1
|
Shen G, Xu S, Zhu A, Zheng Z, Chen W, Jiang S. AHR suppresses cisplatin-induced apoptosis in ovarian cancer cells by regulating XIAP. Biochem Pharmacol 2025; 231:116640. [PMID: 39571919 DOI: 10.1016/j.bcp.2024.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) plays a crucial role in cisplatin-induced apoptosis in ovarian cancer, whereas the molecular mechanism of how its expression is dysregulated remains unclear. Here, we report that the aryl hydrocarbon receptor (AHR) acts as a competitive endogenous RNA (ceRNA) of XIAP and can regulate its expression. Overexpression of AHR 3'UTR decreased, while AHR knockdown increased, the cisplatin-induced apoptotic rate in ovarian cancer cells. We also found that one microRNA (miRNA), miR-142-5p, can bind to both AHR and XIAP 3'UTRs and regulate their expression levels. Furthermore, AHR 3'UTR and miR-142-5p can occupy the same Ago2 to form an RNA-induced silencing complex (RISC). In addition, we showed that the effect of AHR overexpression on cisplatin-induced apoptosis could be rescued by either XIAP siRNA or miR-142-5p mimic. Thus, our findings reveal important insights into the molecular mechanism underlying the dysregulation of XIAP in ovarian cancer, indicating that AHR serves as the ceRNA that competes miR-142-5p with XIAP and subsequently affects the platinum-based chemotherapy.
Collapse
Affiliation(s)
- Geng Shen
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Surong Xu
- Department of Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Zhu
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Zheng
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Chen
- Department of Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Songshan Jiang
- Department of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Wang Z, Zhang Y, Huang S, Liao Z, Huang M, Lei W, Shui X. UA influences the progression of breast cancer via the AhR/p27 Kip1/cyclin E pathway. FASEB J 2024; 38:e70058. [PMID: 39320969 DOI: 10.1096/fj.202400938r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Uric acid (UA) is the end product of purine metabolism. In recent years, UA has been found to be associated with the prognosis of clinical cancer patients. However, the intricate mechanisms by which UA affects the development and prognosis of tumor patients has not been well elucidated. In this study, we explored the role of UA in breast cancer, scrutinizing its impact on breast cancer cell function by treating two types of breast cancer cell lines with UA. The role of UA in the cell cycle and proliferation of tumors and the underlying mechanisms were further investigated. We found that the antioxidant effect of UA facilitated the scavenging of reactive oxygen species (ROS) in breast cancer, thereby reducing aryl hydrocarbon receptor (AhR) expression and affecting the breast cancer cell cycle, driving the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway. Moreover, in breast cancer patients, the expression of AhR and its downstream genes may be closely associated with cancer progression in patients. Therefore, an increase in UA could promote the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway axis.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shengchao Huang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Abu-Bakar A, Ismail M, Zulkifli MZI, Zaini NAS, Shukor NIA, Harun S, Inayat-Hussain SH. Mapping the influence of hydrocarbons mixture on molecular mechanisms, involved in breast and lung neoplasms: in silico toxicogenomic data-mining. Genes Environ 2024; 46:15. [PMID: 38982523 PMCID: PMC11232146 DOI: 10.1186/s41021-024-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Exposure to chemical mixtures inherent in air pollution, has been shown to be associated with the risk of breast and lung cancers. However, studies on the molecular mechanisms of exposure to a mixture of these pollutants, such as hydrocarbons, in the development of breast and lung cancers are scarce. We utilized in silico toxicogenomic analysis to elucidate the molecular pathways linked to both cancers that are influenced by exposure to a mixture of selected hydrocarbons. The Comparative Toxicogenomics Database and Cytoscape software were used for data mining and visualization. RESULTS Twenty-five hydrocarbons, common in air pollution with carcinogenicity classification of 1 A/B or 2 (known/presumed or suspected human carcinogen), were divided into three groups: alkanes and alkenes, halogenated hydrocarbons, and polyaromatic hydrocarbons. The in silico data-mining revealed 87 and 44 genes commonly interacted with most of the investigated hydrocarbons are linked to breast and lung cancer, respectively. The dominant interactions among the common genes are co-expression, physical interaction, genetic interaction, co-localization, and interaction in shared protein domains. Among these genes, only 16 are common in the development of both cancers. Benzo(a)pyrene and tetrachlorodibenzodioxin interacted with all 16 genes. The molecular pathways potentially affected by the investigated hydrocarbons include aryl hydrocarbon receptor, chemical carcinogenesis, ferroptosis, fluid shear stress and atherosclerosis, interleukin 17 signaling pathway, lipid and atherosclerosis, NRF2 pathway, and oxidative stress response. CONCLUSIONS Within the inherent limitations of in silico toxicogenomics tools, we elucidated the molecular pathways associated with breast and lung cancer development potentially affected by hydrocarbons mixture. Our findings indicate adaptive responses to oxidative stress and inflammatory damages are instrumental in the development of both cancers. Additionally, ferroptosis-a non-apoptotic programmed cell death driven by lipid peroxidation and iron homeostasis-was identified as a new player in these responses. Finally, AHR potential involvement in modulating IL-8, a critical gene that mediates breast cancer invasion and metastasis to the lungs, was also highlighted. A deeper understanding of the interplay between genes associated with these pathways, and other survival signaling pathways identified in this study, will provide invaluable knowledge in assessing the risk of inhalation exposure to hydrocarbons mixture. The findings offer insights into future in vivo and in vitro laboratory investigations that focus on inhalation exposure to the hydrocarbons mixture.
Collapse
Affiliation(s)
- A'edah Abu-Bakar
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| | - Maihani Ismail
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| | - M Zaqrul Ieman Zulkifli
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Nur Aini Sofiyya Zaini
- Product Stewardship and Toxicology, Environment, Social Performance & Product Stewardship (ESPPS), Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia
| | - Nur Izzah Abd Shukor
- Health, Safety and Environment (HSE), KLCC Urusharta, Kuala Lumpur, 50088, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600 UKM, Malaysia
| | - Salmaan Hussain Inayat-Hussain
- ESPPS, GHSE, PETRONAS, Kuala Lumpur, 50088, Malaysia
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College St, New Haven, CT, 06250, USA
| |
Collapse
|
4
|
Ikuta T, Kanda H. Tumor formation at ileocecal junction associated with interleukin-1β upregulation in aryl hydrocarbon receptor-deficient mouse. J Biochem Mol Toxicol 2024; 38:e23736. [PMID: 38769691 DOI: 10.1002/jbt.23736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/22/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. We previously reported spontaneous ileocecal tumorigenesis in AhR-deficient mice after the age of 10 weeks, which originated in the confined area between ileum and cecum. This study aimed to investigate the underlying mechanism that causes tumor development at this particular location. To observe mucosal architecture in detail, tissues of ileocecal region were stained with methylene blue. Gene expression profile in the ileocecal tissue was compared with cecum. Immunohistochemical analysis was performed with ileocecal tissues using antibodies against ileum-specific Reg3β or cecum-specific Pitx2. In AhR+/+ mice and AhR+/- mice, that do not develop lesions, methylene blue staining revealed the gradually changing shape and arrangement of villi from ileum to cecum. It was also observed in AhR-deficient mice before developing lesions. Microarray-based analysis revealed abundant antimicrobial genes, such as Reg3, in the ileocecal tissue while FGFR2 and Pitx2 were specific to cecum. Immunohistochemical analysis of AhR-deficient mice indicated that lesions originated from the ileocecal junction, a boundary area between different epithelial types. Site-specific gene expression analysis revealed higher expression of IL-1β at the ileocecal junction compared with the ileum or cecum of 9-11-week-old AhR-deficient mice. These findings indicate that AhR plays a vital function in the ileocecal junction. Regulating AhR activity can potentially manage the stability of ileocecal tissue possessing cancer-prone characteristics. This investigation contributes to understanding homeostasis in different epithelial transitional tissues, frequently associated with pathological states.
Collapse
Affiliation(s)
- Togo Ikuta
- Department of Cancer Prevention, Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, Saitama, Japan
| |
Collapse
|
5
|
Wang Z, Zhang Y, Liao Z, Huang M, Shui X. The potential of aryl hydrocarbon receptor as receptors for metabolic changes in tumors. Front Oncol 2024; 14:1328606. [PMID: 38434684 PMCID: PMC10904539 DOI: 10.3389/fonc.2024.1328606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
6
|
Haidar R, Shabo R, Moeser M, Luch A, Kugler J. The nuclear entry of the aryl hydrocarbon receptor (AHR) relies on the first nuclear localization signal and can be negatively regulated through IMPα/β specific inhibitors. Sci Rep 2023; 13:19668. [PMID: 37951956 PMCID: PMC10640566 DOI: 10.1038/s41598-023-47066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
The human aryl hydrocarbon receptor (AHR) undergoes continuous shuttling between nucleus and cytoplasm. Binding to exogenous or endogenous ligands promotes its rapid nuclear import. The proposed mechanism for the ligand-dependent import is based on exposing the bipartite nuclear localisation signal (NLS) to members of the importin (IMP) superfamily. Among this, the molecular interactions involved in the basal import still need to be clarified. Utilizing fluorescently fused AHR variants, we recapitulated and characterized AHR localization and nucleo-cytoplasmic shuttling in living cells. Analysis of AHR variants carrying NLS point mutations demonstrated a mandatory role of first (13RKRRK17) and second (37KR-R40) NLS segments on the basal import of AHR. Further experiments indicated that ligand-induced import is mainly regulated through the first NLS, while the second NLS is supportive but not essential. Additionally, applying IMPα/β specific inhibitors, ivermectin (IVM) and importazole (IPZ), slowed down the ligand-induced import and, correspondingly, decreased the basal nuclear accumulation of the receptor. In conclusion, our data show that ligand-induced and basal nuclear entry of AHR rely on the same mechanism but are controlled uniquely by the two NLS components.
Collapse
Affiliation(s)
- Rashad Haidar
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Reneh Shabo
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Marie Moeser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Josephine Kugler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
7
|
Elson D, Nguyen BD, Bernales S, Chakravarty S, Jang HS, Korjeff NA, Zhang Y, Wilferd SF, Castro DJ, Plaisier CL, Finlay D, Oshima RG, Kolluri SK. Induction of Aryl Hydrocarbon Receptor-Mediated Cancer Cell-Selective Apoptosis in Triple-Negative Breast Cancer Cells by a High-Affinity Benzimidazoisoquinoline. ACS Pharmacol Transl Sci 2023; 6:1028-1042. [PMID: 37470014 PMCID: PMC10353065 DOI: 10.1021/acsptsci.2c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 07/21/2023]
Abstract
Triple-negative breast cancer (TNBC) remains a disease with a paucity of targeted treatment opportunities. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in a wide range of physiological processes, including the sensing of xenobiotics, immune function, development, and differentiation. Different small-molecule AhR ligands drive strikingly varied cellular and organismal responses. In certain cancers, AhR activation by select small molecules induces cell cycle arrest or apoptosis via activation of tumor-suppressive transcriptional programs. AhR is expressed in triple-negative breast cancers, presenting a tractable therapeutic opportunity. Here, we identify a novel ligand of the aryl hydrocarbon receptor that potently and selectively induces cell death in triple-negative breast cancer cells and TNBC stem cells via the AhR. Importantly, we found that this compound, Analog 523, exhibits minimal cytotoxicity against multiple normal human primary cells. Analog 523 represents a high-affinity AhR ligand with potential for future clinical translation as an anticancer agent.
Collapse
Affiliation(s)
- Daniel
J. Elson
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Bach D. Nguyen
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Sebastian Bernales
- Praxis
Biotech, San Francisco, California, 94158, United States
- Centro Ciencia
& Vida, Avda. Del
Valle Norte 725, Santiago, 8580702, Chile
| | | | - Hyo Sang Jang
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Nicholas A. Korjeff
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Yi Zhang
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Sierra F. Wilferd
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - David J. Castro
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
- Oregon Health
& Science University, Portland, Oregon, 97239, United States
| | - Christopher L. Plaisier
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Darren Finlay
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
| | - Robert G. Oshima
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
| | - Siva K. Kolluri
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
- Linus
Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, United
States
- The
Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, Oregon, 97331, United States
| |
Collapse
|
8
|
Nguyen BD, Stevens BL, Elson DJ, Finlay D, Gamble J, Kopparapu P, Tanguay RL, Buermeyer AB, Kerkvliet NI, Kolluri SK. 11-Cl-BBQ, a select modulator of AhR-regulated transcription, suppresses lung cancer cell growth via activation of p53 and p27 Kip1. FEBS J 2023; 290:2064-2084. [PMID: 36401795 PMCID: PMC10807707 DOI: 10.1111/febs.16683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and functions as a tumour suppressor in different cancer models. In the present study, we report detailed characterization of 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ) as a select modulator of AhR-regulated transcription (SMAhRT) with anti-cancer actions. Treatment of lung cancer cells with 11-Cl-BBQ induced potent and sustained AhR-dependent anti-proliferative effects by promoting G1 phase cell cycle arrest. Investigation of 11-Cl-BBQ-induced transcription in H460 cells with or without the AhR expression by RNA-sequencing revealed activation of p53 signalling. In addition, 11-Cl-BBQ suppressed multiple pathways involved in DNA replication and increased expression of cyclin-dependent kinase inhibitors, including p27Kip1 , in an AhR-dependent manner. CRISPR/Cas9 knockout of individual genes revealed the requirement for both p53 and p27Kip1 for the AhR-mediated anti-proliferative effects. Our results identify 11-Cl-BBQ as a potential lung cancer therapeutic, highlight the feasibility of targeting AhR and provide important mechanistic insights into AhR-mediated-anticancer actions.
Collapse
Affiliation(s)
- Bach D. Nguyen
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Brenna L. Stevens
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John Gamble
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Prasad Kopparapu
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robyn L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Andrew B. Buermeyer
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Nancy I. Kerkvliet
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
9
|
Elson DJ, Kolluri SK. Tumor-Suppressive Functions of the Aryl Hydrocarbon Receptor (AhR) and AhR as a Therapeutic Target in Cancer. BIOLOGY 2023; 12:526. [PMID: 37106727 PMCID: PMC10135996 DOI: 10.3390/biology12040526] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor involved in regulating a wide range of biological responses. A diverse array of xenobiotics and endogenous small molecules bind to the receptor and drive unique phenotypic responses. Due in part to its role in mediating toxic responses to environmental pollutants, AhR activation has not been traditionally viewed as a viable therapeutic approach. Nonetheless, the expression and activation of AhR can inhibit the proliferation, migration, and survival of cancer cells, and many clinically approved drugs transcriptionally activate AhR. Identification of novel select modulators of AhR-regulated transcription that promote tumor suppression is an active area of investigation. The development of AhR-targeted anticancer agents requires a thorough understanding of the molecular mechanisms driving tumor suppression. Here, we summarized the tumor-suppressive mechanisms regulated by AhR with an emphasis on the endogenous functions of the receptor in opposing carcinogenesis. In multiple different cancer models, the deletion of AhR promotes increased tumorigenesis, but a precise understanding of the molecular cues and the genetic targets of AhR involved in this process is lacking. The intent of this review was to synthesize the evidence supporting AhR-dependent tumor suppression and distill insights for development of AhR-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Daniel J. Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Abstract
Hereditary pituitary tumorigenesis is seen in a relatively small proportion (around 5%) of patients with pituitary neuroendocrine tumors (PitNETs). The aim of the current review is to describe the main clinical and molecular features of such pituitary tumors associated with hereditary or familial characteristics, many of which have now been genetically identified. The genetic patterns of inheritance are classified into isolated familial PitNETs and the syndromic tumors. In general, the established genetic causes of familial tumorigenesis tend to present at a younger age, often pursue a more aggressive course, and are more frequently associated with growth hormone hypersecretion compared to sporadic tumors. The mostly studied molecular pathways implicated are the protein kinase A and phosphatidyl-inositol pathways, which are in the main related to mutations in the syndromes of familial isolated pituitary adenoma (FIPA), Carney complex syndrome, and X-linked acrogigantism. Another well-documented mechanism consists of the regulation of p27 or p21 proteins, with further acceleration of the pituitary cell cycle through the check points G1/S and M/G1, mostly documented in multiple endocrine neoplasia type 4. In conclusion, PitNETs may occur in relation to well-established familial germline mutations which may determine the clinical phenotype and the response to treatment, and may require family screening.
Collapse
Affiliation(s)
- Eleni Armeni
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK.
| | - Ashley Grossman
- Dept. of Endocrinology, Royal Free Hospital, London, NW3 2QG, UK
- Centre for Endocrinology, Barts and the London School of Medicine, London, UK
- Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
12
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
13
|
Ghasemi H, Jamshidi A, Ghatee MA, Mazhab-Jafari K, Khorasani M, Rahmati M, Mohammadi S. PPARγ activation by pioglitazone enhances the anti-proliferative effects of doxorubicin on pro-monocytic THP-1 leukemia cells via inducing apoptosis and G2/M cell cycle arrest. J Recept Signal Transduct Res 2022; 42:429-438. [PMID: 34645362 DOI: 10.1080/10799893.2021.1988972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Doxorubicin (DOX) is a common chemotherapeutic agent, with toxic side effects, and chemoresistance. Combination chemotherapy is a successful approach to overcome these limitations. Here, we investigated the effects of pioglitazone (PGZ), a PPARγ agonist, and/or DOX on the viability, cell cycle, apoptosis on THP-1 cells and normal human monocytes (NHMs). METHODS MTT assay was used to evaluate the cytotoxicity of DOX and/or PGZ. Cell cycle progression and apoptosis induction were examined by PI or Annexin V-PI double staining, and analyzed by flow cytometry. Quantitative RT-PCR was used to evaluate the changes in the mRNA expression of cell cycle progression or apoptosis-associated genes including P27, P21, CDK2, P53, BCL2 and FasR. RESULTS DOX, PGZ and DOX + PGZ exerted their cytotoxic effects in a dose- and time-dependent manner with low toxicity on NHMs. The cell growth inhibitory effects of DOX were in association with G2/M arrest, while PGZ executed S phase arrest. PGZ treatment enhanced G2/M among DOX-treated combinations with moderate elevation in the S phase. DOX, PGZ and combined treatments induced apoptosis (mostly late phase) in a dose-dependent manner. All treatments resulted in the significant overexpression of p21, p27, p53 and FasR genes and downregulation of CDK2. DOX + PGZ combined treatments exhibited the most significant changes in mRNA expression. CONCLUSION We demonstrated that the antiproliferative, cell cycle regulation and apoptosis-inducing capacity of DOX was enhanced by PGZ in THP-1 leukemia cells in a dose-dependent manner. Therefore, the combination of DOX + PGZ could be used as a novel combination to target AML.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Ali Jamshidi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mohammad Amin Ghatee
- Department of Medical Parasitology and Mycology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Komeil Mazhab-Jafari
- Department of Laboratory Sciences, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Milad Khorasani
- Department of Clinical Biochemistry, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mina Rahmati
- Metabolic Disorders Research Center, Department of Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
14
|
Salminen A. Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell Mol Life Sci 2022; 79:489. [PMID: 35987825 PMCID: PMC9392714 DOI: 10.1007/s00018-022-04520-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
The antagonistic pleiotropy hypothesis is a well-known evolutionary theory to explain the aging process. It proposes that while a particular gene may possess beneficial effects during development, it can exert deleterious properties in the aging process. The aryl hydrocarbon receptor (AhR) has a significant role during embryogenesis, but later in life, it promotes several age-related degenerative processes. For instance, AhR factor (i) controls the pluripotency of stem cells and the stemness of cancer stem cells, (ii) it enhances the differentiation of embryonal stem cells, especially AhR signaling modulates the differentiation of hematopoietic stem cells and progenitor cells, (iii) it also stimulates the differentiation of immunosuppressive Tregs, Bregs, and M2 macrophages, and finally, (iv) AhR signaling participates in the differentiation of many peripheral tissues. On the other hand, AhR signaling is involved in many processes promoting cellular senescence and pathological processes, e.g., osteoporosis, vascular dysfunction, and the age-related remodeling of the immune system. Moreover, it inhibits autophagy and aggravates extracellular matrix degeneration. AhR signaling also stimulates oxidative stress, promotes excessive sphingolipid synthesis, and disturbs energy metabolism by catabolizing NAD+ degradation. The antagonistic pleiotropy of AhR signaling is based on the complex and diverse connections with major signaling pathways in a context-dependent manner. The major regulatory steps include, (i) a specific ligand-dependent activation, (ii) modulation of both genetic and non-genetic responses, (iii) a competition and crosstalk with several transcription factors, such as ARNT, HIF-1α, E2F1, and NF-κB, and (iv) the epigenetic regulation of target genes with binding partners. Thus, not only mTOR signaling but also the AhR factor demonstrates antagonistic pleiotropy in the regulation of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
15
|
Inhibition of Aryl Hydrocarbon Receptor (AhR) Expression Disrupts Cell Proliferation and Alters Energy Metabolism and Fatty Acid Synthesis in Colon Cancer Cells. Cancers (Basel) 2022; 14:cancers14174245. [PMID: 36077780 PMCID: PMC9454859 DOI: 10.3390/cancers14174245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer cells undergo metabolic modifications in order to meet their high energetic demand. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor primarily known as a xenobiotic sensor. However, this receptor seems to have a wide range of physiological roles in many processes including cell proliferation, migration or control of immune responses. AhR is often overexpressed in tumor cells of various tissue origin, and several studies have indicated that AhR may also contribute to regulation of cellular metabolism, including synthesis of fatty acids (FA), one of the major steps in metabolic transition. Potential links between the AhR and the control of tumor cell proliferation and metabolism thus deserve more attention. Abstract The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.
Collapse
|
16
|
Elson DJ, Nguyen BD, Wood R, Zhang Y, Puig-Sanvicens V, Kolluri SK. The cyclin-dependent kinase inhibitor p27 Kip1 interacts with the aryl hydrocarbon receptor and negatively regulates its transcriptional activity. FEBS Lett 2022; 596:2056-2071. [PMID: 35735777 DOI: 10.1002/1873-3468.14434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
p27Kip1 functions to coordinate cell cycle progression through the inhibition of cyclin-dependent kinase (CDK) complexes. p27Kip1 also exerts distinct activities beyond CDK-inhibition, including functioning as a transcriptional regulator. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with diverse biological roles. The regulatory inputs that control AhR-mediated transcriptional responses are an active area of investigation. AhR was previously established as a direct regulator of p27Kip1 transcription. Here, we report the physical interaction of AhR and p27Kip1 and show that p27Kip1 expression negatively regulates AhR-mediated transcription. p27Kip1 knockout cells display increased AhR nuclear localisation and significantly higher expression of AhR target genes. This work thus identifies new regulatory cross-talk between p27Kip1 and AhR.
Collapse
Affiliation(s)
- Daniel J Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Bach D Nguyen
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Rhand Wood
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Yi Zhang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Veronica Puig-Sanvicens
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Siva K Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.,Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
17
|
Phillips JL, Buermeyer AB, Nguyen BD, Loehr C, Kolluri SK. Loss of the aryl hydrocarbon receptor increases tumorigenesis in p53-deficient mice. Toxicol Appl Pharmacol 2022; 454:116191. [PMID: 35926564 DOI: 10.1016/j.taap.2022.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell fate via activation of a diverse set of genes. There are conflicting reports describing the role of AhR in cancer. AhR-knockout mice do not develop tumors spontaneously, yet the AhR can act as a tumor suppressor in certain contexts. Loss of tumor suppression by p53 is common in human cancer. To investigate AhR function in the absence of p53, we generated mice lacking both AhR and p53. Mice deficient for AhR and p53 had shortened lifespan, increased tumorigenesis, and an altered tumor spectrum relative to control mice lacking only p53. In addition, knockout of both AhR and p53 resulted in reduced embryonic survival and neonatal fitness. We also examined the consequences of loss of AhR in p53-heterozygous mice and observed a significantly reduced lifespan and enhanced tumor burden. These findings reveal an important role for the AhR as a tumor suppressor in the absence of p53 signaling and support the development of anti-cancer therapeutics that would promote the tumor suppressive actions of the AhR.
Collapse
Affiliation(s)
- Jessica L Phillips
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America
| | - Andrew B Buermeyer
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 897331, United States of America; The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR 97331, USA
| | - Bach D Nguyen
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America
| | - Christiane Loehr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 897331, United States of America; The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR 97331, USA
| | - Siva K Kolluri
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America; The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
18
|
Dai R, Huang C, Wu X, Ma X, Chu M, Bao P, Pei J, Guo X, Yan P, Liang C. Copy number variation (CNV) of the AHR gene in the Ashidan yak and its association with growth traits. Gene 2022; 826:146454. [PMID: 35367304 DOI: 10.1016/j.gene.2022.146454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2023]
Abstract
Copy number variation (CNV) is a principal genomic structure variation affecting the gene expression through the dose-effect and change of gene regulatory region. It plays an important role in regulating the various complex traits of vertebrates. The aromatic hydrocarbon receptor (AHR) is a member of ligand-dependent transcription factors which belong to the alkaline helix-loop-helix PASS family. It is used as a conservative environmental sensor during biological evolution. This study, tracked the growth data (body weight, withers height, body length, chest girth) of 332 yaks in four stages (6, 12, 18, and 30 months) were tracked. The CNV of the yaks was analyzed using real-time quantitative PCR, and the correlation between CNV of AHR and yak growth traits was analyzed using the SPSS and R software. The AHR gene expression profiles were assessed in different tissues of the 18-month-old yak. The statistical analysis indicated the AHR-CNV of the Ashidan yak to significantly correlate with the body length (P < 0.05), and was found to be correlated with the withers height at 18 months old (P < 0.01) with extreme significance. To sum up, this study for the first time discussed the relationship between AHR-CNV and the growth traits of the Ashidan yak. The results indicated that the AHR gene might become a new molecular marker in the breeding yak.
Collapse
Affiliation(s)
- Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
19
|
Lowery R, Latchney S, Peer R, Lamantia C, Lordy K, Opanashuk L, McCall M, Majewska A. Gestational and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin primes cortical microglia to tissue injury. Brain Behav Immun 2022; 101:288-303. [PMID: 35065196 PMCID: PMC9007156 DOI: 10.1016/j.bbi.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that the aryl hydrocarbon receptor (AhR) is expressed in the brain's native immune cells, known as microglia. However, while the impact of exposure to AhR ligands is well studied in the peripheral immune system, the impact of such exposure on immune function in the brain is less well defined. Microglia serve dual roles in providing synaptic and immunological support for neighboring neurons and in mediating responses to environmental stimuli, including exposure to environmental chemicals. Because of their dual roles in regulating physiological and pathological processes, cortical microglia are well positioned to translate toxic stimuli into defects in cortical function via aberrant synaptic and immunological functioning, mediated either through direct microglial AhR activation or in response to AhR activation in neighboring cells. Here, we use gene expression studies, histology, and two-photon in vivo imaging to investigate how developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a high-affinity and persistent AhR agonist, modulates microglial characteristics and function in the intact brain. Whole cortical RT-qPCR analysis and RNA-sequencing of isolated microglia revealed that gestational and lactational TCDD exposure produced subtle, but durable, changes in microglia transcripts. Histological examination and two-photon in vivo imaging revealed that while microglia density, distribution, morphology, and motility were unaffected by TCDD exposure, exposure resulted in microglia that responded more robustly to focal tissue injury. However, this effect was rectified with depletion and repopulation of microglia. These results suggest that gestational and lactational exposure to AhR ligands can result in long-term priming of microglia to produce heightened responses towards tissue injury which can be restored to normal function through microglial repopulation.
Collapse
Affiliation(s)
- R.L. Lowery
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - S.E. Latchney
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - R.P. Peer
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - C.E. Lamantia
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | - K.A. Lordy
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642
| | | | - M. McCall
- Department of Biostatistics and Computational Biology, University of Rochester, NY 14642,Department of Biomedical Genetics, University of Rochester, NY 14642
| | - A.K Majewska
- Department of Neuroscience, Center for Visual Science, University of Rochester, Rochester, NY 14642,Corresponding Author: Ania K. Majewska, University of Rochester, School of Medicine and Dentistry, Department of Neuroscience, Center for Visual Science, 601 Elmwood Avenue, Box 603, Rochester, New York 14642, , Phone: (585) 276-2254
| |
Collapse
|
20
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Yang C, Ng CT, Li D, Zhang L. Targeting Indoleamine 2,3-Dioxygenase 1: Fighting Cancers via Dormancy Regulation. Front Immunol 2021; 12:725204. [PMID: 34539663 PMCID: PMC8446437 DOI: 10.3389/fimmu.2021.725204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
The connection between indoleamine 2,3-dioxygenase 1 (IDO1) and tumour dormancy – a quiescent state of tumour cells which has been consistently linked to metastasis and cancer recurrence – is rarely discussed despite the pivotal role of IDO1 in cancer development and progression. Whilst the underlying mechanisms of IDO1-mediated dormancy are elusive, we summarize the IDO1 pathways which potentially contribute to dormancy in this review. Critically, distinct IDO1 activities are involved in dormancy initiation and maintenance; factors outside the well-studied IDO1/kynurenine/aryl hydrocarbon receptor axis, including the mammalian target of rapamycin and general control nonderepressible 2, appear to be implicated in dormancy. We also discuss various strategies for cancer treatment via regulating IDO1-dependent dormancy and suggest the application of nanotechnology to deliver effective treatment.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, Taipei, Taiwan.,Department of English, National Chengchi University, Taipei, Taiwan
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Zhang
- Sericultural Research Institute, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
22
|
O'Donnell EF, Jang HS, Liefwalker DF, Kerkvliet NI, Kolluri SK. Discovery and Mechanistic Characterization of a Select Modulator of AhR-regulated Transcription (SMAhRT) with Anti-cancer Effects. Apoptosis 2021; 26:307-322. [PMID: 33893898 DOI: 10.1007/s10495-021-01666-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and a member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of proteins. The AhR was cloned and characterized for its role in mediating the toxicity of dioxins. Subsequent research has identified the role of AhR in suppression of cancer cell growth. We hypothesized that the AhR is a molecular target for therapeutic intervention in cancer, and that activation of the AhR by unique AhR ligands in cancer cells could have anti-cancer effects including induction of cell death. This study describes the discovery and characterization of a new class of anti-cancer agents targeting the AhR, that we designate as Select Modulators of AhR-regulated Transcription (SMAhRTs). We employed two independent small molecule screening approaches to identify potential SMAhRTs. We report the identification of CGS-15943 that activates AhR signaling and induces apoptosis in an AhR-dependent manner in liver and breast cancer cells. Investigation of the downstream signaling pathway of this newly identified SMAhRT revealed upregulation of Fas-ligand (FasL), which is required for AhR-mediated apoptosis. Our results provide a basis for further development of a new class of anti-cancer therapeutics targeting an underappreciated molecular target, the AhR.
Collapse
Affiliation(s)
- Edmond Francis O'Donnell
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Davis, CA, USA
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Daniel F Liefwalker
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
- The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA.
- The Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
23
|
L-Tryptophan activates the aryl hydrocarbon receptor and induces cell cycle arrest in porcine trophectoderm cells. Theriogenology 2021; 171:137-146. [PMID: 34058506 DOI: 10.1016/j.theriogenology.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022]
Abstract
During implantation, the proliferation of trophectoderm cells (the outer epithelium of blastocysts) is related to conceptus elongation and placenta formation. Tryptophan (Trp) is a key regulator of embryogenesis and embryonic implantation during pregnancy. We sought to determine whether different concentrations of Trp alters porcine trophectoderm (pTr) cell proliferation. pTr cells were cultured in medium containing 40, 500, or 1000 μM Trp. The cell proliferation rate and the progression of the cells through the cell cycle were determined. To identify differentially expressed genes (DEGs) in the pTr cells, we compared mRNA transcriptomes by RNA-Seq after cell treatment with different concentrations of Trp. Some candidate DEGs were identified by quantitative reverse transcription PCR (qPCR). High L-Trp levels (500 and 1000 μM) inhibited cell proliferation and induced cell cycle arrest. We identified 19 DEGs between the 500 μM L-Trp and 40 μM L-Trp groups and 168 DEGs between the 1000 μM L-Trp and 40 μM L-Trp groups and subsequently used qPCR to validate some genes that were upregulated or downregulated. The functional gene networks in which the DEGs were most enriched included those associated with regulating DNA replication and the cell cycle, and the majority of the DEGs in both of these functional pathways was downregulated. The results showed that the addition of 500 and 1000 μM Trp significantly increased the abundance of proteins in the Aryl Hydrocarbon Receptor (AHR) signaling pathway. Collectively, these results indicate a novel and important role for Trp in mediating the proliferation of porcine placental cells largely via the AHR signaling pathway. Additionally, these findings help to explain the side effects of excessive Trp supplementation on placenta development and embryo growth in mammals.
Collapse
|
24
|
Trajectory Shifts in Interdisciplinary Research of the Aryl Hydrocarbon Receptor-A Personal Perspective on Thymus and Skin. Int J Mol Sci 2021; 22:ijms22041844. [PMID: 33673338 PMCID: PMC7918350 DOI: 10.3390/ijms22041844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying historical trajectories is a useful exercise in research, as it helps clarify important, perhaps even “paradigmatic”, shifts in thinking and moving forward in science. In this review, the development of research regarding the role of the transcription factor “aryl hydrocarbon receptor” (AHR) as a mediator of the toxicity of environmental pollution towards a link between the environment and a healthy adaptive response of the immune system and the skin is discussed. From this fascinating development, the opportunities for targeting the AHR in the therapy of many diseases become clear.
Collapse
|
25
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
26
|
The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. Int J Mol Sci 2021; 22:ijms22020757. [PMID: 33451129 PMCID: PMC7828596 DOI: 10.3390/ijms22020757] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.
Collapse
|
27
|
Polymorphisms within the ARNT2 and CX3CR1 Genes Are Associated with the Risk of Developing Invasive Aspergillosis. Infect Immun 2020; 88:IAI.00882-19. [PMID: 31964743 DOI: 10.1128/iai.00882-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening infection that affects an increasing number of patients undergoing chemotherapy or allo-transplantation, and recent studies have shown that genetic factors contribute to disease susceptibility. In this two-stage, population-based, case-control study, we evaluated whether 7 potentially functional single nucleotide polymorphisms (SNPs) within the ARNT2 and CX3CR1 genes influence the risk of IA in high-risk hematological patients. We genotyped selected SNPs in a cohort of 500 hematological patients (103 of those had been diagnosed with proven or probable IA), and we evaluated their association with the risk of developing IA. The association of the most interesting markers of IA risk was then validated in a replication population, including 474 subjects (94 IA and 380 non-IA patients). Functional experiments were also performed to confirm the biological relevance of the most interesting markers. The meta-analysis of both populations showed that carriers of the ARNT2 rs1374213G, CX3CR1 rs7631529A, and CX3CR1 rs9823718G alleles (where the RefSeq identifier appears as a subscript) had a significantly increased risk of developing IA according to a log-additive model (P value from the meta-analysis [P Meta] = 9.8 · 10-5, P Meta = 1.5 · 10-4, and P Meta =7.9 · 10-5, respectively). Haplotype analysis also confirmed the association of the CX3CR1 haplotype with AG CGG with an increased risk of IA (P = 4.0 · 10-4). Mechanistically, we observed that monocyte-derived macrophages (MDM) from subjects carrying the ARNTR2 rs1374213G allele or the GG genotype showed a significantly impaired fungicidal activity but that MDM from carriers of the ARNT2 rs1374213G and CX3CR1 rs9823718G or CX3CR1 rs7631529A alleles had deregulated immune responses to Aspergillus conidia. These results, together with those from expression quantitative trait locus (eQTL) data browsers showing a strong correlation of the CX3CR1 rs9823718G allele with lower levels of CX3CR1 mRNA in whole peripheral blood (P = 2.46 · 10-7) and primary monocytes (P = 4.31 · 10-7), highlight the role of the ARNT2 and CX3CR1 loci in modulating and predicting IA risk and provide new insights into the host immune mechanisms involved in IA development.
Collapse
|
28
|
Ishida T, Takechi S. β-Naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor, disrupts zinc homeostasis in human hepatoma HepG2 cells. J Toxicol Sci 2020; 44:711-720. [PMID: 31588062 DOI: 10.2131/jts.44.711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent studies have demonstrated a relationship between the disruption of zinc homeostasis and the onset of diseases. However, little is known about the factors that disrupt zinc homeostasis. Here, we investigated the effects of β-naphthoflavone, an exogenous ligand of aryl hydrocarbon receptor (AHR), on intracellular zinc levels. Human hepatoma HepG2 cells were treated with β-naphthoflavone for 3 days, and intracellular labile and total zinc levels were assessed through flow cytometry and inductively coupled plasma atom emission spectroscopy, respectively. The mRNA levels of zinc transporters were determined by real-time PCR. Treatment of cells with β-naphthoflavone induced a decrease in intracellular labile zinc in a dose-dependent manner, with significantly decreased levels observed at 1 µM compared with controls. Additionally, intracellular total zinc levels demonstrated a decreasing trend with 10 µM β-naphthoflavone. Zinc pyrithione recovered the decrease in intracellular labile zinc levels induced by β-naphthoflavone, while zinc sulfate had no effect. Moreover, significant decreases in the mRNA levels of zinc transporters ZnT10 and ZIP5 were observed in response to 10 µM β-naphthoflavone. These results demonstrated that β-naphthoflavone has the potential to disrupt zinc homeostasis in hepatocytes. Although the underlying mechanism remains to be determined, suppression of zinc transporter transcription through AHR activation may be involved in the β-naphthoflavone-induced disruption of intracellular zinc levels.
Collapse
|
29
|
Sharma M, Sharma G, Singh B, Dhiman V, Bhadada SK, Katare OP. Holistic development of coal tar lotion by embedding design of experiments (DoE) technique: preclinical investigations. Expert Opin Drug Deliv 2020; 17:255-273. [PMID: 31990219 DOI: 10.1080/17425247.2020.1723545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The research work endeavors to develop a liquid dosage form of an efficacious antipsoriatic drug, i.e., coal tar, but having problems like variability and patient noncompliance.Methods: The emulsion was prepared by the wet gum method from standardized coal tar. The optimized lotion obtained after sequential experimental designs was characterized for various dosage form and/or coal tar-related properties including efficacy.Results: The formulation deposited more coal tar in the unit area of rat skin than marketed lotions. The efficacy of lotion in psoriasis animal models was more or equivalent to marketed lotions. The formulation showed one compartment body model dermatokinetics, nonirritancy after repeated applications, and stability at room conditions for a year.Conclusion: The formulation with desired attributes was successfully developed.
Collapse
Affiliation(s)
- Mandeep Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India.,UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites, Panjab University, Chandigarh, India
| | - Vandana Dhiman
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| |
Collapse
|
30
|
Trikha P, Lee DA. The role of AhR in transcriptional regulation of immune cell development and function. Biochim Biophys Acta Rev Cancer 2019; 1873:188335. [PMID: 31816350 DOI: 10.1016/j.bbcan.2019.188335] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor (TF) that is a member of the Per-Arnt-Sim family of proteins. AhR regulates diverse processes, including malignant transformation, hematopoietic cell development, and fate determination of immune cell lineages. Moreover, AhR forms a crucial link between innate and adaptive arms of the immune system. Malignant cells frequently evolve multiple mechanisms for suppressing tumor-specific responses, including the induction of suppressive pathways involving AhR and its metabolic byproducts in the tumor microenvironment that promote immune evasion and tumor progression. Thus, interest is high in further defining the role of AhR in carcinogenesis and immune development and regulation, particularly regarding the therapeutic interventions that unleash immune responses to cancer cells. Here, we provide an overview of the role of AhR in the regulation of innate and adaptive immune response and discuss the implications of targeting this pathway to augment the immune response in cancer patients.
Collapse
Affiliation(s)
- Prashant Trikha
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America.
| | - Dean A Lee
- Cellular Therapy & Cancer Immunotherapy Program, Center for Childhood Cancer & Blood Diseases, WA-4112 Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States of America
| |
Collapse
|
31
|
Loss of Tiparp Results in Aberrant Layering of the Cerebral Cortex. eNeuro 2019; 6:ENEURO.0239-19.2019. [PMID: 31704703 PMCID: PMC6883171 DOI: 10.1523/eneuro.0239-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/13/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP) is an enzyme that adds a single ADP-ribose moiety to itself or other proteins. Tiparp is highly expressed in the brain; however, its function in this organ is unknown. Here, we used Tiparp–/– mice to determine Tiparp’s role in the development of the prefrontal cortex. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP) is an enzyme that adds a single ADP-ribose moiety to itself or other proteins. Tiparp is highly expressed in the brain; however, its function in this organ is unknown. Here, we used Tiparp–/– mice to determine Tiparp’s role in the development of the prefrontal cortex. Loss of Tiparp resulted in an aberrant organization of the mouse cortex, where the upper layers presented increased cell density in the knock-out mice compared with wild type. Tiparp loss predominantly affected the correct distribution and number of GABAergic neurons. Furthermore, neural progenitor cell proliferation was significantly reduced. Neural stem cells (NSCs) derived from Tiparp–/– mice showed a slower rate of migration. Cytoskeletal components, such as α-tubulin are key regulators of neuronal differentiation and cortical development. α-tubulin mono-ADP ribosylation (MAR) levels were reduced in Tiparp–/– cells, suggesting that Tiparp plays a role in the MAR of α-tubulin. Despite the mild phenotype presented by Tiparp–/– mice, our findings reveal an important function for Tiparp and MAR in the correct development of the cortex. Unravelling Tiparp’s role in the cortex, could pave the way to a better understanding of a wide spectrum of neurological diseases which are known to have increased expression of TIPARP.
Collapse
|
32
|
Wu PY, Yu IS, Lin YC, Chang YT, Chen CC, Lin KH, Tseng TH, Kargren M, Tai YL, Shen TL, Liu YL, Wang BJ, Chang CH, Chen WM, Juan HF, Huang SF, Chan YY, Liao YF, Hsu WM, Lee H. Activation of Aryl Hydrocarbon Receptor by Kynurenine Impairs Progression and Metastasis of Neuroblastoma. Cancer Res 2019; 79:5550-5562. [PMID: 31431462 DOI: 10.1158/0008-5472.can-18-3272] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/08/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is the most common malignant disease of infancy, and amplification of the MYCN oncogene is closely associated with poor prognosis. Recently, expression of MYCN was shown to be inversely correlated with aryl hydrocarbon receptor (AHR) expression in neuroblastoma, and overexpression of AHR downregulated MYCN expression, promoting cell differentiation. Therefore, we further investigated the potential of AHR to serve as a prognostic indicator or a therapeutic target in neuroblastoma. First, the clinical significance of AHR in neuroblastoma was examined. Positive AHR immunostaining strongly correlated with differentiated histology of neuroblastoma and predicted better survival for patients. The mouse xenograft model showed that overexpression of AHR significantly suppressed neuroblastoma tumor growth. In addition, activation of AHR by the endogenous ligand kynurenine inhibited cell proliferation and promoted cell differentiation in vitro and in vivo. kynurenine treatment also upregulated the expression of KISS1, a tumor metastasis suppressor, and attenuated metastasis in the xenograft model. Finally, analysis of KISS1 levels in neuroblastoma patient tumors using the R2: Genomics Analysis and Visualization Platform revealed that KISS1 expression positively correlated with AHR, and high KISS1 expression predicted better survival for patients. In conclusion, our results indicate that AHR is a novel prognostic biomarker for neuroblastoma, and that overexpression or activation of AHR offers a new therapeutic possibility for patients with neuroblastoma. SIGNIFICANCE: These findings show that AHR may function as a tumor suppressor in childhood neuroblastoma, potentially influencing the aetiologic and therapeutic targeting of the disease.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yueh-Chien Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Tzu Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mati Kargren
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Tai
- Department of Plant Pathology and Microbiology & Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology & Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bo-Jeng Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Hao Chang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wei-Min Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Ya-Yun Chan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
33
|
Bock KW. Aryl hydrocarbon receptor (AHR): From selected human target genes and crosstalk with transcription factors to multiple AHR functions. Biochem Pharmacol 2019; 168:65-70. [PMID: 31228464 DOI: 10.1016/j.bcp.2019.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence including studies of AHR-deficient mice and TCDD toxicity suggests multiple physiologic AHR functions. Challenges to identify responsible mechanisms are due to marked species differences and dependence upon cell type and cellular context. Transient AHR modulation is often necessary for physiologic functions whereas TCDD-mediated sustained receptor activation has been demonstrated to be responsible for toxic outcomes. To stimulate studies on responsible action mechanisms the commentary is focused on human AHR target genes and crosstalk with transcription factors. Discussed AHR functions include chemical and microbial defense, organ development, modulation of immunity and inflammation, reproduction, and NAD+-dependent energy metabolism. Obviously, much more work is needed to elucidate action mechanisms. In particular, studies of pathways leading to NAD+-dependent energy metabolism may shed light on the puzzling species differences of TCDD-mediated lethality and provide options for treatment of obesity and age-related degenerative diseases.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
34
|
Espinosa Ruiz C, Manuguerra S, Cuesta A, Esteban MA, Santulli A, Messina CM. Sub-lethal doses of polybrominated diphenyl ethers affect some biomarkers involved in energy balance and cell cycle, via oxidative stress in the marine fish cell line SAF-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:1-10. [PMID: 30797971 DOI: 10.1016/j.aquatox.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent contaminants which are found all over the world in the marine environment. Sparus aurata fibroblast cell line (SAF-1) was exposed to increasing concentrations of PBDEs 47 and 99, until 72 h to evaluate the cytotoxicity, reactive oxygen species (ROS) production and the expression of some selected molecular markers related to cell cycle, cell signaling, energetic balance and oxidative stress (p53, erk-1, hif-1α and nrf-2), by real-time PCR. Furthermore, SAF-1 cells were exposed for 7 and 15 days to sub-lethal concentrations, in order to evaluate the response of some biomarkers by immunoblotting (p53, ERK-1, AMPK, HIF-1α and NRF-2). After 48 and 72 h, the cells showed a significant decrease of cell vitality as well as an increase of intracellular ROS production. Gene expression analysis showed that sub-lethal concentrations of BDE-99 and 47, after 72 h, up-regulated cell cycle and oxidative stress biomarkers, although exposure to 100 μmol L-1 down-regulated the selected markers related to cell cycle, cell signaling, energetic balance. After 7 and 15 days of sub-lethal doses exposure, all the analyzed markers resulted affected by the contaminants. Our results suggest that PBDEs influence the cells homeostasis first of all via oxidative stress, reducing the cell response and defense capacity and affecting its energetic levels. This situation of stress and energy imbalance could represents a condition that, modifying some of the analyzed biochemical pathways, would predispose to cellular transformation.
Collapse
Affiliation(s)
- Cristobal Espinosa Ruiz
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Andrea Santulli
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| | - Concetta M Messina
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy.
| |
Collapse
|
35
|
Zajda K, Rak A, Ptak A, Gregoraszczuk EL. Compounds of PAH mixtures dependent interaction between multiple signaling pathways in granulosa tumour cells. Toxicol Lett 2019; 310:14-22. [PMID: 30980910 DOI: 10.1016/j.toxlet.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023]
Abstract
Mechanism of PAH mixtures, using granulosa tumour cells, was investigated. Cells were exposed to a mixture of all 16 priority PAHs (M1) or a mixture of five PAHs not classified as human carcinogens (M2). The effect of siAHR, siAHRR and siNFKB2 on the expression of CYP1A1, CYP1B1, GSTM1, ERα, AR and cell proliferation was described. M1 decreased AhR and CYP1A1, while increased AhRR and ARNT expression. M2 also decreased AhR and CYP1A1 but had no effect on AhRR expression. siAHRR reversed the inhibitory effect of M1 on AhR and CYP1A1,while inhibitory effect of M2 was still observed. siNFKB2 reversed inhibitory effect of both mixtures on AhR and CYP1A1 expression and stimulatory effect of M1 on AhRR expression. siAHR reversed stimulatory effect of both mixtures on ERα expression. Stimulatory effect of M1 on cell proliferation was not observed in siAHR, was still observed in siESR1 cells. M2 had no effect on cell proliferation, however stimulatory effect was appeared in siAHR and siESR1cells. In conclusion: M1 by activation of AhRR and NFkB p52, but M2 only by activation of NFκB attenuated AhR signalling and ligand-induced CYP1A1 expression. Interaction between AhR and ER following M1 and M2 exposure is primarily initiated through AhR.
Collapse
Affiliation(s)
- K Zajda
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - A Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - A Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland
| | - E L Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Poland.
| |
Collapse
|
36
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor and the Maintenance of Lung Health. Int J Mol Sci 2018; 19:E3882. [PMID: 30563036 PMCID: PMC6320801 DOI: 10.3390/ijms19123882] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Much of what is known about the Aryl Hydrocarbon Receptor (AhR) centers on its ability to mediate the deleterious effects of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). However, the AhR is both ubiquitously-expressed and evolutionarily-conserved, suggesting that it evolved for purposes beyond strictly mediating responses to man-made environmental toxicants. There is growing evidence that the AhR is required for the maintenance of health, as it is implicated in physiological processes such as xenobiotic metabolism, organ development and immunity. Dysregulation of AhR expression and activity is also associated with a variety of disease states, particularly those at barrier organs such as the skin, gut and lungs. The lungs are particularly vulnerable to inhaled toxicants such as cigarette smoke. However, the role of the AhR in diseases such as chronic obstructive pulmonary disease (COPD)-a respiratory illness caused predominately by cigarette smoking-and lung cancer remains largely unexplored. This review will discuss the growing body of literature that provides evidence that the AhR protects the lungs against the damaging effects of cigarette smoke.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
37
|
Kueck T, Cassella E, Holler J, Kim B, Bieniasz PD. The aryl hydrocarbon receptor and interferon gamma generate antiviral states via transcriptional repression. eLife 2018; 7:38867. [PMID: 30132758 PMCID: PMC6120754 DOI: 10.7554/elife.38867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor whose activation induces the expression of numerous genes, with many effects on cells. However, AhR activation is not known to affect the replication of viruses. We show that AhR activation in macrophages causes a block to HIV-1 and HSV-1 replication. We find that AhR activation transcriptionally represses cyclin-dependent kinase (CDK)1/2 and their associated cyclins, thereby reducing SAMHD1 phosphorylation, cellular dNTP levels and both HIV-1 and HSV-1 replication. Remarkably, a different antiviral stimulus, interferon gamma (IFN-γ), that induces a largely non-overlapping set of genes, also transcriptionally represses CDK1, CDK2 and their associated cyclins, resulting in similar dNTP depletion and antiviral effects. Concordantly, the SIV Vpx protein provides complete and partial resistance to the antiviral effects of AhR and IFN-γ, respectively. Thus, distinct antiviral signaling pathways converge on CDK/cyclin repression, causing inhibition of viral DNA synthesis and replication.
Collapse
Affiliation(s)
- Tonya Kueck
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Elena Cassella
- Laboratory of Retrovirology, The Rockefeller University, New York, United States
| | - Jessica Holler
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, United States
| | - Baek Kim
- Center for Drug Discovery, The Department of Pediatrics, Emory University, Atlanta, United States.,Department of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
38
|
The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis. Cell Death Differ 2018; 25:1823-1836. [PMID: 30013037 PMCID: PMC6180092 DOI: 10.1038/s41418-018-0160-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet B (UVB) radiation induces mutagenic DNA photoproducts, in particular cyclobutane pyrimidine dimers (CPDs), in epidermal keratinocytes (KC). To prevent skin carcinogenesis, these DNA photoproducts must be removed by nucleotide excision repair (NER) or apoptosis. Here we report that the UVB-sensitive transcription factor aryl hydrocarbon receptor (AHR) attenuates the clearance of UVB-induced CPDs in human HaCaT KC and skin from SKH-1 hairless mice. Subsequent RNA interference and inhibitor studies in KC revealed that AHR specifically suppresses global genome but not transcription-coupled NER. In further experiments, we found that the accelerated repair of CPDs in AHR-compromised KC depended on a modulation of the p27 tumor suppressor protein. Accordingly, p27 protein levels were increased in AHR-silenced KC and skin biopsies from AHR−/− mice, and critical for the improvement of NER. Besides increasing NER activity, AHR inhibition was accompanied by an enhanced occurrence of DNA double-strand breaks triggering KC apoptosis at later time points after irradiation. The UVB-activated AHR thus acts as a negative regulator of both early defense systems against carcinogenesis, NER and apoptosis, implying that it exhibits tumorigenic functions in UVB-exposed skin. In fact, AHR−/− mice developed 50% less UVB-induced cutaneous squamous cell carcinomas in a chronic photocarcinogenesis study than their AHR+/+ littermates. Taken together, our data reveal that AHR influences DNA damage-dependent responses in UVB-irradiated KC and critically contributes to skin photocarcinogenesis in mice.
Collapse
|
39
|
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. BIOCHIMIE OPEN 2018; 7:1-9. [PMID: 30003042 PMCID: PMC6039966 DOI: 10.1016/j.biopen.2018.05.001] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Animals and humans are exposed each day to a multitude of chemicals in the air, water and food. They have developed a battery of enzymes and transporters that facilitate the biotransformation and elimination of these compounds. Moreover, a majority of these enzymes and transporters are inducible due to the activation of xenobiotic receptors which act as transcription factors for the regulation of their target genes (such as xenobiotic metabolizing enzymes, see below §4 for the AhR). These receptors include several members of the nuclear/steroid receptor family (CAR for Constitutive Androstane Receptor, PXR for Pregnane X Receptor) but also the Aryl hydrocarbon Receptor or AhR, a member of the bHLH-PAS family (basic Helix-Loop-Helix - Period/ARNT/Single minded). In addition to the regulation of xenobiotic metabolism, numerous alternative functions have been characterized for the AhR since its discovery. These alternative functions will be described in this review along with its endogenous functions as revealed by experiments performed on knock-out animals.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Ludmila Juricek
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Julien Dairou
- CNRS 8601, 45 rue des Saints-Pères, 75006 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
40
|
Moreno-Marín N, Merino JM, Alvarez-Barrientos A, Patel DP, Takahashi S, González-Sancho JM, Gandolfo P, Rios RM, Muñoz A, Gonzalez FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor Promotes Liver Polyploidization and Inhibits PI3K, ERK, and Wnt/β-Catenin Signaling. iScience 2018; 4:44-63. [PMID: 30240752 PMCID: PMC6147018 DOI: 10.1016/j.isci.2018.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/02/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) deficiency alters tissue homeostasis. However, how AhR regulates organ maturation and differentiation remains mostly unknown. Liver differentiation entails a polyploidization process fundamental for cell growth, metabolism, and stress responses. Here, we report that AhR regulates polyploidization during the preweaning-to-adult mouse liver maturation. Preweaning AhR-null (AhR−/−) livers had smaller hepatocytes, hypercellularity, altered cell cycle regulation, and enhanced proliferation. Those phenotypes persisted in adult AhR−/− mice and correlated with compromised polyploidy, predominance of diploid hepatocytes, and enlarged centrosomes. Phosphatidylinositol-3-phosphate kinase (PI3K), extracellular signal-regulated kinase (ERK), and Wnt/β-catenin signaling remained upregulated from preweaning to adult AhR-null liver, likely increasing mammalian target of rapamycin (mTOR) activation. Metabolomics revealed the deregulation of mitochondrial oxidative phosphorylation intermediates succinate and fumarate in AhR−/− liver. Consistently, PI3K, ERK, and Wnt/β-catenin inhibition partially rescued polyploidy in AhR−/− mice. Thus, AhR may integrate survival, proliferation, and metabolism for liver polyploidization. Since tumor cells tend to be polyploid, AhR modulation could have therapeutic value in the liver. AhR is required for liver polyploidization during preweaning-to-adult transition INS-R/PI3K/AKT, ERK, Wnt/β-Cat and mTOR are downregulated during liver polyploidization Reduced polyploidy relates with enhanced mitochondrial metabolism in AhR-null liver Understanding how AhR modulates polyploidy may provide strategies against cancer
Collapse
Affiliation(s)
- Nuria Moreno-Marín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Alberto Alvarez-Barrientos
- Servicio de Técnicas Aplicadas a las Biociencias (STAB), Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Daxeshkumar P Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José M González-Sancho
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, and CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Pablo Gandolfo
- Cell Signaling Department, CABIMER-CSIC, Sevilla 41092, Spain
| | - Rosa M Rios
- Cell Signaling Department, CABIMER-CSIC, Sevilla 41092, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, and CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain.
| |
Collapse
|
41
|
Leung A, Zulick E, Skvir N, Vanuytsel K, Morrison TA, Naing ZH, Wang Z, Dai Y, Chui DHK, Steinberg MH, Sherr DH, Murphy GJ. Notch and Aryl Hydrocarbon Receptor Signaling Impact Definitive Hematopoiesis from Human Pluripotent Stem Cells. Stem Cells 2018; 36:1004-1019. [PMID: 29569827 PMCID: PMC6099224 DOI: 10.1002/stem.2822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and eventually, treat patients. However, these cell sources produce progeny that retain embryonic and/or fetal characteristics. The failure to mature to definitive, adult‐type cells is a major barrier for iPSC‐based disease modeling and drug discovery. To directly address these concerns, we have developed a chemically defined, serum and feeder‐free–directed differentiation platform to generate hematopoietic stem‐progenitor cells (HSPCs) and resultant adult‐type progeny from iPSCs. This system allows for strict control of signaling pathways over time through growth factor and/or small molecule modulation. Through direct comparison with our previously described protocol for the production of primitive wave hematopoietic cells, we demonstrate that induced HSPCs are enhanced for erythroid and myeloid colony forming potential, and strikingly, resultant erythroid‐lineage cells display enhanced expression of adult β globin indicating definitive pathway patterning. Using this system, we demonstrate the stage‐specific roles of two key signaling pathways, Notch and the aryl hydrocarbon receptor (AHR), in the derivation of definitive hematopoietic cells. We illustrate the stage‐specific necessity of Notch signaling in the emergence of hematopoietic progenitors and downstream definitive, adult‐type erythroblasts. We also show that genetic or small molecule inhibition of the AHR results in the increased production of CD34+CD45+ HSPCs while conversely, activation of the same receptor results in a block of hematopoietic cell emergence. Results presented here should have broad implications for hematopoietic stem cell transplantation and future clinical translation of iPSC‐derived blood cells. Stem Cells2018;36:1004–1019
Collapse
Affiliation(s)
- Amy Leung
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Elizabeth Zulick
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Nicholas Skvir
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kim Vanuytsel
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Tasha A Morrison
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zaw Htut Naing
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Yan Dai
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H K Chui
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Martin H Steinberg
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - George J Murphy
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
42
|
O'Donnell EF, Jang HS, Pearce M, Kerkvliet NI, Kolluri SK. The aryl hydrocarbon receptor is required for induction of p21cip1/waf1 expression and growth inhibition by SU5416 in hepatoma cells. Oncotarget 2018; 8:25211-25225. [PMID: 28424418 PMCID: PMC5421923 DOI: 10.18632/oncotarget.16056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a potential clinical target for cancer and autoimmune dysfunction. Identifying selective AhR modulators that produce desirable clinical outcomes represents an opportunity for developing new anti-cancer agents. Repurposing clinically-used drugs with established safety profiles that activate the AhR represents a good starting place to pursue this goal. In this study, we characterized the AhR-dependent effects of SU5416 (Semaxanib) following its identification in a small-molecule library screen. SU5416 potently activated AhR-dependent reporter genes, induced AhR nuclear localization, facilitated AhR-DNA binding, and increased, expression of its endogenous target genes. SU5416 significantly inhibited proliferation of Hepa1 hepatoma cells in an AhR-dependent manner, but did not induce apoptosis. SU5416 also inhibited the growth of human HepG2 liver cancer cells. The effects of SU5416 correlated with an increased G1 population and increased expression of cell cycle inhibitor p21cip1/waf1 at both the mRNA and protein level. Increased expression of p21cip1/waf1 by SU5416 required expression of both AhR and Arnt. In addition, evidence for long-term activation of the AhR in vivo by a single dose of SU5416 was identified by analyzing published microarray data. Our results provide support for continued investigation of the AhR as therapeutic for cancers such as hepatocellular carcinoma. In addition, our findings raise the possibility that some of the previously observed anti-proliferative effects of SU5416 may be due to activation of the AhR.
Collapse
Affiliation(s)
- Edmond F O'Donnell
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Hyo Sang Jang
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Martin Pearce
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Department of Environmental and Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
43
|
Jang HS, Pearce M, O'Donnell EF, Nguyen BD, Truong L, Mueller MJ, Bisson WH, Kerkvliet NI, Tanguay RL, Kolluri SK. Identification of a Raloxifene Analog That Promotes AhR-Mediated Apoptosis in Cancer Cells. BIOLOGY 2017; 6:biology6040041. [PMID: 29194351 PMCID: PMC5745446 DOI: 10.3390/biology6040041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure–activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR.
Collapse
Affiliation(s)
- Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Martin Pearce
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Edmond F O'Donnell
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Bach Duc Nguyen
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| | - Monica J Mueller
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - William H Bisson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
44
|
Mohammadi S, Seyedhosseini FS, Behnampour N, Yazdani Y. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line. J Recept Signal Transduct Res 2017; 37:506-514. [PMID: 28812970 DOI: 10.1080/10799893.2017.1360351] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/16/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The role of aryl hydrocarbon receptor (AhR) in carcinogenesis has been studied recently. Indole-3-carbinol (I3C) is an AhR agonist and a potential anticancer agent. Here, we investigated the effects of I3C on cell cycle progression and apoptosis through activation of AhR on THP-1 acute myeloid leukemia (AML) cell line. METHODS MTT viability assay was used to measure the cytotoxic effects of I3C on THP-1 cells. Apoptosis and cell cycle assays were investigated using flow cytometry. Real time RT-PCR was conducted to measure the alterations in the expression of AhR gene, key genes associated with AhR activation (IL1β and CYP1A1) and major genes involved in cell cycle regulation and apoptosis including P27, P21, CDK2, P53, BCL2 and FasR. RESULTS Our findings revealed that I3C inhibits the proliferation of THP-1 cells in a dose- and time-dependent manner with minimal toxicity over normal monocytes. The AhR target genes (CYP1A1, IL1β) were overexpressed upon I3C treatment (p < .05 to p < .001). The antiproliferative effects of I3C were in association with programed cell death. I3C downregulated BCL2 and upregulated FasR in THP-1 cells (p < .05 to p < .001). G1 cell cycle arrest was also observed using flow cytometry. G1-acting cell cycle genes (P21, P27 and P53) were overexpressed (p < .05 to p < .001), while CDK2 was downregulated upon I3C treatment (p < .01 to p < .001). CONCLUSIONS I3C could exert its antileukemic effects through AhR activation which is associated with programed cell death and G1 cell cycle arrest in a dose- and time-dependent manner. Therefore, AhR could be targeted as a novel treatment possibility in AML.
Collapse
Affiliation(s)
- Saeed Mohammadi
- a Student Research Committee, Department of Molecular Medicine, School of Advanced Technologies in Medicine , Golestan University of Medical Sciences , Gorgan , Iran
| | - Fakhri Sadat Seyedhosseini
- b Infectious Diseases Research Center and Laboratory Science Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| | - Nasser Behnampour
- c Department of Biostatistics, Faculty of Health , Golestan University of Medical Sciences , Gorgan , Iran
| | - Yaghoub Yazdani
- b Infectious Diseases Research Center and Laboratory Science Research Center , Golestan University of Medical Sciences , Gorgan , Iran
| |
Collapse
|
45
|
Abstract
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands.
Collapse
Affiliation(s)
- R Formosa
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - J Borg
- Department of Applied Biomedical ScienceFaculty of Health Sciences, University of Malta, Msida, Malta
| | - J Vassallo
- Department of MedicineFaculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of MedicineNeuroendocrine Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
46
|
Kolluri SK, Jin UH, Safe S. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Arch Toxicol 2017; 91:2497-2513. [PMID: 28508231 PMCID: PMC6357772 DOI: 10.1007/s00204-017-1981-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
Abstract
The aryl hydrocarbon receptor (AhR) was initially identified as the receptor that binds and mediates the toxic effects induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and structurally related halogenated aromatics. Other toxic compounds including some polynuclear aromatic hydrocarbons act through the AhR; however, during the last 25 years, it has become apparent that the AhR plays an essential role in maintaining cellular homeostasis. Moreover, the scope of ligands that bind the AhR includes endogenous compounds such as multiple tryptophan metabolites, other endogenous biochemicals, pharmaceuticals and health-promoting phytochemicals including flavonoids, indole-3-carbinol and its metabolites. It has also been shown that like other receptors, the AhR is a drug target for multiple diseases including cancer, where both AhR agonists and antagonists effectively block many of the critical hallmarks of cancer in multiple tumor types. This review describes the anti-cancer activities of AhR ligands and demonstrates that it is time to separate the AhR from TCDD and exploit the potential of the AhR as a novel target for cancer chemotherapy.
Collapse
Affiliation(s)
- Siva Kumar Kolluri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, 4466 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
47
|
Formosa R, Vassallo J. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland. Discov Oncol 2017. [PMID: 28634910 DOI: 10.1007/s12672-017-0300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.
Collapse
Affiliation(s)
- Robert Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta. .,Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
48
|
Mohammadi-Bardbori A, Bastan F, Akbarizadeh AR. The highly bioactive molecule and signal substance 6-formylindolo[3,2-b]carbazole (FICZ) plays bi-functional roles in cell growth and apoptosis in vitro. Arch Toxicol 2017; 91:3365-3372. [DOI: 10.1007/s00204-017-1950-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
|
49
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice. Toxicol Appl Pharmacol 2016; 311:42-51. [PMID: 27693115 DOI: 10.1016/j.taap.2016.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant and high-affinity ligand for the aryl hydrocarbon receptor (AhR). Increasing evidence indicates that AhR signaling contributes to wound healing, which involves the coordinated deposition and remodeling of the extracellular matrix. In the liver, wound healing is attributed to the activation of hepatic stellate cells (HSCs), which mediate fibrogenesis through the production of soluble mediators and collagen type I. We recently reported that TCDD treatment increases the activation of human HSCs in vitro. The goal of this study was to determine how TCDD impacts HSC activation in vivo using a mouse model of experimental liver fibrosis. To elicit fibrosis, C57BL6/male mice were treated twice weekly for 8weeks with 0.5ml/kg carbon tetrachloride (CCl4). TCDD (20μg/kg) or peanut oil (vehicle) was administered once a week during the last 2weeks. Results indicate that TCDD increased liver-body-weight ratios, serum alanine aminotransferase activity, and hepatic necroinflammation in CCl4-treated mice. Likewise, TCDD treatment increased mRNA expression of HSC activation and fibrogenesis genes, namely α-smooth muscle actin, desmin, delta-like homolog-1, TGF-β1, and collagen type I. However, TCDD treatment did not exacerbate fibrosis, nor did it increase the collagen content of the liver. Instead, TCDD increased hepatic collagenase activity and increased expression of matrix metalloproteinase (MMP)-13 and the matrix regulatory proteins, TIMP-1 and PAI-1. These results support the conclusion that TCDD increases CCl4-induced liver damage and exacerbates HSC activation, yet collagen deposition and the development of fibrosis may be limited by TCDD-mediated changes in extracellular matrix remodeling.
Collapse
|
50
|
Gene expression profiling reveals aryl hydrocarbon receptor as a possible target for photobiomodulation when using blue light. Sci Rep 2016; 6:33847. [PMID: 27669902 PMCID: PMC5037386 DOI: 10.1038/srep33847] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Photobiomodulation (PBM) with blue light induces a biphasic dose response curve in proliferation of immortalized human keratinocytes (HaCaT), with a maximum anti-proliferative effect reached with 30min (41.4 J/cm2). The aim of this study was to test the photobiomodulatory effect of 41.4 J/cm2 blue light irradiation on ROS production, apoptosis and gene expression at different time points after irradiation of HaCaT cells in vitro and assess its safety. ROS concentration was increased 30 min after irradiation. However, already 1 h after irradiation, cells were able to reduce ROS and balance the concentration to a normal level. The sudden increase in ROS did not damage the cells, which was demonstrated with FACS analysis where HaCaT cells did not show any sign of apoptosis after blue light irradiation. Furthermore, a time course could be seen in gene expression analysis after blue light, with an early response of stimulated genes already 1 h after blue light irradiation, leading to the discovery of the aryl hydrocarbon receptor as possible target for blue light irradiation.
Collapse
|