1
|
Celli S, Watanabe M, Hodes RJ. Tumor suppressor p53 controls thymic NKT17 development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608967. [PMID: 39372758 PMCID: PMC11451625 DOI: 10.1101/2024.08.21.608967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor suppressor p53 antagonizes tumorigenesis, notably including the suppression of T cell lymphomas while its role on physiological T cell biology including thymic T cell development has not been fully understood. Invariant natural killer T (iNKT) cells develop in the thymus as innate-like αβ-T cells which consist of NKT1, NKT2 and NKT17 subsets. We found that the tumor suppressor p53 regulates specifically thymic NKT17 development. p53 is highly expressed in NKT17 relative to other T cell populations. Loss of p53 in the T cell lineage resulted in increased thymic NKT17 cell number with retention of lineage specific cytokine production, while development of NKT1, NKT2 and conventional T cells was not affected. Of interest, γH2AX expression was higher in NKT17 than NKT1 and NKT2 at steady state, and it was further increased in p53-deficient NKT17, suggesting that NKT17 development involves selectively greater DNA damage or genomic instability and that p53 expression might be in response to these damage signals. Taken together, our results indicated that the tumor suppressor p53 is active in selectively controlling thymic NKT17 development, with absence of p53 leading to an increase in thymic NKT17 cells expressing high levels of DNA damage response.
Collapse
|
2
|
Benedetti F, Silvestri G, Saadat S, Denaro F, Latinovic OS, Davis H, Williams S, Bryant J, Ippodrino R, Rathinam CV, Gallo RC, Zella D. Mycoplasma DnaK increases DNA copy number variants in vivo. Proc Natl Acad Sci U S A 2023; 120:e2219897120. [PMID: 37459550 PMCID: PMC10372619 DOI: 10.1073/pnas.2219897120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
The human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that Mycoplasma fermentans DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of M. fermentans DnaK expression in vivo. By using an array-based comparative genomic hybridization assay, we demonstrate that exposure to DnaK was associated with a higher number of DNA copy number variants (CNVs) indicative of unbalanced chromosomal alterations, together with reduced fertility and a high rate of fetal abnormalities. Consistent with their implication in genetic disorders, one of these CNVs caused a homozygous Grid2 deletion, resulting in an aberrant ataxic phenotype that recapitulates the extensive biallelic deletion in the Grid2 gene classified in humans as autosomal recessive spinocerebellar ataxia 18. Our data highlight a connection between components of the human urogenital tract microbiota, namely Mycoplasmas, and genetic abnormalities in the form of DNA CNVs, with obvious relevant medical, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Giovannino Silvestri
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Saman Saadat
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD21251
| | - Olga S. Latinovic
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD21201
| | - Harry Davis
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Sumiko Williams
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joseph Bryant
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
| | | | - Chozha V. Rathinam
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Medicine, School of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD21201
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
3
|
Wang XS, Menolfi D, Wu-Baer F, Fangazio M, Meyer SN, Shao Z, Wang Y, Zhu Y, Lee BJ, Estes VM, Cupo OM, Gautier J, Pasqualucci L, Dalla-Favera R, Baer R, Zha S. DNA damage-induced phosphorylation of CtIP at a conserved ATM/ATR site T855 promotes lymphomagenesis in mice. Proc Natl Acad Sci U S A 2021; 118:e2105440118. [PMID: 34521752 PMCID: PMC8463888 DOI: 10.1073/pnas.2105440118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Graduate Program of Pathobiology and Molecular Medicine, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Marco Fangazio
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Stefanie N Meyer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yimeng Zhu
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Jean Gautier
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032;
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
4
|
Autophosphorylation and Self-Activation of DNA-Dependent Protein Kinase. Genes (Basel) 2021; 12:genes12071091. [PMID: 34356107 PMCID: PMC8305690 DOI: 10.3390/genes12071091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 11/28/2022] Open
Abstract
The DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase-related kinase family, phosphorylates serine and threonine residues of substrate proteins in the presence of the Ku complex and double-stranded DNA. Although it has been established that DNA-PKcs is involved in non-homologous end-joining, a DNA double-strand break repair pathway, the mechanisms underlying DNA-PKcs activation are not fully understood. Nevertheless, the findings of numerous in vitro and in vivo studies have indicated that DNA-PKcs contains two autophosphorylation clusters, PQR and ABCDE, as well as several autophosphorylation sites and conformational changes associated with autophosphorylation of DNA-PKcs are important for self-activation. Consistent with these features, an analysis of transgenic mice has shown that the phenotypes of DNA-PKcs autophosphorylation mutations are significantly different from those of DNA-PKcs kinase-dead mutations, thereby indicating the importance of DNA-PKcs autophosphorylation in differentiation and development. Furthermore, there has been notable progress in the high-resolution analysis of the conformation of DNA-PKcs, which has enabled us to gain a visual insight into the steps leading to DNA-PKcs activation. This review summarizes the current progress in the activation of DNA-PKcs, focusing in particular on autophosphorylation of this kinase.
Collapse
|
5
|
Shao Z, Flynn RA, Crowe JL, Zhu Y, Liang J, Jiang W, Aryan F, Aoude P, Bertozzi CR, Estes VM, Lee BJ, Bhagat G, Zha S, Calo E. DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis. Nature 2020; 579:291-296. [PMID: 32103174 PMCID: PMC10919329 DOI: 10.1038/s41586-020-2041-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK), which comprises the KU heterodimer and a catalytic subunit (DNA-PKcs), is a classical non-homologous end-joining (cNHEJ) factor1. KU binds to DNA ends, initiates cNHEJ, and recruits and activates DNA-PKcs. KU also binds to RNA, but the relevance of this interaction in mammals is unclear. Here we use mouse models to show that DNA-PK has an unexpected role in the biogenesis of ribosomal RNA (rRNA) and in haematopoiesis. The expression of kinase-dead DNA-PKcs abrogates cNHEJ2. However, most mice that both expressed kinase-dead DNA-PKcs and lacked the tumour suppressor TP53 developed myeloid disease, whereas all other previously characterized mice deficient in both cNHEJ and TP53 expression succumbed to pro-B cell lymphoma3. DNA-PK autophosphorylates DNA-PKcs, which is its best characterized substrate. Blocking the phosphorylation of DNA-PKcs at the T2609 cluster, but not the S2056 cluster, led to KU-dependent defects in 18S rRNA processing, compromised global protein synthesis in haematopoietic cells and caused bone marrow failure in mice. KU drives the assembly of DNA-PKcs on a wide range of cellular RNAs, including the U3 small nucleolar RNA, which is essential for processing of 18S rRNA4. U3 activates purified DNA-PK and triggers phosphorylation of DNA-PKcs at T2609. DNA-PK, but not other cNHEJ factors, resides in nucleoli in an rRNA-dependent manner and is co-purified with the small subunit processome. Together our data show that DNA-PK has RNA-dependent, cNHEJ-independent functions during ribosome biogenesis that require the kinase activity of DNA-PKcs and its phosphorylation at the T2609 cluster.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jennifer L Crowe
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yimeng Zhu
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jialiang Liang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Fardin Aryan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick Aoude
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Role of Mycoplasma Chaperone DnaK in Cellular Transformation. Int J Mol Sci 2020; 21:ijms21041311. [PMID: 32075244 PMCID: PMC7072988 DOI: 10.3390/ijms21041311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Studies of the human microbiome have elucidated an array of complex interactions between prokaryotes and their hosts. However, precise bacterial pathogen-cancer relationships remain largely elusive, although several bacteria, particularly those establishing persistent intra-cellular infections, like mycoplasmas, can alter host cell cycles, affect apoptotic pathways, and stimulate the production of inflammatory substances linked to DNA damage, thus potentially promoting abnormal cell growth and transformation. Consistent with this idea, in vivo experiments in several chemically induced or genetically deficient mouse models showed that germ-free conditions reduce colonic tumor formation. We demonstrate that mycoplasma DnaK, a chaperone protein belonging to the Heath shock protein (Hsp)-70 family, binds Poly-(ADP-ribose) Polymerase (PARP)-1, a protein that plays a critical role in the pathways involved in recognition of DNA damage and repair, and reduces its catalytic activity. It also binds USP10, a key p53 regulator, reducing p53 stability and anti-cancer functions. Finally, we showed that bystander, uninfected cells take up exogenous DnaK-suggesting a possible paracrine function in promoting cellular transformation, over and above direct mycoplasma infection. We propose that mycoplasmas, and perhaps certain other bacteria with closely related DnaK, may have oncogenic activity, mediated through the inhibition of DNA repair and p53 functions, and may be involved in the initiation of some cancers but not necessarily involved nor necessarily even be present in later stages.
Collapse
|
7
|
Tillman H, Janke LJ, Funk A, Vogel P, Rehg JE. Morphologic and Immunohistochemical Characterization of Spontaneous Lymphoma/Leukemia in NSG Mice. Vet Pathol 2019; 57:160-171. [PMID: 31736441 DOI: 10.1177/0300985819882631] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ strain (NOD scid gamma, NSG) is a severely immunodeficient inbred laboratory mouse used for preclinical studies because it is amenable to engraftment with human cells. Combining scid and Il2rgnull mutations results in severe immunodeficiency by impairing the maturation, survival, and functionality of interleukin 2-dependent immune cells, including T, B, and natural killer lymphocytes. While NSG mice are reportedly resistant to developing spontaneous lymphomas/leukemias, there are reports of hematopoietic cancers developing. In this study, we characterized the immunophenotype of spontaneous lymphoma/leukemia in 12 NSG mice (20 to 38 weeks old). The mice had a combination of grossly enlarged thymus, spleen, or lymph nodes and variable histologic involvement of the bone marrow and other tissues. All 12 lymphomas were diffusely CD3, TDT, and CD4 positive, and 11 of 12 were also positive for CD8, which together was consistent with precursor T-cell lymphoblastic lymphoma/leukemia (pre-T-LBL). A subset of NSG tissues from all mice and neoplastic lymphocytes from 8 of 12 cases had strong immunoreactivity for retroviral p30 core protein, suggesting an association with a viral infection. These data highlight that NSG mice may develop T-cell lymphoma at low frequency, necessitating the recognition of this spontaneously arising disease when interpreting studies.
Collapse
Affiliation(s)
- Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amy Funk
- Animal Resources Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Mycoplasma promotes malignant transformation in vivo, and its DnaK, a bacterial chaperone protein, has broad oncogenic properties. Proc Natl Acad Sci U S A 2018; 115:E12005-E12014. [PMID: 30509983 PMCID: PMC6304983 DOI: 10.1073/pnas.1815660115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We provide evidence here that (i) a strain of mycoplasma promotes lymphomagenesis in an in vivo mouse model; (ii) a bacterial chaperone protein, DnaK, is likely implicated in the transformation process and resistance to anticancer drugs by interfering with important pathways related to both DNA-damage control/repair and cell-cycle/apoptosis; and (iii) a very low copy number of DNA sequences of mycoplasma DnaK were found in some tumors of the infected mice. Other tumor-associated bacteria carry a similar DnaK protein. Our data suggest a common mechanism whereby bacteria can be involved in cellular transformation and resistance to anticancer drugs by a hit-and-hide/run mechanism. We isolated a strain of human mycoplasma that promotes lymphomagenesis in SCID mice, pointing to a p53-dependent mechanism similar to lymphomagenesis in uninfected p53−/− SCID mice. Additionally, mycoplasma infection in vitro reduces p53 activity. Immunoprecipitation of p53 in mycoplasma-infected cells identified several mycoplasma proteins, including DnaK, a member of the Hsp70 chaperon family. We focused on DnaK because of its ability to interact with proteins. We demonstrate that mycoplasma DnaK interacts with and reduces the activities of human proteins involved in critical cellular pathways, including DNA-PK and PARP1, which are required for efficient DNA repair, and binds to USP10 (a key p53 regulator), impairing p53-dependent anticancer functions. This also reduced the efficacy of anticancer drugs that depend on p53 to exert their effect. mycoplasma was detected early in the infected mice, but only low copy numbers of mycoplasma DnaK DNA sequences were found in some primary and secondary tumors, pointing toward a hit-and-run/hide mechanism of transformation. Uninfected bystander cells took up exogenous DnaK, suggesting a possible paracrine function in promoting malignant transformation, over and above cells infected with the mycoplasma. Phylogenetic amino acid analysis shows that other bacteria associated with human cancers have similar DnaKs, consistent with a common mechanism of cellular transformation mediated through disruption of DNA-repair mechanisms, as well as p53 dysregulation, that also results in cancer-drug resistance. This suggests that the oncogenic properties of certain bacteria are DnaK-mediated.
Collapse
|
9
|
Sun JS, Yang XH. Expression of DNA-dependent protein kinase catalytic subunit in laryngeal squamous cell carcinoma and its importance. Exp Ther Med 2018; 15:3295-3301. [PMID: 29545847 PMCID: PMC5840916 DOI: 10.3892/etm.2018.5826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the expression and distribution of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in tumor tissues and adjacent normal mucosa tissues of patients with laryngeal squamous cell carcinoma (LSCC), and further analyze the association between the expression and the clinicopathological parameters of patients with LSCC. Clinical data of tumor tissues and corresponding adjacent normal mucosa tissues of pathologically diagnosed LSCC in 96 cases were collected in the present study. Of these specimens, the mRNA and protein expression levels of DNA-PKcs in LSCC tissues and the adjacent normal mucosa tissues were analyzed via reverse transcription-quantitative polymerase chain reaction and western blot analysis. Immunohistochemistry was used to detect expression and distribution of DNA-PKcs protein in LSCC tissues and corresponding adjacent normal mucosa tissues. The association between DNA-PKcs expression and the specific clinicopathologic features was evaluated by the χ2 test. Kaplan-Meier and Cox proportional hazards regression models were used to analyze the data. It was revealed that the expression of DNA-PKcs mRNA and protein was significantly higher in LSCC tissues than the adjacent normal mucosa tissues (P<0.05). DNA-PKcs was expressed predominantly in the nucleus. DNA-PKcs expression showed significant correlation with the differentiation degree of LSCC (P<0.05), and changes of DNA-PKcs expression gradually increased with the decrease of the differentiation degree. However, DNA-PKcs expression was not significantly associated with sex, age, lymph node metastasis or TMN stage (P>0.05). Patients with LSCC exhibited higher DNA-PKcs expression had markedly shorter survival than those with lower DNA-PKcs expression. In conclusion, the present results suggested that the expression levels of DNA-PKcs were significantly increased in LSCC tumor tissues than in adjacent normal mucosa. DNA-PKcs expression was correlated with differentiation of LSCC, and may become a novel prognostic marker for patients with LSCC.
Collapse
Affiliation(s)
- Jian-Song Sun
- Department of Otolaryngology-Head and Neck Surgery, The People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Xiu-Hai Yang
- Department of Otolaryngology-Head and Neck Surgery, The People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
10
|
Escudero B, Herrero D, Torres Y, Cañón S, Molina A, Carmona RM, Suela J, Blanco L, Samper E, Bernad A. Polμ deficiency induces moderate shortening of P53 -/- mouse lifespan and modifies tumor spectrum. DNA Repair (Amst) 2017; 54:40-45. [PMID: 28460268 DOI: 10.1016/j.dnarep.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
Abstract
Non-homologous end joining (NHEJ) is the main mechanism for double strand break (DSB) DNA repair. The error-prone DNA polymerase mu (Polμ) is involved in immunoglobulin variable region rearrangement and in general, NHEJ in non-lymphoid cells. Deletion of NHEJ factors in P53-/- mice, which are highly prone to development of T cell lymphoma, generally increases cancer incidence and shifts the tumor spectrum towards aggressive pro-B lymphoma. In contrast, Polμ deletion increased sarcoma incidence, proportionally reducing pro-B lymphoma development on the P53-deficient background. Array comparative genomic hybridization (aCGH) analyses showed DNA copy number alterations in both P53-/- and Polμ-/-P53-/- lymphomas. Our results also indicate that the increase in sarcoma incidence in Polμ-/-P53-/- mice could be associated with Cdk4 and Kub3 amplification and overexpression. These results identify a role for Polμ in the prevention of sarcomagenesis on a murine P53-deficient background, in contrast to most other NHEJ factors.
Collapse
Affiliation(s)
- Beatriz Escudero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; Department of Regenerative Cardiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Diego Herrero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; Department of Regenerative Cardiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Yaima Torres
- Department of Regenerative Cardiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; NIMGenetics SL, 28049 Madrid, Spain
| | - Susana Cañón
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; Department of Regenerative Cardiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Antonio Molina
- Animal Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Rosa M Carmona
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; Department of Regenerative Cardiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa (CBMSO), 28049 Madrid, Spain
| | - Enrique Samper
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; Department of Regenerative Cardiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; NIMGenetics SL, 28049 Madrid, Spain
| | - Antonio Bernad
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain; Department of Regenerative Cardiology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
11
|
Abstract
The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability.
Collapse
Affiliation(s)
- Ashley B Williams
- Medical Faculty, Institute for Genome Stability in Ageing and Disease, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Björn Schumacher
- Medical Faculty, Institute for Genome Stability in Ageing and Disease, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
12
|
Abstract
The fundamental biological importance of the Tp53 gene family is highlighted by its evolutionary conservation for more than one billion years dating back to the earliest multicellular organisms. The TP53 protein provides essential functions in the cellular response to diverse stresses and safeguards maintenance of genomic integrity, and this is manifest in its critical role in tumor suppression. The importance of Tp53 in tumor prevention is exemplified in human cancer where it is the most frequently detected genetic alteration. This is confirmed in animal models, in which a defective Tp53 gene leads inexorably to cancer development, whereas reinstatement of TP53 function results in regression of established tumors that had been initiated by loss of TP53. Remarkably, despite extensive investigation, the specific mechanisms by which TP53 acts as a tumor suppressor are yet to be fully defined. We review the history and current standing of efforts to understand these mechanisms and how they complement each other in tumor suppression.
Collapse
Affiliation(s)
- Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia Department of Clinical Haematology and Bone Marrow Transplant Service, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
13
|
Tamehiro N, Oda H, Shirai M, Suzuki H. Overexpression of RhoH Permits to Bypass the Pre-TCR Checkpoint. PLoS One 2015; 10:e0131047. [PMID: 26114424 PMCID: PMC4482576 DOI: 10.1371/journal.pone.0131047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
RhoH, an atypical small Rho-family GTPase, critically regulates thymocyte differentiation through the coordinated interaction with Lck and Zap70. Therefore, RhoH deficiency causes defective T cell development, leading to a paucity of mature T cells. Since there has been no gain-of-function study on RhoH before, we decided to take a transgenic approach to assess how the overexpression of RhoH affects the development of T cells. Although RhoH transgenic (RhoHtg) mice expressed three times more RhoH protein than wild-type mice, β-selection, positive, and negative selection in the thymus from RhoHtg mice were unaltered. However, transgenic introduction of RhoH into Rag2 deficient mice resulted in the generation of CD4+CD8+ (DP) thymocytes, indicating that overexpression of RhoH could bypass β-selection without TCRβ gene rearrangement. This was confirmed by the in vitro development of DP cells from Rag2-/-RhoHtg DN3 cells on TSt-4/Dll-1 stroma in an Lck dependent manner. Collectively, our results indicate that an excess amount of RhoH is able to initiate pre-TCR signaling in the absence of pre-TCR complexes.
Collapse
Affiliation(s)
- Norimasa Tamehiro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Mutsunori Shirai
- Department of Microbiology, Yamaguchi University School of Medicine, Ube, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
- * E-mail:
| |
Collapse
|
14
|
Perova T, Grandal I, Nutter LMJ, Papp E, Matei IR, Beyene J, Kowalski PE, Hitzler JK, Minden MD, Guidos CJ, Danska JS. Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia. Sci Transl Med 2014; 6:236ra62. [PMID: 24828076 DOI: 10.1126/scitranslmed.3008661] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensified and central nervous system (CNS)-directed chemotherapy has improved outcomes for pediatric B cell acute lymphoblastic leukemia (B-ALL) but confers treatment-related morbidities. Moreover, many patients suffer relapses, underscoring the need to develop new molecular targeted B-ALL therapies. Using a mouse model, we show that leukemic B cells require pre-B cell receptor (pre-BCR)-independent spleen tyrosine kinase (SYK) signaling in vivo for survival and proliferation. In diagnostic samples from human pediatric and adult B-ALL patients, SYK and downstream targets were phosphorylated regardless of pre-BCR expression or genetic subtype. Two small-molecule SYK inhibitors, fostamatinib and BAY61-3606, attenuated the growth of 69 B-ALL samples in vitro, including high-risk (HR) subtypes. Orally administered fostamatinib reduced heavy disease burden after xenotransplantation of HR B-ALL samples into immunodeficient mice and decreased leukemia dissemination into spleen, liver, kidneys, and the CNS of recipient mice. Thus, SYK activation sustains the growth of multiple HR B-ALL subtypes, suggesting that SYK inhibitors may improve outcomes for HR and relapsed B-ALL.
Collapse
Affiliation(s)
- Tatiana Perova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ildiko Grandal
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Lauryl M J Nutter
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Eniko Papp
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Irina R Matei
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Joseph Beyene
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Paul E Kowalski
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Johann K Hitzler
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Mark D Minden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, Toronto, Ontario M5T 2M9, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada. Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jayne S Danska
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
15
|
Mcph1/Brit1 deficiency promotes genomic instability and tumor formation in a mouse model. Oncogene 2014; 34:4368-78. [PMID: 25362854 PMCID: PMC4417661 DOI: 10.1038/onc.2014.367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 09/01/2014] [Accepted: 09/27/2014] [Indexed: 12/12/2022]
Abstract
MCPH1, also known as BRIT1, has recently been identified as a novel key regulatory gene of the DNA damage response pathway. MCPH1 is located on human chromosome 8p23.1, where human cancers frequently show loss of heterozygosity. As such, MCPH1 is aberrantly expressed in many malignancies, including breast and ovarian cancers, and the function of MCPH1 has been implicated in tumor suppression. However, it remains poorly understood whether MCPH1 deficiency leads to tumorigenesis. Here we generated and studied both Mcph1(-/-) and Mcph1(-/-)p53(-/-) mice; we showed that Mcph1(-/-) mice developed tumors with long latency, and that primary lymphoma developed significantly earlier in Mcph1(-/-)p53(-/-) mice than in Mcph11(+/+)p53(-/-) and Mcph1(+/-)p53(-/-) mice. The Mcph1(-/-)p53(-/-) lymphomas and derived murine embryonic fibroblasts (MEFs) were both more sensitive to irradiation. Mcph1 deficiency resulted in remarkably increased chromosome and chromatid breaks in Mcph1(-/-)p53(-/-) lymphomas and MEFs, as determined by metaphase spread assay and spectral karyotyping analysis. In addition, Mcph1 deficiency significantly enhanced aneuploidy as well as abnormal centrosome multiplication in Mcph1(-/-)p53(-/-) cells. Meanwhile, Mcph1 deficiency impaired double strand break (DSB) repair in Mcph1(-/-)p53(-/-) MEFs as demonstrated by neutral Comet assay. Compared with Mcph1(+/+)p53(-/-) MEFs, homologous recombination and non-homologous end-joining activities were significantly decreased in Mcph1(-/-)p53(-/-) MEFs. Notably, reconstituted MCPH1 rescued the defects of DSB repair and alleviated chromosomal aberrations in Mcph1(-/-)p53(-/-) MEFs. Taken together, our data demonstrate MCPH1 deficiency promotes genomic instability and increases cancer susceptibility. Our study using knockout mouse models provides convincing genetic evidence that MCPH1 is a bona fide tumor suppressor gene. Its deficiency leading to defective DNA repair in tumors can be used to develop novel targeted cancer therapies in the future.
Collapse
|
16
|
Novel INHAT repressor (NIR) is required for early lymphocyte development. Proc Natl Acad Sci U S A 2014; 111:13930-5. [PMID: 25201955 DOI: 10.1073/pnas.1310118111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel inhibitor of histone acetyltransferase repressor (NIR) is a transcriptional corepressor with inhibitor of histone acetyltransferase activity and is a potent suppressor of p53. Although NIR deficiency in mice leads to early embryonic lethality, lymphoid-restricted deletion resulted in the absence of double-positive CD4(+)CD8(+) thymocytes, whereas bone-marrow-derived B cells were arrested at the B220(+)CD19(-) pro-B-cell stage. V(D)J recombination was preserved in NIR-deficient DN3 double-negative thymocytes, suggesting that NIR does not affect p53 function in response to physiologic DNA breaks. Nevertheless, the combined deficiency of NIR and p53 provided rescue of DN3L double-negative thymocytes and their further differentiation to double- and single-positive thymocytes, whereas B cells in the marrow further developed to the B220(+)CD19(+) pro-B-cell stage. Our results show that NIR cooperate with p53 to impose checkpoint for the generation of mature B and T lymphocytes.
Collapse
|
17
|
Differential role of nonhomologous end joining factors in the generation, DNA damage response, and myeloid differentiation of human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2014; 111:8889-94. [PMID: 24889605 DOI: 10.1073/pnas.1323649111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nonhomologous end-joining (NHEJ) is a key pathway for efficient repair of DNA double-strand breaks (DSBs) and V(D)J recombination. NHEJ defects in humans cause immunodeficiency and increased cellular sensitivity to ionizing irradiation (IR) and are variably associated with growth retardation, microcephaly, and neurodevelopmental delay. Repair of DNA DSBs is important for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). To compare the specific contribution of DNA ligase 4 (LIG4), Artemis, and DNA-protein kinase catalytic subunit (PKcs) in this process and to gain insights into phenotypic variability associated with these disorders, we reprogrammed patient-derived fibroblast cell lines with NHEJ defects. Deficiencies of LIG4 and of DNA-PK catalytic activity, but not Artemis deficiency, were associated with markedly reduced reprogramming efficiency, which could be partially rescued by genetic complementation. Moreover, we identified increased genomic instability in LIG4-deficient iPSCs. Cell cycle synchronization revealed a severe defect of DNA repair and a G0/G1 cell cycle arrest, particularly in LIG4- and DNA-PK catalytically deficient iPSCs. Impaired myeloid differentiation was observed in LIG4-, but not Artemis- or DNA-PK-mutated iPSCs. These results indicate a critical importance of the NHEJ pathway for somatic cell reprogramming, with a major role for LIG4 and DNA-PKcs and a minor, if any, for Artemis.
Collapse
|
18
|
Frit P, Barboule N, Yuan Y, Gomez D, Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair (Amst) 2014; 17:81-97. [PMID: 24613763 DOI: 10.1016/j.dnarep.2014.02.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/01/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years.
Collapse
Affiliation(s)
- Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Nadia Barboule
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Ying Yuan
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Dennis Gomez
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, 31077 Toulouse, Cedex4, France; Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France; Equipe labellisée Ligue Nationale Contre le Cancer, France.
| |
Collapse
|
19
|
DeMicco A, Yang-Iott K, Bassing CH. Somatic inactivation of Tp53 in hematopoietic stem cells or thymocytes predisposes mice to thymic lymphomas with clonal translocations. Cell Cycle 2013; 12:3307-16. [PMID: 24036547 DOI: 10.4161/cc.26299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TP53 protects cells from transformation by responding to stresses including aneuploidy and DNA double-strand breaks (DSBs). TP53 induces apoptosis of lymphocytes with persistent DSBs at antigen receptor loci and other genomic loci to prevent these lesions from generating oncogenic translocations. Despite this critical function of TP53, germline Tp53(-/-) mice succumb to immature T-cell (thymic) lymphomas that exhibit aneuploidy and lack clonal translocations. However, Tp53(-/-) mice occasionally develop B lineage lymphomas and Tp53 deletion in pro-B cells causes lymphomas with oncogenic immunoglobulin (Ig) locus translocations. In addition, human lymphoid cancers with somatic TP53 inactivation often harbor oncogenic IG or T-cell receptor (TCR) locus translocations. To determine whether somatic Tp53 inactivation unmasks translocations or alters the frequency of B lineage tumors in mice, we generated and analyzed mice with conditional Tp53 deletion initiating in hematopoietic stem cells (HSCs) or in lineage-committed thymocytes. Median tumor-free survival of each strain was similar to the lifespan of Tp53(-/-) mice. Mice with HSC deletion of Tp53 predominantly succumbed to thymic lymphomas with clonal translocations not involving Tcr loci; however, these mice occasionally developed mature B-cell lymphomas that harbored clonal Ig translocations. Deletion of Tp53 in thymocytes caused thymic lymphomas with aneuploidy and/or clonal translocations, including oncogenic Tcr locus translocations. Our data demonstrate that the developmental stage of Tp53 inactivation affects karyotypes of lymphoid malignancies in mice where somatic deletion of Tp53 initiating in thymocytes is sufficient to cause thymic lymphomas with oncogenic translocations.
Collapse
Affiliation(s)
- Amy DeMicco
- Cell and Molecular Biology Graduate Group; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA; Division of Cancer Pathobiology; Department of Pathology and Laboratory Medicine; Center for Childhood Cancer Research; Children's Hospital of Philadelphia Research Institute; Philadelphia, PA USA; Abramson Family Cancer Research Institute; Perelman School of Medicine of the University of Pennsylvania; Philadelphia, PA USA
| | | | | |
Collapse
|
20
|
Mutual regulation between DNA-PKcs and Snail1 leads to increased genomic instability and aggressive tumor characteristics. Cell Death Dis 2013; 4:e517. [PMID: 23449453 PMCID: PMC3734834 DOI: 10.1038/cddis.2013.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the roles of DNA-dependent protein kinase catalytic subunits (DNA-PKcs) in the non-homologous end joining (NHEJ) of DNA repair are well-recognized, the biological mechanisms and regulators by DNA-PKcs besides DNA repair, have not been clearly described. Here, we show that active DNA-PKcs caused by ionizing radiation, phosphorylated Snail1 at serine (Ser) 100, led to increased Snail1 stability. Furthermore, phosphorylated Snail1 at Ser100 reciprocally inhibited the kinase activity of DNA-PKcs, resulting in an inhibition of DNA repair activity. Moreover, Snail1 phosphorylation by DNA-PKcs was involved in genomic instability and aggressive tumor characteristics. Our results describe novel cellular mechanisms that affect genomic instability, sensitivity to DNA-damaging agents, and the migration of tumor cells by reciprocal regulation between DNA-PKcs and Snail1.
Collapse
|
21
|
Abstract
Developing lymphocytes must assemble antigen receptor genes encoding the B cell and T cell receptors. This process is executed by the V(D)J recombination reaction, which can be divided into DNA cleavage and DNA joining steps. The former is carried out by a lymphocyte-specific RAG endonuclease, which mediates DNA cleavage at two recombining gene segments and their flanking RAG recognition sequences. RAG cleavage generates four broken DNA ends that are repaired by nonhomologous end joining forming coding and signal joints. On rare occasions, these DNA ends may join aberrantly forming chromosomal lesions such as translocations, deletions and inversions that have the potential to cause cellular transformation and lymphoid tumors. We discuss the activation of DNA damage responses by RAG-induced DSBs focusing on the component pathways that promote their normal repair and guard against their aberrant resolution. Moreover, we discuss how this DNA damage response impacts processes important for lymphocyte development.
Collapse
Affiliation(s)
- Beth A Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
22
|
Bednarski JJ, Sleckman BP. Lymphocyte development: integration of DNA damage response signaling. Adv Immunol 2012; 116:175-204. [PMID: 23063077 DOI: 10.1016/b978-0-12-394300-2.00006-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lymphocytes traverse functionally discrete stages as they develop into mature B and T cells. This development is directed by cues from a variety of different cell surface receptors. To complete development, all lymphocytes must express a functional nonautoreactive heterodimeric antigen receptor. The genes that encode antigen receptor chains are assembled through the process of V(D)J recombination, a reaction that proceeds through DNA double-stranded break (DSB) intermediates. These DSBs are generated by the RAG endonuclease in G1-phase developing lymphocytes and activate ataxia-telangiectasia mutated (ATM), the kinase that orchestrates cellular DSB responses. The canonical DNA damage response includes cell cycle arrest, DNA break repair, and apoptosis of cells when DSBs are not repaired. However, recent studies have demonstrated that ATM activation in response to RAG DSBs also regulates a transcriptional program including many genes with no known function in canonical DNA damage responses. Rather, these genes have activities that would be important for lymphocyte development. Here, these findings and the broader concept that signals initiated by physiologic DNA DSBs provide cues that regulate cell type-specific processes and functions are discussed.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
23
|
Lee JE, Heo JI, Park SH, Kim JH, Kho YJ, Kang HJ, Chung HY, Yoon JL, Lee JY. Calorie restriction (CR) reduces age-dependent decline of non-homologous end joining (NHEJ) activity in rat tissues. Exp Gerontol 2011; 46:891-6. [PMID: 21821112 DOI: 10.1016/j.exger.2011.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 06/27/2011] [Accepted: 07/20/2011] [Indexed: 11/17/2022]
Abstract
Even though CR has shown to enhance base excision repair (BER) and nucleotide excision repair (NER) capacities, it has not been reported whether CR can enhance non-homologous end joining (NHEJ) activity. To examine the effect of CR on NHEJ activity, ad libitum (AL)- and calorie restricted (CR)-dieted rats were used. Age-dependent decline of NHEJ activity was apparent in the lung, liver, and kidney and appeared to be slightly decreased in spleen. CR reduced age-dependent decline of NHEJ activity in all tissues, even though the extent of recovery was variable among tissues. Moreover, CR appeared to reduce age-dependent decline of XRCC4 protein level. These results suggest that CR could reduce age-dependent decline of NHEJ activity in various tissues of rats possibly through up-regulation of XRCC4.
Collapse
Affiliation(s)
- Jae-Eun Lee
- Department of Family Medicine, Hangang Secred Heart Hospital, Hallym University Medical Center, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang S, Yajima H, Huynh H, Zheng J, Callen E, Chen HT, Wong N, Bunting S, Lin YF, Li M, Lee KJ, Story M, Gapud E, Sleckman BP, Nussenzweig A, Zhang CC, Chen DJ, Chen BPC. Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair. ACTA ACUST UNITED AC 2011; 193:295-305. [PMID: 21482716 PMCID: PMC3080267 DOI: 10.1083/jcb.201009074] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this paper, we report that, in contrast to deoxyribonucleic acid (DNA)-dependent protein kinase catalytic subunit (DNA-PKcs)-null mice, knockin mice with the DNA-PKcs(3A/3A) allele, which codes for three alanine substitutions at the mouse Thr2605 phosphorylation cluster, die prematurely because of congenital bone marrow failure. Impaired proliferation of DNA-PKcs(3A/3A) HSCs is caused by excessive DNA damage and p53-dependent apoptosis. In addition, increased apoptosis in the intestinal crypt and epidermal hyperpigmentation indicate the presence of elevated genotoxic stress and p53 activation. Analysis of embryonic fibroblasts further reveals that DNA-PKcs(3A/3A) cells are hypersensitive to DNA cross-linking agents and are defective in both homologous recombination and the Fanconi anemia DNA damage response pathways. We conclude that phosphorylation of DNA-PKcs is essential for the normal activation of multiple DNA repair pathways, which in turn is critical for the maintenance of diverse populations of tissue stem cells in mice.
Collapse
Affiliation(s)
- Shichuan Zhang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Singh N, Huang L, Qin H. Defective T-cell receptor-induced apoptosis of T cells and rejection of transplanted immunogenic tumors in p53(-/-) mice. Eur J Immunol 2010; 40:559-68. [PMID: 19950180 DOI: 10.1002/eji.200939736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mice lacking the tumor suppressor gene p53 spontaneously develop T-cell lymphomas at a high rate, suggesting that in these mice lymphomas arise due to defective apoptosis mechanisms in T cells mediated by p53. However, a role of p53 in regulation of T-cell responses or apoptosis has been poorly defined. TCR-mediated signaling in the absence of CD28 costimulation induces both apoptosis and proliferation of naïve T cells from WT mice. In this report we show that, in response to TCR stimulation, T cells from naïve p53-deficient mice exhibited higher proliferation and drastically reduced apoptosis than WT T cells. CD28 costimulation enhanced the proliferation of TCR-stimulated WT and p53(-/-) T cells, suggesting that p53 uncouples CD28-mediated antiapoptotic and proliferative signals. To evaluate the physiological significance of these findings, we transplanted OVA expressing-EG.7 tumor cells into WT and p53(-/-) mice. Unlike WT mice, p53(-/-) mice exhibited a robust tumor-resistant phenotype and developed cytotoxic T-cell responses against OVA. Collectively, these data support the hypothesis that p53 is an essential factor in negative regulation of T-cell responses and have implication for immunomodulation during treatment of cancers and other inflammatory conditions.
Collapse
Affiliation(s)
- Nagendra Singh
- Immunotherapy Center, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Targeted deletion of p73 in mice reveals its role in T cell development and lymphomagenesis. PLoS One 2009; 4:e7784. [PMID: 19907659 PMCID: PMC2771421 DOI: 10.1371/journal.pone.0007784] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022] Open
Abstract
Transcriptional silencing of the p73 gene through methylation has been demonstrated in human leukemias and lymphomas. However, the role of p73 in the malignant process remains to be explored. We show here that p73 acts as a T cell-specific tumor suppressor in a genetically defined mouse model, and that concomitant ablation of p53 and p73 predisposes mice to an increased incidence of thymic lymphomas compared to the loss of p53 alone. Our results demonstrate a causal role for loss of p73 in progression of T cell lymphomas to the stage of aggressive, disseminated disease. We provide evidence that tumorigenesis in mice lacking p53 and p73 proceeds through mechanisms involving altered patterns of gene expression, defects in early T cell development, impaired apoptosis, and the ensuing accumulation of chromosomal aberrations. Collectively, our data imply that tumor suppressive properties of p73 are highly dependent on cellular context, wherein p73 plays a major role in T cell development and neoplasia.
Collapse
|
28
|
Nijnik A, Dawson S, Crockford TL, Woodbine L, Visetnoi S, Bennett S, Jones M, Turner GD, Jeggo PA, Goodnow CC, Cornall RJ. Impaired lymphocyte development and antibody class switching and increased malignancy in a murine model of DNA ligase IV syndrome. J Clin Invest 2009; 119:1696-705. [PMID: 19451691 PMCID: PMC2689126 DOI: 10.1172/jci32743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 04/01/2009] [Indexed: 11/17/2022] Open
Abstract
Hypomorphic mutations in DNA ligase IV (LIG4) cause a human syndrome of immunodeficiency, radiosensitivity, and growth retardation due to defective DNA repair by the nonhomologous end-joining (NHEJ) pathway. Lig4-null mice are embryonic lethal, and better mouse models are needed to study human LigIV syndrome. We recently identified a viable mouse strain with a Y288C hypomorphic mutation in the Lig4 gene. Lig4Y288C mice exhibit a greater than 10-fold reduction of LigIV activity in vivo and recapitulate the immunodeficiency and growth retardation seen in human patients. Here, we have demonstrated that the Lig4Y288C mutation leads to multiple defects in lymphocyte development and function, including impaired V(D)J recombination, peripheral lymphocyte survival and proliferation, and B cell class switch recombination. We also highlight a high incidence of thymic tumors in the Lig4Y288C mice, suggesting that wild-type LigIV protects against malignant transformation. These findings provide explanations for the complex lymphoid phenotype of human LigIV syndrome.
Collapse
Affiliation(s)
- Anastasia Nijnik
- Henry Wellcome Building of Molecular Physiology, Oxford University, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
van Kesteren PCE, Beems RB, Luijten M, Robinson J, de Vries A, van Steeg H. DNA repair-deficient Xpa/p53 knockout mice are sensitive to the non-genotoxic carcinogen cyclosporine A: escape of initiated cells from immunosurveillance? Carcinogenesis 2009; 30:538-43. [PMID: 19136475 DOI: 10.1093/carcin/bgp013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA repair-deficient Xpa(-/-)p53(+/-) (Xpa/p53) mouse is a potent model for carcinogenicity testing, representing increased sensitivity toward genotoxic but surprisingly also toward true human non-genotoxic carcinogens. The mechanism of this increased sensitivity in Xpa/p53 mice toward non-genotoxic carcinogens is still unknown. Here, we investigated the mechanism of the human non-genotoxic carcinogen cyclosporine A (CsA) in the Xpa/p53 mouse model. Xpa/p53 mice exposed to CsA for 39 weeks showed a significantly increased lymphoma incidence as compared with untreated Xpa/p53 mice and CsA-treated wild-type (WT) mice. We excluded concealed genotoxicity of CsA in Xpa/p53 mice by mutant frequency analyses. As a next step, we used a genetic approach: immunodeficient DNA-PKcs mice, defective in the catalytic subunit of the DNA-dependent protein kinase, were crossed with Xpa and Xpa/p53 mice. Xpa/p53 mice had an increased lymphoma incidence with shorter latency times as compared with DNA-PKcs-deficient WT and Xpa mice. Surprisingly, also six of 15 DNA-PKcs/Xpa/p53 females had developed an adenocarcinoma of the mammary gland. Tumor responses in CsA-treated and DNA-PKcs-deficient Xpa/p53 mice were comparable as both genotypes developed mainly splenic lymphomas enriched in B lymphocytes. From our present studies, we hypothesize that levels of initiated precancerous cells are elevated in Xpa/p53 mice. These cells are insufficiently eliminated due to either suppression of the immune system by CsA or through immune-related DNA-PKcs deficiency. Based on the current studies and those conducted previously, we conclude that the Xpa/p53 model is an excellent adjunct to the current chronic rodent bioassay.
Collapse
Affiliation(s)
- Petra C E van Kesteren
- Laboratory for Health Protection Research, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Babbe H, McMenamin J, Hobeika E, Wang J, Rodig SJ, Reth M, Leder P. Genomic instability resulting from Blm deficiency compromises development, maintenance, and function of the B cell lineage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:347-60. [PMID: 19109166 PMCID: PMC2742995 DOI: 10.4049/jimmunol.182.1.347] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The RecQ family helicase BLM is critically involved in the maintenance of genomic stability, and BLM mutation causes the heritable disorder Bloom's syndrome. Affected individuals suffer from a predisposition to a multitude of cancer types and an ill-defined immunodeficiency involving low serum Ab titers. To investigate its role in B cell biology, we inactivated murine Blm specifically in B lymphocytes in vivo. Numbers of developing B lymphoid cells in the bone marrow and mature B cells in the periphery were drastically reduced upon Blm inactivation. Of the major peripheral B cell subsets, B1a cells were most prominently affected. In the sera of Blm-deficient naive mice, concentrations of all Ig isotypes were low, particularly IgG3. Specific IgG Ab responses upon immunization were poor and mutant B cells exhibited a generally reduced Ab class switch capacity in vitro. We did not find evidence for a crucial role of Blm in the mechanism of class switch recombination. However, a modest shift toward microhomology-mediated switch junction formation was observed in Blm-deficient B cells. Finally, a cohort of p53-deficient, conditional Blm knockout mice revealed an increased propensity for B cell lymphoma development. Impaired cell cycle progression and survival as well as high rates of chromosomal structural abnormalities in mutant B cell blasts were identified as the basis for the observed effects. Collectively, our data highlight the importance of BLM-dependent genome surveillance for B cell immunity by ensuring proper development and function of the various B cell subsets while counteracting lymphomagenesis.
Collapse
Affiliation(s)
- Holger Babbe
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Stracker TH, Petrini JH. Working together and apart: the twisted relationship of the Mre11 complex and Chk2 in apoptosis and tumor suppression. Cell Cycle 2008; 7:3618-21. [PMID: 19029802 PMCID: PMC2994099 DOI: 10.4161/cc.7.23.7064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Central to the DNA damage response (DDR) is the highly conserved Mre11 complex consisting of Mre11, Rad50 and Nbs1. The Mre11 complex acts as a sensor of DNA double-strand breaks (DSBs) and regulates the signal transduction cascades that are triggered following damage detection.(1) Rare human genetic instability syndromes such as Ataxia-telangiectasia (A-T) and Nijmegen Breakage Syndrome (NBS) have underscored the importance of the DSB response in the suppression of tumorigenesis, as well as other severe pathologies affecting the development of both the immune system and the central nervous system. Using murine models of the human diseases, we have investigated the role of the Mre11 complex, and other modulators of the DSB response, in tumor suppression.(2,3) We found that the checkpoint kinase Chk2 is crucial for the suppression of a diverse array of tumor types in Mre11 complex mutants and uncovered multiple roles for the Mre11 complex in apoptotic signaling in parallel to Chk2.(4,5).
Collapse
Affiliation(s)
| | - John H.J. Petrini
- Molecular Biology; Sloan-Kettering Institute; New York, New York USA
- Weill Cornell Graduate School of Medical Science; New York, New York USA
| |
Collapse
|
32
|
The pleiotropic phenotype of Apc mutations in the mouse: allele specificity and effects of the genetic background. Genetics 2008; 180:601-9. [PMID: 18723878 DOI: 10.1534/genetics.108.091967] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.
Collapse
|
33
|
Stracker TH, Couto SS, Cordon-Cardo C, Matos T, Petrini JHJ. Chk2 suppresses the oncogenic potential of DNA replication-associated DNA damage. Mol Cell 2008; 31:21-32. [PMID: 18614044 PMCID: PMC2586815 DOI: 10.1016/j.molcel.2008.04.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/20/2008] [Accepted: 04/28/2008] [Indexed: 01/12/2023]
Abstract
The Mre11 complex (Mre11, Rad50, and Nbs1) and Chk2 have been implicated in the DNA-damage response, an inducible process required for the suppression of malignancy. The Mre11 complex is predominantly required for repair and checkpoint activation in S phase, whereas Chk2 governs apoptosis. We examined the relationship between the Mre11 complex and Chk2 in the DNA-damage response via the establishment of Nbs1(DeltaB/DeltaB) Chk2(-/-) and Mre11(ATLD1/ATLD1) Chk2(-/-) mice. Chk2 deficiency did not modify the checkpoint defects or chromosomal instability of Mre11 complex mutants; however, the double-mutant mice exhibited synergistic defects in DNA-damage-induced p53 regulation and apoptosis. Nbs1(DeltaB/DeltaB) Chk2(-/-) and Mre11(ATLD1/ATLD1) Chk2(-/-) mice were also predisposed to tumors. In contrast, DNA-PKcs-deficient mice, in which G1-specific chromosome breaks are present, did not exhibit synergy with Chk2(-/-) mutants. These data suggest that Chk2 suppresses the oncogenic potential of DNA damage arising during S and G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Travis H. Stracker
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, 1275 York Avenue, New York, NY10021, USA
| | - Suzana S. Couto
- Pathology and Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Tulio Matos
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - John H. J. Petrini
- Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, 1275 York Avenue, New York, NY10021, USA
| |
Collapse
|
34
|
Frappart PO, McKinnon PJ. Ataxia-telangiectasia and related diseases. Neuromolecular Med 2008; 8:495-511. [PMID: 17028372 DOI: 10.1385/nmm:8:4:495] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 11/30/1999] [Accepted: 02/02/2006] [Indexed: 01/23/2023]
Abstract
Appropriate cellular signaling responses to DNA damage and the ability to repair DNA are fundamental processes that are required for organismal survival. Ataxia-telangiectasia (A-T) is a rare neurodegenerative disease that results from defective DNA damage signaling. Understanding the molecular basis of A-T has provided many critical insights into the cellular response to DNA double-strand breaks (DSBs). A-T is a syndrome that shows pronounced neurodegeneration of the nervous system coincident with immune deficiency, radiosensitivity, and cancer proneness. A-T results from inactivation of the A-T mutated (ATM) kinase, a critical protein kinase that regulates the response to DNA-DSBs by selective phosphorylation of a variety of substrates. Therefore, understanding the ATM signaling program has important biological ramifications for nervous system homeostasis. Underscoring the importance of the DNA-DSBs response in the nervous system are other diseases related to A-T that also result from defects in this signaling pathway. In particular, defects in the DNA damage sensor, the Mre11-RAD50-NBS1 complex, also lead to syndromes with neurological deficits and overlapping phenotypes to A-T. Collectively, these diseases highlight the critical importance of appropriate responses to DNA-DSBs to maintain homeostasis in the nervous system.
Collapse
Affiliation(s)
- Pierre-Olivier Frappart
- Department of Genetics and Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
35
|
Sakata KI, Someya M, Matsumoto Y, Hareyama M. Ability to repair DNA double-strand breaks related to cancer susceptibility and radiosensitivity. ACTA ACUST UNITED AC 2007; 25:433-8. [DOI: 10.1007/s11604-007-0161-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 06/05/2007] [Indexed: 11/25/2022]
|
36
|
Kovalchuk AL, duBois W, Mushinski E, McNeil NE, Hirt C, Qi CF, Li Z, Janz S, Honjo T, Muramatsu M, Ried T, Behrens T, Potter M. AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. ACTA ACUST UNITED AC 2007; 204:2989-3001. [PMID: 17998390 PMCID: PMC2118515 DOI: 10.1084/jem.20070882] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation-induced cytidine deaminase (AID) is required for immunoglobulin (Ig) class switch recombination and somatic hypermutation, and has also been implicated in translocations between Ig switch regions and c-Myc in plasma cell tumors in mice. We asked if AID is required for accelerated tumor development in pristane-treated Bcl-xL transgenic BALB/c mice deficient in AID (pBxAicda−/−). pBxAicda−/− mice developed tumors with a lower frequency (24 vs. 62%) and a longer mean latency (108 vs. 36 d) than AID-sufficient mice. The tumors appeared in oil granuloma tissue and did not form ascites. By interphase fluorescence in situ hybridization, six out of nine pBxAicda−/− primary tumors had T(12;15) and one had T(6;15) chromosomal translocations. Two tumors were transplantable and established as stable cell lines. Molecular and cytogenetic analyses showed that one had an unusual unbalanced T(12;15) translocation, with IgH Cμ and Pvt-1 oriented head to tail at the breakpoint, resulting in an elevated expression of c-Myc. In contrast, the second was T(12;15) negative, but had an elevated N-Myc expression caused by a paracentric inversion of chromosome 12. Thus, novel mechanisms juxtapose Ig and Myc-family genes in AID-deficient plasma cell tumors.
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Laboratory of Cancer Biology and Genetics, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dorsett Y, Robbiani DF, Jankovic M, Reina-San-Martin B, Eisenreich TR, Nussenzweig MC. A role for AID in chromosome translocations between c-myc and the IgH variable region. ACTA ACUST UNITED AC 2007; 204:2225-32. [PMID: 17724134 PMCID: PMC2118712 DOI: 10.1084/jem.20070884] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Chromosome translocations between oncogenes and the region spanning the immunoglobulin (Ig) heavy chain (IgH) variable (V), diversity (D), and joining (J) gene segments (Ig V-J(H) region) are found in several mature B cell lymphomas in humans and mice. The breakpoints are frequently adjacent to the recombination signal sequences targeted by recombination activating genes 1 and 2 during antigen receptor assembly in pre-B cells, suggesting that these translocations might be the result of aberrant V(D)J recombination. However, in mature B cells undergoing activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM), duplications or deletions that would necessitate a double-strand break make up 6% of all the Ig V-J(H) region-associated somatic mutations. Furthermore, DNA breaks can be detected at this locus in B cells undergoing SHM. To determine whether SHM might induce c-myc to Ig V-J(H) translocations, we searched for such events in both interleukin (IL) 6 transgenic (IL-6 tg) and AID(-/-) IL-6 tg mice. Here, we report that AID is required for c-myc to Ig V-J(H) translocations induced by IL-6.
Collapse
Affiliation(s)
- Yair Dorsett
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
38
|
Babbe H, Chester N, Leder P, Reizis B. The Bloom's syndrome helicase is critical for development and function of the alphabeta T-cell lineage. Mol Cell Biol 2007; 27:1947-59. [PMID: 17210642 PMCID: PMC1820471 DOI: 10.1128/mcb.01402-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloom's syndrome is a genetic disorder characterized by increased incidence of cancer and an immunodeficiency of unknown origin. The BLM gene mutated in Bloom's syndrome encodes a DNA helicase involved in the maintenance of genomic integrity. To explore the role of BLM in the immune system, we ablated murine Blm in the T-cell lineage. In the absence of Blm, thymocytes were severely reduced in numbers and displayed a developmental block at the beta-selection checkpoint that was partially p53 dependent. Blm-deficient thymocytes rearranged their T-cell receptor (TCR) beta genes normally yet failed to survive and proliferate in response to pre-TCR signaling. Furthermore, peripheral T cells were reduced in numbers, manifested defective homeostatic and TCR-induced proliferation, and produced extensive chromosomal damage. Finally, CD4(+) and CD8(+) T-cell responses were impaired upon antigen challenge. Thus, by ensuring genomic stability, Blm serves a vital role for development, maintenance, and function of T lymphocytes, suggesting a basis for the immune deficiency in Bloom's syndrome.
Collapse
Affiliation(s)
- Holger Babbe
- Department of Microbiology, Columbia University Medical Center, 701 W. 168th St., New York, NY 10032, USA.
| | | | | | | |
Collapse
|
39
|
Maser RS, Wong KK, Sahin E, Xia H, Naylor M, Hedberg HM, Artandi SE, DePinho RA. DNA-dependent protein kinase catalytic subunit is not required for dysfunctional telomere fusion and checkpoint response in the telomerase-deficient mouse. Mol Cell Biol 2006; 27:2253-65. [PMID: 17145779 PMCID: PMC1820500 DOI: 10.1128/mcb.01354-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Telomeres are key structural elements for the protection and maintenance of linear chromosomes, and they function to prevent recognition of chromosomal ends as DNA double-stranded breaks. Loss of telomere capping function brought about by telomerase deficiency and gradual erosion of telomere ends or by experimental disruption of higher-order telomere structure culminates in the fusion of defective telomeres and/or the activation of DNA damage checkpoints. Previous work has implicated the nonhomologous end-joining (NHEJ) DNA repair pathway as a critical mediator of these biological processes. Here, employing the telomerase-deficient mouse model, we tested whether the NHEJ component DNA-dependent protein kinase catalytic subunit (DNA-PKcs) was required for fusion of eroded/dysfunctional telomere ends and the telomere checkpoint responses. In late-generation mTerc(-/-) DNA-PKcs(-/-) cells and tissues, chromosomal end-to-end fusions and anaphase bridges were readily evident. Notably, nullizygosity for DNA Ligase4 (Lig4)--an additional crucial NHEJ component--was also permissive for chromosome fusions in mTerc(-/-) cells, indicating that, in contrast to results seen with experimental disruption of telomere structure, telomere dysfunction in the context of gradual telomere erosion can engage additional DNA repair pathways. Furthermore, we found that DNA-PKcs deficiency does not reduce apoptosis, tissue atrophy, or p53 activation in late-generation mTerc(-/-) tissues but rather moderately exacerbates germ cell apoptosis and testicular degeneration. Thus, our studies indicate that the NHEJ components, DNA-PKcs and Lig4, are not required for fusion of critically shortened telomeric ends and that DNA-PKcs is not required for sensing and executing the telomere checkpoint response, findings consistent with the consensus view of the limited role of DNA-PKcs in DNA damage signaling in general.
Collapse
Affiliation(s)
- Richard S Maser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Matei IR, Guidos CJ, Danska JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006; 209:142-58. [PMID: 16448540 DOI: 10.1111/j.0105-2896.2006.00361.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The immune system is capable of recognizing and eliminating an enormous array of pathogens due to the extremely diverse antigen receptor repertoire of T and B lymphocytes. However, the development of lymphocytes bearing receptors with unique specificities requires the generation of programmed double strand breaks (DSBs) coupled with bursts of proliferation, rendering lymphocytes susceptible to mutations contributing to oncogenic transformation. Consequently, mechanisms responsible for monitoring global genomic integrity must be activated during lymphocyte development to limit the oncogenic potential of antigen receptor locus recombination. Mutations in ATM (ataxia-telangiectasia mutated), a kinase that coordinates DSB monitoring and the response to DNA damage, result in impaired T-cell development and predispose to T-cell leukemia. Here, we review recent evidence providing insight into the mechanisms by which ATM promotes normal lymphocyte development and protects from neoplastic transformation.
Collapse
Affiliation(s)
- Irina R Matei
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
Brugmans L, Kanaar R, Essers J. Analysis of DNA double-strand break repair pathways in mice. Mutat Res 2006; 614:95-108. [PMID: 16797606 DOI: 10.1016/j.mrfmmm.2006.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.
Collapse
Affiliation(s)
- Linda Brugmans
- Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE, The Netherlands
| | | | | |
Collapse
|
42
|
Gladdy RA, Nutter LMJ, Kunath T, Danska JS, Guidos CJ. p53-Independent Apoptosis Disrupts Early Organogenesis in Embryos Lacking Both Ataxia-Telangiectasia Mutated and Prkdc. Mol Cancer Res 2006; 4:311-8. [PMID: 16687486 DOI: 10.1158/1541-7786.mcr-05-0258] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein and the nonhomologous end-joining (NHEJ) pathway play crucial roles in sensing and repairing DNA double-strand breaks in postnatal cells. However, each pathway is dispensable for early embryogenesis. Loss of both ATM and Prkdc/Ku is synthetically lethal, but neither the developmental processes perturbed nor the mechanisms of lethality have been determined by previous reports. Here, we show that ATM and Prkdc collaborate to maintain genomic stability during gastrulation and early organogenesis, a period of rapid proliferation and hypersensitivity to DNA damage. At E7.5 to E8.5, ATM(-/-)Prkdcscid/scid embryos displayed normal proliferation indices but exhibited excessive apoptosis and elevated expression of Ser15-phosphorylated p53. Thus, this crucial regulatory residue of p53 can be phosphorylated in the absence of ATM or Prkdc. However, loss of p53 did not abrogate or delay embryonic lethality, revealing that apoptosis is p53 independent in these in ATM(-/-)Prkdcscid/scid embryos. Because mice with combined disruptions of ATM and other NHEJ components (ligase IV, Artemis) are viable, our data suggest a novel NHEJ-independent function for Prkdc/Ku that is required to complete early embryogenesis in the absence of ATM.
Collapse
Affiliation(s)
- Rebecca A Gladdy
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Toronto Medical Discovery Tower Building (East Tower), Room 14-312, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | | | | | | | | |
Collapse
|
43
|
Pedraza-Alva G, Koulnis M, Charland C, Thornton T, Clements JL, Schlissel MS, Rincón M. Activation of p38 MAP kinase by DNA double-strand breaks in V(D)J recombination induces a G2/M cell cycle checkpoint. EMBO J 2006; 25:763-73. [PMID: 16456545 PMCID: PMC1383553 DOI: 10.1038/sj.emboj.7600972] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 01/02/2006] [Indexed: 11/09/2022] Open
Abstract
Delay of cell cycle progression in response to double-strand DNA breaks (DSBs) is critical to allow time for DNA repair and prevent cellular transformation. Here, we show that the p38 mitogen-activated protein (MAP) kinase signaling pathway is activated in immature thymocytes along with TcRbeta gene V(D)J recombination. Active p38 MAP kinase promotes a G2/M cell cycle checkpoint through the phosphorylation and activation of p53 in these cells in vivo. Inactivation of p38 MAP kinase and p53 is required for DN3 thymocytes to exit the G2/M checkpoint, progress through mitosis and further differentiate. We propose that p38 MAP kinase is activated by V(D)J-mediated DSBs and induces a p53-mediated G2/M checkpoint to allow DNA repair and prevent cellular transformation.
Collapse
Affiliation(s)
- Gustavo Pedraza-Alva
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
- Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Mor., México
| | - Miroslav Koulnis
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - Colette Charland
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - Tina Thornton
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - James L Clements
- Department of Immunology, Cancer Cell Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mark S Schlissel
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Mercedes Rincón
- Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT, USA
- Department of Medicine/Immunobiology Program, Given Medical Building D-305, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA. Tel.: +1 802 656 0937; Fax: +1 802 656 3854; E-mail:
| |
Collapse
|
44
|
Haines BB, Ryu CJ, Chang S, Protopopov A, Luch A, Kang YH, Draganov DD, Fragoso MF, Paik SG, Hong HJ, DePinho RA, Chen J. Block of T cell development in P53-deficient mice accelerates development of lymphomas with characteristic RAG-dependent cytogenetic alterations. Cancer Cell 2006; 9:109-20. [PMID: 16473278 DOI: 10.1016/j.ccr.2006.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 10/12/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Mice deficient in the DNA damage sensor P53 display normal T cell development but eventually succumb to thymic lymphomas. Here, we show that inactivation of the TCR beta gene enhancer (E beta) results in a block of T cell development at stages where recombination-activating genes (RAG) are expressed. Introduction of the E beta mutation into p53-/- mice dramatically accelerates the onset of lethal thymic lymphomas that harbor RAG-dependent aberrant rearrangements, chromosome 14 and 12 translocations, and amplification of the chromosomal region 9A1-A5.3. Phenotypic and genetic analyses suggest that lymphomas emerge through a normal thymocyte development pathway. These findings provide genetic evidence that block of lymphocyte development at stages with RAG endonuclease activity can provoke lymphomagenesis on a background with deficient DNA damage responses.
Collapse
Affiliation(s)
- Brian B Haines
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Löbrich M, Jeggo PA. The two edges of the ATM sword: co-operation between repair and checkpoint functions. Radiother Oncol 2006; 76:112-8. [PMID: 16026874 DOI: 10.1016/j.radonc.2005.06.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 05/26/2005] [Accepted: 06/18/2005] [Indexed: 12/22/2022]
Abstract
ATM is a central component of a signal transduction process that responds to DNA double strand breaks (DSBs) ultimately effecting cell cycle checkpoint arrest and/or apoptosis. Recent studies have shown that ATM also regulates a mechanism of processing a subset of DNA ends that appear to be difficult to ligate, since they are rejoined with slow kinetics in control cells. In the absence of this process, which involves the nuclease, Artemis, the DSBs either remain unrejoined or potentially undergo misrejoining. Thus, ATM's checkpoint function specifically facilitates its repair function. Here, we discuss the contribution of this novel function of ATM to survival after ionising irradiation and to cancer avoidance. We suggest that ATM's strength as a damage response protein lies in the co-ordination of its repair and checkpoint functions making a razor sharp knife out of two blunter edges.
Collapse
Affiliation(s)
- Markus Löbrich
- Fachrichtung Biophysik, Universität des Saarlandes, Homburg/Saar, Germany.
| | | |
Collapse
|
46
|
Attardi LD, Donehower LA. Probing p53 biological functions through the use of genetically engineered mouse models. Mutat Res 2005; 576:4-21. [PMID: 16038709 DOI: 10.1016/j.mrfmmm.2004.08.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 07/12/2004] [Accepted: 08/12/2004] [Indexed: 11/17/2022]
Abstract
The p53 tumor suppressor gene is rendered dysfunctional in the majority of human cancers. To model the effects of p53 dysfunction in an experimentally manipulable organismal context, genetically engineered inbred mice have been the models of choice. Transgenic and knock-out technologies have been utilized to generate an array of different p53 germ line alterations. As expected, many (though not all) of the mutant p53 mouse models are susceptible to enhanced spontaneous and carcinogen-induced tumors of a variety of types. A number of different variables affect the incidence and spectrum of tumors in p53 mutant mice. These include strain background, the nature of the p53 mutation, the presence of wild-type p53 (in addition to mutant p53), exposure to physical and chemical mutagens, or introduction of other cancer-associated genes into the mutant p53 background. In addition to their role in furthering our understanding of the mechanisms of cancer initiation and progression, these models have led to unexpected insights into p53 function in embryogenesis and aging. With the development of ever more sophisticated methods for manipulating the mouse genome, new p53 models are on the horizon, which should deliver advances that will provide not only important mechanistic insights but also discoveries of great clinical relevance.
Collapse
Affiliation(s)
- Laura D Attardi
- Department of Radiation Oncology and Genetics, Stanford University School of Medicine, CCSR South, CA 94305-5152, USA.
| | | |
Collapse
|
47
|
Someya M, Sakata KI, Matsumoto Y, Yamamoto H, Monobe M, Ikeda H, Ando K, Hosoi Y, Suzuki N, Hareyama M. The association of DNA-dependent protein kinase activity with chromosomal instability and risk of cancer. Carcinogenesis 2005; 27:117-22. [PMID: 16000400 DOI: 10.1093/carcin/bgi175] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The DNA double-strand breaks (DSBs) repair pathway has been implicated in maintaining genomic integrity via suppression of chromosomal rearrangements. DNA-dependent protein kinase (DNA-PK) has an important role with DNA DSBs repair. In this study, 93 of untreated cancer patients and 41 of cancer-free healthy volunteers were enrolled. Peripheral blood was collected, separated and centrifuged; DNA-PK activity was measured by DNA-pull-down assay. The expressions of DNA-PKcs, Ku70 and Ku86 were examined by RT-PCR assay and western blotting. Chromosomal aberrations were examined by cytogenetic methods. DNA-PK activities of peripheral blood lymphocytes (PBL) in patients with uterine cervix or breast cancer were significantly lower than those in normal volunteers. Age and smoking had no association with DNA-PK activity, whereas DNA-PK activity and the expression of Ku70, Ku86 and DNA-PKcs in RT-PCR were interrelated. A similar tendency was seen in western blot assay but less clear than in RT-PCR. Therefore, the association between DNA-PK activity and expression of DNA-PK in protein level could not be concluded. The frequency of chromosome aberration, such as dicentric chromosomes and excess fragment increased as the DNA-PK activity decreased. In conclusion, DNA-PK activity is associated with chromosomal instability. DNA-PK activity in PBL is associated with risk of breast and uterine cervix cancer. DNA-PK activity in PBL can be used to select individuals for whom an examination should be performed because of their increased susceptibility to breast and uterine cervix cancer.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kiaris H, Chatzistamou I, Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, Kalofoutis A. Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res 2005; 65:1627-30. [PMID: 15753354 DOI: 10.1158/0008-5472.can-04-3791] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate, breast, and probably other epithelial tumors harbor inactivating mutations in the p53 tumor suppressor gene in the stromal cells, implying the nonautonomous action of p53 in carcinogenesis. We have tested this hypothesis by evaluating the tumorigenicity of MCF7 human breast cancer cells in severe combined immunodeficient mice that differ in their p53 status. Our results showed that, indeed, p53 ablation in the hosts reduced the latency for the development of MCF7 tumors. Furthermore, we show that heterozygous hosts frequently undergo loss of heterozygosity at the p53 locus in the tumor stroma tissue by mechanism that resembles the inactivation of p53 in primary tumors. To evaluate the impact of p53 ablation in the stromal fibroblasts, in tumorigenesis, tumors were reconstituted in mice bearing wild-type p53 alleles, by mixing MCF7 cells with fibroblasts isolated from mutant or wild-type p53 mice. Our results suggest that tumors containing p53-deficient fibroblasts developed faster and were more aggressive than their counterparts with wild-type fibroblasts, although their neoplastic component, namely MCF7 mammary carcinoma cells, was identical in both cases. These data strongly support the notion for the operation of a nonautonomous mechanism for p53 action in primary tumors and provide a mechanistic association between p53 mutations in the stromal component of epithelial tumors and carcinogenesis.
Collapse
Affiliation(s)
- Hippokratis Kiaris
- Department of Biological Chemistry, Aretaieion Hospital, University of Athens Medical School, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
49
|
Attardi LD. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res 2005; 569:145-57. [PMID: 15603759 DOI: 10.1016/j.mrfmmm.2004.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Accepted: 04/12/2004] [Indexed: 05/01/2023]
Abstract
Genomic instability is a major force driving human cancer development. A cellular safeguard against such genetic destabilization, which can ensue from defects in telomere maintenance, DNA repair, and checkpoint function, is activation of the p53 tumor suppressor protein, which commonly responds to these DNA damage signals by inducing apoptosis. If, however, p53 becomes inactivated, as is typical of many tumors and pre-cancerous lesions, then cells with compromised genome integrity pathways survive inappropriately, and the accrual of oncogenic lesions can fuel the carcinogenic process. Studies of mouse models have been instrumental in providing support for this idea. Mouse knockouts in genes important for telomere function, DNA damage checkpoint activation and DNA repair - both non-homologous end joining and homologous recombination - are prone to the development of genomic instability. As a consequence of these DNA damage signals, p53 becomes activated in cells of these mutant mice, leading to the induction of apoptosis, sometimes at the expense of organismal viability. This apoptotic response can be rescued through crosses to p53-deficient mice, but has dire consequences: mice predisposed to genomic instability and lacking p53 are susceptible to tumorigenesis. Thus p53-mediated apoptosis provides a crucial tumor suppressive mechanism to eliminate cells succumbing to genomic instability.
Collapse
Affiliation(s)
- Laura D Attardi
- Stanford University School of Medicine, Departments of Radiation Oncology and Genetics, CCSR South, Room 1255, 269 Campus Drive, Stanford, CA 94305-5152, USA
| |
Collapse
|
50
|
Okada H, Bakal C, Shahinian A, Elia A, Wakeham A, Suh WK, Duncan GS, Ciofani M, Rottapel R, Zúñiga-Pflücker JC, Mak TW. Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. ACTA ACUST UNITED AC 2004; 199:399-410. [PMID: 14757745 PMCID: PMC2211792 DOI: 10.1084/jem.20032092] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Because survivin-null embryos die at an early embryonic stage, the role of survivin in thymocyte development is unknown. We have investigated the role by deleting the survivin gene only in the T lineage and show here that loss of survivin blocks the transition from CD4− CD8− double negative (DN) thymocytes to CD4+ CD8+ double positive cells. Although the pre–T cell receptor signaling pathway is intact in survivin-deficient thymocytes, the cells cannot respond to its signals. In response to proliferative stimuli, cycling survivin-deficient DN cells exhibit cell cycle arrest, a spindle formation defect, and increased cell death. Strikingly, loss of survivin activates the tumor suppressor p53. However, the developmental defects caused by survivin deficiency cannot be rescued by p53 inactivation or introduction of Bcl-2. These lines of evidence indicate that developing thymocytes depend on the cytoprotective function of survivin and that this function is tightly coupled to cell proliferation but independent of p53 and Bcl-2. Thus, survivin plays a critical role in early thymocyte development.
Collapse
Affiliation(s)
- Hitoshi Okada
- Advanced Medical Discovery Institute, University of Toronto, 620 University Avenue, Suite 706, Ontario M5G 2C1, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|