1
|
Piombino C, Nasso C, Bettelli S, Manfredini S, Vitale MG, Pipitone S, Baldessari C, Costantini M, Eccher A, Mastrolia I, Catani V, Bacchelli F, Ferretti S, Dominici M, Sabbatini R. A Novel Molecular Profile of Hormone-Sensitive Prostate Cancer Defines High Risk Patients. Cancer Med 2025; 14:e70472. [PMID: 39980141 PMCID: PMC11842281 DOI: 10.1002/cam4.70472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The therapeutic management of metastatic hormone-sensitive prostate cancer (mHSPC) is still based on clinical and pathological parameters due to the lack of biomarkers that may drive tailored treatment. METHODS In this non-randomized, single-center, retrospective trial, we searched for a genetic signature using the NanoString nCounter PanCancer Pathways Panel on formalin-fixed paraffin embedded prostate cancer samples belonging to 48 patients with de novo or relapsed mHSPC. Patients were divided into a high-clinical-risk group (n = 36) and a low-clinical-risk group (n = 12) according to the mean time to metastatic relapse. RESULTS The analysis of Nanostring nCounter Panel data revealed differential expression of 42 genes between high-clinical-risk and low-clinical-risk groups. All the genes except for NR4A1 and FOS were upregulated in the high-clinical-risk group. A general overexpression of apoptosis, PI3K and MAPK pathway-related genes, including AKT2, was observed in the high-clinical-risk group. CONCLUSION The differential genetic signature identified between the two study groups revealed novel biomarkers in mHSPC, additionally suggesting new therapeutic targets within the hormone sensitive phase, such as AKT2. Further prospective larger cohort studies are needed to assess the prognostic value of our findings and their exact role in prostate cancer progression.
Collapse
Affiliation(s)
- Claudia Piombino
- Division of Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| | - Cecilia Nasso
- Division of OncologyS. Corona HospitalPietra LigureItaly
| | - Stefania Bettelli
- Division of Molecular Pathology and Predictive MedicineUniversity Hospital of ModenaModenaItaly
| | - Samantha Manfredini
- Division of Molecular Pathology and Predictive MedicineUniversity Hospital of ModenaModenaItaly
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| | | | - Albino Eccher
- Department of PathologyUniversity Hospital of ModenaModenaItaly
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & AdultsUniversity of Modena and Reggio EmiliaModenaItaly
| | - Virginia Catani
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & AdultsUniversity of Modena and Reggio EmiliaModenaItaly
| | - Francesca Bacchelli
- Clinical Trials Office, Division of Oncology, Department of Medical and Surgical Sciences for Children & AdultsUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Massimo Dominici
- Division of Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & AdultsUniversity of Modena and Reggio EmiliaModenaItaly
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and HematologyUniversity Hospital of ModenaModenaItaly
| |
Collapse
|
2
|
Lyu C, Vaddi PK, Elshafae S, Pradeep A, Ma D, Chen S. Unveiling RACK1: a key regulator of the PI3K/AKT pathway in prostate cancer development. Oncogene 2025; 44:322-335. [PMID: 39537875 DOI: 10.1038/s41388-024-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The dysregulated PI3K/AKT pathway is pivotal in the onset and progression of various cancers, including prostate cancer. However, targeting this pathway directly poses challenges due to compensatory upregulation of alternative oncogenic pathways. This study focuses on the novel regulatory activity of the Receptor for Activated Protein Kinase (RACK1), a scaffolding/adaptor protein, in governing the PI3K/AKT pathway within prostate cancer. Through a genetic mouse model, our research unveils RACK1's pivotal role in orchestrating AKT activation and the genesis of prostate cancer. RACK1 deficiency hampers AKT activation, effectively impeding prostate tumor formation induced by PTEN and p53 deficiency. Mechanistically, RACK1 facilitates AKT membrane translocation and fosters its interaction with mTORC2, thereby promoting AKT activation and subsequent tumor cell proliferation and tumor formation. Notably, inhibiting AKT activation via RACK1 deficiency does not trigger feedback upregulation of HER3 and androgen receptor (AR) expression and activation, distinguishing it from direct PI3K or AKT targeting. These findings position RACK1 as a critical regulator of the PI3K/AKT pathway and a promising target for curtailing prostate cancer development arising from pathway aberrations.
Collapse
Affiliation(s)
- Cancan Lyu
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Prasanna Kuma Vaddi
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Said Elshafae
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Anirudh Pradeep
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Deqin Ma
- Departments of Phathology, University of Iowa, Iowa City, USA
| | - Songhai Chen
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA.
- Departments of Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
3
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
4
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
5
|
Indeglia A, Murphy ME. Elucidating the chain of command: our current understanding of critical target genes for p53-mediated tumor suppression. Crit Rev Biochem Mol Biol 2024; 59:128-138. [PMID: 38661126 PMCID: PMC11209770 DOI: 10.1080/10409238.2024.2344465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
TP53 encodes a transcription factor that is centrally-involved in several pathways, including the control of metabolism, the stress response, DNA repair, cell cycle arrest, senescence, programmed cell death, and others. Since the discovery of TP53 as the most frequently-mutated tumor suppressor gene in cancer over four decades ago, the field has focused on uncovering target genes of this transcription factor that are essential for tumor suppression. This search has been fraught with red herrings, however. Dozens of p53 target genes were discovered that had logical roles in tumor suppression, but subsequent data showed that most were not tumor suppressive, and were dispensable for p53-mediated tumor suppression. In this review, we focus on p53 transcriptional targets in two categories: (1) canonical targets like CDKN1A (p21) and BBC3 (PUMA), which clearly play critical roles in p53-mediated cell cycle arrest/senescence and cell death, but which are not mutated in cancer, and for which knockout mice fail to develop spontaneous tumors; and (2) a smaller category of recently-described p53 target genes that are mutated in human cancer, and which appear to be critical for tumor suppression by p53. Interestingly, many of these genes encode proteins that control broad cellular pathways, like splicing and protein degradation, and several of them encode proteins that feed back to regulate p53. These include ZMAT3, GLS2, PADI4, ZBXW7, RFX7, and BTG2. The findings from these studies provide a more complex, but exciting, potential framework for understanding the role of p53 in tumor suppression.
Collapse
Affiliation(s)
- Alexandra Indeglia
- The Wistar Institute, Philadelphia PA 19104
- Biochemistry and Molecular Biophysics Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104
| | | |
Collapse
|
6
|
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Of particular interest for this topic are the signaling cascades that regulate cell survival and death, two opposite cell programs whose control is hijacked by viral infections. The AKT and the Unfolded Protein Response (UPR) pathways, which maintain cell homeostasis by regulating these two programs, have been shown to be deregulated during SARS-CoVs infection as well as in the development of cancer, one of the most important comorbidities in relation to COVID-19. Recent evidence revealed two way crosstalk mechanisms between the AKT and the UPR pathways, suggesting that they might constitute a unified homeostatic control system. Here, we review the role of the AKT and UPR pathways and their interaction in relation to SARS-CoV-2 infection as well as in tumor onset and progression. Feedback regulation between AKT and UPR pathways emerges as a master control mechanism of cell decision making in terms of survival or death and therefore represents a key potential target for developing treatments for both viral infection and cancer. In particular, drug repositioning, the investigation of existing drugs for new therapeutic purposes, could significantly reduce time and costs compared to de novo drug discovery.
Collapse
|
7
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
8
|
Soltanshahi M, Taghiloo S, Asgarian-Omran H. Expression Modulation of Immune Checkpoint Molecules by Ibrutinib and Everolimus Through STAT3 in MCF-7 Breast Cancer Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127352. [PMID: 35873012 PMCID: PMC9293249 DOI: 10.5812/ijpr-127352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022]
Abstract
Tumor-targeted therapy with small-molecule inhibitors (SMIs) has been demonstrated to be a highly effective therapeutic strategy for various cancers. However, their possible associations with immune evasion mechanisms remain unknown. This study examined the association of inhibitors of the protein kinase B (AKT), mammalian target of rapamycin (mTOR), and Bruton’s tyrosine kinase (BTK) signaling pathways with the expression of immune checkpoint ligands programmed death-ligand 1 (PD-L1), CD155, and galectin-9 (Gal-9) in a breast cancer cell line. MCF-7 cells were treated with everolimus, MK-2206, and ibrutinib. An MTT assay was used to determine the optimal dose for all drugs. A real-time polymerase chain reaction was utilized to measure the mRNA expression of PD-L1, CD155, and Gal-9. The western blot technique was also employed to evaluate the protein expression of the phosphorylated signal transducer and activator of transcription 3 (STAT3). The optimal doses of everolimus, MK-2206, and ibrutinib were observed to be 200, 320, and 2000 nM, respectively. The PD-L1 and CD155 mRNA expression was significantly decreased following the treatment with everolimus and ibrutinib, but not with MK-2206. There were no differences in Gal-9 expression between the single-treated and control groups; however, combined treatment with everolimus and ibrutinib increased its mRNA expression. Everolimus and ibrutinib both inhibited constitutive STAT3 phosphorylation in MCF-7, which was more pronounced in combination treatment. The findings regarding the modulation of PD-L1, CD155, and Gal-9 molecules by SMIs emphasize the crosstalk between the expression of these immune checkpoint molecules and AKT/mTOR/BTK signaling pathways through STAT3 as a critical transcription factor.
Collapse
Affiliation(s)
- Mohsen Soltanshahi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Noncommunicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding Author: Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. Tel: +98-1133543081, Fax: +98-1133543249,
| |
Collapse
|
9
|
Alwhaibi A, Parvathagiri V, Verma A, Artham S, Adil MS, Somanath PR. Regulation of Let-7a-5p and miR-199a-5p Expression by Akt1 Modulates Prostate Cancer Epithelial-to-Mesenchymal Transition via the Transforming Growth Factor-β Pathway. Cancers (Basel) 2022; 14:cancers14071625. [PMID: 35406397 PMCID: PMC8996869 DOI: 10.3390/cancers14071625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The molecular mechanisms regulating the switch from the growth of tumor cells to invasive phenotype for metastasis is largely unknown. Molecules such as Akt1 and TGFβ have been demonstrated to play reciprocal roles in the early and advanced stages of cancers, and epithelial-to-mesenchymal transition has been identified as a common link in the process. Advancing our knowledge on the direct association between these two pathways and how their effects are reconciled in the advanced stages of cancers such as prostate cancer will have therapeutic benefits. Identifying the role of microRNAs in the process will also benefit the scientific community. Abstract Akt1 suppression in advanced cancers has been indicated to promote metastasis. Our understanding of how Akt1 orchestrates this is incomplete. Using the NanoString®-based miRNA and mRNA profiling of PC3 and DU145 cells, and subsequent data analysis using the DIANA-mirPath, dbEMT, nCounter, and Ingenuity® databases, we identified the miRNAs and associated genes responsible for Akt1-mediated prostate cancer (PCa) epithelial-to-mesenchymal transition (EMT). Akt1 loss in PC3 and DU145 cells primarily induced changes in the miRNAs and mRNAs regulating EMT genes. These include increased miR-199a-5p and decreased let-7a-5p expression associated with increased TGFβ-R1 expression. Treatment with locked nucleic acid (LNA) miR-199a-5p inhibitor and/or let-7a-5p mimic induced expression changes in EMT genes correlating to their anticipated effects on PC3 and DU145 cell motility, invasion, and TGFβ-R1 expression. A correlation between increased miR-199a-5p and TGFβ-R1 expression with reduced let-7a-5p was also observed in high Gleason score PCa patients in the cBioportal database analysis. Collectively, our studies show the effect of Akt1 suppression in advanced PCa on EMT modulating miRNA and mRNA expression changes and highlight the potential benefits of miR-199a-5p and let-7a-5p in therapy and/or early screening of mPCa.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Clinical Pharmacy Department, College of Pharmacy at King Saud University, Riyadh 11451, Saudi Arabia
| | - Varun Parvathagiri
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
10
|
miR-32 promotes MYC-driven prostate cancer. Oncogenesis 2022; 11:11. [PMID: 35228520 PMCID: PMC8885642 DOI: 10.1038/s41389-022-00385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
miR-32 is an androgen receptor (AR)-regulated microRNA, expression of which is increased in castration-resistant prostate cancer (PC). We have previously shown that overexpression of miR-32 in the prostate of transgenic mice potentiates proliferation in prostate epithelium. Here, we set out to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo. We studied transgenic mice expressing MYC oncogene (hiMYC mice) to induce tumorigenesis in the mouse prostate and discovered that transgenic overexpression of miR-32 resulted in increased tumor burden as well as a more aggressive tumor phenotype in this model. Elevated expression of miR-32 increased proliferation as assessed by Ki-67 immunohistochemistry, increased nuclear density, and higher mitotic index in the tumors. By gene expression analysis of the tumorous prostate tissue, we confirmed earlier findings that miR-32 expression regulates prostate secretome by modulating expression levels of several PC-related target genes such as Spink1, Spink5, and Msmb. Further, we identified Pdk4 as a tumor-associated miR-32 target in the mouse prostate. Expression analysis of PDK4 in human PC reveals an inverse correlation with miR-32 expression and Gleason score, a decrease in castration-resistant and metastatic tumors compared to untreated primary PC, and an association of low PDK4 expression with a shorter recurrence-free survival of patients. Although decreased PDK4 expression induces the higher metabolic activity of PC cells, induced expression of PDK4 reduces both mitotic respiration and glycolysis rates as well as inhibits cell growth. In conclusion, we show that miR-32 promotes MYC-induced prostate adenocarcinoma and identifies PDK4 as a PC-relevant metabolic target of miR-32-3p.
Collapse
|
11
|
Hamila SA, Ooms LM, Rodgers SJ, Mitchell CA. The INPP4B paradox: Like PTEN, but different. Adv Biol Regul 2021; 82:100817. [PMID: 34216856 DOI: 10.1016/j.jbior.2021.100817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Cancer is a complex and heterogeneous disease marked by the dysregulation of cancer driver genes historically classified as oncogenes or tumour suppressors according to their ability to promote or inhibit tumour development and growth, respectively. Certain genes display both oncogenic and tumour suppressor functions depending on the biological context, and as such have been termed dual-role cancer driver genes. However, because of their context-dependent behaviour, the tumourigenic mechanism of many dual-role genes is elusive and remains a significant knowledge gap in our effort to understand and treat cancer. Inositol polyphosphate 4-phosphatase type II (INPP4B) is an emerging dual-role cancer driver gene, primarily known for its role as a negative regulator of the phosphoinositide 3-kinase (PI3K)/AKT signalling pathway. In response to growth factor stimulation, class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane. PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate 5-phosphatases to generate PtdIns(3,4)P2, which, together with PtdIns(3,4,5)P3, facilitates the activation of AKT to promote cell proliferation, survival, migration, and metabolism. Phosphatase and tensin homology on chromosome 10 (PTEN) and INPP4B are dual-specificity phosphatases that hydrolyse PtdIns(3,4,5)P3 and PtdIns(3,4)P2, respectively, and thus negatively regulate PI3K/AKT signalling. PTEN is a bona fide tumour suppressor that is frequently lost in human tumours. INPP4B was initially characterised as a tumour suppressor akin to PTEN, and has been implicated as such in a number of cancers, including prostate, thyroid, and basal-like breast cancers. However, evidence has since emerged revealing INPP4B as a paradoxical oncogene in several malignancies, with increased INPP4B expression reported in AML, melanoma and colon cancers among others. Although the tumour suppressive function of INPP4B has been mostly ascribed to its ability to negatively regulate PI3K/AKT signalling, its oncogenic function remains less clear, with proposed mechanisms including promotion of PtdIns(3)P-dependent SGK3 signalling, inhibition of PTEN-dependent AKT activation, and enhancing DNA repair mechanisms to confer chemoresistance. Nevertheless, research is ongoing to identify the factors that dictate the tumourigenic output of INPP4B in different human cancers. In this review we discuss the dualistic role that INPP4B plays in the context of cancer development, progression and treatment, drawing comparisons to PTEN to explore how their similarities and, importantly, their differences may account for their diverging roles in tumourigenesis.
Collapse
Affiliation(s)
- Sabryn A Hamila
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Lisa M Ooms
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Samuel J Rodgers
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
12
|
Xu J, Yu X, Martin TC, Bansal A, Cheung K, Lubin A, Stratikopoulos E, Cahuzac KM, Wang L, Xie L, Zhou R, Shen Y, Wu X, Yao S, Qiao R, Poulikakos PI, Chen X, Liu J, Jin J, Parsons R. AKT Degradation Selectively Inhibits the Growth of PI3K/PTEN Pathway-Mutant Cancers with Wild-Type KRAS and BRAF by Destabilizing Aurora Kinase B. Cancer Discov 2021; 11:3064-3089. [PMID: 34301793 PMCID: PMC9056008 DOI: 10.1158/2159-8290.cd-20-0815] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Using a panel of cancer cell lines, we characterized a novel degrader of AKT, MS21. In mutant PI3K-PTEN pathway cell lines, AKT degradation was superior to AKT kinase inhibition for reducing cell growth and sustaining lower signaling over many days. AKT degradation, but not kinase inhibition, profoundly lowered Aurora kinase B (AURKB) protein, which is known to be essential for cell division, and induced G2-M arrest and hyperploidy. PI3K activated AKT phosphorylation of AURKB on threonine 73, which protected it from proteasome degradation. A mutant of AURKB (T73E) that mimics phosphorylation and blocks degradation rescued cells from growth inhibition. Degrader-resistant lines were associated with low AKT phosphorylation, wild-type PI3K/PTEN status, and mutation of KRAS/BRAF. Pan-cancer analysis identified that 19% of cases have PI3K-PTEN pathway mutation without RAS pathway mutation, suggesting that these patients with cancer could benefit from AKT degrader therapy that leads to loss of AURKB. SIGNIFICANCE MS21 depletes cells of phosphorylated AKT (pAKT) and a newly identified AKT substrate, AURKB, to inhibit tumor growth in mice. MS21 is superior to prior agents that target PI3K and AKT due to its ability to selectively target active, pAKT and sustain repression of signaling to deplete AURKB. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Jia Xu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tiphaine C. Martin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kakit Cheung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abigail Lubin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elias Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaitlyn M. Cahuzac
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Royce Zhou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yudao Shen
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shen Yao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruifang Qiao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jing Liu
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate cancer. Br J Cancer 2021; 125:1185-1196. [PMID: 34262149 PMCID: PMC8548338 DOI: 10.1038/s41416-021-01435-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Although low risk localised prostate cancer has an excellent prognosis owing to effective treatments, such as surgery, radiation, cryosurgery and hormone therapy, metastatic prostate cancer remains incurable. Existing therapeutic regimens prolong life; however, they are beset by problems of resistance, resulting in poor outcomes. Treatment resistance arises primarily from tumour heterogeneity, altered genetic signatures and metabolic reprogramming, all of which enable the tumour to serially adapt to drugs during the course of treatment. In this review, we focus on alterations in the metabolism of prostate cancer, including genetic signatures and molecular pathways associated with metabolic reprogramming. Advances in our understanding of prostate cancer metabolism might help to explain many of the adaptive responses that are induced by therapy, which might, in turn, lead to the attainment of more durable therapeutic responses.
Collapse
Affiliation(s)
- Fahim Ahmad
- grid.48336.3a0000 0004 1936 8075Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA ,grid.48336.3a0000 0004 1936 8075Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Murali Krishna Cherukuri
- grid.48336.3a0000 0004 1936 8075Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Peter L. Choyke
- grid.48336.3a0000 0004 1936 8075Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
14
|
Kwon YM, Kim SH, Jung YS, Kwak JH. Synthesis and Biological Evaluation of ( S)-2-(Substituted arylmethyl)-1-oxo-1,2,3,4-tetrahydropyrazino[1,2- a]indole-3-carboxamide Analogs and Their Synergistic Effect against PTEN-Deficient MDA-MB-468 Cells. Pharmaceuticals (Basel) 2021; 14:ph14100974. [PMID: 34681198 PMCID: PMC8537755 DOI: 10.3390/ph14100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
A series of twenty-six compounds of furfuryl or benzyl tetrahydropyrazino[1,2-a]indole analogs were synthesized and evaluated for cytotoxic activity against the estrogen receptor (ER)-positive breast cancer cell line (MCF-7) and the epidermal growth factor receptor (EGFR) over-expressed triple-negative breast cancer cell line (MDA-MB-468). Among them, compounds 2b, 2f and 2i showed more potent activity and selectivity against MDA-MB-468 cells than gefitinib, as an EGFR- tyrosine kinase inhibitor. In addition, it was confirmed by means of isobologram analysis of combinational treatment with gefitinib that they have a synergistic effect, especially compounds 2b and 2f, which inhibit Akt T308 phosphorylation. Moreover, it was confirmed that 2-benzyl-1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide analogs (2b, 2f, and Ref 2) tend to selectively inhibit PI3Kβ, which is involved in the phosphorylation of Akt.
Collapse
Affiliation(s)
- Ye-Mi Kwon
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Correspondence: (Y.-S.J.); (J.-H.K.); Tel.: +82-51-510-2816 (Y.-S.J.); +82-51-663-4889 (J.-H.K.)
| | - Jae-Hwan Kwak
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
- Correspondence: (Y.-S.J.); (J.-H.K.); Tel.: +82-51-510-2816 (Y.-S.J.); +82-51-663-4889 (J.-H.K.)
| |
Collapse
|
15
|
Degan SE, Gelman IH. Emerging Roles for AKT Isoform Preference in Cancer Progression Pathways. Mol Cancer Res 2021; 19:1251-1257. [PMID: 33931488 DOI: 10.1158/1541-7786.mcr-20-1066] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
The phosphoinositol-3 kinase (PI3K)-AKT pathway is one of the most mutated in human cancers, predominantly associated with the loss of the signaling antagonist, PTEN, and to lesser extents, with gain-of-function mutations in PIK3CA (encoding PI3K-p110α) and AKT1. In addition, most oncogenic driver pathways activate PI3K/AKT signaling. Nonetheless, drugs targeting PI3K or AKT have fared poorly against solid tumors in clinical trials as monotherapies, yet some have shown efficacy when combined with inhibitors of other oncogenic drivers, such as receptor tyrosine kinases or nuclear hormone receptors. There is growing evidence that AKT isoforms, AKT1, AKT2, and AKT3, have different, often distinct roles in either promoting or suppressing specific parameters of oncogenic progression, yet few if any isoform-preferred substrates have been characterized. This review will describe recent data showing that the differential activation of AKT isoforms is mediated by complex interplays between PTEN, PI3K isoforms and upstream tyrosine kinases, and that the efficacy of PI3K/AKT inhibitors will likely depend on the successful targeting of specific AKT isoforms and their preferred pathways.
Collapse
Affiliation(s)
- Seamus E Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
16
|
Su B, Zhang L, Zhuang W, Zhang W, Chen X. Knockout of Akt1/2 suppresses the metastasis of human prostate cancer cells CWR22rv1 in vitro and in vivo. J Cell Mol Med 2020; 25:1546-1553. [PMID: 33377281 PMCID: PMC7875906 DOI: 10.1111/jcmm.16246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Although primary androgen deprivation therapy resulted in tumour regression, unfortunately, majority of prostate cancer progress to a lethal castration‐resistant prostate cancer, finally die to metastasis. The mutual feedback between AKT and AR pathways plays a vital role in the progression and metastasis of prostate cancer. Therefore, the treatment of a single factor will eventually inevitably lead to failure. Therefore, better understanding of the molecular mechanisms underlying metastasis is critical to the development of new and more effective therapeutic agents. In this study, we created prostate cancer CWR22rv1 cells with the double knockout of Akt1 and Akt2 genes through CRISPR/Cas9 method to investigate the effect of Akt in metastasis of prostate cancer. It was found that knockout of Akt1/2 resulted in markedly reduced metastasis in vitro and in vivo, and appeared to interfere AR nuclear translocation through regulating downstream regulatory factor, FOXO proteins. It suggests that some downstream regulatory factors in the AKT and AR interaction network play a vital role in prostate cancer metastasis and are potential targeting molecules for prostate cancer metastasis treatment.
Collapse
Affiliation(s)
- Bing Su
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Lijuan Zhang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenfang Zhuang
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaofan Chen
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
17
|
Csolle MP, Ooms LM, Papa A, Mitchell CA. PTEN and Other PtdIns(3,4,5)P 3 Lipid Phosphatases in Breast Cancer. Int J Mol Sci 2020; 21:ijms21239189. [PMID: 33276499 PMCID: PMC7730566 DOI: 10.3390/ijms21239189] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signalling pathway is hyperactivated in ~70% of breast cancers. Class I PI3K generates PtdIns(3,4,5)P3 at the plasma membrane in response to growth factor stimulation, leading to AKT activation to drive cell proliferation, survival and migration. PTEN negatively regulates PI3K/AKT signalling by dephosphorylating PtdIns(3,4,5)P3 to form PtdIns(4,5)P2. PtdIns(3,4,5)P3 can also be hydrolysed by the inositol polyphosphate 5-phosphatases (5-phosphatases) to produce PtdIns(3,4)P2. Interestingly, while PTEN is a bona fide tumour suppressor and is frequently mutated/lost in breast cancer, 5-phosphatases such as PIPP, SHIP2 and SYNJ2, have demonstrated more diverse roles in regulating mammary tumourigenesis. Reduced PIPP expression is associated with triple negative breast cancers and reduced relapse-free and overall survival. Although PIPP depletion enhances AKT phosphorylation and supports tumour growth, this also inhibits cell migration and metastasis in vivo, in a breast cancer oncogene-driven murine model. Paradoxically, SHIP2 and SYNJ2 are increased in primary breast tumours, which correlates with invasive disease and reduced survival. SHIP2 or SYNJ2 overexpression promotes breast tumourigenesis via AKT-dependent and independent mechanisms. This review will discuss how PTEN, PIPP, SHIP2 and SYNJ2 distinctly regulate multiple functional targets, and the mechanisms by which dysregulation of these distinct phosphoinositide phosphatases differentially affect breast cancer progression.
Collapse
|
18
|
Saji M, Kim CS, Wang C, Zhang X, Khanal T, Coombes K, La Perle K, Cheng SY, Tsichlis PN, Ringel MD. Akt isoform-specific effects on thyroid cancer development and progression in a murine thyroid cancer model. Sci Rep 2020; 10:18316. [PMID: 33110146 PMCID: PMC7591514 DOI: 10.1038/s41598-020-75529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Akt family is comprised of three unique homologous proteins with isoform-specific effects, but isoform-specific in vivo data are limited in follicular thyroid cancer (FTC), a PI3 kinase-driven tumor. Prior studies demonstrated that PI3K/Akt signaling is important in thyroid hormone receptor βPV/PV knock-in (PV) mice that develop metastatic thyroid cancer that most closely resembles FTC. To determine the roles of Akt isoforms in this model we crossed Akt1-/-, Akt2-/-, and Akt3-/- mice with PV mice. Over 12 months, thyroid size was reduced for the Akt null crosses (p < 0.001). Thyroid cancer development and local invasion were delayed in only the PVPV-Akt1 knock out (KO) mice in association with increased apoptosis with no change in proliferation. Primary-cultured PVPV-Akt1KO thyrocytes uniquely displayed a reduced cell motility. In contrast, loss of any Akt isoform reduced lung metastasis while vascular invasion was reduced with Akt1 or 3 loss. Microarray of thyroid RNA displayed incomplete overlap between the Akt KO models. The most upregulated gene was the dendritic cell (DC) marker CD209a only in PVPV-Akt1KO thyroids. Immunohistochemistry demonstrated an increase in CD209a-expressing cells in the PVPV-Akt1KO thyroids. In summary, Akt isoforms exhibit common and differential functions that regulate local and metastatic progression in this model of thyroid cancer.
Collapse
Affiliation(s)
- Motoyasu Saji
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Caroline S Kim
- Division of Endocrinology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chaojie Wang
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Tilak Khanal
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA
| | - Kevin Coombes
- Center for Biostatistics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
- Department of Biostatistics and Bionformatics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Krista La Perle
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheue-Yann Cheng
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, 506 Biomedical Research Tower, 560 West 12th Avenue, Columbus, OH, 43210, USA.
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
19
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
20
|
Mishra RK, Ahmad A, Vyawahare A, Kumar A, Khan R. Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes. Curr Top Med Chem 2020; 20:1810-1823. [PMID: 32543361 DOI: 10.2174/1568026620666200616133814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Monoclonal antibodies (mAbs) have always provided outstanding therapeutic arsenal in the
treatment of cancer, be it hematological malignancies or solid tumors. Monoclonal antibodies mediated
targeting of cancer genes in general and tumor-suppressor genes, in particular, have appreciably allowed
the possibilities of trafficking these antibodies to specific tumor mechanisms and aim for the pin-point
maneuvered tumor treatment strategies. The conventional cancer treatment options are associated with
enormous limitations like drug resistance, acute and pan-toxic side effects and collateral damage to other
unrelated cells and organs. Therefore, monoclonal antibody-mediated treatments have some special advantages
of specific targeting of cancer-related genes and minimizing the off-target side effects. A large
number of monoclonal antibody-mediated treatment regimen viz. use of immunoconjugates, clinically
targeting TGFβ with pan-TGFβ monoclonal antibodies, p53 by its monoclonal antibodies and EGFRtargeted
monoclonal antibodies, etc. have been observed in the recent past. In this review, the authors
have discussed some of the significant advances in the context of targeting tumor suppressor genes with
monoclonal antibodies. Approximately 250 articles were scanned from research databases like PubMed
central, Europe PubMed Central and google scholar up to the date of inception, and relevant reports on
monoclonal antibody-mediated targeting of cancer genes were selected. mAb mediated targeting of tumor
suppressor genes is a recent grey paradigm, which has not been explored up to its maximum potential.
Therefore, this review will be of appreciable significance that it will boost further in-depth understanding
of various aspects of mAb arbitrated cancer targeting and will warrant and promote further rigorous
research initiatives in this regard. The authors expect that this review will acquaint the readers
with the current status regarding the recent progress in the domain of mAbs and their employability and
targetability towards tumor suppressor genes in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajay Kumar
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
21
|
Mechanism of PRL2 phosphatase-mediated PTEN degradation and tumorigenesis. Proc Natl Acad Sci U S A 2020; 117:20538-20548. [PMID: 32788364 DOI: 10.1073/pnas.2002964117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.
Collapse
|
22
|
Zecchin D, Moore C, Michailidis F, Horswell S, Rana S, Howell M, Downward J. Combined targeting of G protein-coupled receptor and EGF receptor signaling overcomes resistance to PI3K pathway inhibitors in PTEN-null triple negative breast cancer. EMBO Mol Med 2020; 12:e11987. [PMID: 32672423 PMCID: PMC7411640 DOI: 10.15252/emmm.202011987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has poorer prognosis compared to other types of breast cancers due to the lack of effective therapies and markers for patient stratification. Loss of PTEN tumor suppressor gene expression is a frequent event in TNBC, resulting in over-activation of the PI 3-kinase (PI3K) pathway and sensitivity to its inhibition. However, PI3K pathway inhibitors show limited efficacy as monotherapies on these tumors. We report a whole-genome screen to identify targets whose inhibition enhanced the effects of different PI3K pathway inhibitors on PTEN-null TNBC. This identified a signaling network that relies on both the G protein-coupled receptor for thrombin (PAR1/F2R) and downstream G protein βγ subunits and also epidermal growth factor receptor (EGFR) for the activation of the PI3K isoform p110β and AKT. Compensation mechanisms involving these two branches of the pathway could bypass PI3K blockade, but combination targeting of both EGFR and PI3Kβ suppressed ribosomal protein S6 phosphorylation and exerted anti-tumor activity both in vitro and in vivo, suggesting a new potential therapeutic strategy for PTEN-null TNBC.
Collapse
Affiliation(s)
| | | | | | | | - Sareena Rana
- Oncogene BiologyFrancis Crick InstituteLondonUK
- Lung Cancer GroupInstitute of Cancer ResearchLondonUK
| | - Michael Howell
- High Throughput Screening LaboratoriesFrancis Crick InstituteLondonUK
| | - Julian Downward
- Oncogene BiologyFrancis Crick InstituteLondonUK
- Lung Cancer GroupInstitute of Cancer ResearchLondonUK
| |
Collapse
|
23
|
Joshi T, Patel I, Kumar A, Donovan V, Levenson AS. Grape Powder Supplementation Attenuates Prostate Neoplasia Associated with Pten Haploinsufficiency in Mice Fed High-Fat Diet. Mol Nutr Food Res 2020; 64:e2000326. [PMID: 32618118 PMCID: PMC8103660 DOI: 10.1002/mnfr.202000326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Previous studies have identified potent anticancer activities of polyphenols in preventing prostate cancer. The aim of the current study is to evaluate the chemopreventive potential of grape powder (GP) supplemented diets in genetically predisposed and obesity-provoked prostate cancer. METHODS AND RESULTS Prostate-specific Pten heterozygous (Pten+/f ) transgenic mice are fed low- and high-fat diet (LFD and HFD, respectively) supplemented with 10% GP for 33 weeks, ad libitum. Prostate tissues are characterized using immunohistochemistry and western blots, and sera are analyzed by ELISA and qRT-PCR. Pten+/f mice fed LFD and HFD supplemented with 10% GP show favorable histopathology, significant reduction of the proliferative rate of prostate epithelial cells (Ki67), and rescue of PTEN expression. The most potent protective effect of GP supplementation is detected against HFD-induced increase in inflammation (IL-1β; TGF-β1), activation of cell survival pathways (Akt, AR), and angiogenesis (CD31) in Pten+/f mice. Moreover, GP supplementation reduces circulating levels of oncogenic microRNAs (miR-34a; miR-22) in Pten+/f mice. There are no significant changes in body weight and food intake in GP supplemented diet groups. CONCLUSIONS GP diet supplementation can be a beneficial chemopreventive strategy for obesity-related inflammation and prostate cancer progression. Monitoring serum miRNAs can facilitate the non-invasive evaluation of chemoprevention efficacy.
Collapse
Affiliation(s)
- Tanvi Joshi
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | | | - Anait S. Levenson
- School of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
24
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
25
|
Scherer A, Stephens VR, McGivney GR, Gutierrez WR, Laverty EA, Knepper-Adrian V, Dodd RD. Distinct Tumor Microenvironments Are a Defining Feature of Strain-Specific CRISPR/Cas9-Induced MPNSTs. Genes (Basel) 2020; 11:E583. [PMID: 32456131 PMCID: PMC7288323 DOI: 10.3390/genes11050583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays important roles in cancer biology, but genetic backgrounds of mouse models can complicate interpretation of tumor phenotypes. A deeper understanding of strain-dependent influences on the tumor microenvironment of genetically-identical tumors is critical to exploring genotype-phenotype relationships, but these interactions can be difficult to identify using traditional Cre/loxP approaches. Here, we use somatic CRISPR/Cas9 tumorigenesis approaches to determine the impact of mouse background on the biology of genetically-identical malignant peripheral nerve sheath tumors (MPNSTs) in four commonly-used inbred strains. To our knowledge, this is the first study to systematically evaluate the impact of host strain on CRISPR/Cas9-generated mouse models. Our data identify multiple strain-dependent phenotypes, including changes in tumor onset and the immune microenvironment. While BALB/c mice develop MPNSTs earlier than other strains, similar tumor onset is observed in C57BL/6, 129X1 and 129/SvJae mice. Indel pattern analysis demonstrates that indel frequency, type and size are similar across all genetic backgrounds. Gene expression and IHC analysis identify multiple strain-dependent differences in CD4+ T cell infiltration and myeloid cell populations, including M2 macrophages and mast cells. These data highlight important strain-specific phenotypes of genomically-matched MPNSTs that have implications for the design of future studies using similar in vivo gene editing approaches.
Collapse
Affiliation(s)
- Amanda Scherer
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Victoria R. Stephens
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- PREP program, University of Iowa, Iowa City, IA 52242, USA
| | - Gavin R. McGivney
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | - Wade R. Gutierrez
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Emily A. Laverty
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Vickie Knepper-Adrian
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (A.S.); (V.R.S.); (E.A.L.); (V.K.-A.)
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (G.R.M.); (W.R.G.)
| |
Collapse
|
26
|
Magaway C, Kim E, Jacinto E. Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 2019; 8:cells8121584. [PMID: 31817676 PMCID: PMC6952948 DOI: 10.3390/cells8121584] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells support their growth and proliferation by reprogramming their metabolism in order to gain access to nutrients. Despite the heterogeneity in genetic mutations that lead to tumorigenesis, a common alteration in tumors occurs in pathways that upregulate nutrient acquisition. A central signaling pathway that controls metabolic processes is the mTOR pathway. The elucidation of the regulation and functions of mTOR can be traced to the discovery of the natural compound, rapamycin. Studies using rapamycin have unraveled the role of mTOR in the control of cell growth and metabolism. By sensing the intracellular nutrient status, mTOR orchestrates metabolic reprogramming by controlling nutrient uptake and flux through various metabolic pathways. The central role of mTOR in metabolic rewiring makes it a promising target for cancer therapy. Numerous clinical trials are ongoing to evaluate the efficacy of mTOR inhibition for cancer treatment. Rapamycin analogs have been approved to treat specific types of cancer. Since rapamycin does not fully inhibit mTOR activity, new compounds have been engineered to inhibit the catalytic activity of mTOR to more potently block its functions. Despite highly promising pre-clinical studies, early clinical trial results of these second generation mTOR inhibitors revealed increased toxicity and modest antitumor activity. The plasticity of metabolic processes and seemingly enormous capacity of malignant cells to salvage nutrients through various mechanisms make cancer therapy extremely challenging. Therefore, identifying metabolic vulnerabilities in different types of tumors would present opportunities for rational therapeutic strategies. Understanding how the different sources of nutrients are metabolized not just by the growing tumor but also by other cells from the microenvironment, in particular, immune cells, will also facilitate the design of more sophisticated and effective therapeutic regimen. In this review, we discuss the functions of mTOR in cancer metabolism that have been illuminated from pre-clinical studies. We then review key findings from clinical trials that target mTOR and the lessons we have learned from both pre-clinical and clinical studies that could provide insights on innovative therapeutic strategies, including immunotherapy to target mTOR signaling and the metabolic network in cancer.
Collapse
|
27
|
Zhao Y, Yu Y, Zhao W, You S, Feng M, Xie C, Chi X, Zhang Y, Wang X. As a downstream target of the AKT pathway, NPTX1 inhibits proliferation and promotes apoptosis in hepatocellular carcinoma. Biosci Rep 2019; 39:BSR20181662. [PMID: 31113871 PMCID: PMC6549097 DOI: 10.1042/bsr20181662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 04/26/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is correlated with a poor prognosis and high mortality worldwide. Neuronal pentraxin 1 (NPTX1) has been reported to play an oncogenic role in several types of tumors. However, its expression and function in HCC is not yet fully understood. In the present study, we aimed to investigate the clinicopathological significance of NPTX1 in HCC and the underlying mechanisms. We observed that the expression of NPTX1 was decreased significantly in HCC and was associated with tumor size and metastasis in patients. Gain-of-function approaches revealed that NPTX1 suppressed the growth ability of HCC cells and contributed to mitochondria- related apoptosis. Furthermore, mechanistic investigations showed that the AKT (AKT serine/threonine kinase) pathway can regulate the effects of NPTX1 in HCC cells. After blocking the AKT pathway, the action of NPTX1 was greatly increased. In summary, we demonstrated that NPTX1 inhibited growth and promoted apoptosis in HCC via an AKT-mediated signaling mechanism. These findings indicate that NPTX1 is a potential clinical therapeutic target.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Yaqi Yu
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Wenxiu Zhao
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Song You
- Faculty of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Min Feng
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Chengrong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Xiaoqin Chi
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| | - Yi Zhang
- Faculty of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Xiaomin Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, Fujian, P.R. China
| |
Collapse
|
28
|
Abstract
The PI3K/AKT/mTOR pathway is frequently activated in various human cancers and has been considered a promising therapeutic target. Many of the positive regulators of the PI3K/AKT/mTOR axis, including the catalytic (p110α) and regulatory (p85α), of class IA PI3K, AKT, RHEB, mTOR, and eIF4E, possess oncogenic potentials, as demonstrated by transformation assays in vitro and by genetically engineered mouse models in vivo. Genetic evidences also indicate their roles in malignancies induced by activation of the upstream oncoproteins including receptor tyrosine kinases and RAS and those induced by the loss of the negative regulators of the PI3K/AKT/mTOR pathway such as PTEN, TSC1/2, LKB1, and PIPP. Possible mechanisms by which the PI3K/AKT/mTOR axis contributes to oncogenic transformation include stimulation of proliferation, survival, metabolic reprogramming, and invasion/metastasis, as well as suppression of autophagy and senescence. These phenotypic changes are mediated by eIF4E-induced translation of a subset of mRNAs and by other downstream effectors of mTORC1 including S6K, HIF-1α, PGC-1α, SREBP, and ULK1 complex.
Collapse
|
29
|
Alwhaibi A, Kolhe R, Gao F, Cobran EK, Somanath PR. Genome atlas analysis based profiling of Akt pathway genes in the early and advanced human prostate cancer. Oncoscience 2019; 6:317-336. [PMID: 31360736 PMCID: PMC6650170 DOI: 10.18632/oncoscience.482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
Recent studies conducted in the mouse and cellular models suggest a stage-specific, differential effect of Akt activity modulation on tumor growth and metastasis in various cancers. In prostate cancer (PCa), although the deletion of Akt1 gene in a neuroendocrine model of TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) blunted oncogenic transformation and tumor growth, Akt1 suppression in the advanced PCa resulted in the activation of transforming growth factor-β pathway and enhanced metastasis to the lungs. Such a dual role for the Akt isoforms and its signaling partners has not been investigated in human PCa. In the current study, we performed genomic database analysis of Akt isoforms and associated pathway molecules in human prostate adenocarcinoma, castration-resistant PCa, neuroendocrine PCa and metastatic PCa for mutations, genetic alterations, mRNA and protein expressions and activating phosphorylations from cBioportal. Results from the protein data analysis from the cBioportal were compared to the results of our data on human PCa tissue analysis and the cellular effects of Akt1 suppression using MK-2206 on PCa cell aggressiveness. Our study indicates the existence of a dual role for Akt1 in PCa and warrants a large-scale analysis of the early and advanced stage PCa clinical samples for further clarity.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA 30912
| | - Fei Gao
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Ewan K. Cobran
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Athens, GA 30602
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912
- Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912
| |
Collapse
|
30
|
Papa A, Pandolfi PP. The PTEN⁻PI3K Axis in Cancer. Biomolecules 2019; 9:biom9040153. [PMID: 30999672 PMCID: PMC6523724 DOI: 10.3390/biom9040153] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022] Open
Abstract
The PI3K-AKT-mTOR signal transduction pathway regulates a variety of biological processes including cell growth, cell cycle progression and proliferation, cellular metabolism, and cytoskeleton reorganization. Fine-tuning of the phosphatidylinositol 3-kinase (PI3K) pathway signaling output is essential for the maintenance of tissue homeostasis and uncontrolled activation of this cascade leads to a number of human pathologies including cancer. Inactivation of the tumor suppressor phosphatase and tensin homologue deleted on Chromosome 10 (PTEN) and/or activating mutations in the proto-typical lipid kinase PI3K have emerged as some of the most frequent events associated with human cancer and as a result the PI3K pathway has become a highly sought-after target for cancer therapies. In this review we summarize the essential role of the PTEN-PI3K axis in controlling cellular behaviors by modulating activation of key proto-oncogenic molecular nodes and functional targets. Further, we highlight important functional redundancies and peculiarities of these two critical enzymes that over the last few decades have become a central part of the cancer research field and have instructed hundreds of pre-clinical and clinical trials to better cancer treatments.
Collapse
Affiliation(s)
- Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
31
|
Valvo V, Nucera C. Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinol Metab Clin North Am 2019; 48:37-59. [PMID: 30717910 PMCID: PMC6366338 DOI: 10.1016/j.ecl.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Williams TD, Peak-Chew SY, Paschke P, Kay RR. Akt and SGK protein kinases are required for efficient feeding by macropinocytosis. J Cell Sci 2019; 132:jcs.224998. [PMID: 30617109 DOI: 10.1242/jcs.224998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Macropinocytosis is an actin-driven process of large-scale and non-specific fluid uptake used for feeding by some cancer cells and the macropinocytosis model organism Dictyostelium discoideum In Dictyostelium, macropinocytic cups are organized by 'macropinocytic patches' in the plasma membrane. These contain activated Ras, Rac and phospholipid PIP3, and direct actin polymerization to their periphery. We show that a Dictyostelium Akt (PkbA) and an SGK (PkbR1) protein kinase act downstream of PIP3 and, together, are nearly essential for fluid uptake. This pathway enables the formation of larger macropinocytic patches and macropinosomes, thereby dramatically increasing fluid uptake. Through phosphoproteomics, we identify a RhoGAP, GacG, as a PkbA and PkbR1 target, and show that it is required for efficient macropinocytosis and expansion of macropinocytic patches. The function of Akt and SGK in cell feeding through control of macropinosome size has implications for cancer cell biology.
Collapse
Affiliation(s)
| | | | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
33
|
Batra A, Winquist E. Emerging cell cycle inhibitors for treating metastatic castration-resistant prostate cancer. Expert Opin Emerg Drugs 2018; 23:271-282. [PMID: 30422005 DOI: 10.1080/14728214.2018.1547707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Disease progression despite androgen suppression defines lethal castration-resistant prostate cancer (CRPC). Most of these cancers remain androgen receptor (AR)-signaling dependent. Therapy for metastatic CRPC includes abiraterone acetate, enzalutamide, docetaxel, cabazitaxel, sipuleucel-T, and radium-223. However, survival remains modest for men with progressive disease despite AR-targeted therapy and docetaxel, and therefore novel treatments are needed. Areas covered: Recent evidence of genomic heterogeneity and sensitivity to PARP inhibitors supports investigation of targeted agents in CRPC. Cell cycle inhibitors are therefore logical molecules to investigate. Review of the current literature identified cell cycle inhibitors under study in early phase clinical trials targeting the G1 (palbociclib, ribociclib, AZD-5363, ipatasertib), S (M-6620, prexasertib), G2 (adavosertib), and M (alisertib) phases of the cell cycle. Expert opinion: Strategies combining cell cycle inhibitors with active agents in CRPC are most likely to have clinical impact with CDK4/6 and Wee1 inhibitors appearing most promising. Identification of predictive biomarkers may be essential and currently trials are testing circulating cell-free DNA as an approach. Incremental toxicities such as neutropenia are important in this population. Results from most current clinical trials of cell cycle inhibitors in CRPC are still pending but it is anticipated they will provide important insights into the heterogeneous biology of CRPC.
Collapse
Affiliation(s)
- Anupam Batra
- a Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry , Western University and London Health Sciences Centre , London , ON , Canada
| | - Eric Winquist
- a Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry , Western University and London Health Sciences Centre , London , ON , Canada
| |
Collapse
|
34
|
Zhao H, Ma Y, Zhang L. Low-molecular-mass hyaluronan induces pulmonary inflammation by up-regulation of Mcl-1 to inhibit neutrophil apoptosis via PI3K/Akt1 pathway. Immunology 2018; 155:387-395. [PMID: 29975419 DOI: 10.1111/imm.12981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Although low-molecular-mass hyaluronan (LMMHA) has been implicated in pulmonary inflammatory diseases, the signalling pathway of LMMHA (200 000 molecular weight) that initiates the inflammatory response in lung is still unknown. In this study, we evaluate the role of phosphoinositide 3-kinase (PI3K) and its downstream signalling pathway in LMMHA-induced lung inflammatory responses. Our results indicate that pharmacological inhibition of PI3K or genetic deletion of Akt1 enhances neutrophil apoptosis, attenuates neutrophil influx into the lungs of mice and diminishes the expression of pro-inflammatory factors such as interleukin-6, keratinocyte cell-derived chemokine and pro-matrix metalloproteinase-9 in bronchoalveolar lavage fluid after intratracheal administration of LMMHA. More importantly, we found that PI3K/Akt1 participates in LMMHA-induced inflammatory responses, which are mainly mediated by the myeloid leukaemia cell differentiation protein (Mcl-1). Our study suggests that LMMHA induced significantly increased levels of inflammatory factors in bronchoalveolar lavage fluid and activation of the PI3K/Akt1 pathway, which up-regulates the expression of the anti-apoptotic protein Mcl-1 and inhibits the activation of caspase-3, thereby suppressing neutrophil apoptosis to trigger lung inflammation. These findings reveal a novel molecular mechanism underlying sterile inflammation and provides a new potential target for the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hang Zhao
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yating Ma
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Leifang Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
35
|
Hsu AH, Lum MA, Shim KS, Frederick PJ, Morrison CD, Chen B, Lele SM, Sheinin YM, Daikoku T, Dey SK, Leone G, Black AR, Black JD. Crosstalk between PKCα and PI3K/AKT Signaling Is Tumor Suppressive in the Endometrium. Cell Rep 2018; 24:655-669. [PMID: 30021163 PMCID: PMC6118133 DOI: 10.1016/j.celrep.2018.06.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Abstract
Protein kinase C (PKC) isozymes are commonly recognized as oncoproteins based on their activation by tumor-promoting phorbol esters. However, accumulating evidence indicates that PKCs can be inhibitory in some cancers, with recent findings propelling a shift in focus to understanding tumor suppressive functions of these enzymes. Here, we report that PKCα acts as a tumor suppressor in PI3K/AKT-driven endometrial cancer. Transcriptional suppression of PKCα is observed in human endometrial tumors in association with aggressive disease and poor prognosis. In murine models, loss of PKCα is rate limiting for endometrial tumor initiation. PKCα tumor suppression involves PP2A-family-dependent inactivation of AKT, which can occur even in the context of genetic hyperactivation of PI3K/AKT signaling by coincident mutations in PTEN, PIK3CA, and/or PIK3R1. Together, our data point to PKCα as a crucial tumor suppressor in the endometrium, with deregulation of a PKCα→PP2A/PP2A-like phosphatase signaling axis contributing to robust AKT activation and enhanced endometrial tumorigenesis.
Collapse
Affiliation(s)
- Alice H Hsu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle A Lum
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kang-Sup Shim
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J Frederick
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Carl D Morrison
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Baojiang Chen
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subodh M Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yuri M Sheinin
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Takiko Daikoku
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gustavo Leone
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
36
|
Sumanasuriya S, De Bono J. Treatment of Advanced Prostate Cancer-A Review of Current Therapies and Future Promise. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030635. [PMID: 29101113 DOI: 10.1101/cshperspect.a030635] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite many recent advances in the therapy for metastatic castration-resistant prostate cancer (mCRPC), the disease remains incurable, although men suffering from this disease are living considerably longer. In this review, we discuss the current treatment options available for this disease, such as taxane-based chemotherapy, the novel hormone therapies abiraterone and enzalutamide, and treatments such as radium-223 and sipuleucel-T. We also highlight the need for ongoing research in this field, because, despite numerous recent advances, the prognosis for mCRPC remains poor. Furthermore, as a growing body of evidence shows the increasing heterogeneity of the disease, and highlights the ongoing need for disease molecular stratification and validation/qualification of predictive biomarkers, we explore this burgeoning research space that is likely to transform how we treat this disease. We describe putative predictive biomarkers, including androgen receptor splice variants, phosphatase and tensin homolog (PTEN) loss, homologous recombination repair defects, including BRCA2 loss, and mismatch repair defects. The development of next-generation sequencing techniques and the routine biopsy of metastatic disease have driven significant advances in our understanding of the genomics of cancer, and are now poised to transform our treatment of this disease.
Collapse
Affiliation(s)
- Semini Sumanasuriya
- Division of Clinical Studies, The Institute of Cancer Research, Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, United Kingdom
| | - Johann De Bono
- Division of Clinical Studies, The Institute of Cancer Research, Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, United Kingdom
| |
Collapse
|
37
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
38
|
Kimbrough-Allah MN, Millena AC, Khan SA. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells. Prostate 2018; 78:377-389. [PMID: 29341212 PMCID: PMC5820153 DOI: 10.1002/pros.23482] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. METHODS Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. RESULTS TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. CONCLUSION We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration.
Collapse
Affiliation(s)
| | - Ana C Millena
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| |
Collapse
|
39
|
Li H, Liu Y, Chen L, Liu Q, Qi S, Cheng X, Lee YB, Ahn CH, Kim DJ, Lee RJ. Folate receptor-targeted lipid-albumin nanoparticles (F-LAN) for therapeutic delivery of an Akt1 antisense oligonucleotide. J Drug Target 2018; 26:466-473. [PMID: 29376449 DOI: 10.1080/1061186x.2018.1433678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND RX-0201 is an antisense oligonucleotide (ASO) against Akt1 currently in clinical trial for metastatic renal cancer. PURPOSE To improve the delivery of RX-0201 using folate receptor-targeted lipid-albumin nanoparticles (F-LAN). METHODS F-LAN were synthesized with the composition of DOTAP/soyPC/TPGS/folate-PEG-DSPE (25:70:4:1 m/m), a cationic human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate and RX-0201. The nanoparticles were evaluated in KB human carcinoma cells in vitro and in a KB murine xenograft tumour model in vivo for pharmacokinetics and antitumor activities. RESULTS The F-LAN-RX-0201 had a mean particle size of 108.6 ± 5.8 nm, zeta potential of 10.5 ± 3.2 mV and ASO loading efficiency of 71.5 ± 4.5%. In KB cells, uptake and Akt1 inhibition by F-LAN-RX-0201 were greater than those of non-targeted LAN-RX-0201 and could be partially blocked by excess free folate. F-LAN-RX-0201 inhibited cell growth with an IC50 of 11.9 μM. In contrast, LAN-RX-0201 showed lower cytotoxicity with an IC50 of 32.0 μM. No significant cytotoxicity was observed with up to 250 µM of free RX-0201. Pharmacokinetic studies showed that F-LAN-RX-0201 had a longer terminal half-life than free RX-0201 (442 vs. 219 min). In a KB xenograft tumour model, F-LAN-RX-0201 exhibited greater tumour inhibition than LAN-RX-0201 at 16 mg/kg. Moreover, F-LAN-RX-0201 at 16 mg/kg showed comparable tumour inhibition compared to free RX-0201 at a much higher dose of 90 mg/kg. CONCLUSIONS F-LAN-RX-0201 showed promise as a therapeutic agent for tumours with elevated folate-receptor expression.
Collapse
Affiliation(s)
- Hong Li
- a Division of Pharmaceutics , College of Pharmacy, The Ohio State University , Columbus , OH , USA
| | - Yang Liu
- a Division of Pharmaceutics , College of Pharmacy, The Ohio State University , Columbus , OH , USA
| | - Lihua Chen
- a Division of Pharmaceutics , College of Pharmacy, The Ohio State University , Columbus , OH , USA
| | - Qibing Liu
- a Division of Pharmaceutics , College of Pharmacy, The Ohio State University , Columbus , OH , USA
| | - Shanshan Qi
- a Division of Pharmaceutics , College of Pharmacy, The Ohio State University , Columbus , OH , USA
| | - Xinwei Cheng
- a Division of Pharmaceutics , College of Pharmacy, The Ohio State University , Columbus , OH , USA
| | - Young B Lee
- b Rexahn Pharmaceuticals, Inc. , Rockville , MD , USA
| | - Chang-Ho Ahn
- b Rexahn Pharmaceuticals, Inc. , Rockville , MD , USA
| | | | - Robert J Lee
- a Division of Pharmaceutics , College of Pharmacy, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
40
|
Gagliardi PA, Puliafito A, Primo L. PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol 2018; 48:27-35. [DOI: 10.1016/j.semcancer.2017.04.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
41
|
In Vivo Expression of miR-32 Induces Proliferation in Prostate Epithelium. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2546-2557. [DOI: 10.1016/j.ajpath.2017.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/25/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
|
42
|
Wang Q, Chen X, Hay N. Akt as a target for cancer therapy: more is not always better (lessons from studies in mice). Br J Cancer 2017; 117:159-163. [PMID: 28557977 PMCID: PMC5520506 DOI: 10.1038/bjc.2017.153] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/27/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
The PI3K/Akt signalling pathway is one of the most frequently altered signalling networks in human cancers and has become an attractive target in anticancer therapy. Several drugs targeting this pathway are currently in different phases of clinical trials. However, accumulating reports suggest that adverse effects such as hyperglycaemia and hyperinsulinaemia accompany treatment with pan-PI3K and pan-Akt inhibitors. Thus, understanding the consequences of the systemic deletion or inhibition of Akt activity in vivo is imperative. Three Akt isoforms may individually affect different cancer cells in culture to varying degrees that could suggest specific targeting of different Akt isoforms for different types of cancer. However, the results obtained in cell culture do not address the consequences of Akt isoform inhibition at the organismal level and consequently fail to predict the feasibility of targeting these isoforms for cancer therapy. This review summarises and discusses the consequences of genetic deletions of Akt isoforms in adult mice and their implications for cancer therapy. Whereas combined Akt1 and Akt2 rapidly induced mortality, hepatic Akt inhibition induced liver injury that promotes hepatocellular carcinoma. These findings may explain some of the side effects exerted by pan-PI3K and pan-Akt inhibitors and suggest that close attention must be paid when targeting all Akt isoforms as a therapeutic intervention.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinyu Chen
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
- Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
43
|
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond) 2017; 131:197-210. [PMID: 28057891 DOI: 10.1042/cs20160026] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.
Collapse
|
44
|
AKT/PKB Signaling: Navigating the Network. Cell 2017; 169:381-405. [PMID: 28431241 DOI: 10.1016/j.cell.2017.04.001] [Citation(s) in RCA: 2608] [Impact Index Per Article: 326.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022]
Abstract
The Ser and Thr kinase AKT, also known as protein kinase B (PKB), was discovered 25 years ago and has been the focus of tens of thousands of studies in diverse fields of biology and medicine. There have been many advances in our knowledge of the upstream regulatory inputs into AKT, key multifunctional downstream signaling nodes (GSK3, FoxO, mTORC1), which greatly expand the functional repertoire of AKT, and the complex circuitry of this dynamically branching and looping signaling network that is ubiquitous to nearly every cell in our body. Mouse and human genetic studies have also revealed physiological roles for the AKT network in nearly every organ system. Our comprehension of AKT regulation and functions is particularly important given the consequences of AKT dysfunction in diverse pathological settings, including developmental and overgrowth syndromes, cancer, cardiovascular disease, insulin resistance and type 2 diabetes, inflammatory and autoimmune disorders, and neurological disorders. There has also been much progress in developing AKT-selective small molecule inhibitors. Improved understanding of the molecular wiring of the AKT signaling network continues to make an impact that cuts across most disciplines of the biomedical sciences.
Collapse
|
45
|
Gao F, Alwhaibi A, Sabbineni H, Verma A, Eldahshan W, Somanath PR. Suppression of Akt1-β-catenin pathway in advanced prostate cancer promotes TGFβ1-mediated epithelial to mesenchymal transition and metastasis. Cancer Lett 2017; 402:177-189. [PMID: 28602980 DOI: 10.1016/j.canlet.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/25/2022]
Abstract
Akt1 is essential for the oncogenic transformation and tumor growth in various cancers. However, the precise role of Akt1 in advanced cancers is conflicting. Using a neuroendocrine TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model, we first show that the genetic ablation or pharmacological inhibition of Akt1 in mice blunts oncogenic transformation and prostate cancer (PCa) growth. Intriguingly, triciribine (TCBN)-mediated Akt inhibition in 25-week old, tumor-bearing TRAMP mice and Akt1 gene silencing in aggressive PCa cells enhanced epithelial to mesenchymal transition (EMT) and promoted metastasis to the lungs. Mechanistically, Akt1 suppression leads to increased expression of EMT markers such as Snail1 and N-cadherin and decreased expression of epithelial marker E-cadherin in TRAMP prostate, and in PC3 and DU145 cells. Next, we identified that Akt1 knockdown in PCa cells results in increased production of TGFβ1 and its receptor TGFβ RII, associated with a decreased expression of β-catenin. Furthermore, treatment of PCa cells with ICG001 that blocks nuclear translocation of β-catenin promoted EMT and N-cadherin expression. Together, our study demonstrates a novel role of the Akt1-β-catenin-TGFβ1 pathway in advanced PCa.
Collapse
Affiliation(s)
- Fei Gao
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Wael Eldahshan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
46
|
Ding K, Yuan Y, Chong QY, Yang Y, Li R, Li X, Kong X, Qian P, Xiong Z, Pandey V, Ma L, Wu Z, Lobie PE, Zhu T. Autocrine Prolactin Stimulates Endometrial Carcinoma Growth and Metastasis and Reduces Sensitivity to Chemotherapy. Endocrinology 2017; 158:1595-1611. [PMID: 28204229 DOI: 10.1210/en.2016-1903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/06/2017] [Indexed: 12/29/2022]
Abstract
Advanced and recurrent endometrial carcinoma (EC) exhibits a poor response to chemotherapy and low survival rates. It has been previously reported that human prolactin (hPRL) is upregulated in endometrial cancer and is associated with worse survival outcomes. We provide evidence for the functional role of hPRL in EC progression. We generated a model for the study of autocrine hPRL-mediated cell functional effects through the forced expression of hPRL in human EC cells. Autocrine hPRL expression stimulated cell proliferation, anchorage-independent growth, migration, and invasion of EC cells and promoted tumor growth, local invasion, and metastatic colonization in xenograft models. In addition, forced expression of hPRL decreased sensitivity of EC cells to chemotherapeutic drugs (i.e., doxorubicin and paclitaxel), both in vitro and in vivo. Consistently, small interfering RNA-mediated depletion of hPRL significantly reduced oncogenicity and enhanced the chemosensitivity of EC cells. As CD24 is hPRL-regulated and has been implicated in drug resistance in EC, we further showed that CD24 is a critical mediator of hPRL-stimulated reduced sensitivity to doxorubicin and paclitaxel in EC cells. Therefore, inhibition of hPRL signaling is a potential therapeutic strategy for the treatment of late-stage EC, which can be used in combination with chemotherapy to improve the chemotherapeutic response.
Collapse
Affiliation(s)
- Keshuo Ding
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230000, China
| | - Yan Yuan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| | - Yulu Yang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoni Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Xiangjun Kong
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Pengxu Qian
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Zirui Xiong
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Vijay Pandey
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
| | - Lan Ma
- Tsinghua-Berkeley Shenzhen Institute and Division of Life Sciences and Health, Tsinghua University Graduate School, Shenzhen 518055, China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230000, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599
- Tsinghua-Berkeley Shenzhen Institute and Division of Life Sciences and Health, Tsinghua University Graduate School, Shenzhen 518055, China
| | - Tao Zhu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| |
Collapse
|
47
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
48
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1220] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
49
|
Patitucci C, Couchy G, Bagattin A, Cañeque T, de Reyniès A, Scoazec JY, Rodriguez R, Pontoglio M, Zucman-Rossi J, Pende M, Panasyuk G. Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription. J Clin Invest 2017; 127:1873-1888. [PMID: 28394260 DOI: 10.1172/jci90327] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/16/2017] [Indexed: 12/26/2022] Open
Abstract
Worldwide epidemics of metabolic diseases, including liver steatosis, are associated with an increased frequency of malignancies, showing the highest positive correlation for liver cancer. The heterogeneity of liver cancer represents a clinical challenge. In liver, the transcription factor PPARγ promotes metabolic adaptations of lipogenesis and aerobic glycolysis under the control of Akt2 activity, but the role of PPARγ in liver tumorigenesis is unknown. Here we have combined preclinical mouse models of liver cancer and genetic studies of a human liver biopsy atlas with the aim of identifying putative therapeutic targets in the context of liver steatosis and cancer. We have revealed a protumoral interaction of Akt2 signaling with hepatocyte nuclear factor 1α (HNF1α) and PPARγ, transcription factors that are master regulators of hepatocyte and adipocyte differentiation, respectively. Akt2 phosphorylates and inhibits HNF1α, thus relieving the suppression of hepatic PPARγ expression and promoting tumorigenesis. Finally, we observed that pharmacological inhibition of PPARγ is therapeutically effective in a preclinical murine model of steatosis-associated liver cancer. Taken together, our studies in humans and mice reveal that Akt2 controls hepatic tumorigenesis through crosstalk between HNF1α and PPARγ.
Collapse
|
50
|
Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, Jiang M, Kan S, Sun T, Ren J, Pan Q, Li X, Zhang P, Hu G, Wang Y, Wang X, Li Q, Qin J. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest 2017; 127:1284-1302. [PMID: 28319045 DOI: 10.1172/jci91144] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/19/2017] [Indexed: 01/10/2023] Open
Abstract
Loss of phosphatase and tensin homolog (PTEN) and activation of the PI3K/AKT signaling pathway are hallmarks of prostate cancer (PCa). However, these alterations alone are insufficient for cells to acquire metastatic traits. Here, we have shown that the histone dimethyl transferase WHSC1 critically drives indolent PTEN-null tumors to become metastatic PCa. In a PTEN-null murine PCa model, WHSC1 overexpression in prostate epithelium cooperated with Pten deletion to produce a metastasis-prone tumor. Conversely, genetic ablation of Whsc1 prevented tumor progression in PTEN-null mice. Molecular characterization revealed that increased AKT activity due to PTEN loss directly phosphorylates WHSC1 at S172, preventing WHSC1 degradation by CRL4Cdt2 E3 ligase. Increased WHSC1 expression transcriptionally upregulates expression of RICTOR, a pivotal component of mTOR complex 2 (mTORC2), to further enhance AKT activity. Therefore, the AKT/WHSC1/mTORC2 signaling cascade represents a vicious feedback loop that elicits unrestrained AKT signaling. Furthermore, we determined that WHSC1 positively regulates Rac1 transcription to increase tumor cell motility. The biological importance of a WHSC1-mediated signaling cascade is substantiated by patient sample analysis in which WHSC1 signaling is tightly correlated with disease progression and recurrence. Taken together, our findings highlight a pivotal link between an epigenetic regulator, WHSC1, and key intracellular signaling molecules, AKT, RICTOR, and Rac1, to drive PCa metastasis.
Collapse
|