1
|
Lollar MJ, Kim E, Stern DL, Pool JE. Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus. G3 (BETHESDA, MD.) 2025; 15:jkaf050. [PMID: 40053835 PMCID: PMC12060230 DOI: 10.1093/g3journal/jkaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025]
Abstract
The courtship song of Drosophila melanogaster has long served as an excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged ∼13,000 years ago, show significant genetic differentiation in the use of slow vs fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis, we detected a single strong quantitative trait locus underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with 6 additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Xu DD, Xing QJ, Liu FQ, Jiang YX, Wang ZZ, Liu YN, Wang XX, Cao HH, Liu TX, Zhang Y. Screened potential dsRNA targets in the digestive system of adult flea beetle Phyllotreta striolata: psJHBP-like and psaaNAT-like for enhancing RNAi pest control. PEST MANAGEMENT SCIENCE 2025. [PMID: 40207547 DOI: 10.1002/ps.8819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND The flea beetle Phyllotreta striolata is a major pest of Cruciferae crops, exhibiting strong resistance to chemical pesticides. RNA interference (RNAi) has evolved into an innovative method for managing pests. This study aims to evaluate the potential of spray-induced gene silencing (SIGS) as a management strategy for P. striolata by targeting genes involved in its digestive system. RESULTS Transcriptomic analysis indicated a notable enrichment of genes related to nutrient metabolism, substrate synthesis, and energy metabolism within the digestive tract of P. striolata. Based on these findings, two genes, psJHBP-like and psaaNAT-like, were selected as target candidates because of their high expression in the gut. Feeding beetles double-stranded RNA (dsRNA) solutions led to effective gene silencing and mortality, particularly at a concentration of 1000 ng/μL. RNAi also induced morphological changes in gut tissue cells. However, high dsRNA concentrations (above 1000 ng/μL) triggered slight avoidance behavior in the beetles. Leaf-coating experiments further demonstrated a reduction in leaf damage and changes in fecal morphology following dsRNA treatment, suggesting the disruption of normal digestive processes. CONCLUSION The results indicate that dsRNA aimed at genes expressed in the digestive system, such as psJHBP-like and psaaNAT-like, holds considerable promise for pest management in P. striolata. To improve the effectiveness of RNAi-based pest management strategies, it is critical to optimize target genes and the concentrations of dsRNA. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dong-Dong Xu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qing-Jiang Xing
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fang-Qian Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yan-Xi Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zi-Zhao Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ya-Nan Liu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xing-Xing Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - He-He Cao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Yi Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Takahashi M, Konishi T, Yabe K, Takata M, Matsuura K. A Breeding System Derived From Asexual Queen Succession in Termite Colonies From Cold Climate Regions. Mol Ecol 2025; 34:e17724. [PMID: 40116473 DOI: 10.1111/mec.17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
In social insects, geographic variation is often accompanied not only by physiological changes but also by changes in their social system. In the subterranean termite Reticulitermes speratus that exhibits a sophisticated social system, colonies in subtropical and temperate areas are founded by a pair of primary king and queen derived from sexually produced alates. Some years after colony establishment, many neotenic queens are produced parthenogenetically, which is known as asexual queen succession (AQS). This strategy boosts reproduction without inbreeding. Here we show that subarctic populations of R. speratus, where colonies founded by alates cannot be sustained due to the cold conditions, undergo inbreeding rather than AQS, with colonies headed by numerous neotenic reproductives. Genetic analysis found that most neotenic queens were produced sexually in the subarctic populations, rather than asexually. Rearing experiments using colonies consisting only of nymphs (reproductive-destined individuals) and workers revealed that more nymphs successfully established as neotenic reproductives in the subarctic populations than in temperate populations, and that a higher number of individuals were maintained in the subarctic populations. These results suggest that sexually produced nymphs in subarctic populations are highly predisposed to develop into neotenic reproductives, whereas in temperate populations, their developmental potential is predominantly directed towards becoming alates. This study demonstrates that R. speratus has adjusted to colder climatic zones by changing its sophisticated AQS reproductive system into a secondary strategy to maintain colonies, elucidating the flexible adaptation and acclimation of reproductive systems in social insects.
Collapse
Affiliation(s)
- Michihiko Takahashi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takao Konishi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kiyotaka Yabe
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Lollar MJ, Kim E, Stern DL, Pool JE. Courtship song differs between African and European populations of Drosophila melanogaster and involves a strong effect locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.14.594231. [PMID: 38798463 PMCID: PMC11118343 DOI: 10.1101/2024.05.14.594231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The courtship song of Drosophila melanogaster has long served as an excellent model system for studies of animal communication and differences in courtship song have been demonstrated among populations and between species. Here, we report that flies of African and European origin, which diverged approximately 13,000 years ago, show significant genetic differentiation in the use of slow versus fast pulse song. Using a combination of quantitative trait mapping and population genetic analysis we detected a single strong QTL underlying this trait and we identified candidate genes that may contribute to the evolution of this trait. Song trait variation between parental strains of our recombinant inbred panel enabled detection of genomic intervals associated with six additional song traits, some of which include known courtship-related genes. These findings improve the prospects for further genetic insights into the evolution of reproductive behavior and the biology underlying courtship song.
Collapse
Affiliation(s)
- Matthew J Lollar
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Elizabeth Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147 USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
5
|
Yusuf LH, Pascoal S, Moran PA, Bailey NW. Testing the genomic overlap between intraspecific mating traits and interspecific mating barriers. Evol Lett 2024; 8:902-915. [PMID: 39677567 PMCID: PMC11637687 DOI: 10.1093/evlett/qrae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 12/17/2024] Open
Abstract
Differences in interspecific mating traits, such as male sexual signals and female preferences, often evolve quickly as initial barriers to gene flow between nascent lineages, and they may also strengthen such barriers during secondary contact via reinforcement. However, it is an open question whether loci contributing to intraspecific variation in sexual traits are co-opted during the formation and strengthening of mating barriers between species. To test this, we used a population genomics approach in natural populations of Australian cricket sister species that overlap in a contact zone: Teleogryllus oceanicus and Teleogryllus commodus. First, we identified loci associated with intraspecific variation in T. oceanicus mating signals: advertisement song and cuticular hydrocarbon (CHC) pheromones. We then separately identified candidate interspecific barrier loci between the species. Genes showing elevated allelic divergence between species were enriched for neurological functions, indicating potential behavioral rewiring. Only two CHC-associated genes overlapped with these interspecific candidate barrier loci, and intraspecific CHC loci showed signatures of being under strong selective constraints between species. In contrast, 10 intraspecific song-associated genes showed high genetic differentiation between T. commodus and T. oceanicus, and 2 had signals of high genomic divergence. The overall lack of shared loci in intra vs. interspecific comparisons of mating trait and candidate barrier loci is consistent with limited co-option of the genetic architecture of interspecific mating signals during the establishment and maintenance of reproductive isolation.
Collapse
Affiliation(s)
- Leeban H Yusuf
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| | - Sonia Pascoal
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, United Kingdom
| |
Collapse
|
6
|
Yamamoto F, Yokoyama T, Su Y, Suzuki MG. Transcriptomic Evidence for Cell-Autonomous Sex Differentiation of the Gynandromorphic Fat Body in the Silkworm, Bombyx mori. J Dev Biol 2024; 12:31. [PMID: 39585032 PMCID: PMC11587106 DOI: 10.3390/jdb12040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
The classic model of sex determination in insects suggests that they do not have sex hormones and that sex is determined in a cell-autonomous manner. On the other hand, there is accumulating evidence that the development of secondary sexual traits is controlled in a non-cell-autonomous manner through external factors. To evaluate the degrees of the cell-autonomous and non-cell-autonomous regulation of secondary sexual trait development, we analyzed the dynamics of the sexually dimorphic transcriptome in gynandromorphic individuals of the mo mutant strain in the silkworm Bombyx mori. The silkworm possesses a female heterogametic sex-determination system (ZZ = male/ZW = female), where the master regulatory gene for femaleness, Feminizer (Fem), is located in the W chromosome. As a secondary sexual trait, we focused on the fat body, which shows remarkable differences between the sexes during the last instar larval stage. A comparison of the transcriptomes between the fat bodies of male and female larvae identified 232 sex-differentially expressed genes (S-DEGs). The proportions of ZZ and ZW cells constituting the fat body of the gynandromorphic larvae were calculated according to the expression level of the Fem. Based on the obtained values, the expression level of each S-DEG was estimated, assuming that the levels of S-DEG expression were determined according to the proportion of ZZ and ZW cells. The estimated expression levels of 207 out of 232 S-DEGs were strongly correlated with the corresponding S-DEG expression level of the gynandromorphic fat body, determined by RNA-seq. These results strongly suggest that most of the sexually dimorphic transcriptome in the fat body is regulated in a cell-autonomous manner.
Collapse
Affiliation(s)
- Fumiko Yamamoto
- Anicom Pafe, Inc., Sumitomo Fudosan, 8-17-1, Shinjyuku, Shinjyuku-ku 160-0023, Tokyo, Japan;
| | - Takeshi Yokoyama
- Department of Biological Production, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Harumi-cho, Fuchu 183-8538, Tokyo, Japan;
| | - Yan Su
- Department of Physiology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku 113-8421, Tokyo, Japan;
| | - Masataka G. Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| |
Collapse
|
7
|
Wang Y, Xu HQ, Han HL, Chen D, Jiang H, Smagghe G, Wang JJ, Wei D. CRISPR/Cas9-mediated knockout of a male accessory glands-specific gene takeout1 decreases the fecundity of Zeugodacus cucurbitae female. PEST MANAGEMENT SCIENCE 2024; 80:4399-4409. [PMID: 38676538 DOI: 10.1002/ps.8145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The melon fly, Zeugodacus cucurbitae (Coquillett), is an invasive Tephritidae pest with robust fertility. The male accessory glands (MAGs) form a vital organ that ensures insect reproductive efficiency. Most of the secreted proteins by MAGs exhibit a male bias expression. Takeout, one of these proteins, is abundantly present in the MAGs of many insects. RESULTS In this study, we identified 32 takeout genes in Z. cucurbitae. The phylogenetic analysis and multiple sequence alignment results showed that Zctakeout1 is the most related homolog to the MAGs-specific takeout in Tephritidae. The real-time quantitative PCR results showed that Zctakeout1 was exclusively expressed in the male adult stage, and its expression level gradually increased with the increase in age and then remained stable at the sexually matured stage. The distribution among tissues demonstrated the specific expression of Zctakeout1 in the MAGs, and fluorescence immunohistochemical results confirmed the presence of Zctakeout1 in close proximity to binuclear cells of the mesoderm epidermal MAGs. In continuation, CRISPR/Cas9-mediated genome editing was employed, resulting in successfully generating a homozygous strain with an +8 bp insertion. The mating experiments with the Zctakeout1-/- males resulted in significant reductions in both the mating rate and egg production of females. CONCLUSION These findings prove that the MAGs-specific Zctakeout1 is essential in regulating fecundity in female Z. cucurbitae fruit flies. Our data suggests its utilization in future essential insect-specific gene-directed sterility insect technique (SIT) by the genetic manipulation to keep these important Tephritidae populations under control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hui-Qian Xu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongbo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang, China
| |
Collapse
|
8
|
Qian K, Wan Y, Yuan J, Tang Y, Zheng X, Wang J, Cao H, Zhang Y, Chen S, Zhang Y, Wu Q. Identification and analysis of JHBP/TO family genes and their roles in the reproductive fitness cost of resistance in Frankliniella occidentalis (Pergande). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106058. [PMID: 39277374 DOI: 10.1016/j.pestbp.2024.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/17/2024]
Abstract
The juvenile hormone binding protein (JHBP) and takeout (TO) genes, mediated by the juvenile hormone (JH), play a crucial role in regulating the reproductive physiology of insects. Our previous study revealed that spinosad-resistant Frankliniella occidentalis (NIL-R) exhibited reduced fecundity and significant changes in JHBP/TO family gene expression. We hypothesized that these genes were involved in regulating the fitness costs associated with resistance. In this study, 45 JHBP/TO genes were identified in F. occidentalis, among which FoTO2 and FoTO10 were duplicates. Additionally, eight genes exhibited significant down-regulation in the NIL-R population. Two genes (FoTO6 and FoTO24) that exhibited the most significant differential expression between the spinosad-susceptible (Ivf03) and NIL-R populations were selected to investigate their roles in resistance fitness using RNA interference (RNAi). Following interference with FoTO6, FoTO24, and their combination, the expression levels of vitellogenin (Vg) were downregulated by 3%-30%, 13%-28%, and 14%-32% from the 2nd day to the 5th day, respectively; Krüppel-homolog 1 (Kr-h1) expression was down-regulated by 3%-65%, 11%-34%, and 11%-39% from the 2nd day to the 5th day, respectively; ovariole length was shortened by approximately 18%, 21%, and 24%, respectively; and the average number of eggs decreased from 407 to 260, 148, and 106, respectively. Additionally, a JH supplementation experiment on the NIL-R population revealed that the expression levels of both FoTO6, FoTO24, Vg and Kr-h1 were significantly upregulated compared with those observed in the Ivf03 population, resulting in increased fecundity. These results suggest that FoTO6 and FoTO24 are involved in JH-mediated regulation of the reproductive fitness cost of resistance to spinosad. Further, FoTO6 and FoTO24 can be considered potential target genes for applying RNAi technology in the scientific management of F. occidentalis.
Collapse
Affiliation(s)
- Kanghua Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Yanran Wan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China; College of Plant Protection, Hebei Agricultural University, 071000, Hebei, China
| | - Jiangjiang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Yingxi Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Xiaobin Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Hongyi Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Ying Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Sirui Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China.
| |
Collapse
|
9
|
Liu Y, Zou K, Wang T, Guan M, Duan H, Yu H, Wu D, Du J. Genome-Wide Identification and Analysis of Family Members with Juvenile Hormone Binding Protein Domains in Spodoptera frugiperda. INSECTS 2024; 15:573. [PMID: 39194778 DOI: 10.3390/insects15080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Juvenile hormone binding proteins (JHBPs) are carrier proteins that bind to juvenile hormone (JH) to form a complex, which then transports the JH to target organs to regulate insect growth and development. Through bioinformatics analysis, 76 genes encoding JHBP in S. frugiperda were identified from whole genome data (SfJHBP1-SfJHBP76). These genes are unevenly distributed across 8 chromosomes, with gene differentiation primarily driven by tandem duplication. Most SfJHBP proteins are acidic, and their secondary structures are mainly composed of α-helices and random coils. Gene structure and conserved motif analyses reveal significant variations in the number of coding sequences (CDS) and a high diversity in amino acid sequences. Phylogenetic analysis classified the genes into four subfamilies, with a notable presence of directly homologous genes between S. frugiperda and S. litura, suggesting a close relationship between the two species. RNA-seq data from public databases and qPCR of selected SfJHBP genes show that SfJHBP20, SfJHBP50, and SfJHBP69 are highly expressed at most developmental stages, while SfJHBP8 and SfJHBP14 exhibit specific expression during the pupal stage and in the midgut. These findings provide a theoretical basis for future studies on the biological functions of this gene family.
Collapse
Affiliation(s)
- Yang Liu
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Kunliang Zou
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Tonghan Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Minghui Guan
- College of Resources and Environment, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haiming Duan
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
10
|
Sujkowski A, Ranxhi B, Bangash ZR, Chbihi ZM, Prifti MV, Qadri Z, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of spinocerebellar ataxia type 7. Sci Rep 2024; 14:14332. [PMID: 38906973 PMCID: PMC11192756 DOI: 10.1038/s41598-024-65172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Bedri Ranxhi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zoya R Bangash
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zachary M Chbihi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Zaina Qadri
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Nadir Alam
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine, 540 E Canfield, Scott Hall Rm 3108, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Wang Q, Zhang J, Liu C, Ru C, Qian Q, Yang M, Yan S, Liu W, Wang G. Identification of antennal alternative splicing by combining genome and full-length transcriptome analysis in Bactrocera dorsalis. Front Physiol 2024; 15:1384426. [PMID: 38952867 PMCID: PMC11215311 DOI: 10.3389/fphys.2024.1384426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuanjian Ru
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qian Qian
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
12
|
Ortega-Insaurralde I, Latorre-Estivalis JM, Costa-da-Silva AL, Cano A, Insausti TC, Morales HS, Pontes G, de Astrada MB, Ons S, DeGennaro M, Barrozo RB. The pharyngeal taste organ of a blood-feeding insect functions in food recognition. BMC Biol 2024; 22:63. [PMID: 38481317 PMCID: PMC10938694 DOI: 10.1186/s12915-024-01861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Obligate blood-feeding insects obtain the nutrients and water necessary to ensure survival from the vertebrate blood. The internal taste sensilla, situated in the pharynx, evaluate the suitability of the ingested food. Here, through multiple approaches, we characterized the pharyngeal organ (PO) of the hematophagous kissing bug Rhodnius prolixus to determine its role in food assessment. The PO, located antero-dorsally in the pharynx, comprises eight taste sensilla that become bathed with the incoming blood. RESULTS We showed that these taste sensilla house gustatory receptor neurons projecting their axons through the labral nerves to reach the subesophageal zone in the brain. We found that these neurons are electrically activated by relevant appetitive and aversive gustatory stimuli such as NaCl, ATP, and caffeine. Using RNA-Seq, we examined the expression of sensory-related gene families in the PO. We identified gustatory receptors, ionotropic receptors, transient receptor potential channels, pickpocket channels, opsins, takeouts, neuropeptide precursors, neuropeptide receptors, and biogenic amine receptors. RNA interference assays demonstrated that the salt-related pickpocket channel Rproppk014276 is required during feeding of an appetitive solution of NaCl and ATP. CONCLUSIONS We provide evidence of the role of the pharyngeal organ in food evaluation. This work shows a comprehensive characterization of a pharyngeal taste organ in a hematophagous insect.
Collapse
Affiliation(s)
- Isabel Ortega-Insaurralde
- Laboratorio de Neuroetología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Instituto Biodiversidad Biología Experimental y Aplicada (IBBEA), CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andre Luis Costa-da-Silva
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Agustina Cano
- Laboratorio de Neuroetología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Instituto Biodiversidad Biología Experimental y Aplicada (IBBEA), CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Héctor Salas Morales
- Laboratorio de Neuroetología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Instituto Biodiversidad Biología Experimental y Aplicada (IBBEA), CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gina Pontes
- Laboratorio de Ecofisiología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Instituto Biodiversidad Biología Experimental y Aplicada (IBBEA), CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Berón de Astrada
- Laboratorio de Fisiología de la Visión, Departamento de Fisiología Biología Molecular y Celular (FBMC), Instituto de Biociencias Biotecnología y Biología Traslacional (IB3), Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Facultad de Ciencias Exactas (CENEXA), Centro Regional de Estudios Genómicos, CONICET, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Matthew DeGennaro
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Romina B Barrozo
- Laboratorio de Neuroetología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Instituto Biodiversidad Biología Experimental y Aplicada (IBBEA), CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Savolainen V, Bailey NW, Diamond L, Swift-Gallant A, Gavrilets S, Raymond M, Verweij KJH. A broader cultural view is necessary to study the evolution of sexual orientation. Nat Ecol Evol 2024; 8:181-183. [PMID: 38191835 DOI: 10.1038/s41559-023-02273-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Vincent Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, London, UK.
| | | | - Lisa Diamond
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | - Ashlyn Swift-Gallant
- Department of Psychology, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| | - Sergey Gavrilets
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Michel Raymond
- ISEM, CNRS, EPHE, IRD, Institut des Sciences de l'Evolution, Univ. Montpellier, Montpellier, France
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Sujkowski AL, Ranxhi B, Prifti MV, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of Spinocerebellar Ataxia type 7. RESEARCH SQUARE 2023:rs.3.rs-3592641. [PMID: 38045332 PMCID: PMC10690306 DOI: 10.21203/rs.3.rs-3592641/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
Affiliation(s)
| | - Bedri Ranxhi
- Department of Pharmacology, Wayne State University School of Medicine
| | - Matthew V Prifti
- Department of Pharmacology, Wayne State University School of Medicine
| | - Nadir Alam
- Department of Pharmacology, Wayne State University School of Medicine
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine
- Department of Neurology, Wayne State University School of Medicine
| | - Wei-Ling Tsou
- Department of Pharmacology, Wayne State University School of Medicine
| |
Collapse
|
15
|
Maruko A, Iijima KM, Ando K. Dissecting the daily feeding pattern: Peripheral CLOCK/CYCLE generate the feeding/fasting episodes and neuronal molecular clocks synchronize them. iScience 2023; 26:108164. [PMID: 37915609 PMCID: PMC10616324 DOI: 10.1016/j.isci.2023.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
A 24-h rhythm of feeding behavior, or synchronized feeding/fasting episodes during the day, is crucial for survival. Internal clocks and light input regulate rhythmic behaviors, but how they generate feeding rhythms is not fully understood. Here we aimed to dissect the molecular pathways that generate daily feeding patterns. By measuring the semidiurnal amount of food ingested by single flies, we demonstrate that the generation of feeding rhythms under light:dark conditions requires quasimodo (qsm) but not molecular clocks. Under constant darkness, rhythmic feeding patterns consist of two components: CLOCK (CLK) in digestive/metabolic tissues generating feeding/fasting episodes, and the molecular clock in neurons synchronizing them to subjective daytime. Although CLK is a part of the molecular clock, the generation of feeding/fasting episodes by CLK in metabolic tissues was independent of molecular clock machinery. Our results revealed novel functions of qsm and CLK in feeding rhythms in Drosophila.
Collapse
Affiliation(s)
- Akiko Maruko
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Koichi M. Iijima
- Department of Neurogenetics, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
16
|
Sujkowski AL, Ranxhi B, Prifti MV, Alam N, Todi SV, Tsou WL. Progressive degeneration in a new Drosophila model of Spinocerebellar Ataxia type 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566106. [PMID: 37986914 PMCID: PMC10659390 DOI: 10.1101/2023.11.07.566106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of polyglutamine (polyQ) in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.
Collapse
|
17
|
Diaz AV, Stephenson D, Nemkov T, D’Alessandro A, Reis T. Spenito-dependent metabolic sexual dimorphism intrinsic to fat storage cells. Genetics 2023; 225:iyad164. [PMID: 37738330 PMCID: PMC10627258 DOI: 10.1093/genetics/iyad164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 09/24/2023] Open
Abstract
Metabolism in males and females is distinct. Differences are usually linked to sexual reproduction, with circulating signals (e.g. hormones) playing major roles. In contrast, sex differences prior to sexual maturity and intrinsic to individual metabolic tissues are less understood. We analyzed Drosophila melanogaster larvae and find that males store more fat than females, the opposite of the sexual dimorphism in adults. We show that metabolic differences are intrinsic to the major fat storage tissue, including many differences in the expression of metabolic genes. Our previous work identified fat storage roles for Spenito (Nito), a conserved RNA-binding protein and regulator of sex determination. Nito knockdown specifically in the fat storage tissue abolished fat differences between males and females. We further show that Nito is required for sex-specific expression of the master regulator of sex determination, Sex-lethal (Sxl). "Feminization" of fat storage cells via tissue-specific overexpression of a Sxl target gene made larvae lean, reduced the fat differences between males and females, and induced female-like metabolic gene expression. Altogether, this study supports a model in which Nito autonomously controls sexual dimorphisms and differential expression of metabolic genes in fat cells in part through its regulation of the sex determination pathway.
Collapse
Affiliation(s)
- Arely V Diaz
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tânia Reis
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
18
|
Potticary AL, McKinney EC, Moore PJ, Moore AJ. takeout gene expression is associated with temporal kin recognition. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230860. [PMID: 37621661 PMCID: PMC10445020 DOI: 10.1098/rsos.230860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
A key component of parental care is avoiding killing and eating one's own offspring. Many organisms commit infanticide but switch to parental care when their own offspring are expected, known as temporal kin recognition. It is unclear why such types of indirect kin recognition are so common across taxa. One possibility is that temporal kin recognition may evolve through alteration of simple mechanisms, such as co-opting mechanisms that influence the regulation of timing and feeding in other contexts. Here, we determine whether takeout, a gene implicated in coordinating feeding, influences temporal kin recognition in Nicrophorus orbicollis. We found that takeout expression was not associated with non-parental feeding changes resulting from hunger, or a general transition to the full parental care repertoire. However, beetles that accepted and provided care to their offspring had a higher takeout expression than beetles that committed infanticide. Together, these data support the idea that the evolution of temporal kin recognition may be enabled by co-option of mechanisms that integrate feeding behaviour in other contexts.
Collapse
Affiliation(s)
- Ahva L. Potticary
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
19
|
Diaz AV, Matheny T, Stephenson D, Nemkov T, D’Alessandro A, Reis T. Spenito-dependent metabolic sexual dimorphism intrinsic to fat storage cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528952. [PMID: 36824729 PMCID: PMC9949119 DOI: 10.1101/2023.02.17.528952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Metabolism in males and females is distinct. Differences are usually linked to sexual reproduction, with circulating signals (e.g. hormones) playing major roles. By contrast, sex differences prior to sexual maturity and intrinsic to individual metabolic tissues are less understood. We analyzed Drosophila melanogaster larvae and find that males store more fat than females, the opposite of the sexual dimorphism in adults. We show that metabolic differences are intrinsic to the major fat storage tissue, including many differences in the expression of metabolic genes. Our previous work identified fat storage roles for Spenito (Nito), a conserved RNA-binding protein and regulator of sex determination. Nito knockdown specifically in the fat storage tissue abolished fat differences between males and females. We further show that Nito is required for sex-specific expression of the master regulator of sex determination, Sex-lethal (Sxl). "Feminization" of fat storage cells via tissue-specific overexpression of a Sxl target gene made larvae lean, reduced the fat differences between males and females, and induced female-like metabolic gene expression. Altogether, this study supports a model in which Nito autonomously controls sexual dimorphisms and differential expression of metabolic genes in fat cells in part through its regulation of the sex determination pathway.
Collapse
Affiliation(s)
- Arely V. Diaz
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tyler Matheny
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tânia Reis
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
20
|
Love CR, Gautam S, Lama C, Le NH, Dauwalder B. The Drosophila dopamine 2-like receptor D2R (Dop2R) is required in the blood brain barrier for male courtship. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12836. [PMID: 36636829 PMCID: PMC9994173 DOI: 10.1111/gbb.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
The blood brain barrier (BBB) has the essential function to protect the brain from potentially hazardous molecules while also enabling controlled selective uptake. How these processes and signaling inside BBB cells control neuronal function is an intense area of interest. Signaling in the adult Drosophila BBB is required for normal male courtship behavior and relies on male-specific molecules in the BBB. Here we show that the dopamine receptor D2R is expressed in the BBB and is required in mature males for normal mating behavior. Conditional adult male knockdown of D2R in BBB cells causes courtship defects. The courtship defects observed in genetic D2R mutants can be rescued by expression of normal D2R specifically in the BBB of adult males. Drosophila BBB cells are glial cells. Our findings thus identify a specific glial function for the DR2 receptor and dopamine signaling in the regulation of a complex behavior.
Collapse
Affiliation(s)
- Cameron R Love
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Sumit Gautam
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chamala Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Nhu Hoa Le
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
21
|
Mather LM, Cholak ME, Morfoot CM, Curro KC, Love J, Cavanaugh DJ. Inducible Reporter Lines for Tissue-specific Monitoring of Drosophila Circadian Clock Transcriptional Activity. J Biol Rhythms 2023; 38:44-63. [PMID: 36495136 DOI: 10.1177/07487304221138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organisms track time of day through the function of cell-autonomous molecular clocks. In addition to a central clock located in the brain, molecular clocks are present in most peripheral tissues. Circadian clocks are coordinated within and across tissues, but the manner through which this coordination is achieved is not well understood. We reasoned that the ability to track in vivo molecular clock activity in specific tissues of the fruit fly, Drosophila melanogaster, would facilitate an investigation into the relationship between different clock-containing tissues. Previous efforts to monitor clock gene expression in single flies in vivo have used regulatory elements of several different clock genes to dictate expression of a luciferase reporter enzyme, the activity of which can be monitored using a luminometer. Although these reporter lines have been instrumental in our understanding of the circadian system, they generally lack cell specificity, making it difficult to compare molecular clock oscillations between different tissues. Here, we report the generation of several novel lines of flies that allow for inducible expression of a luciferase reporter construct for clock gene transcriptional activity. We find that these lines faithfully report circadian transcription, as they exhibit rhythmic luciferase activity that is dependent on a functional molecular clock. Furthermore, we take advantage of our reporter lines' tissue specificity to demonstrate that peripheral molecular clocks are able to retain rhythmicity for multiple days under constant environmental conditions.
Collapse
Affiliation(s)
- Lilyan M Mather
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Meghan E Cholak
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Connor M Morfoot
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | | - Jacob Love
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | |
Collapse
|
22
|
Nevoa JC, Latorre-Estivalis JM, Pais FSM, Marliére NP, Fernandes GDR, Lorenzo MG, Guarneri AA. Global characterization of gene expression in the brain of starved immature Rhodnius prolixus. PLoS One 2023; 18:e0282490. [PMID: 36867641 PMCID: PMC9983911 DOI: 10.1371/journal.pone.0282490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Rhodnius prolixus is a vector of Chagas disease and has become a model organism to study physiology, behavior, and pathogen interaction. The publication of its genome allowed initiating a process of comparative characterization of the gene expression profiles of diverse organs exposed to varying conditions. Brain processes control the expression of behavior and, as such, mediate immediate adjustment to a changing environment, allowing organisms to maximize their chances to survive and reproduce. The expression of fundamental behavioral processes like feeding requires fine control in triatomines because they obtain their blood meals from potential predators. Therefore, the characterization of gene expression profiles of key components modulating behavior in brain processes, like those of neuropeptide precursors and their receptors, seems fundamental. Here we study global gene expression profiles in the brain of starved R. prolixus fifth instar nymphs by means of RNA sequencing (RNA-Seq). RESULTS The expression of neuromodulatory genes such as those of precursors of neuropeptides, neurohormones, and their receptors; as well as the enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines were fully characterized. Other important gene targets such as neurotransmitter receptors, nuclear receptors, clock genes, sensory receptors, and takeouts genes were identified and their gene expression analyzed. CONCLUSION We propose that the set of neuromodulatory-related genes highly expressed in the brain of starved R. prolixus nymphs deserves functional characterization to allow the subsequent development of tools targeting them for bug control. As the brain is a complex structure that presents functionally specialized areas, future studies should focus on characterizing gene expression profiles in target areas, e.g. mushroom bodies, to complement our current knowledge.
Collapse
Affiliation(s)
- Jessica Coraiola Nevoa
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Jose Manuel Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | | | - Newmar Pinto Marliére
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou – FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
23
|
Chang Y, Yang B, Zhang Y, Dong C, Liu L, Zhao X, Wang G. Identification of sex-biased and neurodevelopment genes via brain transcriptome in Ostrinia furnacalis. Front Physiol 2022; 13:953538. [PMID: 36003649 PMCID: PMC9393524 DOI: 10.3389/fphys.2022.953538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Insect brains play important roles in the regulation of sex-biased behaviors such as mating and oviposition. The neural structure and function of brain differences between males and females have been identified, in which the antenna lobes (AL) showed the most discrepancy, however, the whole repertoire of the genes expressed in the brains and the molecular mechanism of neural signaling and structural development are still unclear. In this study, high-throughput transcriptome analysis of male and female brains was carried on in the Asia corn borer, Ostrinia furnacalis, and a total of 39.23 Gb data and 34,092 unigenes were obtained. Among them, 276 genes displayed sex-biased expression by DEG analysis, of which 125 genes were highly expressed in the males and 151 genes were highly expressed in the females. Besides, by homology analysis against genes that have been confirmed to be related to brain neurodevelopment, a total of 24 candidate genes were identified in O. furnacalis. In addition, to further screen the core genes that may be important for sex-biased nerve signaling and neurodevelopment, protein-protein interaction networks were constructed for the sex-biased genes and neurodevelopment genes. We identified 10 (Mhc, Mlc1, Mlc2, Prm, Mf, wupA, TpnC25D, fln, l(2)efl, and Act5C), 11 (PPO2, GNBP3, Spn77Ba, Ppn, yellow-d2, PGRP-LB, PGRP-SD, PGRP-SC2, Hml, Cg25C, and vkg) and 8 (dac, wg, hh, ci, run, Lim1, Rbp9, and Bx) core hub genes that may be related to brain neural development from male-biased, female-biased, and neurodevelopment gene groups. Our results provide a reference for further analysis of the dimorphism of male and female brain structures in agricultural pests.
Collapse
Affiliation(s)
- Yajun Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| | - Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xincheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| |
Collapse
|
24
|
Soldier Caste-Specific Protein 1 Is Involved in Soldier Differentiation in Termite Reticulitermes aculabialis. INSECTS 2022; 13:insects13060502. [PMID: 35735839 PMCID: PMC9224846 DOI: 10.3390/insects13060502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
Termite soldiers are a unique caste among social insects, and their differentiation can be induced by Juvenile hormone (JH) from workers through two molts (worker–presoldier–soldier). However, the molecular mechanism underlying the worker-to-soldier transformation in termites is poorly understood. To explore the mechanism of soldier differentiation induced by JH, the gene soldier caste-specific protein 1 (RaSsp1, NCBI accession no: MT861054.1) in R. aculabialis was cloned, and its function was studied. This gene was highly expressed in the soldier caste, and the protein RsSsp1 was similar to the JHBP (JH-binding protein) domain-containing protein by Predict Protein online. In addition, JHIII could be anchored in the hydrophobic cage of RaSsp1 as the epoxide of the JHBP-bound JH according to the protein ligand molecular docking online tool AutoDock. The functional studies indicated that knocking down of the RaSsp1 shorted the presoldier’s head capsule, reduced mandible size, delayed molting time and decreased molting rate (from worker to presoldier) at the beginning of worker gut-purging. Furthermore, knocking down of the RaSsp1 had a more pronounced effect on soldier differentiation (from presoldier to soldier), and manifested in significantly shorter mandibles, rounder head capsules, and lower molting rate (from worker to presoldier) at the beginning of presoldier gut-purging. Correspondingly, the expressions of JH receptor Methoprene-tolerant (Met), the JH-inducible transcription factor Krüppel homolog1 (Kr-h1) and ecdysone signal genes Broad-complex (Br-C) were downregulated when knocking down the RaSsp1 at the above two stages. All these results that RaSsp1 may be involved in soldier differentiation from workers by binding and transporting JH.
Collapse
|
25
|
Shin SW, Jeon JH, Kim JA, Park DS, Shin YJ, Oh HW. Inducible Expression of Several Drosophila melanogaster Genes Encoding Juvenile Hormone Binding Proteins by a Plant Diterpene Secondary Metabolite, Methyl Lucidone. INSECTS 2022; 13:420. [PMID: 35621756 PMCID: PMC9144306 DOI: 10.3390/insects13050420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023]
Abstract
Juvenile hormones prevent molting and metamorphosis in the juvenile stages of insects. There are multiple genes encoding a conserved juvenile hormone binding protein (JHBP) domain in a single insect species. Although some JHBPs have been reported to serve as carriers to release hormones to target tissues, the molecular functions of the other members of the diverse JHBP family of proteins remain unclear. We characterized 16 JHBP genes with conserved JHBP domains in Drosophila melanogaster. Among them, seven JHBP genes were induced by feeding the flies with methyl lucidone, a plant diterpene secondary metabolite (PDSM). Induction was also observed upon feeding the juvenile hormone (JH) analog methoprene. Considering that methyl lucidone and methoprene perform opposite functions in JH-mediated regulation, specifically the heterodimeric binding between a JH receptor (JHR) and steroid receptor coactivator (SRC), the induction of these seven JHBP genes is independent of JH-mediated regulation by the JHR/SRC heterodimer. Tissue-specific gene expression profiling through the FlyAtlas 2 database indicated that some JHBP genes are mainly enriched in insect guts and rectal pads, indicating their possible role during food uptake. Hence, we propose that JHBPs are induced by PDSMs and respond to toxic plant molecules ingested during feeding.
Collapse
Affiliation(s)
- Sang-Woon Shin
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jun-Hyoung Jeon
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (J.-H.J.); (D.-S.P.)
| | - Ji-Ae Kim
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (J.-H.J.); (D.-S.P.)
| | - Young-Joo Shin
- Department of Radiation Oncology, Sanggye Paik Hospital, Inje University, Seoul 01757, Korea;
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| |
Collapse
|
26
|
The nuclear receptor Hr46/Hr3 is required in the blood brain barrier of mature males for courtship. PLoS Genet 2022; 18:e1009519. [PMID: 35077443 PMCID: PMC8815886 DOI: 10.1371/journal.pgen.1009519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 02/04/2022] [Accepted: 12/24/2021] [Indexed: 11/19/2022] Open
Abstract
The blood brain barrier (BBB) forms a stringent barrier that protects the brain from components in the circulation that could interfere with neuronal function. At the same time, the BBB enables selective transport of critical nutrients and other chemicals to the brain. Beyond these functions, another recently recognized function is even less characterized, specifically the role of the BBB in modulating behavior by affecting neuronal function in a sex-dependent manner. Notably, signaling in the adult Drosophila BBB is required for normal male courtship behavior. Courtship regulation also relies on male-specific molecules in the BBB. Our previous studies have demonstrated that adult feminization of these cells in males significantly lowered courtship. Here, we conducted microarray analysis of BBB cells isolated from males and females. Findings revealed that these cells contain male- and female-enriched transcripts, respectively. Among these transcripts, nuclear receptor Hr46/Hr3 was identified as a male-enriched BBB transcript. Hr46/Hr3 is best known for its essential roles in the ecdysone response during development and metamorphosis. In this study, we demonstrate that Hr46/Hr3 is specifically required in the BBB cells for courtship behavior in mature males. The protein is localized in the nuclei of sub-perineurial glial cells (SPG), indicating that it might act as a transcriptional regulator. These data provide a catalogue of sexually dimorphic BBB transcripts and demonstrate a physiological adult role for the nuclear receptor Hr46/Hr3 in the regulation of male courtship, a novel function that is independent of its developmental role.
Collapse
|
27
|
Peng Q, Chen J, Wang R, Zhu H, Han C, Ji X, Pan Y. The sex determination gene doublesex regulates expression and secretion of the basement membrane protein Collagen IV. J Genet Genomics 2022; 49:636-644. [PMID: 35017121 DOI: 10.1016/j.jgg.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The highly conserved doublesex (dsx) and doublesex/mab-3 related (Dmrt) genes control sexually dimorphic traits across animals. The dsx gene encodes sex-specific transcription factors, DsxM in males and DsxF in females, which function differentially and often oppositely to establish sexual dimorphism. Here, we report that mutations in dsx, or overexpression of dsx, result in abnormal distribution of the basement membrane (BM) protein Collagen IV in the fat body. We find that Dsx isoforms regulate the expression of Collagen IV in the fat body and its secretion into the BM of other tissues. We identify the procollagen lysyl hydroxylase (dPlod) gene, which is involved in the biosynthesis of Collagen IV, as a direct target of Dsx. We further show that Dsx regulates Collagen IV through dPlod-dependent and independent pathways. These findings reveal how Dsx isoforms function in the secretory fat body to regulate Collagen IV and remotely establish sexual dimorphism.
Collapse
Affiliation(s)
- Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jiangtao Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Rong Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Huan Zhu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Caihong Han
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xiaoxiao Ji
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
28
|
Marchant A, Mougel F, Jacquin-Joly E, Almeida CE, Blanchet D, Bérenger JM, da Rosa JA, Harry M. Chemosensory Gene Expression for Two Closely Relative Species Rhodnius robustus and R. prolixus (Hemiptera, Reduviidade, Triatominae) Vectors of Chagas Disease. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.725504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two closely related species, Rhodnius prolixus and Rhodnius robustus, are the vectors of Trypanosoma cruzi, which is the causative agent of Chagas disease, but clearly exhibit clear-cut differences in their ecological behavior. R. prolixus is considered as a domiciliated species, whereas R. robustus only sporadically visits human houses in Amazonia. We performed a chemosensory gene expression study via RNA-sequencing (RNA-seq) for the two species and also included a laboratory introgressed R. robustus strain. We built an assembled transcriptome for each sample and for both sexes and compiled all in a reference transcriptome for a differential gene expression study. Because the genes specifically expressed in one condition and not expressed in another may also reflect differences in the adaptation of organisms, a comparative study of the presence/absence of transcripts was also performed for the chemosensory transcripts, namely chemosensory proteins (CSPs), odorant-binding proteins (OBPs), odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs), as well as takeout (TO) transcripts because TO proteins have been proposed to be associated with chemosensory perception in both olfactory and taste systems. In this study, 12 novel TO transcripts from the R. prolixus genome were annotated. Among the 199 transcripts, out of interest, annotated in this study, 93% were conserved between R. prolixus and the sylvatic R. robustus. Moreover, 10 transcripts out of interest were specifically expressed in one sex and absent in another. Three chemosensory transcripts were found to be expressed only in the reared R. prolixus (CSP19, OBP9, and OR89) and only one in sylvatic R. robustus (OR22). A large set of transcripts were found to be differentially expressed (DE) between males and females (1,630), with a majority of them (83%) overexpressed in males. Between environmental conditions, 8,596 transcripts were DE, with most (67%) overexpressed in the sylvatic R. robustus samples, including 17 chemosensory transcripts (4 CSPs, 1 OBP, 5 ORs, 1 GR, 4 IR, and 2 TO), but 4 genes (OBP19, OR13, OR40, and OR79) were overexpressed in the reared samples.
Collapse
|
29
|
Fulgham CV, Dreyer AP, Nasseri A, Miller AN, Love J, Martin MM, Jabr DA, Saurabh S, Cavanaugh DJ. Central and Peripheral Clock Control of Circadian Feeding Rhythms. J Biol Rhythms 2021; 36:548-566. [PMID: 34547954 DOI: 10.1177/07487304211045835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many behaviors exhibit ~24-h oscillations under control of an endogenous circadian timing system that tracks time of day via a molecular circadian clock. In the fruit fly, Drosophila melanogaster, most circadian research has focused on the generation of locomotor activity rhythms, but a fundamental question is how the circadian clock orchestrates multiple distinct behavioral outputs. Here, we have investigated the cells and circuits mediating circadian control of feeding behavior. Using an array of genetic tools, we show that, as is the case for locomotor activity rhythms, the presence of feeding rhythms requires molecular clock function in the ventrolateral clock neurons of the central brain. We further demonstrate that the speed of molecular clock oscillations in these neurons dictates the free-running period length of feeding rhythms. In contrast to the effects observed with central clock cell manipulations, we show that genetic abrogation of the molecular clock in the fat body, a peripheral metabolic tissue, is without effect on feeding behavior. Interestingly, we find that molecular clocks in the brain and fat body of control flies gradually grow out of phase with one another under free-running conditions, likely due to a long endogenous period of the fat body clock. Under these conditions, the period of feeding rhythms tracks with molecular oscillations in central brain clock cells, consistent with a primary role of the brain clock in dictating the timing of feeding behavior. Finally, despite a lack of effect of fat body selective manipulations, we find that flies with simultaneous disruption of molecular clocks in multiple peripheral tissues (but with intact central clocks) exhibit decreased feeding rhythm strength and reduced overall food intake. We conclude that both central and peripheral clocks contribute to the regulation of feeding rhythms, with a particularly dominant, pacemaker role for specific populations of central brain clock cells.
Collapse
Affiliation(s)
- Carson V Fulgham
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Austin P Dreyer
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Anita Nasseri
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Asia N Miller
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jacob Love
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Madison M Martin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Daniel A Jabr
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Sumit Saurabh
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Daniel J Cavanaugh
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Wang X, Lin Y, Liang L, Geng H, Zhang M, Nie H, Su S. Transcriptional Profiles of Diploid Mutant Apis mellifera Embryos after Knockout of csd by CRISPR/Cas9. INSECTS 2021; 12:insects12080704. [PMID: 34442270 PMCID: PMC8396534 DOI: 10.3390/insects12080704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary In honey bees, males are haploid while females are diploid, leading to a fundamental difference in genetic materials between the sexes. In order to better control the comparison of gene expression between males and females, diploid mutant males were generated by knocking out the sex-determining gene, complementary sex determiner (csd), in fertilized embryos. The diploid mutant drones had male external morphological features, as well as male gonads. RNA sequencing was performed on the diploid mutant embryos and one-day-old larvae. The transcriptome analysis showed that several female-biased genes, such as worker-enriched antennal (Wat), vitellogenin (Vg), and some venom-related genes, were down-regulated in the diploid mutant males. In contrast, some male-biased genes, like takeout and apolipophorin-III-like protein (A4), were up-regulated. Moreover, the co-expression gene networks suggested that csd might interact very closely with fruitless (fru), feminizer (fem) might have connections with hexamerin 70c (hex70c), and transformer-2 (tra2) might play roles with troponin T (TpnT). Foundational information about the differences in the gene expression caused by sex differentiation was provided in this study. It is believed that this study will pave the ground for further research on the different mechanisms between males and females in honey bees. Abstract In honey bees, complementary sex determiner (csd) is the primary signal of sex determination. Its allelic composition is heterozygous in females, and hemizygous or homozygous in males. To explore the transcriptome differences after sex differentiation between males and females, with genetic differences excluded, csd in fertilized embryos was knocked out by CRISPR/Cas9. The diploid mutant males at 24 h, 48 h, 72 h, and 96 h after egg laying (AEL) and the mock-treated females derived from the same fertilized queen were investigated through RNA-seq. Mutations were detected in the target sequence in diploid mutants. The diploid mutant drones had typical male morphological characteristics and gonads. Transcriptome analysis showed that several female-biased genes, such as worker-enriched antennal (Wat), vitellogenin (Vg), and some venom-related genes, were down-regulated in the diploid mutant males. In contrast, some male-biased genes, such as takeout and apolipophorin-III-like protein (A4), had higher expressions in the diploid mutant males. Weighted gene co-expression network analysis (WGCNA) indicated that there might be interactions between csd and fruitless (fru), feminizer (fem) and hexamerin 70c (hex70c), transformer-2 (tra2) and troponin T (TpnT). The information provided by this study will benefit further research on the sex dimorphism and development of honey bees and other insects in Hymenoptera.
Collapse
Affiliation(s)
- Xiuxiu Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Liqiang Liang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Haiyang Geng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
| | - Meng Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Apicultural Research Institute of Jiangxi Province, Nanchang 330052, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Correspondence: (H.N.); (S.S.); Tel.: +86-157-0590-2721 (H.N.); +86-181-0503-9938 (S.S.)
| | - Songkun Su
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (L.L.); (H.G.); (M.Z.)
- Correspondence: (H.N.); (S.S.); Tel.: +86-157-0590-2721 (H.N.); +86-181-0503-9938 (S.S.)
| |
Collapse
|
31
|
Montejo-Kovacevich G, Salazar PA, Smith SH, Gavilanes K, Bacquet CN, Chan YF, Jiggins CD, Meier JI, Nadeau NJ. Genomics of altitude-associated wing shape in two tropical butterflies. Mol Ecol 2021; 30:6387-6402. [PMID: 34233044 DOI: 10.1111/mec.16067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how organisms adapt to their local environment is central to evolution. With new whole-genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common-garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation-associated wing aspect ratio differences are maintained. Genome-wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within-species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.
Collapse
Affiliation(s)
| | | | - Sophie H Smith
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge, UK.,St John's College, University of Cambridge, Cambridge, UK
| | - Nicola J Nadeau
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Banho CA, Mérel V, Oliveira TYK, Carareto CMA, Vieira C. Comparative transcriptomics between Drosophila mojavensis and D. arizonae reveals transgressive gene expression and underexpression of spermatogenesis-related genes in hybrid testes. Sci Rep 2021; 11:9844. [PMID: 33972659 PMCID: PMC8110761 DOI: 10.1038/s41598-021-89366-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Interspecific hybridization is a stressful condition that can lead to sterility and/or inviability through improper gene regulation in Drosophila species with a high divergence time. However, the extent of these abnormalities in hybrids of recently diverging species is not well known. Some studies have shown that in Drosophila, the mechanisms of postzygotic isolation may evolve more rapidly in males than in females and that the degree of viability and sterility is associated with the genetic distance between species. Here, we used transcriptomic comparisons between two Drosophila mojavensis subspecies and D. arizonae (repleta group, Drosophila) and identified greater differential gene expression in testes than in ovaries. We tested the hypothesis that the severity of the interspecies hybrid phenotype is associated with the degree of gene misregulation. We showed limited gene misregulation in fertile females and an increase in the amount of misregulation in males with more severe sterile phenotypes (motile vs. amotile sperm). In addition, for these hybrids, we identified candidate genes that were mostly associated with spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Cecilia A Banho
- Department of Biology, UNESP - São Paulo State University, São José do Rio Preto, São Paulo State (SP), Brazil.,Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Claude Bernard Lyon 1, University of Lyon, 69622, Villeurbanne, France
| | - Vincent Mérel
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Claude Bernard Lyon 1, University of Lyon, 69622, Villeurbanne, France
| | - Thiago Y K Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Claudia M A Carareto
- Department of Biology, UNESP - São Paulo State University, São José do Rio Preto, São Paulo State (SP), Brazil
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Claude Bernard Lyon 1, University of Lyon, 69622, Villeurbanne, France.
| |
Collapse
|
33
|
Brovkina MV, Duffié R, Burtis AEC, Clowney EJ. Fruitless decommissions regulatory elements to implement cell-type-specific neuronal masculinization. PLoS Genet 2021; 17:e1009338. [PMID: 33600447 PMCID: PMC7924761 DOI: 10.1371/journal.pgen.1009338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/02/2021] [Accepted: 01/04/2021] [Indexed: 01/12/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, male-specific splicing and translation of the Fruitless transcription factor (FruM) alters the presence, anatomy, and/or connectivity of >60 types of central brain neurons that interconnect to generate male-typical behaviors. While the indispensable function of FruM in sex-specific behavior has been understood for decades, the molecular mechanisms underlying its activity remain unknown. Here, we take a genome-wide, brain-wide approach to identifying regulatory elements whose activity depends on the presence of FruM. We identify 436 high-confidence genomic regions differentially accessible in male fruitless neurons, validate candidate regions as bona fide, differentially regulated enhancers, and describe the particular cell types in which these enhancers are active. We find that individual enhancers are not activated universally but are dedicated to specific fru+ cell types. Aside from fru itself, genes are not dedicated to or common across the fru circuit; rather, FruM appears to masculinize each cell type differently, by tweaking expression of the same effector genes used in other circuits. Finally, we find FruM motifs enriched among regulatory elements that are open in the female but closed in the male. Together, these results suggest that FruM acts cell-type-specifically to decommission regulatory elements in male fruitless neurons. Courtship behavior in male Drosophila melanogaster is controlled by a well-defined neural circuit that is labeled by the male-specific transcription factor Fruitless (FruM). While FruM is known to change the number, anatomy and connectivity of neurons which comprise the circuit and has been suggested to repress the expression of a few gene targets, the mechanism of how FruM regulates genes across many different kinds of neurons is unknown. Using an approach to identify gene regulatory elements based on their chromatin accessibility states (ATAC-seq), we identified a large set of chromatin accessibility changes downstream of Fruitless. By examining the activity of these regulatory elements in vivo, we found that their activity was 1) sexually dimorphic and 2) specific to a single class of FruM neurons, suggesting that FruM acts on different chromatin targets in different neuron classes comprising the courtship circuit. Further, we found a known FruM-regulated enhancer of the FruM-repressed gene Lgr3 to have closed chromatin specifically in FruM neurons. Combined with an enrichment of FruM motifs in regions which are closed in FruM neurons, we present a mechanism where FruM directs the decommissioning of sex-shared regulatory elements to masculinize neurons in a cell-type specific manner.
Collapse
Affiliation(s)
- Margarita V. Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Abbigayl E. C. Burtis
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - E. Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Peng X, Wang S, Huang L, Su S, Chen M. Characterization of Rhopalosiphum padi takeout-like genes and their role in insecticide susceptibility. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104725. [PMID: 33357548 DOI: 10.1016/j.pestbp.2020.104725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Due to the extensive use of chemical insecticides, the field populations of Rhopalosiphum padi, a serious wheat pest worldwide, have developed resistance to insecticides. Therefore, deep understanding of the mechanisms of the aphid's physiological response to insecticides would be of importance for the management of insecticide resistance in pests. Takeout belongs to a protein superfamily found exclusively in insects. Previous research showed that the takeout gene had various functions in insect physiology and behavior. However, few studies have explored the functions of takeout in insect insecticide susceptibility. The susceptibility of R. padi to imidacloprid and beta-cypermethrin was tested. Thirteen takeout-like genes were identified based on the genome database of R. padi. The number of exons was variable in these takeout-like genes, and nine highly conserved amino acids (two Cysteine, two Proline, four Glycine and one Aspartic acid) were identified. Expression levels of takeout-like-2, takeout-like-3, takeout-like-5, takeout-like-8, takeout-like-10 and takeout-like-11 were significantly increased after imidacloprid treatment; seven genes (takeout-like-1, takeout-like-2, takeout-like-5, takeout-like-6, takeout-like-7, takeout-like-8 and takeout-like-11) tended to be upregulated after beta-cypermethrin treatment. RNA interference results showed that the mortalities of R. padi injected with dsTOL-2, dsTOL-5, dsTOL-8, dsTOL-10 and dsTOL-11 were significantly increased after exposure to imidacloprid in comparison with control (injection of dsGFP). Under two sublethal concentrations of beta-cypermethrin, the silencing of takeout-like-2, takeout-like-5 and takeout-like-11 significantly increased the mortalities of R. padi. These results provide evidence for the involvement of takeout-like genes in insecticide susceptibility of R. padi, which improves our understanding the determinant of insecticide susceptibility.
Collapse
Affiliation(s)
- Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
35
|
Scannapieco AC, Conte CA, Rivarola M, Wulff JP, Muntaabski I, Ribone A, Milla F, Cladera JL, Lanzavecchia SB. Transcriptome analysis of Anastrepha fraterculus sp. 1 males, females, and embryos: insights into development, courtship, and reproduction. BMC Genet 2020; 21:136. [PMID: 33339505 PMCID: PMC7747455 DOI: 10.1186/s12863-020-00943-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anastrepha fraterculus sp. 1 is considered a quarantine pest in several American countries. Since chemical control applied in an integrated pest management program is the only strategy utilized against this pest, the development of pesticide-free methods, such as the Sterile Insect Technique, is being considered. The search for genes involved in sex-determination and differentiation, and in metabolic pathways associated with communication and mating behaviour, contributes with key information to the development of genetic control strategies. The aims of this work were to perform a comprehensive analysis of A. fraterculus sp. 1 transcriptome and to obtain an initial evaluation of genes associated with main metabolic pathways by the expression analysis of specific transcripts identified in embryos and adults. RESULTS Sexually mature adults of both sexes and 72 h embryos were considered for transcriptome analysis. The de novo transcriptome assembly was fairly complete (62.9% complete BUSCO orthologs detected) with a total of 86,925 transcripts assembled and 28,756 GO annotated sequences. Paired-comparisons between libraries showed 319 transcripts differently expressed between embryos and females, 1242 between embryos and males, and 464 between sexes. Using this information and genes searches based on published studies from other tephritid species, we evaluated a set of transcripts involved in development, courtship and metabolic pathways. The qPCR analysis evidenced that the early genes serendipity alpha and transformer-2 displayed similar expression levels in the analyzed stages, while heat shock protein 27 is over-expressed in embryos and females in comparison to males. The expression of genes associated with courtship (takeout-like, odorant-binding protein 50a1) differed between males and females, independently of their reproductive status (virgin vs mated individuals). Genes associated with metabolic pathways (maltase 2-like, androgen-induced gene 1) showed differential expression between embryos and adults. Furthermore, 14,262 microsatellite motifs were identified, with 11,208 transcripts containing at least one simple sequence repeat, including 48% of di/trinucleotide motifs. CONCLUSION Our results significantly expand the available gene space of A. fraterculus sp. 1, contributing with a fairly complete transcript database of embryos and adults. The expression analysis of the selected candidate genes, along with a set of microsatellite markers, provides a valuable resource for further genetic characterization of A. fraterculus sp. 1 and supports the development of specific genetic control strategies.
Collapse
Affiliation(s)
- Alejandra Carla Scannapieco
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Claudia Alejandra Conte
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Máximo Rivarola
- Instituto de Biotecnología, IABIMO, INTA - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Juan Pedro Wulff
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Irina Muntaabski
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Andrés Ribone
- Instituto de Biotecnología, IABIMO, INTA - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Fabián Milla
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Jorge Luis Cladera
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Silvia Beatriz Lanzavecchia
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Shah JS, Renthal R. Antennal Proteome of the Solenopsis invicta (Hymenoptera: Formicidae): Caste Differences in Olfactory Receptors and Chemosensory Support Proteins. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5937575. [PMID: 33098433 PMCID: PMC7585320 DOI: 10.1093/jisesa/ieaa118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the expression pattern of odorant and pheromone transporters, receptors, and deactivation enzymes in the antennae of ants carrying out different tasks. In order to begin filling in this information gap, we compared the proteomes of the antennae of workers and males of the red fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Male ants do not perform any colony work, and their only activity is to leave the nest on a mating flight. Previous studies showed that male ants express fewer types of odorant receptors than workers. Thus, we expected to find large differences between male and worker antennae for expression of receptors, transporters, and deactivators of signaling chemicals. We found that the abundance of receptors was consistent with the expected caste-specific signaling complexity, but the numbers of different antenna-specific transporters and deactivating enzymes in males and workers were similar. It is possible that some of these proteins have antenna-specific functions that are unrelated to chemosensory reception. Alternatively, the similar complexity could be a vestige of ant progenitors that had more behaviorally active males. As the reduced behavior of male ants evolved, the selection process may have favored a complex repertoire of transporters and deactivating enzymes alongside a limited repertoire of odorant receptors.
Collapse
Affiliation(s)
- Jaee Shailesh Shah
- Department of Biology, University of Texas at San Antonio, San Antonio, TX
| | - Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
37
|
Comparative Transcriptomics Reveals Gene Families Associated with Predatory Behavior in Photuris femme fatale Fireflies. Genes (Basel) 2020; 11:genes11060627. [PMID: 32517321 PMCID: PMC7348864 DOI: 10.3390/genes11060627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Identifying the basis of phenotypic variation is a key objective of genetics. This work has been mostly limited to model systems with a plethora of genetic manipulation and functional characterization tools. With the development of high-throughput sequencing and new computational tools, it is possible to identify candidate genes related to phenotypic variation in non-model organisms. Fireflies are excellent for studying phenotypic variation because of their diverse and well-characterized behaviors. Most adult fireflies emit a single mating flash pattern and do not eat. In contrast, adult females of many species in the genus Photuris employ multiple flash patterns and prey upon mate-seeking males of other firefly species. To investigate the genetic basis for this variation, we used comparative transcriptomics to identify positively selected genes between a predatory firefly, Photuris sp., and a non-predatory relative, Photuris frontalis, controlling for genes generally under selection in fireflies by comparing to a Photinus firefly. Nine gene families were identified under positive selection in the predatory versus non-predatory Photuris comparison, including genes involved in digestion, detoxification, vision, reproduction, and neural processes. These results generate intriguing hypotheses about the genetic basis for insect behavior and highlight the utility of comparative transcriptomic tools to investigate complex behaviors in non-model systems.
Collapse
|
38
|
Chang V, Meuti ME. Circadian transcription factors differentially regulate features of the adult overwintering diapause in the Northern house mosquito, Culex pipiens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103365. [PMID: 32247760 DOI: 10.1016/j.ibmb.2020.103365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
The short days of late summer and early fall are the environmental cues that most temperate insects and other animals use to predict winter's arrival. Although it is still unclear precisely how insects measure daylength, there is mounting evidence that the circadian clock regulates seasonal responses including photoperiodic diapause. Females of the Northern house mosquito, Culex pipiens, enter an adult reproductive diapause in response to short daylengths. While in this state, females divert their resources from reproduction to survival, arresting egg follicle development and increasing fat content. Here, we characterized the expression profile of two circadian transcription factors, vrille (vri) and Par domain protein 1 (Pdp1), as well as genes downstream of the clock, takeout (to) and Nocturnin (Noc) and under different seasonal conditions. We saw that while vri mRNA oscillated under both long day and short day conditions, Pdp1 expression oscillated only under long day conditions and was constitutively upregulated in diapausing females. We saw similar expression profiles for to and Noc, suggesting that PDP1 might regulate their expression or that Pdp1, to and Noc might be regulated by the same transcription factor. We suppressed vri and Pdp1 using RNA interference. dsRNA against vri provided inconsistent results, sometimes stimulating autogenous egg follicle development in both long and short day-reared females, and other times had no effect. In contrast, knocking down Pdp1 prevented short day-reared females from accumulating fat reserves, but increased expression of to and Noc. Taken together, these data suggest that the circadian transcription factors Vri and Pdp1 may independently regulate signaling pathways underlying arrested egg follicle development and fat accumulation in diapausing females of Cx. pipiens.
Collapse
Affiliation(s)
- Vivian Chang
- Department of Entomology, The Ohio State University, 2021 Coffey Rd., Room 216 Kottman Hall, Columbus, OH, 43210, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd., Room 216 Kottman Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
Characterization and expression analysis of seven putative JHBPs in the mud crab Scylla paramamosain: Putative relationship with methyl farnesoate. Comp Biochem Physiol B Biochem Mol Biol 2020; 241:110390. [DOI: 10.1016/j.cbpb.2019.110390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
|
40
|
Sugahara R, Tsuchiya W, Yamazaki T, Tanaka S, Shiotsuki T. Recombinant yellow protein of the takeout family and albino-related takeout protein specifically bind to lutein in the desert locust. Biochem Biophys Res Commun 2020; 522:876-880. [DOI: 10.1016/j.bbrc.2019.11.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022]
|
41
|
Latorre-Estivalis JM, Sterkel M, Ons S, Lorenzo MG. Transcriptomics supports local sensory regulation in the antenna of the kissing-bug Rhodnius prolixus. BMC Genomics 2020; 21:101. [PMID: 32000664 PMCID: PMC6993403 DOI: 10.1186/s12864-020-6514-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Rhodnius prolixus has become a model for revealing the molecular bases of insect sensory biology due to the publication of its genome and its well-characterized behavioural repertoire. Gene expression modulation underlies behaviour-triggering processes at peripheral and central levels. Still, the regulation of sensory-related gene transcription in sensory organs is poorly understood. Here we study the genetic bases of plasticity in antennal sensory function, using R. prolixus as an insect model. Results Antennal expression of neuromodulatory genes such as those coding for neuropeptides, neurohormones and their receptors was characterized in fifth instar larvae and female and male adults by means of RNA-Sequencing (RNA-Seq). New nuclear receptor and takeout gene sequences were identified for this species, as well as those of enzymes involved in the biosynthesis and processing of neuropeptides and biogenic amines. Conclusions We report a broad repertoire of neuromodulatory and neuroendocrine-related genes expressed in the antennae of R. prolixus and suggest that they may serve as the local basis for modulation of sensory neuron physiology. Diverse neuropeptide precursor genes showed consistent expression in the antennae of all stages studied. Future studies should characterize the role of these modulatory components acting over antennal sensory processes to assess the relative contribution of peripheral and central regulatory systems on the plastic expression of insect behaviour.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil. .,Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Marcos Sterkel
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos - Centro Regional de Estudios Genómicos - CREG, Facultad de Ciencias Exactas. Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Marcelo Gustavo Lorenzo
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
42
|
Liao S, Post S, Lehmann P, Veenstra JA, Tatar M, Nässel DR. Regulatory Roles of Drosophila Insulin-Like Peptide 1 (DILP1) in Metabolism Differ in Pupal and Adult Stages. Front Endocrinol (Lausanne) 2020; 11:180. [PMID: 32373064 PMCID: PMC7186318 DOI: 10.3389/fendo.2020.00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
The insulin/IGF-signaling pathway is central in control of nutrient-dependent growth during development, and in adult physiology and longevity. Eight insulin-like peptides (DILP1-8) have been identified in Drosophila, and several of these are known to regulate growth, metabolism, reproduction, stress responses, and lifespan. However, the functional role of DILP1 is far from understood. Previous work has shown that dilp1/DILP1 is transiently expressed mainly during the pupal stage and the first days of adult life. Here, we study the role of dilp1 in the pupa, as well as in the first week of adult life, and make some comparisons to dilp6 that displays a similar pupal expression profile, but is expressed in fat body rather than brain neurosecretory cells. We show that mutation of dilp1 diminishes organismal weight during pupal development, whereas overexpression increases it, similar to dilp6 manipulations. No growth effects of dilp1 or dilp6 manipulations were detected during larval development. We next show that dilp1 and dilp6 increase metabolic rate in the late pupa and promote lipids as the primary source of catabolic energy. Effects of dilp1 manipulations can also be seen in the adult fly. In newly eclosed female flies, survival during starvation is strongly diminished in dilp1 mutants, but not in dilp2 and dilp1/dilp2 mutants, whereas in older flies, only the double mutants display reduced starvation resistance. Starvation resistance is not affected in male dilp1 mutant flies, suggesting a sex dimorphism in dilp1 function. Overexpression of dilp1 also decreases survival during starvation in female flies and increases egg laying and decreases egg to pupal viability. In conclusion, dilp1 and dilp6 overexpression promotes metabolism and growth of adult tissues during the pupal stage, likely by utilization of stored lipids. Some of the effects of the dilp1 manipulations may carry over from the pupa to affect physiology in young adults, but our data also suggest that dilp1 signaling is important in metabolism and stress resistance in the adult stage.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stephanie Post
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Jan A. Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux, Pessac, France
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- *Correspondence: Dick R. Nässel
| |
Collapse
|
43
|
Sato K, Yamamoto D. The mode of action of Fruitless: Is it an easy matter to switch the sex? GENES BRAIN AND BEHAVIOR 2019; 19:e12606. [PMID: 31420927 PMCID: PMC7027472 DOI: 10.1111/gbb.12606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022]
Abstract
The fruitless (fru) locus was originally defined by a male sterile mutation that promotes male-to-male courtship while suppressing male-to-female courtship in Drosophila melanogaster. The fru promoter-1 pre-RNA generates a set of BTB-zinc finger family FruM proteins expressed exclusively in the male neurons, leading to the formation of sexual dimorphisms in neurons via male-specific neuroblast proliferation, male-specific neural survival, male-specific neuritegenesis or male-specific arbor patterning. Such a wide spectrum of phenotypic effects seems to result from chromatin modifications, in which FruBM recruits Bonus, Histone deacetylase 1 (HDAC1) and/or Heterochromatin protein 1a (HP1a) to ~130 target sites. One established FruBM transcriptional target is the axon guidance protein gene robo1. Multiple transcriptional regulator-binding sites are nested around the FruBM-binding site, and mediate sophisticated modulation of the repressor activity of FruBM. FruBM also binds to the Lola-Q transcriptional repressor to protect it from proteasome-dependent degradation in male but not female neurons as FruBM exists only in male neurons, leading to the formation of sexually dimorphic neural structures. These findings shed light on the multilayered network of transcription regulation orchestrated by the master regulator FruBM.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
44
|
Zhu L, Feng S, Gao Q, Liu W, Ma WH, Wang XP. Host population related variations in circadian clock gene sequences and expression patterns in Chilo suppressalis. Chronobiol Int 2019; 36:969-978. [PMID: 31043079 DOI: 10.1080/07420528.2019.1603158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rice stem borer, Chilo suppressalis Walker, is one of the most important global agricultural pests. C. suppressalis has distinct rice and water-oat host populations. Asynchrony in sexual activity is thought to be the main factor maintaining reproductive segregation between these populations, particularly the obvious difference in the circadian rhythm of female calling activity between populations. However, the mechanism responsible for this difference in the timing of female calling is poorly understood. The circadian clock is an essential regulator of daily behavioral rhythms in insects, including female calling. We investigated the variation in circadian clock genes of the rice and water-oat populations of C. suppressalis. We did this by comparing deduced amino acid sequences and the expression patterns of seven circadian clock genes (clock, cycle, period, timeless, timeout, cryptochrome1, and cryptochrome2) between females from each population. We found that the two populations had different variants of the timeout and cryptochrome1 genes and differed in the expression of period, timeless and timeout. This suggests that population-related variation in the circadian clock genes period, timeless, timeout and cryptochrome1 could be responsible for the different circadian rhythms of female calling in these host population of C. suppressalis. These results provide new insights into the molecular mechanisms underlying asynchronous sexual activity in insect populations and suggest new topics for future research on the origins and maintenance of population differentiation in insects.
Collapse
Affiliation(s)
- Li Zhu
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Shuo Feng
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Qiao Gao
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Wen Liu
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Wei-Hua Ma
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| | - Xiao-Ping Wang
- a Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory , College of Plant Science and Technology, Huazhong Agricultural University , Wuhan , P R China
| |
Collapse
|
45
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
46
|
Rivera O, McHan L, Konadu B, Patel S, Sint Jago S, Talbert ME. A high-fat diet impacts memory and gene expression of the head in mated female Drosophila melanogaster. J Comp Physiol B 2019; 189:179-198. [PMID: 30810797 PMCID: PMC6711602 DOI: 10.1007/s00360-019-01209-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/25/2022]
Abstract
Obesity predisposes humans to a range of life-threatening comorbidities, including type 2 diabetes and cardiovascular disease. Obesity also aggravates neural pathologies, such as Alzheimer's disease, but this class of comorbidity is less understood. When Drosophila melanogaster (flies) are exposed to high-fat diet (HFD) by supplementing a standard medium with coconut oil, they adopt an obese phenotype of decreased lifespan, increased triglyceride storage, and hindered climbing ability. The latter development has been previously regarded as a potential indicator of neurological decline in fly models of neurodegenerative disease. Our objective was to establish the obesity phenotype in Drosophila and identify a potential correlation, if any, between obesity and neurological decline through behavioral assays and gene expression microarray. We found that mated female w1118 flies exposed to HFD maintained an obese phenotype throughout adult life starting at 7 days, evidenced by increased triglyceride stores, diminished life span, and impeded climbing ability. While climbing ability worsened cumulatively between 7 and 14 days of exposure to HFD, there was no corresponding alteration in triglyceride content. Microarray analysis of the mated female w1118 fly head revealed HFD-induced changes in expression of genes with functions in memory, metabolism, olfaction, mitosis, cell signaling, and motor function. Meanwhile, an Aversive Phototaxis Suppression assay in mated female flies indicated reduced ability to recall an entrained memory 6 h after training. Overall, our results support the suitability of mated female flies for examining connections between diet-induced obesity and nervous or neurobehavioral pathology, and provide many directions for further investigation.
Collapse
Affiliation(s)
- Osvaldo Rivera
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Lara McHan
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Bridget Konadu
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Sumitkumar Patel
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Silvienne Sint Jago
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA
| | - Matthew E Talbert
- Program in Biology, School of Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA, 71209, USA.
| |
Collapse
|
47
|
The Role of miRNAs in Drosophila melanogaster Male Courtship Behavior. Genetics 2019; 211:925-942. [PMID: 30683757 DOI: 10.1534/genetics.118.301901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster courtship, although stereotypical, continually changes based on cues received from the courtship subject. Such adaptive responses are mediated via rapid and widespread transcriptomic reprogramming, a characteristic now widely attributed to microRNAs (miRNAs), along with other players. Here, we conducted a large-scale miRNA knockout screen to identify miRNAs that affect various parameters of male courtship behavior. Apart from identifying miRNAs that impact male-female courtship, we observed that miR-957 mutants performed significantly increased male-male courtship and "chaining" behavior, whereby groups of males court one another. We tested the effect of miR-957 reduction in specific neuronal cell clusters, identifying miR-957 activity in Doublesex (DSX)-expressing and mushroom body clusters as an important regulator of male-male courtship interactions. We further characterized the behavior of miR-957 mutants and found that these males court male subjects vigorously, but do not elicit courtship. Moreover, they fail to lower courtship efforts toward females with higher levels of antiaphrodisiac pheromones. At the level of individual pheromones, miR-957 males show a reduced inhibitory response to both 7-Tricosene (7-T) and cis-vaccenyl acetate, with the effect being more pronounced in the case of 7-T. Overall, our results indicate that a single miRNA can contribute to the regulation of complex behaviors, including detection or processing of chemicals that control important survival strategies such as chemical mate-guarding, and the maintenance of sex- and species-specific courtship barriers.
Collapse
|
48
|
Repellency, Toxicity, Gene Expression Profiling and In Silico Studies to Explore Insecticidal Potential of Melaleuca alternifolia Essential Oil against Myzus persicae. Toxins (Basel) 2018; 10:toxins10110425. [PMID: 30366370 PMCID: PMC6266121 DOI: 10.3390/toxins10110425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/02/2022] Open
Abstract
In the current study, deterrent assay, contact bioassay, lethal concentration (LC) analysis and gene expression analysis were performed to reveal the repellent or insecticidal potential of M. alternifolia oil against M. persicae. M. alternifolia oil demonstrated an excellent deterrence index (0.8) at 2 g/L after 48 h. The oil demonstrated a pronounced contact mortality rate (72%) at a dose of 4 g/L after 24 h. Probit analysis was performed to estimate LC-values of M. alternifolia oil (40%) against M. persicae (LC30 = 0.115 g/L and LC50 = 0.37 g/L respectively) after 24 h. Furthermore, to probe changes in gene expression due to M. alternifolia oil contact in M. persicae, the expression of HSP 60, FPPS I, OSD, TOL and ANT genes were examined at doses of LC30 and LC50. Four out of the five selected genes—OSD, ANT, HSP 60 and FPPS I—showed upregulation at LC50, whereas, TOL gene showed maximum upregulation expression at LC30. Finally, the major components of M. alternifolia oil (terpinen-4-ol) were docked and MD simulated into the related proteins of the selected genes to explore ligand–protein modes of interactions and changes in gene expression. The results show that M. alternifolia oil has remarkable insecticidal and deterrent effects and also has the ability to affect the reproduction and development in M. persicae by binding to proteins.
Collapse
|
49
|
Saurabh S, Vanaphan N, Wen W, Dauwalder B. High functional conservation of takeout family members in a courtship model system. PLoS One 2018; 13:e0204615. [PMID: 30261021 PMCID: PMC6160090 DOI: 10.1371/journal.pone.0204615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
takeout (to) is one of the male-specific genes expressed in the fat body that regulate male courtship behavior, and has been shown to act as a secreted protein in conjunction with courtship circuits. There are 23 takeout family members in Drosophila melanogaster, and homologues of this family are distributed across insect species. Sequence conservation among family members is low. Here we test the functional conservation of takeout family members by examining whether they can rescue the takeout courtship defect. We find that despite their sequence divergence takeout members from Aedes aegypti and Epiphas postvittana, as well as family members from D. melanogaster can substitute for takeout in courtship, demonstrating their functional conservation. Making use of the known E. postvittana Takeout structure, we used homology modeling and amphipathic helix analysis and found high overall structural conservation, including high conservation of the structure and amphipathic lining of an internal cavity that has been shown to accommodate hydrophobic ligands. Together these data suggest a high degree of structural conservation that likely underlies functional conservation in courtship. In addition, we have identified a role for a conserved exposed protein motif important for the protein’s role in courtship.
Collapse
Affiliation(s)
- Sumit Saurabh
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nancy Vanaphan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Walter Wen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
Abstract
Sexual size dimorphism (SSD), a sex difference in body size, is widespread throughout the animal kingdom, raising the question of how sex influences existing growth regulatory pathways to bring about SSD. In insects, somatic sexual differentiation has long been considered to be controlled strictly cell-autonomously. Here, we discuss our surprising finding that in Drosophila larvae, the sex determination gene Sex-lethal (Sxl) functions in neurons to non-autonomously specify SSD. We found that Sxl is required in specific neuronal subsets to upregulate female body growth, including in the neurosecretory insulin producing cells, even though insulin-like peptides themselves appear not to be involved. SSD regulation by neuronal Sxl is also independent of its known splicing targets, transformer and msl-2, suggesting that it involves a new molecular mechanism. Interestingly, SSD control by neuronal Sxl is selective for larval, not imaginal tissue types, and operates in addition to cell-autonomous effects of Sxl and Tra, which are present in both larval and imaginal tissues. Overall, our findings add to a small but growing number of studies reporting non-autonomous, likely hormonal, control of sex differences in Drosophila, and suggest that the principles of sexual differentiation in insects and mammals may be more similar than previously thought.
Collapse
Affiliation(s)
- Annick Sawala
- a Physiology & Metabolism Laboratory , The Francis Crick Institute , London , UK
| | - Alex P Gould
- a Physiology & Metabolism Laboratory , The Francis Crick Institute , London , UK
| |
Collapse
|