260 mg NH4+-N/L). The system demonstrated remarkable acclimation, achieving stable biogas conversion with 95.8 ± 5.3 mg CO2-C/(L·day) and 109.0 ± 11.4 mg CH4-C/(L·day) even at highest ammonium concentration. The SCP content increased from 32 % to over 52 % of cell dry weight with yield peaking at 90 mg/(L·day) under 200 mg N/L. A microbial community shift from Methylosinus to ammonia-tolerant Methylococcus dominance underpinned functional stability. Metagenomic analyses revealed ammonium-driven metabolic adaptations: extracellular substance secretion reprograms under stress, nitrogen assimilation was enhanced via glutamine synthetase, and antioxidant defenses were activated. Network analysis highlighted intensified competition (31 % negative correlations) under stress, yet key synergies within coculture system sustained carbon and nitrogen metabolism. These findings resolve knowledge gaps in ammonium-stressed consortia dynamics and provide insights for engineering systems to advancing the circular bioeconomy.
Collapse
Affiliation(s)
- Baorui Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, Singapore 637141, Singapore
| | - Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Jianbo Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798, Singapore
| | - Chen Cai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Yan Zhou
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798, Singapore.
| |
Collapse
|
7
|
Di Paola FJ, Cardoso LH, Nikitopoulou E, Kulik B, Rühl S, Eva A, Sommer N, Linn T, Gnaiger E, Failing K, Büttner K, Frezza C, Mazurek S. Impact of mtG3PDH inhibitors on proliferation and metabolism of androgen receptor-negative prostate cancer cells: Role of extracellular pyruvate. PLoS One 2025; 20:e0325509. [PMID: 40489535 DOI: 10.1371/journal.pone.0325509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 05/14/2025] [Indexed: 06/11/2025] Open
Abstract
Mitochondrial glycerol 3-P dehydrogenase (mtG3PDH) plays a significant role in cellular bioenergetics by serving as a rate-limiting element in the glycerophosphate shuttle, which connects cytosolic glycolysis to mitochondrial oxidative metabolism. mtG3PDH was identified as an important site of electron leakage leading to ROS production to the mitochondrial matrix and intermembrane space. Our research focused on the role of two published mtG3PDH inhibitors (RH02211 and iGP-1) on the proliferation and metabolism of PC-3 and DU145 prostate cancer cells characterized by different mtG3PDH activities. Since pyruvate as a substrate of lactate dehydrogenase (LDH) may represent an escape mechanism for the recycling of cytosolic NAD+ via the glycerophosphate shuttle, we investigated the effect of pyruvate on the mode of action of the mtG3PDH inhibitors. Extracellular pyruvate weakened the growth-inhibitory effects of RH02211 and iGP-1 in PC-3 cells but not in DU145 cells, which correlated with higher H-type LDH and lower mitochondrial glutamate-oxaloacetate transaminase in DU145 cells. In the pyruvate-low medium, the strength of inhibition was more pronounced in PC-3 cells, characterized by higher mtG3PDH activities compared to DU145 cells. Pyruvate conversion rates (production in pyruvate-low and consumption in pyruvate-high PC-3 cells) were not impaired by RH02211 and iGP-1, suggesting that the conversion of extracellular pyruvate to lactate was not the primary factor responsible for the weakening effect of extracellular pyruvate on the RH02211-induced inhibition of PC-3 proliferation. In pyruvate-high PC-3 cells, the intracellular glycerol-3-P and dihydroxyacetone-P concentrations were consistent with an inhibition of mtG3PDH. In contrast, in pyruvate-low cells, the concentrations of these metabolites suggested an activation of mtG3PDH in parallel with an impairment of cytosolic G3PDH by RH02211. Of all metabolic characterizations recorded in this study (fluxes, intracellular intermediates, O2 consumption and H2O2 production), the decrease in glutaminolysis correlated best with the RH02211-induced inhibition of proliferation in pyruvate-low and pyruvate-high PC-3 cells.
Collapse
Affiliation(s)
- Floriana Jessica Di Paola
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bianca Kulik
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Sandra Rühl
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Alexander Eva
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Erich Gnaiger
- Oroboros Instruments, Schoepfstrasse 18, Innsbruck, Austria
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Veterinary Faculty, Justus Liebig University of Giessen, Giessen, Germany
| | - Kathrin Büttner
- Unit for Biomathematics and Data Processing, Veterinary Faculty, Justus Liebig University of Giessen, Giessen, Germany
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Faculty of Medicine and University Hospital Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
8
|
Zhao Y, Xu T, Wu Z, Li N, Liang Q. Rebalancing redox homeostasis: A pivotal regulator of the cGAS-STING pathway in autoimmune diseases. Autoimmun Rev 2025; 24:103823. [PMID: 40286888 DOI: 10.1016/j.autrev.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Autoimmune diseases (ADs) arise from the breakdown of immune tolerance to self-antigens, leading to pathological tissue damage. Proinflammatory cytokine overproduction disrupts redox homeostasis across diverse cell populations, generating oxidative stress that induces DNA damage through multiple mechanisms. Oxidative stress-induced alterations in membrane permeability and DNA damage can lead to the recognition of double-stranded DNA (dsDNA), mitochondrial DNA (mtDNA) and micronuclei-DNA (MN-DNA) by DNA sensors, thereby initiating activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. While previous reviews have characterized cGAS-STING activation in autoimmunity, the reciprocal regulation between redox homeostasis and cGAS-STING activation remains insufficiently defined. This narrative review examines oxidative stress-mediated DNA damage as a critical driver of pathological cGAS-STING signaling and delineates molecular mechanisms linking redox homeostasis to autoimmune pathogenesis. Furthermore, we propose therapeutic strategies that combine redox restoration with the attenuation of aberrant cGAS-STING activation, thereby establishing a mechanistic foundation for precision interventions in autoimmune disorders. METHODS: The manuscript is formatted as a narrative review. We conducted a comprehensive search strategy using electronic databases such as PubMed, Google Scholar and Web of Science. Various keywords were used, such as "cGAS-STING," "Redox homeostasis," "Oxidative stress," "pentose phosphate pathway," "Ferroptosis," "mtDNA," "dsDNA," "DNA damage," "Micronuclei," "Reactive oxygen species," "Reactive nitrogen species," "Nanomaterial," "Autoimmune disease," "Systemic lupus erythematosus," "Type 1 diabetes," "Rheumatoid arthritis," "Multiple sclerosis," "Experimental autoimmune encephalomyelitis," "Psoriasis," etc. The titles and abstracts were reviewed for inclusion into this review. After removing duplicates and irrelevant studies, 174 articles met inclusion criteria (original research, English language).
Collapse
Affiliation(s)
- Yuchen Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianhao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Zhaoshun Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China.
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
9
|
Liao X, Yang Z, Li Y, Cui Y, Ma L, Liang C, Guan Z, Hu J. M2 macrophage-derived exosome facilitates aerobic glycolysis and osteogenic differentiation of hPDLSCs by regulating TRIM26-induced PKM ubiquitination. Free Radic Biol Med 2025:S0891-5849(25)00723-3. [PMID: 40449810 DOI: 10.1016/j.freeradbiomed.2025.05.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/20/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Our previous findings revealed that exosomes derived from M2-polarized macrophages enhance the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs), and identified key microRNAs (miRNAs) using high-throughput miRNA sequencing. Therefore, the present study aimed to elucidate the role and underlying molecular mechanism by which exosomes derived from M2 macrophages mediate the osteogenic differentiation of hPDLSCs. METHODS Following lentiviral-mediated modulation of miR-6879-5p in both hPDLSCs and M2 macrophage-derived exosomes, RT-qPCR, western blotting, and Alizarin Red staining were applied to assess alterations in osteogenic markers, including ALP, OCN, Collagen I, and RUNX2, as well as mineralized nodule formation in hPDLSCs. Immunoprecipitation-mass spectrometry (IP-MS) was employed to identify proteins interacting with miR-6879-5p target genes in hPDLSCs. RESULTS Knockdown of miR-6879-5p in the exosomes reduced the expression of osteogenic markers and inhibited calcified nodule formation in hPDLSCs. Overexpression of TRIM26 attenuated the osteogenic differentiation of hPDLSCs, an effect that was reversed by miR-6879-5p overexpression. IP-MS identified 410 TRIM26-interacting proteins in hPDLSCs. These proteins were associated with ubiquitination, aerobic glycolysis, and amino acid metabolism. The hub proteins in the TRIM26-associated PPI network included RPL and RPS family proteins, as well as glycolysis-associated proteins. CO-IP confirmed an interaction between TRIM26 and PKM, and showed that TRIM26 increased PKM ubiquitination. Overexpression of PKM rescued TRIM26-mediated suppression of osteogenic marker expression and mineralized nodule formation in hPDLSCs. CONCLUSION miR-6879-5p carried by M2 macrophage-derived exosomes promotes osteogenic differentiation and aerobic glycolysis in hPDLSCs via modulating TRIM26-mediated ubiquitination of PKM.
Collapse
Affiliation(s)
- Xianmin Liao
- The Affiliated Hospital of Kunming University of Science and Technology, the First People's Hospital of Yunnan Province, No.157 Jinbi Rd, Kunming, Yunnan 650032, China
| | - Zhenjin Yang
- Hospital of Stomatology, Kunming Medical University, Yunnan Stomatology Hospital, No. 1088 Middle Haiyuan Road, Kunming, Yunnan 650106, China
| | - Yao Li
- The Affiliated Hospital of Kunming University of Science and Technology, the First People's Hospital of Yunnan Province, No.157 Jinbi Rd, Kunming, Yunnan 650032, China
| | - Yun Cui
- The Affiliated Hospital of Kunming University of Science and Technology, the First People's Hospital of Yunnan Province, No.157 Jinbi Rd, Kunming, Yunnan 650032, China
| | - Liya Ma
- Hospital of Stomatology, Kunming Medical University, Yunnan Stomatology Hospital, No. 1088 Middle Haiyuan Road, Kunming, Yunnan 650106, China
| | - Cun Liang
- Hospital of Stomatology, Kunming Medical University, Yunnan Stomatology Hospital, No. 1088 Middle Haiyuan Road, Kunming, Yunnan 650106, China
| | - Zheng Guan
- Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University, the First Hospital of Kunming, No. 504 Qingnian Road Kunming, Yunnan 650021, China.
| | - Jiangtian Hu
- Hospital of Stomatology, Kunming Medical University, Yunnan Stomatology Hospital, No. 1088 Middle Haiyuan Road, Kunming, Yunnan 650106, China.
| |
Collapse
|
10
|
Nevirian B, Fagerberg SK, Pedersen MK, Kristensen SR, Damgaard KAJ, Rees SE, Thomsen LP. A physio-chemical mathematical model of the effects of blood analysis delay on acid-base, metabolite and electrolyte status: evaluation in blood from critical care patients. Clin Chem Lab Med 2025; 63:1139-1152. [PMID: 40275638 DOI: 10.1515/cclm-2024-1350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 04/26/2025]
Abstract
OBJECTIVES Measurements of acid-base status are performed quickly after blood sampling avoiding errors. This necessitates rapid sample transport which can be problematic. This study measures blood sampled in critically ill patients over 180 min and proposes a mathematical physio-chemical model to simulate changes. METHODS Eleven blood samples were taken from 30 critically ill patients and measured at baseline (2 samples) and 36, 54, 72, 90, 108, 126, 144, 162, and 180 min. A mathematical model was proposed including red blood cell metabolism, carbon dioxide diffusion, electrolyte distribution and water transport. This model was used to simulate values of plasma pH, pCO2, pO2, SO2, glucose, lactate, Na+ and Cl- during analysis delay. Simulated and measured values were compared using Bland-Altman and correlation analysis, and goodness of model fits evaluated with chi-squared. RESULTS The mathematical model provided a good fit to data in 29 of 30 patients with no significant differences (p>0.1) between simulated and measured plasma values. Differences were (bias±SD): pH 0.000 ± 0.012, pCO2 0.00 ± 0.24 kPa, lactate -0.10 ± 0.23 mmol/L, glucose 0.00 ± 0.34 mmol/L, Cl- -0.2 ± 1.21 mmol/L, Na+ 0.0 ± 1.0 mmol/L, pO2 0.0 ± 0.44 kPa, SO2 -0.6 ± 5.5 %, with these values close to manufacturers' measurement errors. All linear correlations had R2>0.86. Simulations of pH, PCO2, glucose and lactate could be performed from baseline values without patient specific parameters. CONCLUSIONS This paper illustrates that analysis delay can be accurately simulated with a mathematical model of physio-chemistry. While further evaluation is necessary, this may indicate a role for this model in clinical practice to simulate analysis delay.
Collapse
Affiliation(s)
- Bahareh Nevirian
- Respiratory and Critical Care (Rcare) Group, Aalborg University, Aalborg, Denmark
| | - Steen Kåre Fagerberg
- Anesthesia and Intensive Care Unit, Aalborg University Hospital, Aalborg, North Denmark Region, Denmark
| | - Mette Krogh Pedersen
- Anesthesia and Intensive Care Unit, Aalborg University Hospital, Aalborg, North Denmark Region, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Stephen Edward Rees
- Respiratory and Critical Care (Rcare) Group, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
11
|
Liu X, Huang S, Zhu K, Du L. OGT Enhances Adriamycin Resistance of Breast Cancer by Promoting Glycolysis through MDM4 Upregulation in an O-GlcNAcylation-Dependent Manner. Biochem Genet 2025:10.1007/s10528-025-11129-9. [PMID: 40372583 DOI: 10.1007/s10528-025-11129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Adriamycin (ADR) is a chemotherapy drug for breast cancer, and its resistance is a major obstacle in the clinical treatment of breast cancer. O-GlcNAcylation is a post-translational modification that impacts chemotherapy resistance in cancers. This present study aims to investigate the mechanism of O-GlcNAcylation-mediated ADR resistance in breast cancer. Cell viability, proliferation, and apoptosis were performed to evaluate ADR resistance in breast cancer cells. O-GlcNAcylation, OGA and OGT levels in patients, and breast cancer cells resistant to ADR or not were detected by western blot and quantitative real-time PCR. Glycolysis of ADR-resistant cells was evaluated by measurement of glucose and lactic acid levels, and extracellular acidification rate and oxygen consumption rate. The underlying mechanism was explored by western blot and pathway enrichment analysis. Effects of OGT in vivo were assessed by xenograft tumor model. Results showed that OGT protein and mRNA levels were increased in MCF-7R and BT-549R cells and tumors of ADR-resistant patients with breast cancer. Moreover, O-GlcNAcylation was increased in ADR-resistant breast cancer cells. OGT knockdown inhibited glycolysis and O-GlcNAcylation and protein level of MDM4 at S96 site. Notably, MDM4 overexpression restored glycolysis in MCF-7R and BT-549R cells inhibited by OGT knockdown. Additionally, OGT knockdown inhibited tumor growth in vivo. Collectively, this study demonstrated that OGT promote breast cancer resistant to ADR through facilitating glycolysis in breast cancer cells by O-GlcNAcylation on MDM4. This study may provide a target for overcoming ADR resistance in breast cancer.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Sihao Huang
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Kuangye Zhu
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Ludi Du
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
12
|
Bai Y, Wu J, Jian W. Trained immunity in diabetes: emerging targets for cardiovascular complications. Front Endocrinol (Lausanne) 2025; 16:1533620. [PMID: 40438395 PMCID: PMC12116311 DOI: 10.3389/fendo.2025.1533620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Diabetes is a metabolic disorder primarily characterized by persistent hyperglycemia. Diabetes-induced inflammation significantly compromises cardiovascular health, greatly increasing the risk of atherosclerosis. The increasing prevalence of harmful lifestyle habits and overconsumption has contributed substantially to the global rise in diabetes-related cardiovascular diseases, creating a significant economic and healthcare burden. Although current therapeutic strategies focus on blood glucose control and metabolic regulation, clinical observations show that diabetic patients still face persistent residual risk of AS even after achieving metabolic stability. Recent studies suggest that this phenomenon is linked to diabetes-induced trained immunity. Diabetes can induce trained immunity in bone marrow progenitor cells and myeloid cells, thus promoting the long-term development of AS. This article first introduces the concept and molecular mechanisms of trained immunity, with particular emphasis on metabolic and epigenetic reprogramming, which plays a crucial role in sustaining chronic inflammation during trained immunity. Next, it summarizes the involvement of trained immunity in diabetes and its contribution to AS, outlining the cell types that can be trained in AS. Finally, it discusses the connection between diabetes-induced trained immunity and AS, as well as the potential of targeting trained immunity as an intervention strategy. Understanding the molecular mechanisms of trained immunity and their impact on disease progression may provide innovative strategies to address the persistent clinical challenges in managing diabetes and its complications.
Collapse
Affiliation(s)
- Yanan Bai
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Jianglan Wu
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Weixiong Jian
- College of Traditional Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
- Diagnostics of Traditional Chinese Medicine, National Key Discipline, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Rong Y, Teng Y, Zhou X. Advances in the Study of Metabolic Reprogramming in Gastric Cancer. Cancer Med 2025; 14:e70948. [PMID: 40365984 PMCID: PMC12076355 DOI: 10.1002/cam4.70948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/18/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gastric cancer is one of the most prevalent malignancies of the digestive system and is associated with a poor prognosis, particularly in advanced metastatic stages, where the 5-year survival rate is significantly low. METHODS Recent research has demonstrated that metabolic reprogramming-including alterations in glucose, lipid, and amino-acid metabolism-plays a critical role in both the development and progression of this disease. To gain deeper insights into these metabolic shifts, scientists have increasingly employed metabolomics, a non-invasive technique that detects and quantifies small molecules within cancerous tissues, thereby enhancing prognostic assessments. AIM Analyzing the metabolic profiles of gastric-cancer tissues can reveal significant changes in key metabolic pathways, which may open new avenues for targeted therapies and ultimately improve patient outcomes. CONCLUSION This article reviews recent advancements in the study of metabolic reprogramming in gastric cancer, aiming to identify potential therapeutic targets and offer new hope to patients.
Collapse
Affiliation(s)
- Yu Rong
- The First Clinical Medical College, Nanjing Medical UniversityNanjingChina
| | - Yuanyin Teng
- The Second Clinical Medical College, Nanjing Medical UniversityNanjingChina
| | - Xiaoying Zhou
- The First Clinical Medical College, Nanjing Medical UniversityNanjingChina
- Department of GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
14
|
Oska N, Awad AM, Eltanani S, Shawky M, Naghdi A, Yumnamcha T, Singh LP, Ibrahim AS. Glyceraldehyde-3-phosphate dehydrogenase/1,3-bisphosphoglycerate-NADH as key determinants in controlling human retinal endothelial cellular functions: Insights from glycolytic screening. J Biol Chem 2025; 301:108472. [PMID: 40158853 PMCID: PMC12136781 DOI: 10.1016/j.jbc.2025.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Maintaining barrier integrity, along with cell adhesion to the extracellular matrix and the subsequent process of cell spreading, are essential functions of endothelial cells, including human retinal endothelial cells (HRECs). Disruptions in these processes can lead to vision-threatening conditions like diabetic retinopathy. However, the bioenergetic mechanisms that regulate HREC barrier function and cell spreading remain incompletely understood. This study investigates the role of lower glycolytic components in modulating these critical functions of HRECs. In vitro, Electric Cell-Substrate Impedance Sensing (ECIS) technology was used to measure real-time changes in HREC barrier integrity (electrical resistance) and cell spreading (capacitance). Pharmacological inhibitors targeting lower glycolytic components were tested: heptelidic acid for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), NG-52 for phosphoglycerate kinase (PGK), shikonin for pyruvate kinase M (PKM), galloflavin for lactate dehydrogenase (LDH), AZD3965 for lactate transporter (MCT1), and MSDC-0160 for the mitochondrial pyruvate carrier (MPC). GAPDH knockdown was performed using siRNA, and cell viability was assessed via LDH release assays. For in vivo studies, wild-type C57BL/6J mice received intravitreal injections of heptelidic acid, while control mice received the vehicle (dimethyl sulfoxide). Retinal vascular permeability was assessed by fluorescein angiography (FA) and retinal albumin leakage. The most significant decrease in electrical resistance and increase in capacitance of HRECs were observed following the dose-dependent inhibition of GAPDH and the resulting reduction in 1,3-bisphosphoglycerate (1,3-BPG) and NADH by heptelidic acid. LDH level analysis at 24 to 48 h post-treatment with heptelidic acid (1 and 10 μM) showed no significant difference compared to controls, indicating that the observed disruption of HREC functionality was not due to cell death. Supporting these findings, inhibition of downstream glycolytic steps that result in the accumulation of 1,3-BPG and NADH, such as treatment with NG-52 for PGK or shikonin for PKM, led to a significant increase in electrical resistance and a decrease in cell capacitance. Furthermore, GAPDH knockdown via siRNA also led to a significant decrease in cellular resistance in HRECs. In vivo, FA imaging demonstrated that intravitreal injection of heptelidic acid led to significant retinal vascular leakage, as further supported by increased albumin extravasation in treated eyes. Conversely, pharmacological inhibition of other lower glycolytic components, including LDH, MCT, and MPC, did not significantly alter HREC barrier function or spreading behavior. This study highlights the distinct roles of lower glycolytic components in regulating HREC functionality. GAPDH and its downstream products (1,3-BPG and NADH) are shown to play a pivotal role in maintaining barrier integrity and promoting HREC adhesion and spreading. These findings guide the development of targeted interventions that modulate HREC bioenergetics to treat endothelial dysfunction in various retinal disorders, while minimizing potential adverse effects on healthy endothelial cells.
Collapse
Affiliation(s)
- Nicole Oska
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Ahmed M Awad
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Shaimaa Eltanani
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Mohamed Shawky
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA; Department of Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Armaan Naghdi
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Thangal Yumnamcha
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Ahmed S Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA; Molecular Therapeutics Research Program, Karmanos Cancer Institute (KCI), School of Medicine, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
15
|
An J, Huo H, Liu Q, Jiang Y, Luo H, Hao Y. Physiological and molecular mechanisms of nitrogen in alleviating drought stress in Phoebe bournei. Sci Rep 2025; 15:14684. [PMID: 40287505 PMCID: PMC12033254 DOI: 10.1038/s41598-025-99312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
To explore the mechanisms by which nitrogen alleviates drought stress in Phoebe bournei, this study integrated drought treatment with exogenous nitrogen application to assess physiological characteristics and employed transcriptome sequencing to decipher transcriptional responses. The results indicated that nitrogen fertilizer mitigated leaf wilting in P. bournei under drought stress and significantly enhanced leaf dry weight, fresh weight, thickness, and chlorophyll content. Furthermore, nitrogen improved photosynthesis by inhibiting stomatal closure, enhancing light energy absorption, and accelerating electron transport in PSII. 11 photosynthesis-related genes, including PFP, TRY, LQY, FTSH, FRO, CURT, PETF, ATPF, PETA, CRRSP, and MEN and 17 carbohydrate metabolism-associated genes, such as PWD, GBE1, GAPA, PFKA, RFS, ISA, GLGC, PGK, ALDO, GUX, RX9, MIOX, HCT, BAM, MPFP, and ERNI exhibited differential expression in response to nitrogen. Moreover, nitrogen treatment significantly modulated plant hormone metabolism, with 44 upregulated and 14 downregulated differentially expressed genes (DEGs) primarily associated with jasmonic acid (JA) synthesis and signaling. These findings provide new insights into enhancing the drought tolerance of P. bournei in the context of global climate change.
Collapse
Affiliation(s)
- Jing An
- Geography and Environmental Science College, Guizhou Normal University, Guiyang, 550025, China
| | - Honghao Huo
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Qiyuan Liu
- China Agricultural University, Beijing, 100083, China
| | - Yunli Jiang
- The Forestry Science Research Institute of Guizhou Province, Guiyang, 550025, China
| | - Hong Luo
- The Forestry Science Research Institute of Guizhou Province, Guiyang, 550025, China
| | - Yupei Hao
- Department of Modern Engineering, Anshun Technical College, Anshun, 561000, China.
| |
Collapse
|
16
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
17
|
Ayrga S, Koorsen G. Metabolic Reprogramming in HIV+ CD4 + T-Cells: Implications for Immune Dysfunction and Therapeutic Targets in M. tuberculosis Co-Infection. Metabolites 2025; 15:285. [PMID: 40422863 DOI: 10.3390/metabo15050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Background/Objectives: HIV and Mycobacterium tuberculosis (M.tb) co-infection presents a major global health burden. The immune response to M.tb is largely orchestrated by cluster of differentiation 4-positive (CD4+) T cells, with CD8+ T cells playing an auxiliary role. This study aims to investigate the immunometabolic response of CD4+ and CD8+ T cells to M.tb antigens, analysed using metabolomics, to elucidate metabolic shifts that may influence immune function in an HIV+ environment. Methods: Whole blood samples from newly diagnosed, treatment-naïve HIV+ individuals were stimulated with M.tb antigens early secreted antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) using the QuantiFERON® (QFT) Gold Plus assay. Following incubation, plasma samples were analysed through untargeted nuclear magnetic resonance (1H-NMR) spectroscopy. Metabolomic data were processed using MetaboAnalyst, with differential metabolites identified through multivariate statistical analyses. Results: Metabolic profiling of PBMCs revealed distinct differences in response to M.tb antigens between CD4+ and CD4+/CD8+ T-cell activation. CD4+ T cells exhibited enhanced glycolysis, with elevated levels of metabolites that are linked largely to the Warburg effect. Additionally, vitamin D levels were found to correlate with certain metabolites, suggesting a role in modulating immune responses. Conclusions: These findings suggest a complex interplay between immune cell metabolism and activation in HIV+ individuals. The study demonstrates that HIV and M.tb co-infection significantly influences the broader metabolic profile of peripheral blood mononuclear cells (PBMCs), highlighting the altered metabolic pathways that are critical in immune responses and disease progression. These findings contribute to the understanding of immunometabolism in co-infection and emphasise the need for further research into targeted metabolic interventions.
Collapse
Affiliation(s)
- Suheena Ayrga
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Gerrit Koorsen
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
18
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
19
|
Coquart P, El Haddad A, Koutsouras DA, Bolander J. Organic Bioelectronics in Microphysiological Systems: Bridging the Gap Between Biological Systems and Electronic Technologies. BIOSENSORS 2025; 15:253. [PMID: 40277566 PMCID: PMC12025328 DOI: 10.3390/bios15040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic-electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies.
Collapse
Affiliation(s)
- Pauline Coquart
- Research Unit ‘Soft Matter and Biophysics’, Department ‘Physics and Astronomy’, KU Leuven, B-3000 Leuven, Belgium;
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
| | - Andrea El Haddad
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Research Unit ’Assiocated Division ESAT-INSYS (INSYS), Integrated Systems’, Department ‘Electrical Engineering (ESAT)’, KU Leuven, B-3000 Leuven, Belgium
| | - Dimitrios A. Koutsouras
- IMEC NL, 5656 AE Eindhoven, The Netherlands
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Johanna Bolander
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Berlin Institute of Health Center for Regenerative Therapied (BCRT), Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
20
|
Li Y, Ye Y, Zhu X, Wei Y, Li Y, Sun Z, Zhou K, Gao P, Yao Z, Lai Q. Transcriptional analysis reveals antioxidant, ion transport, and glycolysis mechanisms in Litopenaeus vannamei gills involved in the response to high alkali stress. Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111868. [PMID: 40246270 DOI: 10.1016/j.cbpa.2025.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Saline-alkali aquacultural systems have an important role in improving the economic output of the aquacultural industry. However, the survival rate of shrimp in intensive aquacultural systems is affected by alkalinity fluctuations. This study explored the ion transport and molecular responses of the whiteleg shrimp Litopenaeus vannamei to short-term high alkaline stress (96 h). The results showed that survival rate decreased significantly with time, hemolymph osmotic pressure and oxygen consumption dropped sharply after peaking at 48 h, and ammonia excretion followed a non-monotonic pattern, with an initial decline followed by a subsequent increase. Analysis of key physiological indicators revealed that urea nitrogen continued to accumulate, antioxidant (SOD and CAT) and glycolytic (PFK and LDH) enzymes were significantly activated, but ion regulatory enzymes (Na+/K+-ATPase) were severely suppressed. Gill histopathology showed typical injuries (such as gill filament shrinkage, vacuolation, and hemocytopenia). Furthermore, transcriptome analysis confirmed that high alkali stress activated insulin signaling pathway and glycolysis-related genes (e.g., upregulating PFK and GLUT expression). These results indicate that the high alkalinity causes an ion imbalance, changes the ammonia transport process, and activates the glycolysis pathway. These conclusions provide a theoretical basis for the subsequent development for the saline-alkaline aquacultural of Litopenaeus vannamei.
Collapse
Affiliation(s)
- Yiming Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Yuxing Wei
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Yan Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Kai Zhou
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Pengcheng Gao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China
| | - Zongli Yao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
21
|
Murao N, Morikawa R, Seino Y, Shimomura K, Maejima Y, Ohno T, Yokoi N, Yamada Y, Suzuki A. Pyruvate kinase modulates the link between β-cell fructose metabolism and insulin secretion. FASEB J 2025; 39:e70500. [PMID: 40151947 PMCID: PMC11950909 DOI: 10.1096/fj.202401912rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The intricate link between glucose metabolism, ATP production, and glucose-stimulated insulin secretion (GIIS) in pancreatic β-cells has been well established. However, the effects of other digestible monosaccharides on this mechanism remain unclear. This study examined the interaction between intracellular fructose metabolism and GIIS using MIN6-K8 β-cell lines and mouse pancreatic islets. Fructose at millimolar concentrations potentiated insulin secretion in the presence of stimulatory levels (8.8 mM) of glucose. This potentiation was dependent on sweet taste receptor-activated phospholipase Cβ2 (PLCβ2) signaling. Concurrently, metabolic tracing using 13C-labeled fructose and glucose in conjunction with biochemical analyses demonstrated that fructose blunted the glucose-induced increase in the ATP/ADP ratio. Mechanistically, fructose is substantially converted to fructose 1-phosphate (F1P) at the expense of ATP. F1P directly inhibited PKM2 (pyruvate kinase M2), thereby reducing the later glycolytic flux used for ATP production. Remarkably, F1P-mediated PKM2 inhibition was counteracted by TEPP-46, a small-molecule PKM2 activator. TEPP-46 restored glycolytic flux and the ATP/ADP ratio, leading to the enhancement of fructose-potentiated GIIS in MIN6-K8 cells, normal mouse islets, and fructose-unresponsive diabetic mouse islets. These findings reveal an antagonistic interplay between glucose and fructose metabolism in β-cells, highlighting PKM2 as a crucial regulator and broadening our understanding of the relationship between β-cell fuel metabolism and insulin secretion.
Collapse
Affiliation(s)
- Naoya Murao
- Department of Endocrinology, Diabetes and MetabolismFujita Health University, School of MedicineToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Risa Morikawa
- Department of Endocrinology, Diabetes and MetabolismFujita Health University, School of MedicineToyoakeJapan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and MetabolismFujita Health University, School of MedicineToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological MedicineFukushima Medical University School of MedicineFukushimaJapan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological MedicineFukushima Medical University School of MedicineFukushimaJapan
| | - Tamio Ohno
- Graduate School of Medicine Center for Research of Laboratory Animals and Medical Research Engineering Division for Research of Laboratory AnimalsGraduate School of Medicine, Nagoya UniversityNagoyaJapan
| | - Norihide Yokoi
- Laboratory of Animal Breeding and Genetics, Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and MetabolismFujita Health University, School of MedicineToyoakeJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and MetabolismFujita Health University, School of MedicineToyoakeJapan
| |
Collapse
|
22
|
Korchagina K, Schwartz SD. Targeted TPS Shooting Using Computer Vision to Generate Ensemble of Trajectories. J Chem Theory Comput 2025; 21:3353-3359. [PMID: 40098324 PMCID: PMC11978486 DOI: 10.1021/acs.jctc.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This study presents a transition path sampling (TPS) procedure to create an ensemble of trajectories describing a chemical transformation from a reactant to a product state, augmented with a computer vision technique. A 3D convolutional neural network (CNN) sorts the slices of the TPS trajectories into reactant or product state categories, which aids in automatically accepting or rejecting a newly generated trajectory. Furthermore, information about the geometrical configuration of each slice enables one to calculate the percentage of reactant and product states within a specific shooting range. These statistics are used to determine the most appropriate shooting range and, if needed, to improve a shooting acceptance rate. To test the automated 3D CNN TPS technique, we applied it to collect an ensemble of the transition paths for the rate-limiting step of the Morita-Bayliss-Hillman (MBH) reaction.
Collapse
Affiliation(s)
- Kseniia Korchagina
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson 85721, Arizona, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson 85721, Arizona, United States
| |
Collapse
|
23
|
Chen H, Li N, Liu N, Zhu H, Ma C, Ye Y, Shi X, Luo G, Dong X, Tan T, Wei X, Yin H. Photobiomodulation modulates mitochondrial energy metabolism and ameliorates neurological damage in an APP/PS1 mousmodel of Alzheimer's disease. Alzheimers Res Ther 2025; 17:72. [PMID: 40188044 PMCID: PMC11971757 DOI: 10.1186/s13195-025-01714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease. Amyloid β-protein (Aβ) is one of the key pathological features of AD, which is cytotoxic and can damage neurons, thereby causing cognitive dysfunction. Photobiomodulation (PBM) is a non-invasive physical therapy that induces changes in the intrinsic mechanisms of cells and tissues through low-power light exposure. Although PBM has been employed in the treatment of AD, the effect and precise mechanism of PBM on AD-induced neurological damage are still unclear. METHODS In vivo experiments, PBM (808 nm, 20 mW/cm2) was used to continuously interfere with APP/PS1 mice for 6 weeks, and then their cognitive function and AD pathological changes were evaluated. In vitro experiments, lipopolysaccharide (LPS) was used to induce microglia to model inflammation, and the effect of PBM treatment on microglia polarization status and phagocytic Aβ ability was evaluated. Hexokinase 2 (HK2) inhibitor 3-bromopyruvate (3BP) was used to study the effect of PBM treatment on mitochondrial energy metabolism in microglia. RESULTS PBM further ameliorates AD-induced cognitive impairment by alleviating neuroinflammation and neuronal apoptosis, thereby attenuating nerve damage. In addition, PBM can also reduce neuroinflammation by promoting microglial anti-inflammatory phenotypic polarization; Promotes Aβ clearance by enhancing the ability of microglia to engulf Aβ. Among them, PBM regulates microglial polarization and inhibits neuronal apoptosis, which may be related to its regulation of mitochondrial energy metabolism, promotion of oxidative phosphorylation, and inhibition of glycolysis. CONCLUSION PBM regulates neuroinflammatory response and inhibits neuronal apoptosis, thereby repairing Aβ-induced neuronal damage and cognitive dysfunction. Mitochondrial energy metabolism plays an important role in PBM in improving nerve injury in AD mice. This study provides theoretical support for the subsequent application of PBM in the treatment of AD.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China.
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| | - Na Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Na Liu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
- Cangzhou Institute of Tiangong University, Cangzhou, 061000, China
| | - Hongyu Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Chunyan Ma
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Yutong Ye
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Xinyu Shi
- State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes, Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Guoshuai Luo
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, 300222, China
| | - Xiaoxi Dong
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. 325000, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Biomedical Engineering Department, Peking University, Beijing, 100142, China.
| | - Huijuan Yin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative Regeneration Laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
24
|
Fu J, Liu Z, Feng Z, Huang J, Shi J, Wang K, Jiang X, Yang J, Ning Y, Lu F, Li L. Platycodon grandiflorum exosome-like nanoparticles: the material basis of fresh platycodon grandiflorum optimality and its mechanism in regulating acute lung injury. J Nanobiotechnology 2025; 23:270. [PMID: 40186259 PMCID: PMC11969861 DOI: 10.1186/s12951-025-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe respiratory disease accompanied by diffuse inflammatory responses induced by various clinical causes. Many fresh medicinal plants have shown better efficacy than their dried forms in preventing and treating diseases like inflammation. As a classical Chinese herb, platycodon grandiflorum (PG) has been demonstrated effective in treating pneumonia, but most of previous studies focused on the efficacy of processed or dried PG formats, while the specific benefits of its fresh form are still underexplored. Exosome-like nanoparticles derived from medicinal plants are expected to point out an important direction for exploring the material basis and mechanism of this fresh herbal medicine. RESULTS The fresh form of PG could effectively improve ALI induced by lipopolysaccharide (LPS), relieve lung histopathological injury and weight loss, and reduce levels of inflammatory factors in mice, exhibiting better efficacy than dried PG in the treatment of ALI. Further extraction and purification of PG exosome-like nanoparticles (PGLNs) demonstrated that PGLNs had good biocompatibility, with characteristics consistent with general exosome-like nanoparticles. Besides, proteomic analysis indicated that PGLNs were rich in a variety of proteins. Animal experiments showed that PGLNs improved the pathological changes in LPS-induced lung tissues, inhibited the expression of inflammatory factors and promoted the expression of anti-inflammatory factors, and exerted a regulatory effect on the polarization of lung macrophages. Cell experiments further confirmed that PGLNs could be effectively taken up by RAW264.7 cells and repolarize M1 macrophages into M2 type, therefore reducing the secretion of harmful cytokines. Moreover, non-targeted metabolomics analysis reveals that PGLNs reduce inflammation and control macrophage polarization in a manner closely linked to pathways including glycolysis and lipid metabolism, highlighting a potential mechanism by which PGLNs protect the lungs from inflammatory damage like ALI. CONCLUSION Fresh PG has better anti-inflammatory and repair effects than its dried form. As one of the most effective active substances in fresh PG, PGLNs may regulate macrophage inflammation and polarization by regulating metabolic pathways including lipid metabolism and glycolysis, so as to reduce inflammation and repair lung injury.
Collapse
Affiliation(s)
- Jingmin Fu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Zhuolin Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China
| | - Zhiying Feng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Jiawang Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China
| | - Jianing Shi
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Kangyu Wang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Xuelian Jiang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Jiaxin Yang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi 300 Road, Changsha, Hunan, 410208, PR China
| | - Yi Ning
- The Medicine School, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| | - Fangguo Lu
- The Medicine School, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| | - Ling Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
- Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University Of Chinese Medicine, Xueshi Road 300, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
25
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
26
|
He X, Wang C, Zhang Q, Yang T, Guo Q, Wang Y, Guo J, Wang P, Zhang J, Tang H, Zhu Y, Wang J. Identifying ENO1 as a protein target of chlorogenic acid to inhibit cellular senescence and prevent skin photoaging in mice. Aging Cell 2025; 24:e14433. [PMID: 39741388 PMCID: PMC11984691 DOI: 10.1111/acel.14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 01/03/2025] Open
Abstract
Cellular senescence plays a critical role in repeated ultraviolet (UV) exposure-induced skin photoaging. Currently, from the perspective of regulating senescent cells, potent compounds or reliable protein targets that could effectively prevent skin photoaging have not yet been reported. Herein, we demonstrated that chlorogenic acid (CGA) significantly inhibited UVA-induced senescence of human dermis skin fibroblasts (HDF) cells by screening the natural product library. The activity-based protein profiling (ABPP) result revealed that Enolase 1 (ENO1) is one of the direct targets of CGA in HDF cells. Further mechanism research indicated that CGA covalently binds to ENO1, and prevented UVA-induced cellular senescence by suppressing the activity of ENO1 protein to block the glycolytic pathway. Importantly, we found that CGA dose-dependently reduced the skin wrinkle score, alleviated skin pathological features and inhibited senescent characteristics in a photoaging mouse model. The proteomic analysis revealed that CGA treatment effectively inhibited senescence-associated secretory phenotype (SASP) secretion and glycolysis in skin samples of mice. Collectively, our study not only demonstrated that inhibiting cell senescence is an effective anti-skin photoaging strategy, but also revealed that ENO1 is a promising protein target to prevent photoaging.
Collapse
Affiliation(s)
- Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- Department of Urology, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenGuangdongChina
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Qianyu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Tong Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yaxu Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Jiayue Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yinhua Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- Department of Urology, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenGuangdongChina
- State Key Laboratory of Antiviral Drugs, School of PharmacyHenan UniversityKaifengChina
| |
Collapse
|
27
|
Han Z, Shen Y, Yan Y, Bin P, Zhang M, Gan Z. Metabolic reprogramming shapes post-translational modification in macrophages. Mol Aspects Med 2025; 102:101338. [PMID: 39977975 DOI: 10.1016/j.mam.2025.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 01/11/2025] [Indexed: 02/22/2025]
Abstract
Polarized macrophages undergo metabolic reprogramming, as well as extensive epigenetic and post-translational modifications (PTMs) switch. Metabolic remodeling and dynamic changes of PTMs lead to timely macrophage response to infection or antigenic stimulation, as well as its transition from a pro-inflammatory to a reparative phenotype. The transformation of metabolites in the microenvironment also determines the PTMs of macrophages. Here we reviewed the current understanding of the altered metabolites of glucose, lipids and amino acids in macrophages shape signaling and metabolism pathway during macrophage polarization via PTMs, and how these metabolites in some macrophage-associated diseases affect disease progression by shaping macrophage PTMs.
Collapse
Affiliation(s)
- Ziyi Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinhao Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqi Yan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Meimei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhending Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
28
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
29
|
Stea DM, D’Alessio A. Caveolae: Metabolic Platforms at the Crossroads of Health and Disease. Int J Mol Sci 2025; 26:2918. [PMID: 40243482 PMCID: PMC11988808 DOI: 10.3390/ijms26072918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Caveolae are small flask-shaped invaginations of the plasma membrane enriched in cholesterol and sphingolipids. They play a critical role in various cellular processes, including signal transduction, endocytosis, and mechanotransduction. Caveolin proteins, specifically Cav-1, Cav-2, and Cav-3, in addition to their role as structural components of caveolae, have been found to regulate the activity of signaling molecules. A growing body of research has highlighted the pivotal role of caveolae and caveolins in maintaining cellular metabolic homeostasis. Indeed, studies have demonstrated that caveolins interact with the key components of insulin signaling, glucose uptake, and lipid metabolism, thereby influencing energy production and storage. The dysfunction of caveolae or the altered expression of caveolins has been associated with metabolic disorders, including obesity, type 2 diabetes, and ocular diseases. Remarkably, mutations in caveolin genes can disrupt cellular energy balance, promote oxidative stress, and exacerbate metabolic dysregulation. This review examines current research on the molecular mechanisms through which caveolae and caveolins regulate cellular metabolism, explores their involvement in the pathogenesis of metabolic disorders, and discusses potential therapeutic strategies targeting caveolin function and the stabilization of caveolae to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dante Maria Stea
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
30
|
Zhu J, Meng Y, Gao W, Yang S, Zhu W, Ji X, Zhai X, Liu WQ, Luo Y, Ling S, Li J, Liu Y. AI-driven high-throughput droplet screening of cell-free gene expression. Nat Commun 2025; 16:2720. [PMID: 40108186 PMCID: PMC11923291 DOI: 10.1038/s41467-025-58139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.
Collapse
Affiliation(s)
- Jiawei Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yaru Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenli Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenjie Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuanpei Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
31
|
Huang LX, Sun T, Sun J, Wu ZM, Zhao YB, Li MY, Huo QY, Ling C, Zhang BY, Chen C, Wang H. The Role of Endothelial Cell Glycolysis in Schwann Cells and Peripheral Nerve Injury Repair: A Novel and Important Research Area. Neurochem Res 2025; 50:121. [PMID: 40100469 DOI: 10.1007/s11064-025-04374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Endothelial cell glycolysis plays a novel and significant role in Schwann cells and peripheral nerve injury repair, which represents an emerging and important area of research. Glycolysis in endothelial cells is a conserved and tightly regulated biological process that provides essential energy (ATP) and intermediates by ultimately converting glucose into lactate. This metabolic pathway is crucial for maintaining the normal function of endothelial cells. During peripheral nerve injury repair, endothelial cell glycolysis influences the function of Schwann cells and the efficiency of nerve regeneration. Beyond glycolysis, endothelial cells also secrete various factors, including growth factors and extracellular vesicles, which further modulate Schwann cell activity and contribute to the repair process. This review will summarize the role of endothelial cell glycolysis in Schwann cell function and peripheral nerve injury repair, aiming to provide new insights for the development of novel strategies for peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Li-Xin Huang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Zhi-Min Wu
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Yi-Bo Zhao
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ming-Yang Li
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Qing-Yi Huo
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Bao-Yu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
32
|
Chen Z, Wan L, Wu M, Zhao Y, Huang H, He Q, Wang Y, Luo Q. Oxidative stress regulates the catalytic activity and mitochondrial localization of HK2 in trophoblast by regulating K346 lactylation. FASEB J 2025; 39:e70429. [PMID: 40019223 DOI: 10.1096/fj.202402430rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Preeclampsia (PE) is one of the most dangerous complications of pregnancy. The pathogenic mechanisms of this condition are not yet clear. Lysine lactylation (Kla) is a novel post-translational modification (PTM) reported recently. It remains to be determined whether Kla plays a role in the development of PE. Here, western blotting revealed that the placental Kla profile of PE was different from that of normal pregnancies, and hydrogen peroxide (H2O2) weakened the Kla level of trophoblast cells. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) indicated that 333 Kla sites of 232 proteins were changed by Kla in BeWo cells (a trophoblast cell line) treated with H2O2, among which only HK2 showed a unique Kla site (K346) with down-regulated lactylation. Additionally, the inactive mutant HK2-K346 was associated with decreased hexokinase activity, lower affinity to voltage-dependent anion channel 1 (VDAC1), and impaired cell proliferation. These findings demonstrate that lactylation is involved in the pathogenesis of PE and that lactylation of HK2-K346 could serve as a new connection between oxidative stress, energy metabolism, and the development of PE.
Collapse
Affiliation(s)
- Zhirui Chen
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wan
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengying Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Zhao
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiuyi He
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ying Wang
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Luo
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Szasz A. Bioelectromagnetism for Cancer Treatment-Modulated Electro-Hyperthermia. Curr Oncol 2025; 32:158. [PMID: 40136362 PMCID: PMC11941104 DOI: 10.3390/curroncol32030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025] Open
Abstract
Bioelectromagnetism has the potential to revolutionize cancer treatment by providing a noninvasive, targeted, and potentially more effective complement to traditional therapies. Among bioelectromagnetic techniques, modulated electro-hyperthermia (mEHT) stands out due to its unique characteristics, which have been supported by experimental evidence and clinical validation. Unlike conventional hyperthermia methods, mEHT leverages nonthermal bioelectromagnetic processes, offering a distinct and promising approach in oncology. This differentiation underscores the broader potential for bioelectromagnetic applications in cancer treatment, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
34
|
Zhu P, Pfrender EM, Steffeck AWT, Reczek CR, Zhou Y, Thakkar AV, Gupta NR, Kupai A, Willbanks A, Lieber RL, Roy I, Chandel NS, Peek CB. Immunomodulatory role of the stem cell circadian clock in muscle repair. SCIENCE ADVANCES 2025; 11:eadq8538. [PMID: 40043110 PMCID: PMC11881903 DOI: 10.1126/sciadv.adq8538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025]
Abstract
Circadian rhythms orchestrate physiological processes such as metabolism, immune function, and tissue regeneration, aligning them with the optimal time of day (TOD). This study identifies an interplay between the circadian clock within muscle stem cells (SCs) and their capacity to modulate the immune microenvironment during muscle regeneration. We reveal that the SC clock triggers TOD-dependent inflammatory gene transcription after injury, particularly genes related to neutrophil activity and chemotaxis. These responses are driven by cytosolic regeneration of the signaling metabolite nicotinamide adenine dinucleotide (oxidized form) (NAD+), as enhancing cytosolic NAD+ regeneration in SCs is sufficient to induce inflammatory responses that influence muscle regeneration. Mononuclear single-cell sequencing of the regenerating muscle niche further implicates the cytokine CCL2 in mediating SC-neutrophil cross-talk in a TOD-dependent manner. Our findings highlight the intersection between SC metabolic shifts and immune responses within the muscle microenvironment, dictated by circadian rhythms, and underscore the potential for targeting circadian and metabolic pathways to enhance tissue regeneration.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric M. Pfrender
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam W. T. Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Colleen R. Reczek
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yalu Zhou
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Abhishek Vijay Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neha R. Gupta
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ariana Kupai
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amber Willbanks
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Hines VA Hospital, Maywood, IL, USA
| | - Ishan Roy
- Shirley Ryan AbilityLab (formerly known as Rehabilitation Institute of Chicago), Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clara B. Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Lee WD, Weilandt DR, Liang L, MacArthur MR, Jaiswal N, Ong O, Mann CG, Chu Q, Hunter CJ, Ryseck RP, Lu W, Oschmann AM, Cowan AJ, TeSlaa TA, Bartman CR, Jang C, Baur JA, Titchenell PM, Rabinowitz JD. Lactate homeostasis is maintained through regulation of glycolysis and lipolysis. Cell Metab 2025; 37:758-771.e8. [PMID: 39889702 PMCID: PMC11926601 DOI: 10.1016/j.cmet.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Lactate is among the highest flux circulating metabolites. It is made by glycolysis and cleared by both tricarboxylic acid (TCA) cycle oxidation and gluconeogenesis. Severe lactate elevations are life-threatening, and modest elevations predict future diabetes. How lactate homeostasis is maintained, however, remains poorly understood. Here, we identify, in mice, homeostatic circuits regulating lactate production and consumption. Insulin induces lactate production by upregulating glycolysis. We find that hyperlactatemia inhibits insulin-induced glycolysis, thereby suppressing excess lactate production. Unexpectedly, insulin also promotes lactate TCA cycle oxidation. The mechanism involves lowering circulating fatty acids, which compete with lactate for mitochondrial oxidation. Similarly, lactate can promote its own consumption by lowering circulating fatty acids via the adipocyte-expressed G-protein-coupled receptor hydroxycarboxylic acid receptor 1 (HCAR1). Quantitative modeling suggests that these mechanisms suffice to produce lactate homeostasis, with robustness to noise and perturbation of individual regulatory mechanisms. Thus, through regulation of glycolysis and lipolysis, lactate homeostasis is maintained.
Collapse
Affiliation(s)
- Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Daniel R Weilandt
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Lingfan Liang
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Natasha Jaiswal
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Olivia Ong
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Qingwei Chu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig J Hunter
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Rolf-Peter Ryseck
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Anna M Oschmann
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Alexis J Cowan
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara A TeSlaa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline R Bartman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
36
|
Chen W, Mao T, Ma R, Xiong Y, Han R, Wang L. The role of astrocyte metabolic reprogramming in ischemic stroke (Review). Int J Mol Med 2025; 55:49. [PMID: 39930815 PMCID: PMC11781528 DOI: 10.3892/ijmm.2025.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Ischemic stroke, a leading cause of disability and mortality worldwide, is characterized by the sudden loss of blood flow in specific area of the brain. Intravenous thrombolysis with recombinant tissue plasminogen activator is the only approved pharmacological treatment for acute ischemic stroke; however, the aforementioned treatment has significant clinical limitations, thus there is an urgent need for the development of novel mechanisms and therapeutic strategies for ischemic stroke. Astrocytes, abundant and versatile cells in the central nervous system, offer crucial support to neurons nutritionally, structurally and physically. They also contribute to blood‑brain barrier formation and regulate neuronal extracellular ion concentrations. Accumulated evidence has revealed the involvement of astrocytes in the regulation of host neurotransmitter metabolism, immune response and tissue repair, and different metabolic characteristics of astrocytes can contribute to the process and development of ischemic stroke, suggesting that targeted regulation of astrocyte metabolic reprogramming may contribute to the treatment and prognosis of ischemic stroke. In the present review, the current understanding of the multifaceted mechanisms of astrocyte metabolic reprogramming in ischemic stroke, along with its regulatory factors and pathways, as well as the strategies to promote its polarization balance, which hold promise for astrocyte immunometabolism‑targeted therapies in the treatment of ischemic stroke, were summarized.
Collapse
Affiliation(s)
- Weixin Chen
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Tangyou Mao
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Rui Ma
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Yuxuan Xiong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Ran Han
- Clinical Laboratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Le Wang
- Cerebrovascular Disease Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| |
Collapse
|
37
|
Li S, Yang K, Ye J, Xu C, Qin Z, Chen Y, Yu L, Zhou T, Sun B, Xu J. LGALS4 inhibits glycolysis and promotes apoptosis of colorectal cancer cells via β‑catenin signaling. Oncol Lett 2025; 29:126. [PMID: 39807100 PMCID: PMC11726281 DOI: 10.3892/ol.2025.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Glycolysis serves a crucial role in the development of CRC. The aim of the present study was to investigate the function of lectin galactoside-binding soluble 4 (LGALS4) in the regulation of glycolysis and its therapeutic potential in CRC. In the present study, 175 overlapping differentially expressed genes were identified by comprehensive analysis of The Cancer Genome Atlas database and the GSE26571 CRC dataset from the Gene Expression Omnibus database. LGALS4 was identified as the central gene by prognostic analysis using the mimetic map construction method and least absolute shrinkage and selection operator Cox regression. In vitro experiments were performed to evaluate the effects of LGALS4 overexpression on CRC cell phenotype and aerobic glycolysis, as well as its relationship with β-catenin signaling. LGALS4 was significantly downregulated in CRC, with an average 3-fold decrease compared with LGALS4 expression levels in normal tissues. LGALS4 was also significantly associated with patient survival. LGALS4 overexpression inhibited CRC cell growth, induced cell cycle arrest and enhanced 5-fluorouracil (5-FU)-induced apoptosis. Specifically, LGALS4 overexpression resulted in a ~50% decrease in cell proliferation and a ~2-fold increase in apoptosis. In addition, LGALS4 overexpression inhibited aerobic glycolysis and reduced glucose-dependent and glycolytic activity in CRC cells. The downregulatory effect of LGALS4 on glycolysis-related genes was further enhanced by the addition of the β-catenin inhibitor XAV-939. LGALS4 expression decreased CRC progression by inhibiting glycolysis and affecting β-catenin signaling. Overexpression of LGALS4 reduced the proliferation and glycolytic capacity of CRC cells and also enhanced their sensitivity to 5-FU. These results may potentially provide new perspectives for CRC treatment and targets for future clinical intervention strategies.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Kaifeng Yang
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiayou Ye
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Chengfan Xu
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Zhixiang Qin
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Ying Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200438, P.R. China
| | - Lanjian Yu
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Tianyu Zhou
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Bin Sun
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200438, P.R. China
| | - Jun Xu
- Department of Gastroenterology Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
38
|
Noufeu T, Li Y, Toure NF, Yao H, Zeng X, Du Q, Pan D. Overview of Glycometabolism of Lactic Acid Bacteria During Freeze-Drying: Changes, Influencing Factors, and Application Strategies. Foods 2025; 14:743. [PMID: 40077446 PMCID: PMC11898726 DOI: 10.3390/foods14050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Lactic acid bacteria (LAB) play a vital role in food fermentation and probiotics microeconomics. Freeze-drying (FD) is a commonly used method for preserving LAB powder to extend its shelf life. However, FD induces thermal, osmotic, and mechanical stresses that can impact the glycometabolism of LAB, which is the process of converting carbohydrates into energy. This review explores the effect of FD on glycometabolism, factors influencing glycometabolism, and feasible strategies in the FD process of LAB. During the three stages of FD, freezing, primary drying or sublimation, and second drying, the glycolytic activity of LAB is disrupted in the freezing stage; further, the function of glycolytic enzymes such as hexokinase, phosphofructokinase, and pyruvate kinase is hindered, and adenosine triphosphate (ATP) production drops significantly in the sublimation stage; these enzyme activities and ATP production nearly cease and exopolysaccharide (EPS) synthesis alters during the secondary drying stage. Factors such as strain variations, pretreatment techniques, growth medium components, FD parameters, and water activity influence these changes. To counteract the effects of FD on LAB glycometabolism, strategies like cryoprotectants, encapsulation, and genetic engineering can help preserve their glycometabolic activity. These methods protect LAB from harsh FD conditions, safeguarding glycolytic flux and enzymatic processes involved in carbohydrate metabolism. A deeper understanding of these glycometabolic changes is essential for optimizing FD processes and enhancing the use of LAB in food, medicine, and biotechnology, ultimately improving their performance upon rehydration.
Collapse
Affiliation(s)
- Tchouli Noufeu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yueqin Li
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Ndeye Fatou Toure
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Hui Yao
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
39
|
van Ede JM, Soic D, Pabst M. Decoding Sugars: Mass Spectrometric Advances in the Analysis of the Sugar Alphabet. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39972673 DOI: 10.1002/mas.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Monosaccharides play a central role in metabolic networks and in the biosynthesis of glycomolecules, which perform essential functions across all domains of life. Thus, identifying and quantifying these building blocks is crucial in both research and industry. Routine methods have been established to facilitate the analysis of common monosaccharides. However, despite the presence of common metabolites, most organisms utilize distinct sets of monosaccharides and derivatives. These molecules therefore display a large diversity, potentially numbering in the hundreds or thousands, with many still unknown. This complexity presents significant challenges in the study of glycomolecules, particularly in microbes, including pathogens and those with the potential to serve as novel model organisms. This review discusses mass spectrometric techniques for the isomer-sensitive analysis of monosaccharides, their derivatives, and activated forms. Although mass spectrometry allows for untargeted analysis and sensitive detection in complex matrices, the presence of stereoisomers and extensive modifications necessitates the integration of advanced chromatographic, electrophoretic, ion mobility, or ion spectroscopic methods. Furthermore, stable-isotope incorporation studies are critical in elucidating biosynthetic routes in novel organisms.
Collapse
Affiliation(s)
- Jitske M van Ede
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Dinko Soic
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
40
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
41
|
Santana-Román ME, Ramírez-Carreto S, Maycotte P, Pando-Robles V. Alteration of mitochondrial function in arthropods during arboviruses infection: a review of the literature. Front Physiol 2025; 16:1507059. [PMID: 40017802 PMCID: PMC11865064 DOI: 10.3389/fphys.2025.1507059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
Arthropods serve as vectors for numerous arboviruses responsible for diseases worldwide. Despite their medical, veterinary, and economic significance, the interaction between arboviruses and arthropods remains poorly understood. Mitochondria in arthropods play a crucial role by supplying energy for cell survival and viral replication. Some arboviruses can replicate within arthropod vectors without harming the host. Successful transmission depends on efficient viral replication in the vector's tissues, ultimately reaching the salivary glands for transmission to a vertebrate host, including humans, via blood-feeding. This review summarizes current knowledge of mitochondrial function in arthropods during arbovirus infection, highlighting gaps compared to studies in mammals and other pathogens relevant to arthropods. It emphasizes mitochondrial processes in insects that require further investigation to uncover the mechanisms underlying arthropod-borne transmission.
Collapse
Affiliation(s)
- María E. Santana-Román
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Santos Ramírez-Carreto
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla, Mexico
| | - Victoria Pando-Robles
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
42
|
Han W, Cheng W, Fan M, Liu D, Cao Y, Mei X, Wan J, Hu G, Gao H, Ji N. Effects of Alexandrium pacificum Exposure on Exopalaemon carinicauda: Hepatopancreas Histology, Antioxidant Enzyme Activity, and Transcriptome Analysis. Int J Mol Sci 2025; 26:1605. [PMID: 40004076 PMCID: PMC11855214 DOI: 10.3390/ijms26041605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Alexandrium pacificum, a dinoflagellate known for causing harmful algal blooms (HABs), has garnered significant attention due to its potential toxicity to marine ecosystems, fisheries, and human health. However, the effects of this toxin-producing alga on shrimp are not yet comprehensively understood. This study aimed to assess the hepatopancreas damage induced by A. pacificum in the economically important shrimp species E. carinicauda and to elucidate the underlying molecular mechanisms through histology, antioxidant enzyme activity, and transcriptome analysis. The shrimp were assigned to either a control group or an exposed group, with the latter involving exposure to A. pacificum at a concentration of 1.0 × 104 cells/mL for 7 days. A histological analysis subsequently revealed pathological changes in the hepatopancreas tissue of the exposed group, including lumen expansion and the separation of the basement membrane from epithelial cells, while antioxidant enzyme activity assays demonstrated that exposure to A. pacificum weakened the antioxidant defense system, as evidenced by the reduced activities of catalase, superoxide dismutase, and glutathione, along with increased malondialdehyde levels. Transcriptome analysis further identified 663 significantly upregulated genes and 1735 significantly downregulated ones in the exposed group, with these differentially expressed genes being primarily associated with pathways such as protein processing in the endoplasmic reticulum, mitophagy, glycolysis/gluconeogenesis, sphingolipid metabolism, and glycerophospholipid metabolism. This study provides novel insights into the toxicological effects of A. pacificum on aquatic organisms and enhances the current understanding of the ecotoxicological risks posed by HABs.
Collapse
Affiliation(s)
- Wanyu Han
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Weitao Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Menghao Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Dexue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Yanrong Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Xuao Mei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Jiaxuan Wan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
| | - Guangwei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Nanjing Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (W.H.); (W.C.); (M.F.); (D.L.); (Y.C.); (X.M.); (J.W.); (H.G.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
43
|
Li YX, Shao BY, Hou MY, Dong DJ. Succinylation enables IDE to act as a hub of larval tissue destruction and adult tissue reconstruction during insect metamorphosis. SCIENCE ADVANCES 2025; 11:eads0643. [PMID: 39908369 PMCID: PMC11797550 DOI: 10.1126/sciadv.ads0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Metamorphosis is an important way for insects to adapt to the environment. In this process, larval tissue destruction regulated by 20-hydroxyecdysone (20E) and adult tissue reconstruction regulated by insulin-like peptides (ILPs) occur simultaneously, but the detailed mechanism is still unclear. Here, the results of succinylome, subcellular localization, and protein interaction analysis show that non-succinylated insulin-degrading enzyme (IDE) localizes in the cytoplasm, binds to insulin-like growth factor 2 (IGF-2-like), and degrades it. When the metamorphosis is initiated, 20E up-regulated carnitine palmitoyltransferase 1A (Cpt1a) through transcription factor Krüppel-like factor 15 (KLF15), thus increasing the level of IDE succinylation on K179. Succinylated IDE translocated from cytoplasm to nucleus, combined with ecdysone receptor to promote 20E signaling pathway, causing larval tissue destruction, while IGF-2-like was released to promote adult tissue proliferation. That is, succinylation alters subcellular localization of IDE so that it can bind to different target proteins and act as a hub of metamorphosis.
Collapse
Affiliation(s)
| | | | - Ming-Ye Hou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China
| |
Collapse
|
44
|
Khana DB, Jen A, Shishkova E, Thusoo E, Williams J, Henkel A, Stevenson DM, Coon JJ, Amador-Noguez D. Thermodynamics shape the in vivo enzyme burden of glycolytic pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635972. [PMID: 39974948 PMCID: PMC11838459 DOI: 10.1101/2025.01.31.635972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Thermodynamically constrained reactions and pathways are hypothesized to impose greater protein demands on cells, requiring higher enzyme amounts to sustain a given flux compared to those with stronger thermodynamics. To test this, we quantified the absolute concentrations of glycolytic enzymes in three bacterial species -Zymomonas mobilis, Escherichia coli, and Clostridium thermocellum- which employ distinct glycolytic pathways with varying thermodynamic driving forces. By integrating enzyme concentration data with corresponding in vivo metabolic fluxes and ΔG measurements, we found that the highly favorable Entner-Doudoroff (ED) pathway in Z. mobilis requires only one-fourth the amount of enzymatic protein to sustain the same flux as the thermodynamically constrained pyrophosphate-dependent glycolytic pathway in C. thermocellum, with the Embden-Meyerhof-Parnas (EMP) pathway in E. coli exhibiting intermediate thermodynamic favorability and enzyme demand. Across all three pathways, early reactions with stronger thermodynamic driving forces generally required lower enzyme investment than later, less favorable steps. Additionally, reflecting differences in glycolytic strategies, the highly reversible ethanol fermentation pathway in C. thermocellum requires 10-fold more protein to maintain the same flux as the irreversible, forward-driven ethanol fermentation pathway in Z. mobilis. Thus, thermodynamic driving forces constitute a major in vivo determinant of the enzyme burden in metabolic pathways.
Collapse
Affiliation(s)
- Daven B. Khana
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI USA
| | - Eashant Thusoo
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Jonathan Williams
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Alex Henkel
- University of Wisconsin-Madison Carbone Cancer Center, University of Wisconsin-Madison, Madison WI USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
| | - Joshua J. Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI USA
- Morgridge Institute for Research, Madison, WI USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison WI USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
45
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
46
|
Leven AS, Wagner N, Nienaber S, Messiha D, Tasdogan A, Ugurel S. Changes in tumor and cardiac metabolism upon immune checkpoint. Basic Res Cardiol 2025; 120:133-152. [PMID: 39658699 PMCID: PMC11790718 DOI: 10.1007/s00395-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.
Collapse
Affiliation(s)
- Anna-Sophia Leven
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Natalie Wagner
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Nienaber
- Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Messiha
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
47
|
Nascentes Melo LM, Cansiz F, Tasdogan A. Aldolase A: the broker of glycolysis. Nat Metab 2025; 7:242-244. [PMID: 39833611 DOI: 10.1038/s42255-024-01202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Affiliation(s)
| | - Feyza Cansiz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany.
| |
Collapse
|
48
|
Tietz KT, McCluskey BM, Miller CR, Li Y, Munro SA, Dehm SM. CPSF1 inhibition promotes widespread use of intergenic polyadenylation sites and impairs glycolysis in prostate cancer cells. Cell Rep 2025; 44:115211. [PMID: 39847481 PMCID: PMC11831233 DOI: 10.1016/j.celrep.2024.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/12/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Localized prostate cancer can be cured by radiation or surgery, but advanced prostate cancer continues to be a clinical challenge. Altered alternative polyadenylation occurs in numerous cancers and can downregulate tumor-suppressor genes and upregulate oncogenes. We found that the cleavage and polyadenylation specificity factor (CPSF) complex factor CPSF1 is upregulated in patients with advanced prostate cancer, with high CPSF1 expression correlating with worse progression-free survival. Knockdown of CPSF1 selectively inhibited the growth of prostate cancer cells and reduced glycolytic output. Evaluating the changes in global poly(A) site usage in prostate cancer cells following CPSF1 knockdown revealed widespread usage of intergenic poly(A) sites distal to annotated 3' UTRs, which lengthened 3' UTRs and decreased levels of thousands of mRNAs, including key glycolysis genes. These findings uncover a role for CPSF1 in the suppression of intergenic poly(A) sites in prostate cancer and nominate CPSF1 as a therapeutic target in advanced prostate cancer.
Collapse
Affiliation(s)
- Kiel T Tietz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Braedan M McCluskey
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Conor R Miller
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingming Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah A Munro
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Ni J, Huang S, Yang W, Chen Q, Lin Z. Electrochemiluminescence Detecting and Imaging of Yeast Metabolism Indicated by Endogenetic Co-reactant. Anal Chem 2025; 97:921-927. [PMID: 39700391 DOI: 10.1021/acs.analchem.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Glycolysis, a pivotal step in yeast metabolism, plays an indispensable role as a carbohydrate utilization process crucial for cellular survival. Developing advanced technologies to elucidate this fundamental physiological process holds significant scientific implications. Electrochemiluminescence (ECL) imaging exhibits the advantage of negligible background interference and facilitates straightforward visualization, thereby conferring significant value in biomolecular observation. In this study, we present an ECL imaging method for investigating yeast metabolism by utilizing the endogenetic NADH as an efficient coreactant for ECL generation. The yeast glycolysis process drives the conversion of NAD+ to NADH, resulting in enhanced ECL response as well as the increased brightness of ECL images that can be used for quantification of yeast activity. There was a linear correlation between the reciprocal of both the gray value of ECL image and yeast concentration within the range of 6.25 × 106 - 6.25 × 108 CFU/mL. Due to the highly efficient coreactant behavior of NADH, our method demonstrated excellent selectivity with minimal interference. Furthermore, we employed this approach to investigate some toxic inhibitors on yeast metabolism, yielding reliable results. This ECL imaging method not only avoids the use of additional coreactants but also provides a sensitive and intuitive approach for monitoring yeast metabolism, demonstrating great potential in revealing various complex biological processes.
Collapse
Affiliation(s)
- Jiancong Ni
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shengxiu Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Weiqiang Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Qiaoling Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
50
|
Zhang Q, Han L, Luo X, Bao Y, Wang S, Li T, Huo J, Meng X. Enhancing inhibitory effect in SMMC-7721 hepatoma cells through combined treatment of gallic acid and hUC-MSCs-Exos. Int Immunopharmacol 2025; 144:113704. [PMID: 39608175 DOI: 10.1016/j.intimp.2024.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Clinically, hepatoma patients are more frequently encountered in the intermediate and advanced stages. Consequently, the majority of patients miss out on the chance to undergo liver transplantation or radical surgery. Radiotherapy and chemotherapy often fall short of delivering satisfactory outcomes. The incidence and mortality rates for liver cancer approach nearly 100%. In recent years, both exosomes (Exos) and natural chemical compounds have demonstrated robust anti-cancer properties; however, the synergistic effect of their combination remains unexplored. METHODS Exos were extracted from human umbilical cord mesenchymal stem cells (hUC-MSCs). The impact of gallic acid (GA), hUC-MSCs-Exos, and their combined administration on the proliferation inhibition rate and apoptosis of SMMC-7721 hepatoma cells was assessed to ascertain the efficacy differences before and after the combined treatment. A combination of cells metabolomics and network pharmacology techniques was employed to investigate the underlying mechanisms of action. The pivotal targets associated with glycolysis, inflammation, and oxidative stress pathways were confirmed through ELISA assays. RESULTS The findings elucidate that GA profoundly impedes the proliferation of SMMC-7721 hepatoma cells and instigates apoptotic processes therein. While the impact of hUC-MSCs-Exos alone was inconspicuous, a notable augmentation in effect ensued upon their combined application. Concomitantly, a marked reduction was observed in the expressionlevels of key enzymes including HK, PFK, PK, LDH, TNF-α, IL-1β, CAT, SOD and GSH-Px in the malignant hepatocytes, while IL-6 and MDA exhibited heightened expression. Pathway enrichment analysis underscored selenocompound metabolism and cysteine and methionine metabolism as pivotal pathways. CONCLUSION The potentiated efficacy of GA conjunction with hUC-MSCs-Exos may be attributed to their synergistic modulation of anti-inflammatory, antioxidant, and glycolytic functions, thereby influencing selenocompound metabolism and cysteine and methionine metabolism. This study reveals the efficacy and mechanism of Exos and GA combined therapy for hepatoma, providing new methods and ideas for the clinical treatment of hepatoma.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Liying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Xi Luo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Yongrui Bao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China
| | - Shuai Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China
| | - Tianjiao Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China
| | - Jinnan Huo
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China
| | - Xiansheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Liaoning Dalian China; Professional Innovation Technology Center for Multidimensional Analysis of Traditional Chinese Medicine, Liaoning Dalian China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Liaoning Dalian China.
| |
Collapse
|