1
|
Khanehzad M, Abbaszadeh R, Holakuyee M, Modarressi MH, Nourashrafeddin SM. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis. Reprod Biol Endocrinol 2021; 19:4. [PMID: 33407539 PMCID: PMC7789255 DOI: 10.1186/s12958-020-00686-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spermatogenesis is a complex process that is controlled by interactions between germ cells and somatic cells. The commitment of undifferentiated spermatogonia to differentiating spermatogonia and normal spermatogenesis requires the action of gonadotropins. Additionally, numerous studies revealed the role of retinoic acid signaling in induction of germ cell differentiation and meiosis entry. MAIN TEXT Recent studies have shown that expression of several RA signaling molecules including Rdh10, Aldh1a2, Crabp1/2 are influenced by changes in gonadotropin levels. Components of signaling pathways that are regulated by FSH signaling such as GDNF, Sohlh1/2, c-Kit, DMRT, BMP4 and NRGs along with transcription factors that are important for proliferation and differentiation of spermatogonia are also affected by retinoic acid signaling. CONCLUSION According to all studies that demonstrate the interface between FSH and RA signaling, we suggest that RA may trigger spermatogonia differentiation and initiation of meiosis through regulation by FSH signaling in testis. Therefore, to the best of our knowledge, this is the first time that the correlation between FSH and RA signaling in spermatogenesis is highlighted.
Collapse
Affiliation(s)
- Maryam Khanehzad
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Abbaszadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Seyed Mehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wu T, Kamikawa YF, Donohoe ME. Brd4's Bromodomains Mediate Histone H3 Acetylation and Chromatin Remodeling in Pluripotent Cells through P300 and Brg1. Cell Rep 2019; 25:1756-1771. [PMID: 30428346 DOI: 10.1016/j.celrep.2018.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/10/2016] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
The pluripotent state of embryonic stem cells (ESCs) is defined by its transcriptome and epigenome. The chromatin reader Brd4 determines ESC identity. Although Brd4 regulation in gene transcription has been well described, its contribution to the chromatin landscape is less known. Here, we show that Brd4's bromodomains partner with the histone acetyltransferase P300, increasing its enzymatic activities. Augmenting histone acetylation by Brd4-P300 interaction recruits the chromatin remodeler Brg1 altering chromatin structure. This pathway is important for maintaining the expression and chromatin patterns of pluripotency-associated genes, such as Oct4, Nanog, and the X chromosome regulatory long noncoding RNAs Tsix and Xite. Furthermore, we show that the Brd4-P300 interaction regulates the de novo formation of chromatin marks during ESC differentiation, as exemplified by controlling the master regulators of mesoderm formation. Collectively, we delineate the function of Brd4 in organizing the chromatin structure that contributes to gene transcriptional regulation and cell fate determination.
Collapse
Affiliation(s)
- Tao Wu
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yasunao F Kamikawa
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary E Donohoe
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
3
|
Mallm JP, Windisch P, Biran A, Gal Z, Schumacher S, Glass R, Herold-Mende C, Meshorer E, Barbus M, Rippe K. Glioblastoma initiating cells are sensitive to histone demethylase inhibition due to epigenetic deregulation. Int J Cancer 2019; 146:1281-1292. [PMID: 31456217 DOI: 10.1002/ijc.32649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
Tumor-initiating cells are a subpopulation of cells that have self-renewal capacity to regenerate a tumor. Here, we identify stem cell-like chromatin features in human glioblastoma initiating cells (GICs) and link them to a loss of the repressive histone H3 lysine 9 trimethylation (H3K9me3) mark. Increasing H3K9me3 levels by histone demethylase inhibition led to cell death in GICs but not in their differentiated counterparts. The induction of apoptosis was accompanied by a loss of the activating H3 lysine 9 acetylation (H3K9ac) modification and accumulation of DNA damage and downregulation of DNA damage response genes. Upon knockdown of histone demethylases, KDM4C and KDM7A both differentiation and DNA damage were induced. Thus, the H3K9me3-H3K9ac equilibrium is crucial for GIC viability and represents a chromatin feature that can be exploited to specifically target this tumor subpopulation.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Windisch
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alva Biran
- Department of Genetics, Institute of Life Sciences, and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zoltan Gal
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Glass
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martje Barbus
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Min X, Zeng W, Chen N, Chen T, Jiang R. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics 2018; 33:i92-i101. [PMID: 28881969 PMCID: PMC5870572 DOI: 10.1093/bioinformatics/btx234] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Motivation Experimental techniques for measuring chromatin accessibility are expensive and time consuming, appealing for the development of computational approaches to predict open chromatin regions from DNA sequences. Along this direction, existing methods fall into two classes: one based on handcrafted k-mer features and the other based on convolutional neural networks. Although both categories have shown good performance in specific applications thus far, there still lacks a comprehensive framework to integrate useful k-mer co-occurrence information with recent advances in deep learning. Results We fill this gap by addressing the problem of chromatin accessibility prediction with a convolutional Long Short-Term Memory (LSTM) network with k-mer embedding. We first split DNA sequences into k-mers and pre-train k-mer embedding vectors based on the co-occurrence matrix of k-mers by using an unsupervised representation learning approach. We then construct a supervised deep learning architecture comprised of an embedding layer, three convolutional layers and a Bidirectional LSTM (BLSTM) layer for feature learning and classification. We demonstrate that our method gains high-quality fixed-length features from variable-length sequences and consistently outperforms baseline methods. We show that k-mer embedding can effectively enhance model performance by exploring different embedding strategies. We also prove the efficacy of both the convolution and the BLSTM layers by comparing two variations of the network architecture. We confirm the robustness of our model to hyper-parameters by performing sensitivity analysis. We hope our method can eventually reinforce our understanding of employing deep learning in genomic studies and shed light on research regarding mechanisms of chromatin accessibility. Availability and implementation The source code can be downloaded from https://github.com/minxueric/ismb2017_lstm. Supplementary information Supplementary materials are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xu Min
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, China.,Department of Computer Science and Technology, State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing, China
| | - Wanwen Zeng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, China.,Department of Automation, Tsinghua University, Beijing, China
| | - Ning Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, China.,Department of Computer Science and Technology, State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing, China
| | - Ting Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, China.,Department of Computer Science and Technology, State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing, China.,Program in Computational Biology and Bioinformatics, University of Southern California, CA, USA
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Tsinghua University, Beijing, China.,Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Lee K, Park OS, Seo PJ. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation. Sci Signal 2017; 10:10/507/eaan0316. [PMID: 29184030 DOI: 10.1126/scisignal.aan0316] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular dedifferentiation, the transition of differentiated somatic cells to pluripotent stem cells, ensures developmental plasticity and contributes to wound healing in plants. Wounding induces cells to form a mass of unorganized pluripotent cells called callus at the wound site. Explanted cells can also form callus tissues in vitro. Reversible cellular differentiation-dedifferentiation processes in higher eukaryotes are controlled mainly by chromatin modifications. We demonstrate that ARABIDOPSIS TRITHORAX-RELATED 2 (ATXR2), a histone lysine methyltransferase that promotes the accumulation of histone H3 proteins that are trimethylated on lysine 36 (H3K36me3) during callus formation, promotes early stages of cellular dedifferentiation through activation of LATERAL ORGAN BOUNDARIES DOMAIN (LBD) genes. The LBD genes of Arabidopsis thaliana are activated during cellular dedifferentiation to enhance the formation of callus. Leaf explants from Arabidopsis atxr2 mutants exhibited a reduced ability to form callus and a substantial reduction in LBD gene expression. ATXR2 bound to the promoters of LBD genes and was required for the deposition of H3K36me3 at these promoters. ATXR2 was recruited to LBD promoters by the transcription factors AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19. Leaf explants from arf7-1arf19-2 double mutants were defective in callus formation and showed reduced H3K36me3 accumulation at LBD promoters. Genetic analysis provided further support that ARF7 and ARF19 were required for the ability of ATXR2 to promote the expression of LBD genes. These observations indicate that the ATXR2-ARF-LBD axis is key for the epigenetic regulation of callus formation in Arabidopsis.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ok-Sun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Liao R, Mizzen CA. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation. Epigenetics Chromatin 2017; 10:29. [PMID: 28539972 PMCID: PMC5440973 DOI: 10.1186/s13072-017-0135-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural variation among histone H1 variants confers distinct modes of chromatin binding that are important for differential regulation of chromatin condensation, gene expression and other processes. Changes in the expression and genomic distributions of H1 variants during cell differentiation appear to contribute to phenotypic differences between cell types, but few details are known about the roles of individual H1 variants and the significance of their disparate capacities for phosphorylation. In this study, we investigated the dynamics of interphase phosphorylation at specific sites in individual H1 variants during the differentiation of pluripotent NT2 and mouse embryonic stem cells and characterized the kinases involved in regulating specific H1 variant phosphorylations in NT2 and HeLa cells. RESULTS Here, we show that the global levels of phosphorylation at H1.5-Ser18 (pS18-H1.5), H1.2/H1.5-Ser173 (pS173-H1.2/5) and H1.4-Ser187 (pS187-H1.4) are regulated differentially during pluripotent cell differentiation. Enrichment of pS187-H1.4 near the transcription start site of pluripotency factor genes in pluripotent cells is markedly reduced upon differentiation, whereas pS187-H1.4 levels at housekeeping genes are largely unaltered. Selective inhibition of CDK7 or CDK9 rapidly diminishes pS187-H1.4 levels globally and its enrichment at housekeeping genes, and similar responses were observed following depletion of CDK9. These data suggest that H1.4-S187 is a bona fide substrate for CDK9, a notion that is further supported by the significant colocalization of CDK9 and pS187-H1.4 to gene promoters in reciprocal re-ChIP analyses. Moreover, treating cells with actinomycin D to inhibit transcription and trigger the release of active CDK9/P-TEFb from 7SK snRNA complexes induces the accumulation of pS187-H1.4 at promoters and gene bodies. Notably, the levels of pS187-H1.4 enrichment after actinomycin D treatment or cell differentiation reflect the extent of CDK9 recruitment at the same loci. Remarkably, the global levels of H1.5-S18 and H1.2/H1.5-S173 phosphorylation are not affected by these transcription inhibitor treatments, and selective inhibition of CDK2 does not affect the global levels of phosphorylation at H1.4-S187 or H1.5-S18. CONCLUSIONS Our data provide strong evidence that H1 variant interphase phosphorylation is dynamically regulated in a site-specific and gene-specific fashion during pluripotent cell differentiation, and that enrichment of pS187-H1.4 at genes is positively related to their transcription. H1.4-S187 is likely to be a direct target of CDK9 during interphase, suggesting the possibility that this particular phosphorylation may contribute to the release of paused RNA pol II. In contrast, the other H1 variant phosphorylations we investigated appear to be mediated by distinct kinases and further analyses are needed to determine their functional significance.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, B107 Chemistry and Life Sciences Building, MC-123 601 S. Goodwin Ave., Urbana, IL 61801 USA.,Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801 USA
| |
Collapse
|
7
|
Mansouri V, Salehi M, Omrani MD, Niknam Z, Ardeshirylajimi A. Collagen-alginate microspheres as a 3D culture system for mouse embryonic stem cells differentiation to primordial germ cells. Biologicals 2017; 48:114-120. [PMID: 28483511 DOI: 10.1016/j.biologicals.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022] Open
Abstract
Germ cells differentiation of stem cells will aid treatment of adults with infertility. Biopolymers utilization provided synthetic extracellular matrix (ECM) and desired attributes in in vitro to improve conditions for stem cells attachment, proliferation and differentiation. Mixture of alginate as a biocompatible hydrogel, with collagen IV, could establish an in vitro 3 dimensional (3D) culture model. The objective of this study was investigation of the mouse ESCs differentiation capacity to putative primordial germ cells (PGCs) in the alginate and alginate-collagen IV microspheres (CAM). ESCs aggregated together to form embryoid bodies (EB) in CAM under basal medium supplemented with bone morphogenetic protein-4 (BMP4) as a differentiation factor. Viability and PGC differentiation of the stem cells in microspheres was evaluated by apoptosis and PGC related gene markers. Flow cytometry analysis was also used to detect of Mvh endogenous protein as a specific PGC marker. PGC gene and protein expression revealed that differentiation potential of ESCs to putative PGCs in CAM is significantly higher than control groups. Taking together, it was concluded that CAM demonstrated a great potential to use in PGCs differentiation and treatment of adults with infertility and may be a reliable means of producing mature germ cells.
Collapse
Affiliation(s)
- Vahid Mansouri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Ardeshirylajimi
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
The BRPF2/BRD1-MOZ complex is involved in retinoic acid-induced differentiation of embryonic stem cells. Exp Cell Res 2016; 346:30-9. [PMID: 27256846 DOI: 10.1016/j.yexcr.2016.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
The scaffold protein BRPF2 (also called BRD1), a key component of histone acetyltransferase complexes, plays an important role in embryonic development, but its function in the differentiation of embryonic stem cells (ESCs) remains unknown. In the present study, we investigated whether BRPF2 is involved in mouse ESC differentiation. BRPF2 depletion resulted in abnormal formation of embryoid bodies, downregulation of differentiation-associated genes, and persistent maintenance of alkaline phosphatase activity even after retinoic acid-induced differentiation, indicating impaired differentiation of BRPF2-depleted ESCs. We also found reduced global acetylation of histone H3 lysine 14 (H3K14) in BRPF2-depleted ESCs, irrespective of differentiation status. Further, co-immunoprecipitation analysis revealed a physical association between BRPF2 and the histone acetyltransferase MOZ in differentiated ESCs, suggesting the role of BRPF2-MOZ complexes in ESC differentiation. Together, these results suggest that BRPF2-MOZ complexes play an important role in the differentiation of ESCs via H3K14 acetylation.
Collapse
|
9
|
Wang Y, Jiang R, Wong WH. Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data. Natl Sci Rev 2016; 3:240-251. [PMID: 28690910 DOI: 10.1093/nsr/nww025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell packs a lot of genetic and regulatory information through a structure known as chromatin, i.e. DNA is wrapped around histone proteins and is tightly packed in a remarkable way. To express a gene in a specific coding region, the chromatin would open up and DNA loop may be formed by interacting enhancers and promoters. Furthermore, the mediator and cohesion complexes, sequence-specific transcription factors, and RNA polymerase II are recruited and work together to elaborately regulate the expression level. It is in pressing need to understand how the information, about when, where, and to what degree genes should be expressed, is embedded into chromatin structure and gene regulatory elements. Thanks to large consortia such as Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomic projects, extensive data on chromatin accessibility and transcript abundance are available across many tissues and cell types. This rich data offer an exciting opportunity to model the causal regulatory relationship. Here, we will review the current experimental approaches, foundational data, computational problems, interpretive frameworks, and integrative models that will enable the accurate interpretation of regulatory landscape. Particularly, we will discuss the efforts to organize, analyze, model, and integrate the DNA accessibility data, transcriptional data, and functional genomic regions together. We believe that these efforts will eventually help us understand the information flow within the cell and will influence research directions across many fields.
Collapse
Affiliation(s)
- Yong Wang
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA.,Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China
| | - Rui Jiang
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA.,MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Abstract
Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
11
|
Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells. Sci Rep 2015; 5:17691. [PMID: 26639176 PMCID: PMC4671053 DOI: 10.1038/srep17691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023] Open
Abstract
Nucleosome positioning and histone modification play a critical role in gene regulation, but their role during reprogramming has not been fully elucidated. Here, we determined the genome-wide nucleosome coverage and histone methylation occupancy in mouse embryonic fibroblasts (MEFs), induced pluripotent stem cells (iPSCs) and pre-iPSCs. We found that nucleosome occupancy increases in promoter regions and decreases in intergenic regions in pre-iPSCs, then recovers to an intermediate level in iPSCs. We also found that nucleosomes in pre-iPSCs are much more phased than those in MEFs and iPSCs. During reprogramming, nucleosome reorganization and histone methylation around transcription start sites (TSSs) are highly coordinated with distinctively transcriptional activities. Bivalent promoters gradually increase, while repressive promoters gradually decrease. High CpG (HCG) promoters of active genes are characterized by nucleosome depletion at TSSs, while low CpG (LCG) promoters exhibit the opposite characteristics. In addition, we show that vitamin C (VC) promotes reorganizations of canonical, H3K4me3- and H3K27me3-modified nucleosomes on specific genes during transition from pre-iPSCs to iPSCs. These data demonstrate that pre-iPSCs have a more open and phased chromatin architecture than that of MEFs and iPSCs. Finally, this study reveals the dynamics and critical roles of nucleosome positioning and chromatin organization in gene regulation during reprogramming.
Collapse
|
12
|
Madeja ZE, Hryniewicz K, Orsztynowicz M, Pawlak P, Perkowska A. WNT/β-Catenin Signaling Affects Cell Lineage and Pluripotency-Specific Gene Expression in Bovine Blastocysts: Prospects for Bovine Embryonic Stem Cell Derivation. Stem Cells Dev 2015; 24:2437-54. [DOI: 10.1089/scd.2015.0053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Zofia Eliza Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Kamila Hryniewicz
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Maciej Orsztynowicz
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | - Anna Perkowska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
13
|
Abstract
Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.
Collapse
|
14
|
Anifandis G, Messini CI, Dafopoulos K, Messinis IE. Genes and Conditions Controlling Mammalian Pre- and Post-implantation Embryo Development. Curr Genomics 2015; 16:32-46. [PMID: 25937812 PMCID: PMC4412963 DOI: 10.2174/1389202916666141224205025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023] Open
Abstract
Embryo quality during the in vitro developmental period is of great clinical importance. Experimental genetic studies during this period have demonstrated the association between specific gene expression profiles and the production of healthy blastocysts. Although the quality of the oocyte may play a major role in embryo development, it has been well established that the post - fertilization period also has an important and crucial role in the determination of blastocyst quality. A variety of genes (such as OCT, SOX2, NANOG) and their related signaling pathways as well as transcription molecules (such as TGF-β, BMP) have been implicated in the pre- and post-implantation period. Furthermore, DNA methylation has been lately characterized as an epigenetic mark since it is one of the most important processes involved in the maintenance of genome stability. Physiological embryo development appears to depend upon the correct DNA methylation pattern. Due to the fact that soon after fertilization the zygote undergoes several morphogenetic and developmental events including activation of embryonic genome through the transition of the maternal genome, a diverse gene expression pattern may lead to clinically important conditions, such as apoptosis or the production of a chromosomically abnormal embryo. The present review focused on genes and their role during pre-implantation embryo development, giving emphasis on the various parameters that may alter gene expression or DNA methylation patterns. The pre-implantation embryos derived from in vitro culture systems (in vitro fertilization) and the possible effects on gene expression after the prolonged culture conditions are also discussed.
Collapse
Affiliation(s)
- G Anifandis
- Department of Obstetrics and Gynaecology ; Embryology Lab, University of Thessalia, School of Health Sciences, Faculty of Medicine, Larisa, Greece
| | | | | | | |
Collapse
|
15
|
Li M, Chao L, Wu J, Xu H, Shen S, Chen S, Gao X, Yu N, Wang Z. Pygo2 siRNA Inhibit the Growth and Increase Apoptosis of U251 Cell by Suppressing Histone H3K4 Trimethylation. J Mol Neurosci 2015; 56:949-955. [PMID: 25869613 DOI: 10.1007/s12031-015-0558-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
The development of novel therapeutic strategies for glioma requires the identification of molecular targets involved in malignancy. Pygopus (Pygo) is a new discovered and specific downstream component of canonical Wnt signaling. Our previous study has demonstrated that Pygo2 is highly expressed in and promotes the growth of glioma cells. However, the role of Pygo2 in glioma remains to be elucidated. In the current study, we investigated the role of Pygo2 in human glioma U251 cells and showed that knocking down of the expression of Pygo2 in U251 cells using lentivirally expressed siRNA have inhibited cell proliferation and increased apoptosis through decreasing H3K4me3 expression. Moreover, we found Pygo2 was enriched in U251 glioma cancer stem-like cells and Pygo2 siRNA resulted in a reduced number as well as size of tumor spheres. According to our result, this paper now links mechanistically Pygo2's role in histone modification to its enhancement/reduction of proliferation/apoptosis in glioma cells and indicate that Pygo2 may play an important role in self-renew and proliferation in U251 glioma cancer stem-like cells.
Collapse
Affiliation(s)
- Mingcong Li
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, 350103, The People's Republic of China
| | - Linlin Chao
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, 350103, The People's Republic of China
| | - Jian Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Hao Xu
- Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui Province, 230000, People's Republic of China
| | - Shanghan Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Sifang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Xin Gao
- The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, 350103, The People's Republic of China
| | - Ning Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China
| | - Zhanxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, 361003, The People's Republic of China.
| |
Collapse
|
16
|
The histone acetyltransferase Myst2 regulates Nanog expression, and is involved in maintaining pluripotency and self-renewal of embryonic stem cells. FEBS Lett 2015; 589:941-50. [PMID: 25743411 DOI: 10.1016/j.febslet.2015.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/28/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The histone acetyltransferase Myst2 plays an important role in embryogenesis, but its function in undifferentiated ES cells remains poorly understood. Here, we show that Myst2 plays a role in pluripotency and self-renewal of ES cells. Myst2 deficiency results in loss of characteristic morphology, decreased alkaline phosphatase staining and reduced histone acetylation, as well as aberrant expression of pluripotency and differentiation markers. Our ChIP data reveal a direct association of Myst2 with the Nanog promoter and Myst2-dependent Oct4 binding on the Nanog promoter. Together our data suggest that Myst2-mediated histone acetylation may be required for recruitment of Oct4 to the Nanog promoter, thereby regulating Nanog transcription in ES cells.
Collapse
|
17
|
Wu T, Pinto HB, Kamikawa YF, Donohoe ME. The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression. Stem Cell Reports 2015; 4:390-403. [PMID: 25684227 PMCID: PMC4375790 DOI: 10.1016/j.stemcr.2015.01.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cell (ESC) pluripotency is controlled by defined transcription factors. During cellular differentiation, ESCs undergo a global epigenetic reprogramming. Female ESCs exemplify this process as one of the two X-chromosomes is globally silenced during X chromosome inactivation (XCI) to balance the X-linked gene disparity with XY males. The pluripotent factor OCT4 regulates XCI by triggering X chromosome pairing and counting. OCT4 directly binds Xite and Tsix, which encode two long noncoding RNAs (lncRNAs) that suppress the silencer lncRNA, Xist. To control its activity as a master regulator in pluripotency and XCI, OCT4 must have chromatin protein partners. Here we show that BRD4, a member of the BET protein subfamily, interacts with OCT4. BRD4 occupies the regulatory regions of pluripotent genes and the lncRNAs of XCI. BET inhibition or depletion of BRD4 reduces the expression of many pluripotent genes and shifts cellular fate showing that BRD4 is pivotal for transcription in ESCs. OCT4 interacts with BRD4 in embryonic stem cells (ESCs) BRD4 occupies the regulatory regions of pluripotent genes BRD4 occupies and controls the lncRNAs in X chromosome inactivation BET inhibition or depletion of BRD4 in ESCs shifts cell fate away from pluripotency
Collapse
Affiliation(s)
- Tao Wu
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Hugo Borges Pinto
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yasunao F Kamikawa
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary E Donohoe
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Departments of Neuroscience and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
18
|
Qiao Y, Wang R, Yang X, Tang K, Jing N. Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem 2014; 290:2508-20. [PMID: 25519907 DOI: 10.1074/jbc.m114.603761] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early neurodevelopment requires cell fate commitment from pluripotent stem cells to restricted neural lineages, which involves the epigenetic regulation of chromatin structure and lineage-specific gene transcription. However, it remains unclear how histone H3 lysine 9 acetylation (H3K9Ac), an epigenetic mark representing transcriptionally active chromatin, is involved in the neural commitment from pluripotent embryonic stem cells (ESCs). In this study, we demonstrate that H3K9Ac gradually declines during the first 4 days of in vitro neural differentiation of human ESCs (hESCs) and then increases during days 4-8. Consistent with this finding, the H3K9Ac enrichment at several pluripotency genes was decreased, and H3K9Ac occupancies at the loci of neurodevelopmental genes increased during hESC neural commitment. Inhibiting H3K9 deacetylation on days 0-4 by histone deacetylase inhibitors (HDACis) promoted hESC pluripotency and suppressed its neural differentiation. Conversely, HDACi-elicited up-regulation of H3K9 acetylation on days 4-8 enhanced neural differentiation and activated multiple neurodevelopmental genes. Mechanistically, HDACis promote pluripotency gene transcription to support hESC self-renewal through suppressing HDAC3 activity. During hESC neural commitment, HDACis relieve the inhibitory activities of HDAC1/5/8 and thereby promote early neurodevelopmental gene expression by interfering with gene-specific histone acetylation patterns. Furthermore, p300 is primarily identified as the major histone acetyltransferase involved in both hESC pluripotency and neural differentiation. Our results indicate that epigenetic modification plays pivotal roles during the early neural specification of hESCs. The histone acetylation, which is regulated by distinct HDAC members at different neurodevelopmental stages, plays dual roles in hESC pluripotency maintenance and neural differentiation.
Collapse
Affiliation(s)
- Yunbo Qiao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ran Wang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xianfa Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, the School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China, and
| | - Ke Tang
- the Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Naihe Jing
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China,
| |
Collapse
|
19
|
Rizwani W, Schaal C, Kunigal S, Coppola D, Chellappan S. Mammalian lysine histone demethylase KDM2A regulates E2F1-mediated gene transcription in breast cancer cells. PLoS One 2014; 9:e100888. [PMID: 25029110 PMCID: PMC4100745 DOI: 10.1371/journal.pone.0100888] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/30/2014] [Indexed: 01/01/2023] Open
Abstract
It is established that histone modifications like acetylation, methylation, phosphorylation and ubiquitination affect chromatin structure and modulate gene expression. Lysine methylation/demethylation on Histone H3 and H4 is known to affect transcription and is mediated by histone methyl transferases and histone demethylases. KDM2A/JHDM1A/FBXL11 is a JmjC-containing histone demethylase that targets mono- and dimethylated Lys36 residues of Histone H3; its function in breast cancer is not fully understood. Here we show that KDM2A is strongly expressed in myoepithelial cells (MEPC) in breast cancer tissues by immunohistochemistry. Ductal cells from ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) show positive staining for KDM2A, the expression decreases with disease progression to metastasis. Since breast MEPCs have tumor-suppressive and anti-angiogenic properties, we hypothesized that KDM2A could be contributing to some of these functions. Silencing KDM2A with small interfering RNAs demonstrated increased invasion and migration of breast cancer cells by suppressing a subset of matrix metalloproteinases (MMP-2, -9, -14 and -15), as seen by real-time PCR. HUVEC cells showed increased angiogenic tubule formation ability in the absence of KDM2A, with a concomitant increase in the expression of VEGF receptors, FLT-1 and KDR. KDM2A physically bound to both Rb and E2F1 in a cell cycle dependent manner and repressed E2F1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assays revealed that KDM2A associates with E2F1-regulated proliferative promoters CDC25A and TS in early G-phase and dissociates in S-phase. Further, KDM2A could also be detected on MMP9, 14 and 15 promoters, as well as promoters of FLT1 and KDR. KDM2A could suppress E2F1-mediated induction of these promoters in transient transfection experiments. These results suggest a regulatory role for KDM2A in breast cancer cell invasion and migration, through the regulation of E2F1 function.
Collapse
Affiliation(s)
- Wasia Rizwani
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Sateesh Kunigal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
20
|
Ravens S, Fournier M, Ye T, Stierle M, Dembele D, Chavant V, Tora L. Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation. eLife 2014; 3. [PMID: 24898753 PMCID: PMC4059888 DOI: 10.7554/elife.02104] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/03/2014] [Indexed: 12/11/2022] Open
Abstract
The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cell (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL and NSL. The individual contribution of MSL and NSL to transcription regulation in mESCs is not well understood. Our genome-wide analysis show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds exclusively at promoters, iii) while MSL binds in gene bodies. Nsl1 regulates proliferation and cellular homeostasis of mESCs. MSL is the main HAT acetylating H4K16 in mESCs, is enriched at many mESC-specific and bivalent genes. MSL is important to keep a subset of bivalent genes silent in mESCs, while developmental genes require MSL for expression during differentiation. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs and during differentiation. DOI:http://dx.doi.org/10.7554/eLife.02104.001 Embryonic stem cells are special cells that have the ability to become many different types of cells, such as skin, muscle, or neuronal cells. This process is called differentiation. They can also undergo a process called self-renewal to produce more embryonic stem cells. These processes are controlled by a complex network of enzymes, and the production of these enzymes depends on various genes within the organism being expressed as proteins. The DNA that holds the genetic information inside cells spends most of its time wrapped around proteins called histones: this allows the DNA molecules—which can be up to several metres long in some species—to fit inside the cell nucleus; it also protects the DNA molecules, which are quite fragile, from damage. Enzymes that attach chemical groups called acetyl groups to histones have a central role in controlling the self-renewal and differentiation of embryonic stem cells. Mof is an enzyme that attaches an acetyl group to a specific position in a particular histone. It is a subunit within two larger protein complexes that were originally identified in flies: the male-specific lethal (MSL) complex, which is only found in male flies, and the non-specific lethal (NSL) complex, which is found in both male and female flies. These complexes have been widely studied in flies, and the role of the Mof enzyme is also reasonably well understood in mammals. However, the roles of the MSL and NSL protein complexes in mammals are not fully understood. Ravens et al. have now used a combination of a technique called ChIP-seq (which can identify binding sites anywhere in the genome) and genetic ‘knock down’ experiments to explore the roles of these two complexes in mouse embryonic stem cells and neuronal progenitor cells. There is some overlap between the genes that the complexes act on. However, NSL acts on some genes than MSL does not act on, and vice versa. NSL mostly acts on genes that have ‘housekeeping’ functions and are expressed in many different cell types. MSL binds more to genes that are specific to embryonic stem cells, and acts on genes required for the development of neuronal progenitor cells. This means that NSL regulates the growth of embryonic stem cells, whereas MSL controls their development and differentiation. DOI:http://dx.doi.org/10.7554/eLife.02104.002
Collapse
Affiliation(s)
- Sarina Ravens
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Marjorie Fournier
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Tao Ye
- Microarrays and deep sequencing platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Matthieu Stierle
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Doulaye Dembele
- Microarrays and deep sequencing platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Virginie Chavant
- Proteomics platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| | - Làszlò Tora
- Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
21
|
Zhang YS, Sevilla A, Wan LQ, Lemischka IR, Vunjak-Novakovic G. Patterning pluripotency in embryonic stem cells. Stem Cells 2014; 31:1806-15. [PMID: 23843329 DOI: 10.1002/stem.1468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/27/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022]
Abstract
Developmental gradients of morphogens and the formation of boundaries guide the choices between self-renewal and differentiation in stem cells. Still, surprisingly little is known about gene expression signatures of differentiating stem cells at the boundaries between regions. We thus combined inducible gene expression with a microfluidic technology to pattern gene expression in murine embryonic stem cells. Regional depletion of the Nanog transcriptional regulator was achieved through the exposure of cells to microfluidic gradients of morphogens. In this way, we established pluripotency-differentiation boundaries between Nanog expressing cells (pluripotency zone) and Nanog suppressed cells (early differentiation zone) within the same cell population, with a gradient of Nanog expression across the individual cell colonies, to serve as a mimic of the developmental process. Using this system, we identified strong interactions between Nanog and its target genes by constructing a network with Nanog as the root and the measured levels of gene expression in each region. Gene expression patterns at the pluripotency-differentiation boundaries recreated in vitro were similar to those in the developing blastocyst. This approach to the study of cellular commitment at the boundaries between gene expression domains, a phenomenon critical for understanding of early development, has potential to benefit fundamental research of stem cells and their application in regenerative medicine.
Collapse
Affiliation(s)
- Yue Shelby Zhang
- Department for Biomedical Engineering, Columbia University, New York, USA
| | | | | | | | | |
Collapse
|
22
|
Sawan C, Hernandez-Vargas H, Murr R, Lopez F, Vaissière T, Ghantous AY, Cuenin C, Imbert J, Wang ZQ, Ren B, Herceg Z. Histone acetyltransferase cofactor Trrap maintains self-renewal and restricts differentiation of embryonic stem cells. Stem Cells 2014; 31:979-91. [PMID: 23362228 DOI: 10.1002/stem.1341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/02/2013] [Indexed: 01/03/2023]
Abstract
Chromatin states are believed to play a key role in distinct patterns of gene expression essential for self-renewal and pluripotency of embryonic stem cells (ESCs); however, the genes governing the establishment and propagation of the chromatin signature characteristic of pluripotent cells are poorly understood. Here, we show that conditional deletion of the histone acetyltransferase cofactor Trrap in mouse ESCs triggers unscheduled differentiation associated with loss of histone acetylation, condensation of chromatin into distinct foci (heterochromatization), and uncoupling of H3K4 dimethylation and H3K27 trimethylation. Trrap loss results in downregulation of stemness master genes Nanog, Oct4, and Sox2 and marked upregulation of specific differentiation markers from the three germ layers. Chromatin immunoprecipitation-sequencing analysis of genome-wide binding revealed a significant overlap between Oct4 and Trrap binding in ESCs but not in differentiated mouse embryonic fibroblasts, further supporting a functional interaction between Trrap and Oct4 in the maintenance of stemness. Remarkably, failure to downregulate Trrap prevents differentiation of ESCs, suggesting that downregulation of Trrap may be a critical step guiding transcriptional reprogramming and differentiation of ESCs. These findings establish Trrap as a critical part of the mechanism that restricts differentiation and promotes the maintenance of key features of ESCs.
Collapse
Affiliation(s)
- Carla Sawan
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
24
|
Muramatsu D, Singh PB, Kimura H, Tachibana M, Shinkai Y. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J Biol Chem 2013; 288:25285-25296. [PMID: 23836914 PMCID: PMC3757193 DOI: 10.1074/jbc.m113.470724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/23/2013] [Indexed: 02/02/2023] Open
Abstract
Pericentric regions form epigenetically organized silent heterochromatin structures that accumulate histone H3 lysine 9 trimethylation (H3K9me3) and HP1. At pericentric regions, Suv39h is the major enzyme that generates H3K9me3. Suv39h also interacts directly with HP1, a methylated H3K9-binding protein. However, it is not well characterized how HP1 interaction is important for Suv39h accumulation and Suv39h-mediated H3K9me3 formation at the pericentromere. To address this, we introduced the HP1 binding-defective N-terminally truncated mouse Suv39h1 (ΔN) into Suv39h-deficient embryonic stem cells. Interestingly, pericentric accumulation of ΔN and ΔN-mediated H3K9me3 was observed to recover, but HP1 accumulation was only marginally restored. ΔN also rescued DNA methyltransferase Dnmt3a and -3b accumulation and DNA methylation of the pericentromere. In contrast, other pericentric heterochromatin features, such as ATRX protein association and H4K20me3, were not recovered. Finally, derepressed major satellite repeats were partially silenced by ΔN expression. These findings clearly showed that the Suv39h-HP1 binding is dispensable for pericentric H3K9me3 and DNA methylation, but this interaction and HP1 recruitment/accumulation seem to be crucial for complete formation of heterochromatin.
Collapse
Affiliation(s)
- Daisuke Muramatsu
- From the Graduate School of Biostudies, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan,; the Cellular Memory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Prim B Singh
- the Fächereverband Anatomie, Institut für Zell and Neurobiologie, Charite-Universitätmedizin, 10117 Berlin, Germany
| | - Hiroshi Kimura
- the Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Tachibana
- From the Graduate School of Biostudies, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan,; the Institute for Virus Research, Kyoto University, 53 Shogoin, Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan, and
| | - Yoichi Shinkai
- the Cellular Memory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan,; CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan.
| |
Collapse
|
25
|
Oda M, Kumaki Y, Shigeta M, Jakt LM, Matsuoka C, Yamagiwa A, Niwa H, Okano M. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation. PLoS Genet 2013; 9:e1003574. [PMID: 23825962 PMCID: PMC3694845 DOI: 10.1371/journal.pgen.1003574] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/02/2013] [Indexed: 12/19/2022] Open
Abstract
DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells. Animal bodies are constructed from many different specialized cell types that are generated during embryogenesis from a single fertilized egg, and acquire their specific characteristics through a series of differentiation steps. After being committed to a specific cell type, it is generally difficult for differentiated cells to convert to other cell types, at least partly because the cells maintain some memory or mark of their developmental history. Such cellular memory is mediated by “epigenetic” mechanisms, which function to stabilize the cell state. DNA methylation, a chemical modification of genomic cytosine residues, is one such mechanism. Genomic DNA methylation patterns in early embryonic cells are established in a cell-type-dependent manner, and these specific patterns are propagated through cell divisions in a clonal manner. However, our understanding of how DNA methylation controls cell differentiation and developmental gene regulation is limited. In this study, using an in vitro model of differentiation, we obtained evidence that DNA methylation modulates the cell's response to DNA-binding transcription factors in a cell-type-dependent manner. These findings extend our understanding of how cellular traits are stabilized within specific lineages during development, and may contribute to advances in cellular engineering.
Collapse
Affiliation(s)
- Masaaki Oda
- Laboratory for Mammalian Epigenetic Studies, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Yuichi Kumaki
- Laboratory for Mammalian Epigenetic Studies, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Masaki Shigeta
- Laboratory for Pluripotent Cell Studies, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Lars Martin Jakt
- Laboratory for Stem Cell Biology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Chisa Matsuoka
- Laboratory for Mammalian Epigenetic Studies, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Akiko Yamagiwa
- Laboratory for Mammalian Epigenetic Studies, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Cell Studies, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Masaki Okano
- Laboratory for Mammalian Epigenetic Studies, Center for Developmental Biology, RIKEN, Kobe, Japan
- * E-mail:
| |
Collapse
|
26
|
Li X, Li L, Pandey R, Byun JS, Gardner K, Qin Z, Dou Y. The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell 2013; 11:163-78. [PMID: 22862943 DOI: 10.1016/j.stem.2012.04.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 01/07/2012] [Accepted: 04/18/2012] [Indexed: 02/01/2023]
Abstract
Pluripotent embryonic stem cells (ESCs) maintain self-renewal and the potential for rapid response to differentiation cues. Both ESC features are subject to epigenetic regulation. Here we show that the histone acetyltransferase Mof plays an essential role in the maintenance of ESC self-renewal and pluripotency. ESCs with Mof deletion lose characteristic morphology, alkaline phosphatase (AP) staining, and differentiation potential. They also have aberrant expression of the core transcription factors Nanog, Oct4, and Sox2. Importantly, the phenotypes of Mof null ESCs can be partially suppressed by Nanog overexpression, supporting the idea that Mof functions as an upstream regulator of Nanog in ESCs. Genome-wide ChIP-sequencing and transcriptome analyses further demonstrate that Mof is an integral component of the ESC core transcriptional network and that Mof primes genes for diverse developmental programs. Mof is also required for Wdr5 recruitment and H3K4 methylation at key regulatory loci, highlighting the complexity and interconnectivity of various chromatin regulators in ESCs.
Collapse
Affiliation(s)
- Xiangzhi Li
- Institute of Cell Biology, School of Medicine, Shandong University, Shandong 250100, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, Pera RR, Yakubov E, Cooke JP. Activation of innate immunity is required for efficient nuclear reprogramming. Cell 2013; 151:547-58. [PMID: 23101625 DOI: 10.1016/j.cell.2012.09.034] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 07/05/2012] [Accepted: 09/18/2012] [Indexed: 12/19/2022]
Abstract
Retroviral overexpression of reprogramming factors (Oct4, Sox2, Klf4, c-Myc) generates induced pluripotent stem cells (iPSCs). However, the integration of foreign DNA could induce genomic dysregulation. Cell-permeant proteins (CPPs) could overcome this limitation. To date, this approach has proved exceedingly inefficient. We discovered a striking difference in the pattern of gene expression induced by viral versus CPP-based delivery of the reprogramming factors, suggesting that a signaling pathway required for efficient nuclear reprogramming was activated by the retroviral, but not CPP approach. In gain- and loss-of-function studies, we find that the toll-like receptor 3 (TLR3) pathway enables efficient induction of pluripotency by viral or mmRNA approaches. Stimulation of TLR3 causes rapid and global changes in the expression of epigenetic modifiers to enhance chromatin remodeling and nuclear reprogramming. Activation of inflammatory pathways are required for efficient nuclear reprogramming in the induction of pluripotency.
Collapse
Affiliation(s)
- Jieun Lee
- Division of Cardiovascular Medicine, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
29
|
Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang D, Chen R, Liu D, Barton M, Songyang Z. The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem 2012; 288:5039-48. [PMID: 23239880 DOI: 10.1074/jbc.m112.424515] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem (ES) cells exhibit general characteristics of open chromatin, a state that may be necessary for ES cells to efficiently self-renew while remaining poised for differentiation. Histone H3K4 and H3K9 trimethylation associate as a general rule, with open and silenced chromatin, respectively, for ES cell pluripotency maintenance. However, how histone modifications are regulated to maintain open chromatin in ES cells remains largely unknown. Here, we demonstrate that trithorax protein Ash2l, homologue of the Drosophila Ash2 (absent, small, homeotic-2) protein, is a key regulator of open chromatin in ES cells. Consistent with Ash2l being a core subunit of mixed lineage leukemia methyltransferase complex, RNAi knockdown of Ash2l was sufficient to reduce H3K4 methylation levels and drive ES cells to a silenced chromatin state with high H3K9 trimethylation. Genome-wide ChIP-seq analysis indicated that Ash2l is recruited to target loci through two distinct modes and enriched at a family of genes implicated in open chromatin regulation, including chromatin remodeler Cdh7, transcription factor c-Myc, and H3K9 demethylase Kdm4c. Our results underscore the importance of Ash2l in open chromatin regulation and provide insight into how the open chromatin landscape is maintained in ES cells.
Collapse
Affiliation(s)
- Ma Wan
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510275 Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sanmartín M, Sauer M, Muñoz A, Rojo E. MINIYO and transcriptional elongation: lifting the roadblock to differentiation. Transcription 2012; 3:25-8. [PMID: 22456317 DOI: 10.4161/trns.3.1.19303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Inhibiting transcriptional elongation is a recurrent mechanism to keep cells in an undifferentiated, pluripotent state in metazoans. It remains, however, unclear whether lifting the barrier to transcriptional elongation acts as the switch to initiate differentiation in those organisms. Recent results suggest that such a mechanism for turning on differentiation does exist in plants. We argue that targeting the elongation phase of transcription may be a solution adopted widely in evolution to allow for the global transcriptional changes needed in cellular differentiation.
Collapse
|
31
|
Hernandez-Vargas H, Sincic N, Ouzounova M, Herceg Z. Epigenetic signatures in stem cells and cancer stem cells. Epigenomics 2012; 1:261-80. [PMID: 22122702 DOI: 10.2217/epi.09.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The physiological properties of pluripotency in stem cells and the processes of cell specialization are governed by epigenetic mechanisms, as they are inheritable but not dependent on the cell genotype. There is cumulating evidence demonstrating the presence of cells with stem cell properties within tumors, suggesting that these cells are responsible for tumor growth and heterogeneity. As epigenetic control of self-renewal and pluripotency is a hallmark of stem cells, there is increased interest in studying similar epigenetic mechanisms governing these stemness properties in cancer stem cells. Here we will review the evidence supporting a role for epigenetic mechanisms in the induction of cancer stem cells, with an emphasis on the epigenetic regulatory networks involved in the establishment of normal self-renewal and pluripotency, and their potential deregulation in cancer. We will also discuss the data supporting the plasticity of these mechanisms and its potential therapeutic implications.
Collapse
Affiliation(s)
- Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, Lyon cedex 08, France
| | | | | | | |
Collapse
|
32
|
Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, Weng Z, Rando OJ, Fazzio TG. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 2012; 147:1498-510. [PMID: 22196727 DOI: 10.1016/j.cell.2011.11.054] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 10/12/2011] [Accepted: 11/23/2011] [Indexed: 12/15/2022]
Abstract
Numerous chromatin regulators are required for embryonic stem (ES) cell self-renewal and pluripotency, but few have been studied in detail. Here, we examine the roles of several chromatin regulators whose loss affects the pluripotent state of ES cells. We find that Mbd3 and Brg1 antagonistically regulate a common set of genes by regulating promoter nucleosome occupancy. Furthermore, both Mbd3 and Brg1 play key roles in the biology of 5-hydroxymethylcytosine (5hmC): Mbd3 colocalizes with Tet1 and 5hmC in vivo, Mbd3 knockdown preferentially affects expression of 5hmC-marked genes, Mbd3 localization is Tet1-dependent, and Mbd3 preferentially binds to 5hmC relative to 5-methylcytosine in vitro. Finally, both Mbd3 and Brg1 are themselves required for normal levels of 5hmC in vivo. Together, our results identify an effector for 5hmC, and reveal that control of gene expression by antagonistic chromatin regulators is a surprisingly common regulatory strategy in ES cells.
Collapse
Affiliation(s)
- Ozlem Yildirim
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Onichtchouk D. Pou5f1/oct4 in pluripotency control: insights from zebrafish. Genesis 2012; 50:75-85. [PMID: 21913309 DOI: 10.1002/dvg.20800] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 12/16/2022]
Abstract
Gastrulation in vertebrates is a conserved process, which involves transition from cellular pluripotency to early precursors of ectoderm, mesoderm, and endoderm. Pluripotency control during this stage is far from being understood. Recent genetic and transcriptomic studies in zebrafish suggest that the core pluripotency transcription factors (TFs) Pou5f1 and TFs of the SoxB1 group are critically involved in large-scale temporal coordination of gene expression during gastrulation. A significant number of evolutionary conserved target genes of Pou5f1 in zebrafish are also involved in stem-cell circuit in mammalian ES cell cultures. Here, I will review the roles of Pou5f1 in development and discuss the evolutionary conservation of Pou5f1 functions and their relation to pluripotency control.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| |
Collapse
|
34
|
Parsons XH. Human Stem Cell Derivatives Retain More Open Epigenomic Landscape When Derived from Pluripotent Cells than from Tissues. ACTA ACUST UNITED AC 2012; 1. [PMID: 23936871 DOI: 10.4172/2325-9620.1000103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The growing number of identified stem cell derivatives and escalating concerns for safety and efficacy of these cells towards clinical applications have made it increasingly crucial to be able to assess the relative risk-benefit ratio of a given stem cell from a given source for a particular disease. Discerning the intrinsic plasticity and regenerative potential of human stem cell populations might reside in chromatin modifications that shape the respective epigenomes of their derivation routes. Previously, we have generated engraftable human neuronal progenitors direct from pluripotent human embryonic stem cells (hESCs) by small molecule induction (hESC-I hNuPs). Unlike the prototypical neuroepithelial-like nestin-positive human neural stem cells (hNSCs), these in vitro neuroectoderm-derived Nurr1-positive hESC-I hNuPs are a more neuronal lineage-specific and plastic hESC derivative. In this study, the global chromatin landscape changes in pluripotent hESCs and their neuronal lineage-specific derivative hESC-I hNuPs were profiled using genome-wide mapping and compared to CNS tissue-derived hNSCs. This study found that the broad potential of pluripotent hESCs is defined by an epigenome constituted of open conformation of chromatin mediated by a pattern of Oct-4 global distribution that corresponds closely with those of acetylated nucleosomes genome-wide. The epigenomic transition from pluripotency to restriction in lineage choices is characterized by genome-wide increases in histone H3K9 methylation that mediates global chromatin-silencing and somatic identity. Tissue-resident CNS-derived hNSCs have acquired a substantial number of additional histone H3K9 methylation, therefore, more silenced chromatin. These data suggest that the intrinsic plasticity and regenerative potential of human stem cell derivatives can be differentiated by their epigenomic landscape features, and that human stem cell derivatives retain more open epigenomic landscape, therefore, more developmental potential for scale-up regeneration, when derived from the hESCs in vitro than from the CNS tissue in vivo.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, USA ; Xcelthera, San Diego, USA
| |
Collapse
|
35
|
Loh YH, Yang L, Yang JC, Li H, Collins JJ, Daley GQ. Genomic approaches to deconstruct pluripotency. Annu Rev Genomics Hum Genet 2011; 12:165-85. [PMID: 21801025 DOI: 10.1146/annurev-genom-082410-101506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) first derived from the inner cell mass of blastocyst-stage embryos have the unique capacity of indefinite self-renewal and potential to differentiate into all somatic cell types. Similar developmental potency can be achieved by reprogramming differentiated somatic cells into induced pluripotent stem cells (iPSCs). Both types of pluripotent stem cells provide great potential for fundamental studies of tissue differentiation, and hold promise for disease modeling, drug development, and regenerative medicine. Although much has been learned about the molecular mechanisms that underlie pluripotency in such cells, our understanding remains incomplete. A comprehensive understanding of ESCs and iPSCs requires the deconstruction of complex transcription regulatory networks, epigenetic mechanisms, and biochemical interactions critical for the maintenance of self-renewal and pluripotency. In this review, we will discuss recent advances gleaned from application of global "omics" techniques to dissect the molecular mechanisms that define the pluripotent state.
Collapse
Affiliation(s)
- Yuin-Han Loh
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
36
|
Millane RC, Kanska J, Duffy DJ, Seoighe C, Cunningham S, Plickert G, Frank U. Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. Development 2011; 138:2429-39. [PMID: 21610024 DOI: 10.1242/dev.064931] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The evolutionary origin of stem cell pluripotency is an unresolved question. In mammals, pluripotency is limited to early embryos and is induced and maintained by a small number of key transcription factors, of which the POU domain protein Oct4 is considered central. Clonal invertebrates, by contrast, possess pluripotent stem cells throughout their life, but the molecular mechanisms that control their pluripotency are poorly defined. To address this problem, we analyzed the expression pattern and function of Polynem (Pln), a POU domain gene from the marine cnidarian Hydractinia echinata. We show that Pln is expressed in the embryo and adult stem cells of the animal and that ectopic expression in epithelial cells induces stem cell neoplasms and loss of epithelial tissue. Neoplasm cells downregulated the transgene but expressed the endogenous Pln gene and also Nanos, Vasa, Piwi and Myc, which are all known cnidarian stem cell markers. Retinoic acid treatment caused downregulation of Pln and the differentiation of neoplasm cells to neurosensory and epithelial cells. Pln downregulation by RNAi led to differentiation. Collectively, our results suggest an ancient role of POU proteins as key regulators of animal stem cells.
Collapse
Affiliation(s)
- R Cathriona Millane
- School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, University Road, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
37
|
Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat Cell Biol 2011; 13:1070-5. [PMID: 21841791 DOI: 10.1038/ncb2314] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/05/2011] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref. 1). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks. In contrast, EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs, and are required to inhibit their differentiation into EpiSCs. Moreover, we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors, and support the derivation of new ESC lines, including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition, but also identify Wnt as an essential and limiting ESC self-renewal factor.
Collapse
|
38
|
Ang YS, Gaspar-Maia A, Lemischka IR, Bernstein E. Stem cells and reprogramming: breaking the epigenetic barrier? Trends Pharmacol Sci 2011; 32:394-401. [PMID: 21621281 PMCID: PMC3128683 DOI: 10.1016/j.tips.2011.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 01/25/2023]
Abstract
Increasing evidence suggests that epigenetic regulation is key to the maintenance of the stem cell state. Chromatin is the physiological form of eukaryotic genomes and the substrate for epigenetic marking, including DNA methylation, post-translational modifications of histones and the exchange of core histones with histone variants. The chromatin template undergoes significant reorganization during embryonic stem cell (ESC) differentiation and somatic cell reprogramming (SCR). Intriguingly, remodeling of the epigenome appears to be a crucial barrier that must be surmounted for efficient SCR. This area of research has gained significant attention due to the importance of ESCs in modeling and treating human disease. Here we review the epigenetic mechanisms that are key for maintenance of the ESC state, ESC differentiation and SCR. We focus on murine and human ESCs and induced pluripotent stem cells, and highlight the pharmacological approaches used to study or manipulate cell fate where relevant.
Collapse
Affiliation(s)
- Yen-Sin Ang
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
39
|
Lienert F, Mohn F, Tiwari VK, Baubec T, Roloff TC, Gaidatzis D, Stadler MB, Schübeler D. Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 2011; 7:e1002090. [PMID: 21655081 PMCID: PMC3107198 DOI: 10.1371/journal.pgen.1002090] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/17/2011] [Indexed: 11/19/2022] Open
Abstract
Cellular differentiation entails reprogramming of the transcriptome from a pluripotent to a unipotent fate. This process was suggested to coincide with a global increase of repressive heterochromatin, which results in a reduction of transcriptional plasticity and potential. Here we report the dynamics of the transcriptome and an abundant heterochromatic histone modification, dimethylation of histone H3 at lysine 9 (H3K9me2), during neuronal differentiation of embryonic stem cells. In contrast to the prevailing model, we find H3K9me2 to occupy over 50% of chromosomal regions already in stem cells. Marked are most genomic regions that are devoid of transcription and a subgroup of histone modifications. Importantly, no global increase occurs during differentiation, but discrete local changes of H3K9me2 particularly at genic regions can be detected. Mirroring the cell fate change, many genes show altered expression upon differentiation. Quantitative sequencing of transcripts demonstrates however that the total number of active genes is equal between stem cells and several tested differentiated cell types. Together, these findings reveal high prevalence of a heterochromatic mark in stem cells and challenge the model of low abundance of epigenetic repression and resulting global basal level transcription in stem cells. This suggests that cellular differentiation entails local rather than global changes in epigenetic repression and transcriptional activity.
Collapse
Affiliation(s)
- Florian Lienert
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
| | - Vijay K. Tiwari
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
| | - Tuncay Baubec
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
| | - Tim C. Roloff
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland
- * E-mail:
| |
Collapse
|
40
|
Affiliation(s)
- Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
41
|
A Molecular Switch for Initiating Cell Differentiation in Arabidopsis. Curr Biol 2011; 21:999-1008. [DOI: 10.1016/j.cub.2011.04.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 11/20/2022]
|
42
|
Abstract
Mouse embryonic stem (ES) cells are defined by their capacity to self-renew and their ability to differentiate into all adult tissues including the germ line. Along with efficient clonal propagation, these properties have made them an unparalleled tool for manipulation of the mouse genome. Traditionally, mouse ES (mES) cells have been isolated and cultured in complex, poorly defined conditions that only permit efficient derivation from the 129 mouse strain; genuine ES cells have not been isolated from another species in these conditions. Recently, use of small molecule inhibitors of glycogen synthase kinase 3 (Gsk3) and the Fgf-MAPK signaling cascade has permitted efficient derivation of ES cells from all tested mouse strains. Subsequently, the first verified ES cells were established from a non-mouse species, Rattus norvegicus. Here, we summarize the advances in our understanding of the signaling pathways regulating mES cell self-renewal that led to the first derivation of rat ES cells and highlight the new opportunities presented for transgenic modeling on diverse genetic backgrounds. We also comment on the implications of this work for our understanding of pluripotent stem cells across mammalian species.
Collapse
Affiliation(s)
- Kathryn Blair
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Jason Wray
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Xie L, Pelz C, Wang W, Bashar A, Varlamova O, Shadle S, Impey S. KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J 2011; 30:1473-84. [PMID: 21448134 DOI: 10.1038/emboj.2011.91] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/25/2011] [Indexed: 12/23/2022] Open
Abstract
Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self-renewal, the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase, KDM5B, is a downstream Nanog target and critical for ESC self-renewal. Although KDM5B is believed to function as a promoter-bound repressor, we find that it paradoxically functions as an activator of a gene network associated with self-renewal. ChIP-Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3, increases cryptic intragenic transcription, and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self-renewal-associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.
Collapse
Affiliation(s)
- Liangqi Xie
- Oregon Stem Cell Center, Department of Pediatrics, Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Kooistra SM, van den Boom V, Thummer RP, Johannes F, Wardenaar R, Tesson BM, Veenhoff LM, Fusetti F, O'Neill LP, Turner BM, de Haan G, Eggen BJL. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression. Stem Cells 2011; 28:1703-14. [PMID: 20715181 DOI: 10.1002/stem.497] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response to dimethyl sulfoxide (DMSO) or after LIF withdrawal and display increased colony formation. UTF1 KD ES cells display extensive chromatin decondensation, reflected by a dramatic increase in nucleosome release on micrococcal nuclease (MNase) treatment and enhanced MNase sensitivity of UTF1 target genes in UTF1 KD ES cells. Summarizing, our data show that UTF1 is a key chromatin component in ES cells, preventing ES cell chromatin decondensation, and aberrant gene expression; both essential for proper initiation of lineage-specific differentiation of ES cells.
Collapse
Affiliation(s)
- Susanne M Kooistra
- Department of Developmental Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bowles J, Koopman P. Sex determination in mammalian germ cells: extrinsic versus intrinsic factors. Reproduction 2010; 139:943-58. [DOI: 10.1530/rep-10-0075] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian germ cells do not determine their sexual fate based on their XX or XY chromosomal constitution. Instead, sexual fate is dependent on the gonadal environment in which they develop. In a fetal testis, germ cells commit to the spermatogenic programme of development during fetal life, although they do not enter meiosis until puberty. In a fetal ovary, germ cells commit to oogenesis by entering prophase of meiosis I. Although it was believed previously that germ cells are pre-programmed to enter meiosis unless they are actively prevented from doing so, recent results indicate that meiosis is triggered by a signaling molecule, retinoic acid (RA). Meiosis is avoided in the fetal testis because a male-specifically expressed enzyme actively degrades RA during the critical time period. Additional extrinsic factors are likely to influence sexual fate of the germ cells, and in particular, we postulate that an additional male-specific fate-determining factor or factors is involved. The full complement of intrinsic factors that underlie the competence of gonadal germ cells to respond to RA and other extrinsic factors is yet to be defined.
Collapse
|
46
|
Massé J, Laurent A, Nicol B, Guerrier D, Pellerin I, Deschamps S. Involvement of ZFPIP/Zfp462 in chromatin integrity and survival of P19 pluripotent cells. Exp Cell Res 2010; 316:1190-201. [DOI: 10.1016/j.yexcr.2010.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 01/27/2023]
|
47
|
Persson J, Ekwall K. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation. Exp Cell Res 2010; 316:1316-23. [PMID: 20211173 DOI: 10.1016/j.yexcr.2010.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/24/2010] [Indexed: 01/19/2023]
Abstract
Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.
Collapse
Affiliation(s)
- Jenna Persson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Sweden
| | | |
Collapse
|
48
|
McEwen KR, Ferguson-Smith AC. Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenetics Chromatin 2010; 3:2. [PMID: 20180964 PMCID: PMC2841594 DOI: 10.1186/1756-8935-3-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 01/15/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. RESULTS Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. CONCLUSION A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two types of gene regulation, imprinting and developmental, our results suggest that different histone modifications associate with these distinct processes. This form of analysis is therefore a useful tool to elucidate the complex epigenetic code associated with genome function and to determine the underlying features conferring epigenetic states.
Collapse
Affiliation(s)
- Kirsten R McEwen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Anne C Ferguson-Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| |
Collapse
|
49
|
Lin CH, Lin C, Tanaka H, Fero ML, Eisenman RN. Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. PLoS One 2009; 4:e7839. [PMID: 19915707 PMCID: PMC2773118 DOI: 10.1371/journal.pone.0007839] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/17/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Myc oncoprotein, a transcriptional regulator involved in the etiology of many different tumor types, has been demonstrated to play an important role in the functions of embryonic stem (ES) cells. Nonetheless, it is still unclear as to whether Myc has unique target and functions in ES cells. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the role of c-Myc in murine ES cells, we mapped its genomic binding sites by chromatin-immunoprecipitation combined with DNA microarrays (ChIP-chip). In addition to previously identified targets we identified genes involved in pluripotency, early development, and chromatin modification/structure that are bound and regulated by c-Myc in murine ES cells. Myc also binds and regulates loci previously identified as Polycomb (PcG) targets, including genes that contain bivalent chromatin domains. To determine whether c-Myc influences the epigenetic state of Myc-bound genes, we assessed the patterns of trimethylation of histone H3-K4 and H3-K27 in mES cells containing normal, increased, and reduced levels of c-Myc. Our analysis reveals widespread and surprisingly diverse changes in repressive and activating histone methylation marks both proximal and distal to Myc binding sites. Furthermore, analysis of bulk chromatin from phenotypically normal c-myc null E7 embryos demonstrates a 70-80% decrease in H3-K4me3, with little change in H3-K27me3, compared to wild-type embryos indicating that Myc is required to maintain normal levels of histone methylation. CONCLUSIONS/SIGNIFICANCE We show that Myc induces widespread and diverse changes in histone methylation in ES cells. We postulate that these changes are indirect effects of Myc mediated by its regulation of target genes involved in chromatin remodeling. We further show that a subset of PcG-bound genes with bivalent histone methylation patterns are bound and regulated in response to altered c-Myc levels. Our data indicate that in mES cells c-Myc binds, regulates, and influences the histone modification patterns of genes involved in chromatin remodeling, pluripotency, and differentiation.
Collapse
Affiliation(s)
- Chin-Hsing Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - ChenWei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Matthew L. Fero
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Robert N. Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
50
|
Aranda P, Agirre X, Ballestar E, Andreu EJ, Román-Gómez J, Prieto I, Martín-Subero JI, Cigudosa JC, Siebert R, Esteller M, Prosper F. Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS One 2009; 4:e7809. [PMID: 19915669 PMCID: PMC2771914 DOI: 10.1371/journal.pone.0007809] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 10/14/2009] [Indexed: 01/01/2023] Open
Abstract
Background The therapeutic use of multipotent stem cells depends on their differentiation potential, which has been shown to be variable for different populations. These differences are likely to be the result of key changes in their epigenetic profiles. Methodology/Principal Findings to address this issue, we have investigated the levels of epigenetic regulation in well characterized populations of pluripotent embryonic stem cells (ESC) and multipotent adult stem cells (ASC) at the trancriptome, methylome, histone modification and microRNA levels. Differences in gene expression profiles allowed classification of stem cells into three separate populations including ESC, multipotent adult progenitor cells (MAPC) and mesenchymal stromal cells (MSC). The analysis of the PcG repressive marks, histone modifications and gene promoter methylation of differentiation and pluripotency genes demonstrated that stem cell populations with a wider differentiation potential (ESC and MAPC) showed stronger representation of epigenetic repressive marks in differentiation genes and that this epigenetic signature was progressively lost with restriction of stem cell potential. Our analysis of microRNA established specific microRNA signatures suggesting specific microRNAs involved in regulation of pluripotent and differentiation genes. Conclusions/Significance Our study leads us to propose a model where the level of epigenetic regulation, as a combination of DNA methylation and histone modification marks, at differentiation genes defines degrees of differentiation potential from progenitor and multipotent stem cells to pluripotent stem cells.
Collapse
Affiliation(s)
- Pablo Aranda
- Hematology Department and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Xabier Agirre
- Hematology Department and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Esteban Ballestar
- Cancer Epigenetics and Biology Program (PEBC), The Bellvitge Institute for Biomedical Research (IDIBELL-ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Enrique J. Andreu
- Hematology Department and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Inés Prieto
- Hematology Department and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - José Ignacio Martín-Subero
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University, Kiel, Germany
| | - Juan Cruz Cigudosa
- Molecular Cytogenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University, Kiel, Germany
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), The Bellvitge Institute for Biomedical Research (IDIBELL-ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Felipe Prosper
- Hematology Department and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|