1
|
Xie W, Xi Y, Dong D, Liu S, Ma Z, Peng L, Xia T, Gu X. LanCL1 protects developing neurons from long-term isoflurane anesthesia-induced neurotoxicity. Exp Neurol 2024; 381:114880. [PMID: 38972370 DOI: 10.1016/j.expneurol.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Research has revealed that prolonged or repeated exposure to isoflurane, a common general anesthetic, can lead to cognitive and behavioral deficiencies, particularly in early life. The brain contains a wealth of LanCL1, an antioxidant enzyme that is thought to mitigate oxidative stress. Nevertheless, its precise function in mammals remains uncertain. This study uncovered a decrease in the expression of LanCL1 due to prolonged isoflurane anesthesia, accompanied by anesthesia-induced neurotoxicity in vivo and in vitro. To better understand LanCL1's essential function, LanCL1 overexpressing adenoviruses were employed to increase LanCL1 levels. The outcomes were analyzed using western blot and immunofluorescence methods. According to the findings, extended exposure to isoflurane anesthesia may lead to developmental neurotoxicity in vivo and in vitro. The anesthesia-induced neurotoxicity was concomitant with a reduction in LanCL1 expression. Moreover, the study revealed that overexpression of LanCL1 can mitigate the neurotoxic effects of isoflurane anesthesia, resulting in improved synaptic growth, less reactive oxygen species, enhanced cell viability and rescued memory deficits in the developing brain. In conclusion, prolonged anesthesia-induced LanCL1 deficiency could be responsible for neurotoxicity and subsequent cognitive impairments in the developing brain. Additional LanCL1 counteracts this neurotoxic effect and protects neurons from long-term isoflurane anesthesia.
Collapse
Affiliation(s)
- Wenjia Xie
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yuqing Xi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Daoqian Dong
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liangyu Peng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Huang H, Tsui YM, Ho DWH, Chung CYS, Sze KMF, Lee E, Cheung GCH, Zhang VX, Wang X, Lyu X, Ng IOL. LANCL1, a cell surface protein, promotes liver tumor initiation through FAM49B-Rac1 axis to suppress oxidative stress. Hepatology 2024; 79:323-340. [PMID: 37540188 PMCID: PMC10789379 DOI: 10.1097/hep.0000000000000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS HCC is an aggressive cancer with a poor clinical outcome. Understanding the mechanisms that drive tumor initiation is important for improving treatment strategy. This study aimed to identify functional cell membrane proteins that promote HCC tumor initiation. APPROACH AND RESULTS Tailor-made siRNA library screening was performed for all membrane protein-encoding genes that are upregulated in human HCC (n = 134), with sphere formation as a surrogate readout for tumor initiation. Upon confirmation of membranous localization by immunofluorescence and tumor initiation ability by limiting dilution assay in vivo, LanC-like protein-1 (LANCL1) was selected for further characterization. LANCL1 suppressed intracellular reactive oxygen species (ROS) and promoted tumorigenicity both in vitro and in vivo. Mechanistically, with mass spectrometry, FAM49B was identified as a downstream binding partner of LANCL1. LANCL1 stabilized FAM49B by blocking the interaction of FAM49B with the specific E3 ubiquitin ligase TRIM21, thus protecting FAM49B from ubiquitin-proteasome degradation. The LANCL1-FAM49B axis suppressed the Rac1-NADPH oxidase-driven ROS production, but this suppression of ROS was independent of the glutathione transferase function of LANCL1. Clinically, HCCs with high co-expression of LANCL1 and FAM49B were associated with more advanced tumor stage, poorer overall survival, and disease-free survival. In addition, anti-LANCL1 antibodies targeting the extracellular N-terminal domain were able to suppress the self-renewal ability, as demonstrated by the sphere formation ability of HCC cells. CONCLUSIONS Our data showed that LANCL1 is a cell surface protein and a key contributor to HCC initiation. Targeting the LANCL1-FAM49B-Rac1-NADPH oxidase-ROS signaling axis may be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Hongyang Huang
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Clive Yik-Sham Chung
- Department of Pathology, The University of Hong Kong, Hong Kong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Gary Cheuk-Hang Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Vanilla Xin Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xia Wang
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Xueying Lyu
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Hernandez Garcia A, Nair SK. Structure and Function of a Class III Metal-Independent Lanthipeptide Synthetase. ACS CENTRAL SCIENCE 2023; 9:1944-1956. [PMID: 37901177 PMCID: PMC10604976 DOI: 10.1021/acscentsci.3c00484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 10/31/2023]
Abstract
In bacteria, Ser/Thr protein kinase-like sequences are found as part of large multidomain polypeptides that biosynthesize lanthipeptides, a class of natural products distinguished by the presence of thioether cross-links. The kinase domain phosphorylates Ser or Thr residues in the peptide substrates. Subsequent β-elimination by a lyase domain yields electrophilic dehydroamino acids, which can undergo cyclase domain-catalyzed cyclization to yield conformationally restricted, bioactive compounds. Here, we reconstitute the biosynthetic pathway for a class III lanthipeptide from Bacillus thuringiensis NRRL B-23139, including characterization of a two-component protease for leader peptide excision. We also describe the first crystal structures of a class III lanthipeptide synthetase, consisting of the lyase, kinase, and cyclase domains, in various states including complexes with its leader peptide and nucleotide. The structure shows interactions between all three domains that result in an active conformation of the kinase domain. Biochemical analysis demonstrates that the three domains undergo movement upon binding of the leader peptide to establish interdomain allosteric interactions that stabilize this active form. These studies inform on the regulatory mechanism of substrate recognition and provide a framework for engineering of variants of biotechnological interest.
Collapse
Affiliation(s)
- Andrea Hernandez Garcia
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Roger Adams
Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Roger Adams
Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Center
for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Lee H, Wu C, Desormeaux EK, Sarksian R, van der Donk WA. Improved production of class I lanthipeptides in Escherichia coli. Chem Sci 2023; 14:2537-2546. [PMID: 36908960 PMCID: PMC9993889 DOI: 10.1039/d2sc06597e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Lanthipeptides are ribosomally synthesised and post-translationally modified peptides containing lanthionine (Lan) and methyllanthionine (MeLan) residues that are formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a co-substrate to glutamylate Ser/Thr followed by glutamate elimination. Here we report a new system to heterologously express class I lanthipeptides in Escherichia coli through co-expression of the producing organism's glutamyl-tRNA synthetase (GluRS) and tRNAGlu pair in the vector pEVOL. In contrast to the results in the absence of the pEVOL system, we observed the production of fully-dehydrated peptides, including epilancin 15X, and peptides from the Bacteroidota Chryseobacterium and Runella. A second common obstacle to production of lanthipeptides in E. coli is the formation of glutathione adducts. LanC-like (LanCL) enzymes were previously reported to add glutathione to dehydroamino-acid-containing proteins in Eukarya. Herein, we demonstrate that the LanCL enzymes can remove GSH adducts from C-glutathionylated peptides with dl- or ll-lanthionine stereochemistry. These two advances will aid synthetic biology-driven genome mining efforts to discover new lanthipeptides.
Collapse
Affiliation(s)
- Hyunji Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- College of Pharmacy, Kyungsung University Busan 48434 Republic of Korea
| | - Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Raymond Sarksian
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
5
|
Liao P, Wu QY, Li S, Hu KB, Liu HL, Wang HY, Long ZY, Lu XM, Wang YT. The ameliorative effects and mechanisms of abscisic acid on learning and memory. Neuropharmacology 2023; 224:109365. [PMID: 36462635 DOI: 10.1016/j.neuropharm.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Abscisic acid (ABA), a conserved hormone existing in plants and animals, not only regulates blood glucose and inflammation but also has good therapeutic effects on obesity, diabetes, atherosclerosis and inflammatory diseases in animals. Studies have shown that exogenous ABA can pass the blood-brain barrier and inhibit neuroinflammation, promote neurogenesis, enhance synaptic plasticity, improve learning, memory and cognitive ability in the central nervous system. At the same time, ABA plays a crucial role in significant improvement of Alzheimer's disease, depression, and anxiety. Here we review the previous research progress of ABA on the physiological effects and clinical application in the related diseases. By summarizing the biological functions of ABA, we aim to reveal the possible mechanisms of ameliorative function of ABA on learning and memory, to provide a theoretical basis that ABA as a novel and safe drug improves learning memory and cognitive impairment in central system diseases such as aging, neurodegenerative diseases and traumatic brain injury.
Collapse
Affiliation(s)
- Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
6
|
Gonzalez Porras MA, Gransee HM, Denton TT, Shen D, Webb KL, Brinker CJ, Noureddine A, Sieck GC, Mantilla CB. CTB-targeted protocells enhance ability of lanthionine ketenamine analogs to induce autophagy in motor neuron-like cells. Sci Rep 2023; 13:2581. [PMID: 36781993 PMCID: PMC9925763 DOI: 10.1038/s41598-023-29437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Impaired autophagy, a cellular digestion process that eliminates proteins and damaged organelles, has been implicated in neurodegenerative diseases, including motor neuron disorders. Motor neuron targeted upregulation of autophagy may serve as a promising therapeutic approach. Lanthionine ketenamine (LK), an amino acid metabolite found in mammalian brain tissue, activates autophagy in neuronal cell lines. We hypothesized that analogs of LK can be targeted to motor neurons using nanoparticles to improve autophagy flux. Using a mouse motor neuron-like hybrid cell line (NSC-34), we tested the effect of three different LK analogs on autophagy modulation, either alone or loaded in nanoparticles. For fluorescence visualization of autophagy flux, we used a mCherry-GFP-LC3 plasmid reporter. We also evaluated protein expression changes in LC3-II/LC3-I ratio obtained by western blot, as well as presence of autophagic vacuoles per cell obtained by electron microscopy. Delivering LK analogs with targeted nanoparticles significantly enhanced autophagy flux in differentiated motor neuron-like cells compared to LK analogs alone, suggesting the need of a delivery vehicle to enhance their efficacy. In conclusion, LK analogs loaded in nanoparticles targeting motor neurons constitute a promising treatment option to induce autophagy flux, which may serve to mitigate motor neuron degeneration/loss and preserve motor function in motor neuron disease.
Collapse
Affiliation(s)
- Maria A Gonzalez Porras
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Heather M Gransee
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Travis T Denton
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd, College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA, USA
| | - Dunxin Shen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA, USA
| | - Kevin L Webb
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, USA
| | - Achraf Noureddine
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Gary C Sieck
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carlos B Mantilla
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- MB2-758, St Mary's Hospital, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Knospe CV, Kamel M, Spitz O, Hoeppner A, Galle S, Reiners J, Kedrov A, Smits SHJ, Schmitt L. The structure of MadC from Clostridium maddingley reveals new insights into class I lanthipeptide cyclases. Front Microbiol 2023; 13:1057217. [PMID: 36741885 PMCID: PMC9889658 DOI: 10.3389/fmicb.2022.1057217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
The rapid emergence of microbial multi-resistance against antibiotics has led to intense search for alternatives. One of these alternatives are ribosomally synthesized and post-translationally modified peptides (RiPPs), especially lantibiotics. They are active in a low nanomolar range and their high stability is due to the presence of characteristic (methyl-) lanthionine rings, which makes them promising candidates as bacteriocides. However, innate resistance against lantibiotics exists in nature, emphasizing the need for artificial or tailor-made lantibiotics. Obviously, such an approach requires an in-depth mechanistic understanding of the modification enzymes, which catalyze the formation of (methyl-)lanthionine rings. Here, we determined the structure of a class I cyclase (MadC), involved in the modification of maddinglicin (MadA) via X-ray crystallography at a resolution of 1.7 Å, revealing new insights about the structural composition of the catalytical site. These structural features and substrate binding were analyzed by mutational analyses of the leader peptide as well as of the cyclase, shedding light into the mode of action of MadC.
Collapse
Affiliation(s)
- C. Vivien Knospe
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Kamel
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Galle
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,*Correspondence: Lutz Schmitt, ✉
| |
Collapse
|
8
|
Ongpipattanakul C, Liu S, Luo Y, Nair SK, van der Donk WA. The mechanism of thia-Michael addition catalyzed by LanC enzymes. Proc Natl Acad Sci U S A 2023; 120:e2217523120. [PMID: 36634136 PMCID: PMC9934072 DOI: 10.1073/pnas.2217523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.
Collapse
Affiliation(s)
| | - Shi Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Youran Luo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
9
|
The ABA/LANCL Hormone/Receptor System in the Control of Glycemia, of Cardiomyocyte Energy Metabolism, and in Neuroprotection: A New Ally in the Treatment of Diabetes Mellitus? Int J Mol Sci 2023; 24:ijms24021199. [PMID: 36674711 PMCID: PMC9863406 DOI: 10.3390/ijms24021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.
Collapse
|
10
|
Yazawa A, Hensley K, Ohshima T. Effects of Lanthionine Ketimine-5-Ethyl Ester on the α-Synucleinopathy Mouse Model. Neurochem Res 2022; 47:2373-2382. [PMID: 35589915 DOI: 10.1007/s11064-022-03626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Potentially druggable mechanisms underlying synaptic deficits seen in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are under intense interrogations. In addition to defective synaptic vesicle trafficking, cytoskeletal disruption, autophagic perturbation, and neuroinflammation, hyperphosphorylation of microtubule-associated protein collapsin response mediator protein 2 (CRMP2, also known as DPYSL2) is newly determined to correlate with synaptic deficits in human DLB. The small molecule experimental therapeutic, lanthionine ketimine-5-ethyl ester (LKE), appears to interact with CRMP2 in a host of neurodegenerative mouse models, normalizing its phosphorylation level while promoting healthful autophagy in cell culture models and suppressing the proinflammatory phenotype of activated microglia. Accordingly, this study examined the effect of LKE on α-synuclein A53T transgenic (Tg) mice which were employed as a DLB model. We found that chronic administration of LKE to A53T mice suppressed (1) the accumulation of LBs, (2) neuroinflammatory activation of microglia, (3) impairment of contextual fear memory, and (4) CRMP2 phosphorylation at Thr509 in A53T Tg mice. These results suggest that CRMP2 phosphorylation by GSK3β in the hippocampus is related to pathology and memory impairment in DLB, and LKE may have clinical implications in the treatment of α-synucleinopathy.
Collapse
Affiliation(s)
- Arina Yazawa
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kenneth Hensley
- Department of Biochemistry, Molecular and Cell Science, Arkansas College of Osteopathic Medicine (ARCOM), Fort Smith, AR, 72916, USA
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
11
|
Hensley K, Danekas A, Farrell W, Garcia T, Mehboob W, White M. At the intersection of sulfur redox chemistry, cellular signal transduction and proteostasis: A useful perspective from which to understand and treat neurodegeneration. Free Radic Biol Med 2022; 178:161-173. [PMID: 34863876 DOI: 10.1016/j.freeradbiomed.2021.11.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Although we can thoroughly describe individual neurodegenerative diseases from the molecular level through cell biology to histology and clinical presentation, our understanding of them and hence treatment gains have been depressingly limited, partly due to difficulty conceptualizing different diseases as variations within the same overarching pathological rubric. This review endeavors to create such rubric by knitting together the seemingly disparate phenomena of oxidative stress, dysregulated proteostasis, and neuroinflammation into a cohesive triad that highlights mechanistic connectivities. We begin by considering that brain metabolic demands necessitate careful control of oxidative homeostasis, largely through sulfur redox chemistry and glutathione (GSH). GSH is essential for brain antioxidant defense, but also for redox signaling and thus neuroinflammation. Delicate regulation of neuroinflammatory pathways (NFκB, MAPK-p38, and NLRP3 particularly) occurs through S-glutathionylation of protein phosphatases but also through redox-sensing elements like ASK1; the 26S proteasome and cysteine deubiquitinases (DUBs). The relationship amongst triad elements is underscored by our discovery that LanCL1 (lanthionine synthetase-like protein-1) protects against oxidant toxicity; mediates GSH-dependent reactivation of oxidized DUBs; and antagonizes the pro-inflammatory cytokine, tumor necrosis factor-α (TNFα). We highlight currently promising pharmacological efforts to modulate key triad elements and suggest nexus points that might be exploited to further clinical advantage.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA.
| | - Alexis Danekas
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - William Farrell
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Tiera Garcia
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Wafa Mehboob
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Matthew White
- Department of Biochemistry, Cell and Molecular Biology, Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| |
Collapse
|
12
|
Spinelli S, Begani G, Guida L, Magnone M, Galante D, D'Arrigo C, Scotti C, Iamele L, De Jonge H, Zocchi E, Sturla L. LANCL1 binds abscisic acid and stimulates glucose transport and mitochondrial respiration in muscle cells via the AMPK/PGC-1α/Sirt1 pathway. Mol Metab 2021; 53:101263. [PMID: 34098144 PMCID: PMC8237609 DOI: 10.1016/j.molmet.2021.101263] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Abscisic acid (ABA) is a plant hormone also present and active in animals. In mammals, ABA regulates blood glucose levels by stimulating insulin-independent glucose uptake and metabolism in adipocytes and myocytes through its receptor LANCL2. The objective of this study was to investigate whether another member of the LANCL protein family, LANCL1, also behaves as an ABA receptor and, if so, which functional effects are mediated by LANCL1. METHODS ABA binding to human recombinant LANCL1 was explored by equilibrium-binding experiments with [3H]ABA, circular dichroism, and surface plasmon resonance. Rat L6 myoblasts overexpressing either LANCL1 or LANCL2, or silenced for the expression of both proteins, were used to investigate the basal and ABA-stimulated transport of a fluorescent glucose analog (NBDG) and the signaling pathway downstream of the LANCL proteins using Western blot and qPCR analysis. Finally, glucose tolerance and sensitivity to ABA were compared in LANCL2-/- and wild-type (WT) siblings. RESULTS Human recombinant LANCL1 binds ABA with a Kd between 1 and 10 μM, depending on the assay (i.e., in a concentration range that lies between the low and high-affinity ABA binding sites of LANCL2). In L6 myoblasts, LANCL1 and LANCL2 similarly, i) stimulate both basal and ABA-triggered NBDG uptake (4-fold), ii) activate the transcription and protein expression of the glucose transporters GLUT4 and GLUT1 (4-6-fold) and the signaling proteins AMPK/PGC-1α/Sirt1 (2-fold), iii) stimulate mitochondrial respiration (5-fold) and the expression of the skeletal muscle (SM) uncoupling proteins sarcolipin (3-fold) and UCP3 (12-fold). LANCL2-/- mice have a reduced glucose tolerance compared to WT. They spontaneously overexpress LANCL1 in the SM and respond to chronic ABA treatment (1 μg/kg body weight/day) with an improved glycemia response to glucose load and an increased SM transcription of GLUT4 and GLUT1 (20-fold) of the AMPK/PGC-1α/Sirt1 pathway and sarcolipin, UCP3, and NAMPT (4- to 6-fold). CONCLUSIONS LANCL1 behaves as an ABA receptor with a somewhat lower affinity for ABA than LANCL2 but with overlapping effector functions: stimulating glucose uptake and the expression of muscle glucose transporters and mitochondrial uncoupling and respiration via the AMPK/PGC-1α/Sirt1 pathway. Receptor redundancy may have been advantageous in animal evolution, given the role of the ABA/LANCL system in the insulin-independent stimulation of cell glucose uptake and energy metabolism.
Collapse
Affiliation(s)
- Sonia Spinelli
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Giulia Begani
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Lucrezia Guida
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Denise Galante
- Institute for Macromolecular Studies, National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Cristina D'Arrigo
- Institute for Macromolecular Studies, National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Claudia Scotti
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy; Ardis Srl, Via Taramelli 24, 27100, Pavia, Italy
| | - Luisa Iamele
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy; Ardis Srl, Via Taramelli 24, 27100, Pavia, Italy
| | - Hugo De Jonge
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy; Ardis Srl, Via Taramelli 24, 27100, Pavia, Italy
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy.
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| |
Collapse
|
13
|
Lai KY, Galan SRG, Zeng Y, Zhou TH, He C, Raj R, Riedl J, Liu S, Chooi KP, Garg N, Zeng M, Jones LH, Hutchings GJ, Mohammed S, Nair SK, Chen J, Davis BG, van der Donk WA. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 2021; 184:2680-2695.e26. [PMID: 33932340 DOI: 10.1016/j.cell.2021.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Enzyme-mediated damage repair or mitigation, while common for nucleic acids, is rare for proteins. Examples of protein damage are elimination of phosphorylated Ser/Thr to dehydroalanine/dehydrobutyrine (Dha/Dhb) in pathogenesis and aging. Bacterial LanC enzymes use Dha/Dhb to form carbon-sulfur linkages in antimicrobial peptides, but the functions of eukaryotic LanC-like (LanCL) counterparts are unknown. We show that LanCLs catalyze the addition of glutathione to Dha/Dhb in proteins, driving irreversible C-glutathionylation. Chemo-enzymatic methods were developed to site-selectively incorporate Dha/Dhb at phospho-regulated sites in kinases. In human MAPK-MEK1, such "elimination damage" generated aberrantly activated kinases, which were deactivated by LanCL-mediated C-glutathionylation. Surveys of endogenous proteins bearing damage from elimination (the eliminylome) also suggest it is a source of electrophilic reactivity. LanCLs thus remove these reactive electrophiles and their potentially dysregulatory effects from the proteome. As knockout of LanCL in mice can result in premature death, repair of this kind of protein damage appears important physiologically.
Collapse
Affiliation(s)
- Kuan-Yu Lai
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sébastien R G Galan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Yibo Zeng
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Tianhui Hina Zhou
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang He
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ritu Raj
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Jitka Riedl
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Shi Liu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - K Phin Chooi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK
| | - Neha Garg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Min Zeng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lyn H Jones
- Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA 02115, USA
| | - Graham J Hutchings
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0FA, UK; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Shabaz Mohammed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield, Oxford OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK.
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Downey A, Olcott M, Spector D, Bird K, Ter Doest A, Pierce Z, Quach E, Sparks S, Super C, Naifeh J, Powers A, White M, Hensley K. Stable knockout of lanthionine synthase C-like protein-1 (LanCL1) from HeLa cells indicates a role for LanCL1 in redox regulation of deubiquitinating enzymes. Free Radic Biol Med 2020; 161:115-124. [PMID: 33049334 DOI: 10.1016/j.freeradbiomed.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Lanthionine synthase C-like protein-1 (LanCL1) is a glutathione (GSH)-binding protein of uncertain function, widely expressed in mammalian cells. Recent data suggests that LanCL1 has glutathione S-transferase (GST)-like activity, while other reports claim that LanCL1 suppresses mitogen-activated kinase (MAPK) phosphorylation. In the present study, recombinant human LanCL1 had less than 10% the specific activity of GST. When CRISPR-Cas9 was used to stably ablate LanCL1 from HeLa cells, the resulting line was sensitized to H2O2 toxicity. [GSH], [GSSG], [GSH]/[GSSG] and GST activity were unaltered by LanCL1 knockout but glutathione reductase and glutathione peroxidase activities were significantly elevated. LanCL1-KO cells did not differ in basal or H2O2-induced p38-MAPK, ERK p42/p44 or JNK phosphorylation; however, MAPK-targeted transcription factor regulators c-Jun and IκBα were significantly decreased. Because c-Jun and IκBα levels are ubiquitin regulated, experiments addressed the hypothesis that LanCL1 affects ubiquitination dynamics. In the presence of the 26S proteasome inhibitor bortezomib, ubiquitinated proteins accumulated faster in LanCL1-KO cells, suggesting that LanCL1 positively regulates deubiquitination. The activity of ubiquitin C-terminal hydrolase (UCH), a major deubiquitinase (DUB) subclass, was significantly decreased in LanCL1-KO cells while protein levels of A20/TNFAIP3, USP9X and USP10 DUBs were significantly reduced. UCH activity in HeLa cell lysates was lost upon treatment with H2O2 and significantly recovered by addition of recombinant LanCL1 plus GSH. Taken together these data suggest that LanCL1 likely does not act as a GST-like enzyme in vivo, but rather modulates ubiquitin-dependent cell signaling pathways through positive regulation of redox-sensitive DUBs.
Collapse
Affiliation(s)
- Aaron Downey
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Melissa Olcott
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Daniel Spector
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Kayla Bird
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | | | - Zachary Pierce
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Evan Quach
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Sawyer Sparks
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Christa Super
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Jefferey Naifeh
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Andrea Powers
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Matthew White
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| |
Collapse
|
15
|
Di Paolo A, Eastman G, Mesquita-Ribeiro R, Farias J, Macklin A, Kislinger T, Colburn N, Munroe D, Sotelo Sosa JR, Dajas-Bailador F, Sotelo-Silveira JR. PDCD4 regulates axonal growth by translational repression of neurite growth-related genes and is modulated during nerve injury responses. RNA (NEW YORK, N.Y.) 2020; 26:1637-1653. [PMID: 32747606 PMCID: PMC7566564 DOI: 10.1261/rna.075424.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
Programmed cell death 4 (PDCD4) protein is a tumor suppressor that inhibits translation through the mTOR-dependent initiation factor EIF4A, but its functional role and mRNA targets in neurons remain largely unknown. Our work identified that PDCD4 is highly expressed in axons and dendrites of CNS and PNS neurons. Using loss- and gain-of-function experiments in cortical and dorsal root ganglia primary neurons, we demonstrated the capacity of PDCD4 to negatively control axonal growth. To explore PDCD4 transcriptome and translatome targets, we used Ribo-seq and uncovered a list of potential targets with known functions as axon/neurite outgrowth regulators. In addition, we observed that PDCD4 can be locally synthesized in adult axons in vivo, and its levels decrease at the site of peripheral nerve injury and before nerve regeneration. Overall, our findings demonstrate that PDCD4 can act as a new regulator of axonal growth via the selective control of translation, providing a target mechanism for axon regeneration and neuronal plasticity processes in neurons.
Collapse
Affiliation(s)
- Andrés Di Paolo
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1L7, Canada
- University of Toronto, Department of Medical Biophysics, Toronto M5S 1A1, Canada
| | - Nancy Colburn
- Former Chief of Laboratory of Cancer Prevention at the National Cancer Institute-NIH at Frederick, Maryland 21702, USA
| | - David Munroe
- Former Laboratory of Molecular Technologies, LEIDOS at Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - José R Sotelo Sosa
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias UdelaR, Montevideo 11400, Uruguay
| |
Collapse
|
16
|
Tang R, Wu Z, Lu F, Wang C, Wu B, Wang J, Zhu Y. Identification of Critical Pathways and Hub Genes in LanCL1-Overexpressed Prostate Cancer Cells. Onco Targets Ther 2020; 13:7653-7664. [PMID: 32821124 PMCID: PMC7423411 DOI: 10.2147/ott.s252958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer is one of the most common malignancies in urology, especially in developed countries. Our previous studies showed that Lanthionine synthase C-like protein 1 (LanCL1) can promote the proliferation of prostate cancer cells and protect cells from oxidative stress. Also, LanCL1 protects cells by inhibiting the JNK signaling pathway after H2O2 treatment. Materials and Methods In our study, we analyzed the data of RNA-seq to identify the DEGs after LanCL1 overexpression. We performed a functional enrichment analysis with gene set enrichment analysis (GSEA) and a database for annotation, visualization, and integrated discovery (DAVID). We also identified the critical hub gene correlated with disease prognosis by Cox regression analysis. Results A total of 8928 DEGs were identified. Through the analysis of GO and KEGG, we found that DEGs are significantly enriched in categories related to metabolism, cancer-related signaling pathways, and inflammation. The top 15 hub genes were then identified and ranked by degree from the protein–protein interaction network. Survival analysis showed 4 hub genes related to disease prognosis and ICAM1 expression is an independent risk factor for the prognosis. Conclusion Our results suggest the critical genes and pathways that might play key roles after LanCL1 overexpression in prostate cancer. We also provide candidate gene targets that might play important roles in prostate cancer development.
Collapse
Affiliation(s)
- Run Tang
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Zeming Wu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Feng Lu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Cheng Wang
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Bo Wu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| | - Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Yingxiang Zhu
- Department of Urology, The People's Hospital of Suzhou New District, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
González FV, Bou‐Iserte L, Miguel‐López B, Hoz‐Rodríguez S, Kersten C, Sánchez‐Sarasúa S, Espinosa‐Fernández V, Sánchez‐Pérez AM. Design, Synthesis and Evaluation of Fluorescent Analogues of Abscisic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Florenci V. González
- Departament de química inorgànica i orgànicaUniversitat Jaume I Avda. Sos Baynat, s/n 12071- Castelló Spain
| | - Lledó Bou‐Iserte
- Departament de química inorgànica i orgànicaUniversitat Jaume I Avda. Sos Baynat, s/n 12071- Castelló Spain
| | - Borja Miguel‐López
- Departament de medicinaUniversitat Jaume I Avda. Sos Baynat, s/n, 12071-Castelló, Spain
| | - Sergio Hoz‐Rodríguez
- Departament de química inorgànica i orgànicaUniversitat Jaume I Avda. Sos Baynat, s/n 12071- Castelló Spain
| | - Christian Kersten
- Institute of Pharmacy and BiochemistryJohannes-Gutenberg University Mainz Staudingerweg 5 55128 Mainz Germany
| | | | | | | |
Collapse
|
18
|
Shen D, Hensley K, Denton TT. An overview of sulfur-containing compounds originating from natural metabolites: Lanthionine ketimine and its analogues. Anal Biochem 2019; 591:113543. [PMID: 31862405 DOI: 10.1016/j.ab.2019.113543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Dunxin Shen
- Department Pharmaceutical Sciences, Washington State University, College of Pharmacy & Pharmaceutical Sciences, 412 East Spokane Falls Blvd, Spokane, WA, 99202-2131, USA
| | - Kenneth Hensley
- Department of Biochemistry, Molecular and Cell Sciences, Arkansas College of Osteopathic Medicine, 7000 Chad Colley Blvd, Fort Smith, AR, 72916, USA
| | - Travis T Denton
- Department Pharmaceutical Sciences, Washington State University, College of Pharmacy & Pharmaceutical Sciences, 412 East Spokane Falls Blvd, Spokane, WA, 99202-2131, USA.
| |
Collapse
|
19
|
LanCL1 promotes motor neuron survival and extends the lifespan of amyotrophic lateral sclerosis mice. Cell Death Differ 2019; 27:1369-1382. [PMID: 31570855 PMCID: PMC7206132 DOI: 10.1038/s41418-019-0422-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons. Improving neuronal survival in ALS remains a significant challenge. Previously, we identified Lanthionine synthetase C-like protein 1 (LanCL1) as a neuronal antioxidant defense gene, the genetic deletion of which causes apoptotic neurodegeneration in the brain. Here, we report in vivo data using the transgenic SOD1G93A mouse model of ALS indicating that CNS-specific expression of LanCL1 transgene extends lifespan, delays disease onset, decelerates symptomatic progression, and improves motor performance of SOD1G93A mice. Conversely, CNS-specific deletion of LanCL1 leads to neurodegenerative phenotypes, including motor neuron loss, neuroinflammation, and oxidative damage. Analysis reveals that LanCL1 is a positive regulator of AKT activity, and LanCL1 overexpression restores the impaired AKT activity in ALS model mice. These findings indicate that LanCL1 regulates neuronal survival through an alternative mechanism, and suggest a new therapeutic target in ALS.
Collapse
|
20
|
Bennink S, von Bohl A, Ngwa CJ, Henschel L, Kuehn A, Pilch N, Weißbach T, Rosinski AN, Scheuermayer M, Repnik U, Przyborski JM, Minns AM, Orchard LM, Griffiths G, Lindner SE, Llinás M, Pradel G. A seven-helix protein constitutes stress granules crucial for regulating translation during human-to-mosquito transmission of Plasmodium falciparum. PLoS Pathog 2018; 14:e1007249. [PMID: 30133543 PMCID: PMC6122839 DOI: 10.1371/journal.ppat.1007249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/04/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andreas von Bohl
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Che J. Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Leonie Henschel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Nicole Pilch
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Weißbach
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Alina N. Rosinski
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry & Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, United States of America
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
LanCL1 attenuates ischemia-induced oxidative stress by Sirt3-mediated preservation of mitochondrial function. Brain Res Bull 2018; 142:216-223. [PMID: 30075199 DOI: 10.1016/j.brainresbull.2018.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022]
Abstract
Lanthionine synthetase C-like protein 1 (LanCL1) is homologous to prokaryotic lanthionine cyclases, and has been shown to have novel functions in neuronal redox homeostasis. A recent study showed that LanCL1 expression was developmental and activity-dependent regulated, and LanCL1 transgene protected neurons against oxidative stress. In the present study, the potential protective effects of LanCL1 against ischemia was investigated in an in vitro model mimicked by oxygen and glucose deprivation (OGD) in neuronal HT22 cells. We found that OGD exposure induced a temporal increase and persistent decreases in the expression of LanCL1 at both mRNA and protein levels. Overexpression of LanCL1 by lentivirus (LV-LanCL1) transfection preserved cell viability, reduced lactate dehydrogenase (LDH) release and attenuated apoptosis after OGD. These protective effects were accompanied by decreased protein radical formation, lipid peroxidation and mitochondrial dysfunction. In addition, LanCL1 significantly stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that LanCL1-induced activation of Sirt3 was dependent on Akt-PGC-1α pathway. Knockdown of PGC-1α expression using small interfering RNA (siRNA) or blocking Akt activation using specific antagonist partially prevented the protective effects of LanCL1 in HT22 cells. Taken together, our results show that LanCL1 protects against OGD through activating the Akt-PGC-1α-Sirt3 pathway, and may have potential therapeutic value for ischemic stroke.
Collapse
|
22
|
Cichero E, Fresia C, Guida L, Booz V, Millo E, Scotti C, Iamele L, de Jonge H, Galante D, De Flora A, Sturla L, Vigliarolo T, Zocchi E, Fossa P. Identification of a high affinity binding site for abscisic acid on human lanthionine synthetase component C-like protein 2. Int J Biochem Cell Biol 2018; 97:52-61. [DOI: 10.1016/j.biocel.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
|
23
|
Westphal DS, Andres S, Makowski C, Meitinger T, Hoefele J. MAP2 - A Candidate Gene for Epilepsy, Developmental Delay and Behavioral Abnormalities in a Patient With Microdeletion 2q34. Front Genet 2018; 9:99. [PMID: 29632546 PMCID: PMC5879085 DOI: 10.3389/fgene.2018.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction: Microdeletions in the chromosomal region 2q34 and its neighboring regions lead to a phenotypic spectrum including autism, intellectual disability, and epilepsy. Up to now, only few affected patients have been reported. Therefore, the genetic pathogenesis is not completely understood. One of the most discussed candidate genes in this context is MAP2, a gene responsible for microtubule polymerization and neurite outgrowth. Materials and Methods: We present a 4.5-year-old male patient with epilepsy, mild developmental delay, and behavioral abnormalities. SNP-Array analysis was performed to search for pathogenic copy number variations. Results: SNP-Array analysis revealed a 1.5 Mb de novo microdeletion on the long arm of chromosome 2 (2q34). The identified microdeletion included the candidate genes UNC80, LANCL1, and most importantly MAP2. Discussion: The reported microdeletion identified in this patient is the smallest one described in the literature so far spanning MAP2 next to UNC80 and LANCL1. In this context MAP2 is the most important candidate gene concerning neuronal development and its function should be further examined.
Collapse
Affiliation(s)
- Dominik S Westphal
- Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Andres
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Christine Makowski
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
Wang J, Xiao Q, Chen X, Tong S, Sun J, Lv R, Wang S, Gou Y, Tan L, Xu J, Fan C, Ding G. LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway. Cell Death Dis 2018; 9:197. [PMID: 29416001 PMCID: PMC5833716 DOI: 10.1038/s41419-017-0207-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in male. Numerous studies have focused on the molecular mechanisms of carcinogenesis and progression, aiming at developing new therapeutic strategies. Here we describe Lanthionine synthase C-like protein 1 (LanCL1), a member of the LanCL family, is a potential prostate cancer susceptibility gene. LanCL1 promotes prostate cancer cell proliferation and helps protect cells from damage caused by oxidative stress. Suppression of LanCL1 by siRNA results in increased cancer cell apoptosis. Clinical data also indicate that LanCL1 upregulation in human prostate cancers correlates with tumor progression. Finally, we demonstrate that LanCL1 plays such important role through inhibiting JNK pathway. Altogether, our results suggest that LanCL1 protects cells from oxidative stress, and promotes cell proliferation. LanCL1 reduces cell death via suppression of JNK signaling pathway.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 26 Daoqian Rd, Suzhou, 215000, China
| | - Qianyi Xiao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Xu Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shijun Tong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianliang Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruitu Lv
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Siqing Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuancheng Gou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Caibin Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 26 Daoqian Rd, Suzhou, 215000, China.
| | - Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Multiple-step, one-pot synthesis of 2-substituted-3-phosphono-1-thia-4-aza-2-cyclohexene-5-carboxylates and their corresponding ethyl esters. Bioorg Med Chem Lett 2018; 28:562-565. [PMID: 29398540 DOI: 10.1016/j.bmcl.2018.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
The multiple-step, one-pot procedure for a series of 2-substituted-3-phosphono-1-thia-4-aza-2-cyclohexene-5-carboxylates, analogues of the natural, sulfur amino acid metabolite lanthionine ketimine (LK), its 5-ethyl ester (LKE) and 2-substituted LKEs is described. Initiating the synthesis with the Michaelis-Arbuzov preparation of α-ketophosphonates allows for a wide range of functional variation at the 2-position of the products. Nine new compounds were synthesized with overall yields range from 40 to 62%. In addition, the newly prepared 2-isopropyl-LK-P, 2-n-hexyl-LKE-P and 2-ethyl-LKE were shown to stimulate autophagy in cultured cells better than that of the parent compound, LKE.
Collapse
|
26
|
Marangoni N, Kowal K, Deliu Z, Hensley K, Feinstein DL. Neuroprotective and neurotrophic effects of Lanthionine Ketimine Ester. Neurosci Lett 2017; 664:28-33. [PMID: 29128626 DOI: 10.1016/j.neulet.2017.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022]
Abstract
Lanthionine ketimine ethyl ester (LKE) is a synthetic derivative of the naturally occurring amino acid lanthionine ketimine. We previously showed that LKE reduced clinical signs in a mouse model of multiple sclerosis (MS) associated with reductions in axonal damage; however, whether LKE has direct beneficial actions on mammalian neuronal cells was not examined. In the current study, we tested the effects of LKE in SH-SY5Y human neuronal cells and in primary mouse cerebellar granule neurons. In both cell types, LKE dose-dependently reduced the cell death that occurred spontaneously followed a change in media. LKE also reduced cell death due to glutamate excitoxicity, accompanied by a reduction in production of reactive oxygen species. LKE induced neuritogenesis in both undifferentiated SH-SY5Y cells and in primary neuron, increasing process numbers and lengths. These results demonstrate that direct neuroprotective and neurotrophic effects of LKE likely contribute to its beneficial actions in vivo.
Collapse
Affiliation(s)
- Natalia Marangoni
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Kathy Kowal
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Zane Deliu
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Kenneth Hensley
- Department of Biochemistry, Molecular and Cell Science, Arkansas College of Osteopathic Medicine, Fort Smith, AK 72916, United States
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, United States; Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
27
|
Leber A, Bassaganya-Riera J, Tubau-Juni N, Zoccoli-Rodriguez V, Lu P, Godfrey V, Kale S, Hontecillas R. Lanthionine Synthetase C-Like 2 Modulates Immune Responses to Influenza Virus Infection. Front Immunol 2017; 8:178. [PMID: 28270815 PMCID: PMC5318425 DOI: 10.3389/fimmu.2017.00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
Broad-based, host-targeted therapeutics have the potential to ameliorate viral infections without inducing antiviral resistance. We identified lanthionine synthetase C-like 2 (LANCL2) as a new therapeutic target for immunoinflammatory diseases. To examine the therapeutic efficacy of oral NSC61610 administration on influenza, we infected C57BL/6 mice with influenza A H1N1pdm virus and evaluated influenza-related mortality, lung inflammatory profiles, and pulmonary histopathology. Oral treatment with NSC61610 ameliorates influenza virus infection by down-modulating pulmonary inflammation through the downregulation of TNF-α and MCP-1 and reduction in the infiltration of neutrophils. NSC61610 treatment increases IL10-producing CD8+ T cells and macrophages in the lungs during the resolution phase of disease. The loss of LANCL2 or neutralization of IL-10 in mice infected with influenza virus abrogates the ability of NSC61610 to accelerate recovery and induce IL-10-mediated regulatory responses. These studies validate that oral treatment with NSC61610 ameliorates morbidity and mortality and accelerates recovery during influenza virus infection through a mechanism mediated by activation of LANCL2 and subsequent induction of IL-10 responses by CD8+ T cells and macrophages in the lungs.
Collapse
Affiliation(s)
- Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Zoccoli-Rodriguez
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Pinyi Lu
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Godfrey
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Shiv Kale
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
28
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 368] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
LanCL proteins are not Involved in Lanthionine Synthesis in Mammals. Sci Rep 2017; 7:40980. [PMID: 28106097 PMCID: PMC5247676 DOI: 10.1038/srep40980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/13/2016] [Indexed: 11/08/2022] Open
Abstract
LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5–2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis.
Collapse
|
30
|
Dong SH, Tang W, Lukk T, Yu Y, Nair SK, van der Donk WA. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold. eLife 2015; 4. [PMID: 26226635 PMCID: PMC4550811 DOI: 10.7554/elife.07607] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/29/2015] [Indexed: 11/13/2022] Open
Abstract
The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit. We present here the 2.2 Å resolution structure of CylM, the first structural information on a LanM. Unexpectedly, the structure reveals that the dehydratase domain of CylM resembles the catalytic core of eukaryotic lipid kinases, despite the absence of clear sequence homology. The kinase and phosphate elimination active sites that affect net dehydration are immediately adjacent to each other. Characterization of mutants provided insights into the mechanism of the dehydration process. The structure is also of interest because of the interactions of human homologs of lanthipeptide cyclases with kinases such as mammalian target of rapamycin.
Collapse
Affiliation(s)
- Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Weixin Tang
- Roger Adams Laboratory, Department of Chemistry, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tiit Lukk
- Cornell High Energy Synchrotron Source, Ithaca, United States
| | - Yi Yu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
31
|
Jang DH, Chae H, Kim M. Autistic and Rett-like features associated with 2q33.3-q34 interstitial deletion. Am J Med Genet A 2015; 167A:2213-8. [PMID: 25899208 DOI: 10.1002/ajmg.a.37119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
Abstract
We describe the fourth reported case of a de novo 2q33.3-q34 interstitial deletion and review the literature in attempt to identify relevant candidate genes. A 15-month-old female patient presented for evaluation with poor eye contact and developmental delay. She had microcephaly and mild dysmorphic features, such as downslanting palpebral fissures, high forehead, small mouth, high palate, and general hypotonia. At 30 months of age, she was referred to the genetic clinic for an evaluation of persistent developmental delay, autistic traits, and Rett-like features, including bruxism and repetitive movement of the left hand. Chromosome analysis revealed 46,XX at the 550 band level. No abnormalities were found on analysis of MECP2 gene for Rett syndrome and a DNA methylation test for Prader-Willi syndrome. An array comparative genomic hybridization analysis revealed a de novo 2q33.3-q34 heterozygous deletion (206,048,173-211,980,867). The deletion was estimated to be 5.9 Mb in size and contained 34 known genes. Candidate genes were identified as NRP2, ADAM23, KLF7, CREB1, MAP2, UNC80, and LANCL1 for the 2q33.3-q34 interstitial deletion.
Collapse
Affiliation(s)
- Dae-Hyun Jang
- Department of Rehabilitation, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hyojin Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Laboratory Development and Evaluation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Laboratory Development and Evaluation Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
32
|
Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria. Appl Environ Microbiol 2015; 81:4339-50. [PMID: 25888176 DOI: 10.1128/aem.00635-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/14/2015] [Indexed: 01/18/2023] Open
Abstract
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities.
Collapse
|
33
|
Harris-White ME, Ferbas KG, Johnson MF, Eslami P, Poteshkina A, Venkova K, Christov A, Hensley K. A cell-penetrating ester of the neural metabolite lanthionine ketimine stimulates autophagy through the mTORC1 pathway: Evidence for a mechanism of action with pharmacological implications for neurodegenerative pathologies. Neurobiol Dis 2015; 84:60-8. [PMID: 25779968 DOI: 10.1016/j.nbd.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a fundamental cellular recycling process vulnerable to compromise in neurodegeneration. We now report that a cell-penetrating neurotrophic and neuroprotective derivative of the central nervous system (CNS) metabolite, lanthionine ketimine (LK), stimulates autophagy in RG2 glioma and SH-SY5Y neuroblastoma cells at concentrations within or below pharmacological levels reported in previous mouse studies. Autophagy stimulation was evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3) both in the absence and presence of bafilomycin-A1 which discriminates between effects on autophagic flux versus blockage of autophagy clearance. LKE treatment caused changes in protein level or phosphorylation state of multiple autophagy pathway proteins including mTOR; p70S6 kinase; unc-51-like-kinase-1 (ULK1); beclin-1 and LC3 in a manner essentially identical to effects observed after rapamycin treatment. The LKE site of action was near mTOR because neither LKE nor the mTOR inhibitor rapamycin affected tuberous sclerosis complex (TSC) phosphorylation status upstream from mTOR. Confocal immunofluorescence imaging revealed that LKE specifically decreased mTOR (but not TSC2) colocalization with LAMP2(+) lysosomes in RG2 cells, a necessary event for mTORC1-mediated autophagy suppression, whereas rapamycin had no effect. Suppression of the LK-binding adaptor protein CRMP2 (collapsin response mediator protein-2) by means of shRNA resulted in diminished autophagy flux, suggesting that the LKE action on mTOR localization may occur through a novel mechanism involving CRMP2-mediated intracellular trafficking. These findings clarify the mechanism-of-action for LKE in preclinical models of CNS disease, while suggesting possible roles for natural lanthionine metabolites in regulating CNS autophagy.
Collapse
Affiliation(s)
- Marni E Harris-White
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA; David Geffen School of Medicine at the University of California, Los Angeles, USA
| | - Kathie G Ferbas
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA; Pepperdine University, Seaver College, Natural Sciences Division, Malibu, CA, USA
| | - Ming F Johnson
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA
| | - Pirooz Eslami
- Veterans Administration-Greater Los Angeles Healthcare System, Los Angeles, USA
| | | | - Kalina Venkova
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Alexandar Christov
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA; Department of Neurosciences, University of Toledo Medical Center, Toledo, OH 43614, USA.
| |
Collapse
|
34
|
Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 2015; 78:123-34. [PMID: 25463282 PMCID: PMC4280296 DOI: 10.1016/j.freeradbiomed.2014.10.581] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, P.O. Box 1495, Spokane, WA 99201, USA.
| |
Collapse
|
35
|
Ding X, Yang Z, Zhou F, Hu X, Zhou C, Luo C, He Z, Liu Q, Li H, Yan F, Wang F, Xiang S, Zhang J. Human intersectin 2 (ITSN2) binds to Eps8 protein and enhances its degradation. BMB Rep 2014; 45:183-8. [PMID: 22449706 DOI: 10.5483/bmbrep.2012.45.3.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Participates in actin remodeling through Rac and receptor endocytosis via Rab5. Here, we used yeast two-hybrid system with Eps8 as bait to screen a human brain cDNA library. ITSN2 was identified as the novel binding factor of Eps8. The interaction between ITSN2 and Eps8 was demonstrated by the in vivo co-immunoprecipitation and colocalization assays and the in vitro GST pull-down assays. Furthermore, we mapped the interaction domains to the region between amino acids 260-306 of Eps8 and the coiled-coil domain of ITSN2. In addition, protein stability assays and immunofluorescence analysis showed ITSN2 overexpression induced the degradation of Eps8 proteins, which was markedly alleviated with the lysosome inhibitor NH4Cl treatment. Taken together, our results suggested ITSN2 interacts with Eps8 and stimulates the degradation of Eps8 proteins.
Collapse
Affiliation(s)
- Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Developmental and activity-dependent expression of LanCL1 confers antioxidant activity required for neuronal survival. Dev Cell 2014; 30:479-87. [PMID: 25158856 DOI: 10.1016/j.devcel.2014.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/09/2014] [Accepted: 06/13/2014] [Indexed: 02/05/2023]
Abstract
Production of reactive oxygen species (ROS) increases with neuronal activity that accompanies synaptic development and function. Transcription-related factors and metabolic enzymes that are expressed in all tissues have been described to counteract neuronal ROS to prevent oxidative damage. Here, we describe the antioxidant gene LanCL1 that is prominently enriched in brain neurons. Its expression is developmentally regulated and induced by neuronal activity, neurotrophic factors implicated in neuronal plasticity and survival, and oxidative stress. Genetic deletion of LanCL1 causes enhanced accumulation of ROS in brain, as well as development-related lipid, protein, and DNA damage; mitochondrial dysfunction; and apoptotic neurodegeneration. LanCL1 transgene protects neurons from ROS. LanCL1 protein purified from eukaryotic cells catalyzes the formation of thioether products similar to glutathione S-transferase. These studies reveal a neuron-specific glutathione defense mechanism that is essential for neuronal function and survival.
Collapse
|
37
|
Chen C, Liang Z, Huang W, Li X, Zhou F, Hu X, Han M, Ding X, Xiang S. Eps8 regulates cellular proliferation and migration of breast cancer. Int J Oncol 2014; 46:205-14. [PMID: 25333707 DOI: 10.3892/ijo.2014.2710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/02/2014] [Indexed: 11/05/2022] Open
Abstract
The role of Eps8 in human breast cancer was studied, and we found that Eps8 was overexpressed in >60% of human breast cancer samples compared with adjacent normal breast tissues by immunohistochemical analysis. Eps8 was highly expressed in the highly invasive breast cancer cell line MDA-MB‑231 compared with the weakly invasive breast cancer cell lines MCF7 and MDA-MB‑468. MCF7 cell line stably expressing Eps8 was established by G418 screening, and the ectopic expression of Eps8 enhanced MCF7 breast cancer cell growth and survival as assessed by MTT analysis, cell viability and liquid colony formation, whereas the lentiviral expression of Eps8 shRNA in MDA-MB‑231 cells resulted in a significant reduction in cellular growth and proliferation in vitro and in vivo. Furthermore, Eps8 knockdown inhibited breast cancer cell migration in wound healing assays, decreased the number and size of EGF-induced filopodia and increased the sensitivity of breast cancer cells to cisplatin analyzed by MTT assays. Eps8 knockdown decreased the levels of phosphorylated extracellular signal-regulated protein kinase (ERK) and MMP9 but increased p53. Moreover, Eps8 knockdown suppressed a partial EMT-like transition and showed a significant increase in E-cadherin and decrease in N-cadherin and vimentin. These results suggest that Eps8 is overexpressed in human breast cancers, possibly by regulating ERK signaling, MMP9, p53 and EMT-like transition to affect breast cancer cell growth, migration and invasion. Therefore, Eps8 might represent a novel potential target in human breast cancer therapy.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Zhongheng Liang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Wenhuan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Xinxin Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Fangliang Zhou
- College of Basic Medical Sciences, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Mei Han
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
38
|
van der Donk WA, Nair SK. Structure and mechanism of lanthipeptide biosynthetic enzymes. Curr Opin Struct Biol 2014; 29:58-66. [PMID: 25460269 DOI: 10.1016/j.sbi.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 02/01/2023]
Abstract
Lanthipeptides are members of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. They contain thioether crosslinks generated by dehydration of Ser and Thr residues followed by the addition of the thiol of Cys residues to the dehydroamino acids. Recent studies have revealed unexpected mechanisms of the post-translational modifications, and structural studies have started to provide insights into recognition of the peptide substrates by the modification enzymes.
Collapse
Affiliation(s)
- Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
Zeng M, van der Donk WA, Chen J. Lanthionine synthetase C-like protein 2 (LanCL2) is a novel regulator of Akt. Mol Biol Cell 2014; 25:3954-61. [PMID: 25273559 PMCID: PMC4244203 DOI: 10.1091/mbc.e14-01-0004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The serine/threonine protein kinase Akt controls a wide range of biochemical and cellular processes under the modulation of a variety of regulators. In this study, we identify the lanthionine synthetase C-like 2 (LanCL2) protein as a positive regulator of Akt activation in human liver cells. LanCL2 knockdown dampens serum- and insulin-stimulated Akt phosphorylation, whereas LanCL2 overexpression enhances these processes. Neither insulin receptor phosphorylation nor the interaction between insulin receptor substrate and phosphatidylinositide 3-kinase (PI3K) is affected by LanCL2 knockdown. LanCL2 also does not function through PP2A, a phosphatase of Akt. Instead, LanCL2 directly interacts with Akt, with a preference for inactive Akt. Moreover, we show that LanCL2 also binds to the Akt kinase mTORC2, but not phosphoinositide-dependent kinase 1. Whereas LanCL2 is not required for the Akt-mTORC2 interaction, recombinant LanCL2 enhances Akt phosphorylation by target of rapamycin complex 2 (mTORC2) in vitro. Finally, consistent with a function of Akt in regulating cell survival, LanCL2 knockdown increases the rate of apoptosis, which is reversed by the expression of a constitutively active Akt. Taken together, our findings reveal LanCL2 as a novel regulator of Akt and suggest that LanCL2 facilitates optimal phosphorylation of Akt by mTORC2 via direct physical interactions with both the kinase and the substrate.
Collapse
Affiliation(s)
- Min Zeng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
40
|
A Derivative of the Brain Metabolite Lanthionine Ketimine Improves Cognition and Diminishes Pathology in the 3×Tg-AD Mouse Model of Alzheimer Disease. J Neuropathol Exp Neurol 2013; 72:955-69. [DOI: 10.1097/nen.0b013e3182a74372] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Identification of cellular proteins interacting with octaarginine (R8) cell-penetrating peptide by photo-crosslinking. Bioorg Med Chem Lett 2013; 23:3738-40. [DOI: 10.1016/j.bmcl.2013.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/30/2013] [Accepted: 05/04/2013] [Indexed: 11/19/2022]
|
42
|
Jones BC. Letter to the editor. Neurotoxicology 2013; 38:146. [PMID: 23764340 DOI: 10.1016/j.neuro.2013.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/17/2022]
|
43
|
Ding X, Zhou F, Wang F, Yang Z, Zhou C, Zhou J, Zhang B, Yang J, Wang G, Wei Z, Hu X, Xiang S, Zhang J. Eps8 promotes cellular growth of human malignant gliomas. Oncol Rep 2012; 29:697-703. [PMID: 23229386 DOI: 10.3892/or.2012.2160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/12/2012] [Indexed: 11/05/2022] Open
Abstract
Eps8 was initially identified as a substrate of the epidermal growth factor receptor. Overexpression of Eps8 leads to increased mitogenic signaling and malignant transformation. However, little is known concerning the importance of Eps8 in human gliomas. In this study, we found that Eps8 was overexpressed in 56.6% of human gliomas (WHO grades III and IV) compared with adjacent normal brain tissues by immunohistochemical analysis. The U251 human glioma cell line stably expressing Eps8 was established by G418 screening, and the ectopic expression of Eps8 enhanced U251 glioma cell growth and survival by cell survival, MTT and liquid colony formation assays. By contrast, the lentiviral expression of Eps8 siRNA in SHG-44 cells resulted in a significant reduction in cellular growth and proliferation. Furthermore, Eps8 modulated the levels of phosphorylated extracellular signal-regulated protein kinase (ERK), phosphorylated serine-threonine protein kinase Akt and β-catenin expression in glioma cell lines and tissues. These results suggest that Eps8 is overexpressed in human gliomas, and affects glioma cell growth possibly by regulating ERK and Akt/β-catenin signaling. Therefore, Eps8 may represent a novel potential target in human glioma therapy.
Collapse
Affiliation(s)
- Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Developmental Biology of the State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhong WX, Wang YB, Peng L, Ge XZ, Zhang J, Liu SS, Zhang XN, Xu ZH, Chen Z, Luo JH. Lanthionine synthetase C-like protein 1 interacts with and inhibits cystathionine β-synthase: a target for neuronal antioxidant defense. J Biol Chem 2012; 287:34189-201. [PMID: 22891245 DOI: 10.1074/jbc.m112.383646] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The finding that eukaryotic lanthionine synthetase C-like protein 1 (LanCL1) is a glutathione-binding protein prompted us to investigate the potential relationship between LanCL1 and cystathionine β-synthase (CBS). CBS is a trans-sulfuration enzyme critical for the reduced glutathione (GSH) synthesis and GSH-dependent defense against oxidative stress. In this study we found that LanCL1 bound to CBS in mouse cortex and HEK293 cells. Mapping studies revealed that the binding region in LanCL1 spans amino acids 158-169, and that in CBS contains N-terminal and C-terminal regulatory domains. Recombinant His-LanCL1 directly bound endogenous CBS from mouse cortical lysates and inhibited its activity. Overexpression of LanCL1 inhibited CBS activity in HEK293 cells. CBS activity is reported to be regulated by oxidative stress. Here we found that oxidative stress induced by H(2)O(2) or glutamate lowered the GSH/GSSG ratio, dissociated LanCL1 from CBS, and elevated CBS activity in primary rat cortical neurons. Decreasing the GSH/GSSG ratio by adding GSSG to cellular extracts also dissociated LanCL1 from CBS. Either lentiviral knockdown of LanCL1 or specific disruption of the LanCL1-CBS interaction using the peptide Tat-LanCL1(153-173) released CBS activity in neurons but occluded CBS activation in response to oxidative stress, indicating the major contribution of the LanCL1-CBS interaction to the regulation of CBS activity. Furthermore, LanCL1 knockdown or Tat-LanCL1(153-173) treatment reduced H(2)O(2) or glutamate-induced neuronal damage. This study implies potential therapeutic value in targeting the LanCL1-CBS interaction for neuronal oxidative stress-related diseases.
Collapse
Affiliation(s)
- Wei-xia Zhong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lu P, Hontecillas R, Horne WT, Carbo A, Viladomiu M, Pedragosa M, Bevan DR, Lewis SN, Bassaganya-Riera J. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2. PLoS One 2012; 7:e34643. [PMID: 22509338 PMCID: PMC3324509 DOI: 10.1371/journal.pone.0034643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 03/05/2012] [Indexed: 12/15/2022] Open
Abstract
Background Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.
Collapse
Affiliation(s)
- Pinyi Lu
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (PL); (JBR)
| | - Raquel Hontecillas
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William T. Horne
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Adria Carbo
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Monica Viladomiu
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mireia Pedragosa
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David R. Bevan
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephanie N. Lewis
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (PL); (JBR)
| |
Collapse
|
46
|
Lu P, Bevan DR, Lewis SN, Hontecillas R, Bassaganya-Riera J. Molecular modeling of lanthionine synthetase component C-like protein 2: a potential target for the discovery of novel type 2 diabetes prophylactics and therapeutics. J Mol Model 2011; 17:543-53. [PMID: 20512604 DOI: 10.1007/s00894-010-0748-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
The rates of type 2 diabetes (T2D) are rising to epidemic proportions in the US and worldwide. While current T2D medications are efficacious, significant side effects have limited their use and availability. Our laboratory has discovered that abscisic acid (ABA) exerts anti-diabetic effects, in part, by activating peroxisome proliferator-activated receptor γ (PPAR γ). However, since ABA does not bind to the ligand-binding domain (LBD) of PPAR γ, the mechanism of activation of PPAR γ by ABA remains unknown. Lanthionine synthetase component C-like protein 2 (LANCL2) was predicted to be a novel target for the binding and signaling of ABA in human granulocytes and rat insulinoma cells. The goal of this study was to determine whether LANCL2 is a molecular target of ABA and other PPAR γ agonists. To this end we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of LANCL1 as a template. Our molecular docking studies predicted that ABA and other PPAR γ agonists (e.g., rosiglitazone and pioglitazone) share a binding site on the surface of LANCL2. The identification of a binding site for PPAR γ agonists will facilitate the high-throughput virtual screening of large compound libraries and may shed new light on alternative mechanisms of PPAR γ activation.
Collapse
Affiliation(s)
- Pinyi Lu
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
47
|
Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Horne WT, Lewis SN, Bevan DR, Hontecillas R. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 2011; 286:2504-16. [PMID: 21088297 PMCID: PMC3024745 DOI: 10.1074/jbc.m110.160077] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/16/2010] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) has shown efficacy in the treatment of diabetes and inflammation; however, its molecular targets and the mechanisms of action underlying its immunomodulatory effects remain unclear. This study investigates the role of peroxisome proliferator-activated receptor γ (PPAR γ) and lanthionine synthetase C-like 2 (LANCL2) as molecular targets for ABA. We demonstrate that ABA increases PPAR γ reporter activity in RAW 264.7 macrophages and increases ppar γ expression in vivo, although it does not bind to the ligand-binding domain of PPAR γ. LANCL2 knockdown studies provide evidence that ABA-mediated activation of macrophage PPAR γ is dependent on lancl2 expression. Consistent with the association of LANCL2 with G proteins, we provide evidence that ABA increases cAMP accumulation in immune cells. ABA suppresses LPS-induced prostaglandin E(2) and MCP-1 production via a PPAR γ-dependent mechanism possibly involving activation of PPAR γ and suppression of NF-κB and nuclear factor of activated T cells. LPS challenge studies in PPAR γ-expressing and immune cell-specific PPAR γ null mice demonstrate that ABA down-regulates toll-like receptor 4 expression in macrophages and T cells in vivo through a PPAR γ-dependent mechanism. Global transcriptomic profiling and confirmatory quantitative RT-PCR suggest novel candidate targets and demonstrate that ABA treatment mitigates the effect of LPS on the expression of genes involved in inflammation, metabolism, and cell signaling, in part, through PPAR γ. In conclusion, ABA decreases LPS-mediated inflammation and regulates innate immune responses through a bifurcating pathway involving LANCL2 and an alternative, ligand-binding domain-independent mechanism of PPAR γ activation.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Amir J. Guri
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Pinyi Lu
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Montse Climent
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Adria Carbo
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Bruno W. Sobral
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - William T. Horne
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| | - Stephanie N. Lewis
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - David R. Bevan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Raquel Hontecillas
- From the Nutritional Immunology and Molecular Medicine Group, Virginia Bioinformatics Institute and
| |
Collapse
|
48
|
Mladkova J, Sanda M, Matouskova E, Selicharova I. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins. BMC Cancer 2010; 10:449. [PMID: 20731849 PMCID: PMC2933630 DOI: 10.1186/1471-2407-10-449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 08/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs) and other proteins interacting with glutathione (GSH) in model cell lines could be of particular interest. METHODS We compared the phenotypes of breast cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis (2-DE). We further separated GSH-binding proteins from the cell lines using affinity chromatography with GSH-Sepharose 4B, performed 2-DE analysis and identified the main protein spots. RESULTS Correlation coefficients among 2-DE gels from the cell lines were lower than 0.65, pointing to dissimilarity among the cell lines. Differences in primary constituents of the cytoskeleton were shown by the 2-D protein maps and western blots. The spot patterns in gels of GSH-binding fractions from primary carcinoma-derived cell lines HCC1937 and EM-G3 were similar to each other, and they differed from the spot patterns of cell lines MCF7 and MDA-MB-231 that were derived from pleural effusions of metastatic mammary carcinoma patients. Major differences in the expression of GST P1-1 and carbonyl reductase [NADPH] 1 were observed among the cell lines, indicating differential abilities of the cell lines to metabolize xenobiotics. CONCLUSIONS Our results confirmed the applicability of targeted affinity chromatography to proteome profiling and allowed us to characterize the phenotypes of four breast cancer cell lines.
Collapse
Affiliation(s)
- Jana Mladkova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic vvi, Prague, Czech Republic
| | | | | | | |
Collapse
|
49
|
Hensley K, Venkova K, Christov A. Emerging biological importance of central nervous system lanthionines. Molecules 2010; 15:5581-94. [PMID: 20714314 PMCID: PMC6257760 DOI: 10.3390/molecules15085581] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/17/2022] Open
Abstract
Lanthionine (Lan), the thioether analog of cystine, is a natural but nonproteogenic amino acid thought to form naturally in mammals through promiscuous reactivity of the transsulfuration enzyme cystathionine-beta-synthase (CbetaS). Lanthionine exists at appreciable concentrations in mammalian brain, where it undergoes aminotransferase conversion to yield an unusual cyclic thioether, lanthionine ketimine (LK; 2H-1,4-thiazine-5,6-dihydro-3,5-dicarboxylic acid). Recently, LK was discovered to possess neuroprotective, neuritigenic and anti-inflammatory activities. Moreover, both LK and the ubiquitous redox regulator glutathione (gamma-glutamyl-cysteine-glycine) bind to mammalian lanthionine synthetase-like protein-1 (LanCL1) protein which, along with its homolog LanCL2, has been associated with important physiological processes including signal transduction and insulin sensitization. These findings begin to suggest that Lan and its downstream metabolites may be physiologically important substances rather than mere metabolic waste. This review summarizes the current state of knowledge about lanthionyl metabolites with emphasis on their possible relationships to LanCL1/2 proteins and glutathione. The potential significance of lanthionines in paracrine signaling is discussed with reference to opportunities for utilizing bioavailable pro-drug derivatives of these compounds as novel pharmacophores.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA.
| | | | | |
Collapse
|
50
|
Hensley K, Christov A, Kamat S, Zhang XC, Jackson KW, Snow S, Post J. Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci 2010; 30:2979-88. [PMID: 20181595 PMCID: PMC2836831 DOI: 10.1523/jneurosci.5247-09.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/16/2009] [Accepted: 12/24/2009] [Indexed: 11/21/2022] Open
Abstract
Lanthionine ketimine (LK) represents a poorly understood class of thioethers present in mammalian CNS. Previous work has indicated high-affinity interaction of LK with synaptosomal membrane protein(s), but neither LK binding partners nor specific bioactivities have been reported. In this study, LK was chemically synthesized and used as an affinity agent to capture binding partners from mammalian brain lysate. Liquid chromatography with electrospray ionization-mass spectrometry of electrophoretically separated, LK-bound proteins identified polypeptides implicated in axon remodeling or vesicle trafficking and diseases including Alzheimer's disease and schizophrenia: collapsin response mediator protein-2/dihydropyrimidinase-like protein-2 (CRMP2/DRP2/DPYSL2), myelin basic protein, and syntaxin-binding protein-1 (STXBP1/Munc-18). Also identified was the recently discovered glutathione-binding protein lanthionine synthetase-like protein-1. Functional consequences of LK:CRMP2 interactions were probed through immunoprecipitation studies using brain lysate wherein LK was found to increase CRMP2 coprecipitation with its partner neurofibromin-1 but decreased CRMP2 coprecipitation with beta-tubulin. Functional studies of NSC-34 motor neuron-like cells indicated that a cell-permeable LK-ester, LKE, was nontoxic and protective against oxidative challenge with H(2)O(2). LKE-treated NSC-34 cells significantly increased neurite number and length in a serum concentration-dependent manner, consistent with a CRMP2 interaction. Finally, LKE antagonized the activation of EOC-20 microglia by inflammogens. The results are discussed with reference to possible biochemical origins, paracrine functions, neurological significance, and pharmacological potential of lanthionyl compounds.
Collapse
Affiliation(s)
- Kenneth Hensley
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | |
Collapse
|