1
|
Qian Y, Liu C, Zeng X, Li LC. RNAa: Mechanisms, therapeutic potential, and clinical progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102494. [PMID: 40125270 PMCID: PMC11930103 DOI: 10.1016/j.omtn.2025.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
RNA activation (RNAa), a gene regulatory mechanism mediated by small activating RNAs (saRNAs) and microRNAs (miRNAs), has significant implications for therapeutic applications. Unlike small interfering RNA (siRNA), which is known for gene silencing in RNA interference (RNAi), synthetic saRNAs can stably upregulate target gene expression at the transcriptional level through the assembly of the RNA-induced transcriptional activation (RITA) complex. Moreover, the dual functionality of endogenous miRNAs in RNAa (hereafter referred to as mi-RNAa) reveals their complex role in cellular processes and disease pathology. Emerging studies suggest saRNAs' potential as a novel therapeutic modality for diseases such as metabolic disorders, hearing loss, tumors, and Alzheimer's. Notably, MTL-CEBPA, the first saRNA drug candidate, shows promise in hepatocellular carcinoma treatment, while RAG-01 is being explored for non-muscle-invasive bladder cancer, highlighting clinical advancements in RNAa. This review synthesizes our current understanding of the mechanisms of RNAa and highlights recent advancements in the study of mi-RNAa and the therapeutic development of saRNAs.
Collapse
Affiliation(s)
- Yukang Qian
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Cody Liu
- Univeristy of California, Davis, Davis, CA 95616, USA
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Long-Cheng Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
- Ractigen Therapeutics, Nantong, Jiangsu 226400, China
| |
Collapse
|
2
|
Wang Q, Lu H, Fan X, Zhu J, Shi J, Zhao W, Xiao Y, Xu Y, Chen J, Cui F. Extracellular vesicle-mediated plant miRNA trafficking regulates viral infection in insect vector. Cell Rep 2025; 44:115635. [PMID: 40293919 DOI: 10.1016/j.celrep.2025.115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Extracellular vesicle (EV)-mediated small RNA trafficking plays an important role in intercellular and interspecies communication. Plant arboviruses keep homeostasis in insect vectors, thus ensuring vector survival and viral transmission. How plant EV-mediated cross-kingdom RNA interference participates in viral infection in insect vectors remains unknown. Here, we successfully isolate rice EVs and identify a batch of microRNAs (miRNAs) encapsulated in EVs. Two EV-enriched rice miRNAs, Osa-miR159a.1-1 and Osa-miR167a, are transported into midgut epithelial cells of small brown planthopper, which is a competent vector of rice stripe virus (RSV). Osa-miR159a.1-1 elevates the expression of a phospholipase C by enhancing its mRNA stability, inducing the downstream CSL expression to inhibit apoptosis for the benefit of RSV replication. On the other hand, Osa-miR167a directly binds RSV RdRp to suppress viral replication. This differential regulation of EV-mediated cross-kingdom RNA interference contributes to arbovirus homeostasis in insect vectors and the following efficient transmission.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Lu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoyue Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiaming Zhu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianfei Shi
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan Zhao
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Xiao
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jinfeng Chen
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Corrêa CAP, Andrade AF, Veronez LC, da Silva KR, Baroni M, Suazo VK, de Paula Gomes Queiroz R, Lira RCP, Chagas PS, Brandalise SR, Yunes JA, Molina CAF, Antonini SRR, Valera ET, Tone LG, Scrideli CA. Analysis of miR-483-3p and miR-630 expression profile in pediatric adrenocortical tumors and the effect of their modulation on adrenal tumorigenesis in vitro. Mol Cell Endocrinol 2024; 594:112371. [PMID: 39278396 DOI: 10.1016/j.mce.2024.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Pediatric adrenocortical tumors (ACT) are rare aggressive neoplasms with heterogeneous prognosis. MicroRNA (miRNA) signatures have been associated with cancer diagnosis, treatment response, and outcomes of several types of cancer. However, the role played by miRNAs in pediatric ACT has been poorly explored. In this study, we have evaluated the expression of miR-483-3p and miR-630 in 67 pediatric ACT and 19 non-neoplastic adrenal samples, the effects of the modulations of these miRNAs, and their relationship with the TGF-β pathway in the H295R and H295A cell lines. Deregulation of both miRNAs was related to survival and disease advanced stages and hence to patients' prognosis. Moreover, modified miR-483-3p and miR-630 in vitro expression decreased cell viability and colony formation capacity, changed how some genes of the TGF-β pathway, such as TGFBR1, TGFBR2, and SMAD7, are expressed, and altered Smad3, pSmad3, Smad 2/3, N-cadherin, and Vimentin protein expression. Besides that, when inhibition of the TGF-β pathway was combined with miR-630 overexpression or miR-483-3p silencing, cell viability and colony formation capacity decreased, and protein expression in the TGF-β pathway changed. Together, the data indicate that both miRNAs participate in the TGF-β pathway and are therefore potential markers for predicting the prognosis of patients with pediatric ACT.
Collapse
Affiliation(s)
| | | | - Luciana Chain Veronez
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Mirella Baroni
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Veridiana Kill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Régia Caroline Peixoto Lira
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Division of General Pathology, Federal University of Triângulo Mineiro, Campus I, Uberaba, MG, 38025-200, Brazil
| | - Pablo Shimaoka Chagas
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | - Elvis Terci Valera
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Alberto Scrideli
- Department of Genetics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Brazil.
| |
Collapse
|
4
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 PMCID: PMC7617298 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Merk DJ, Paul L, Tsiami F, Hohenthanner H, Kouchesfahani GM, Haeusser LA, Walter B, Brown A, Persky NS, Root DE, Tabatabai G. CRISPR-Cas9 screens reveal common essential miRNAs in human cancer cell lines. Genome Med 2024; 16:82. [PMID: 38886809 PMCID: PMC11181638 DOI: 10.1186/s13073-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Genome-wide functional screening using the CRISPR-Cas9 system is a powerful tool to uncover tumor-specific and common genetic dependencies across cancer cell lines. Current CRISPR-Cas9 knockout libraries, however, primarily target protein-coding genes. This limits functional genomics-based investigations of miRNA function. METHODS We designed a novel CRISPR-Cas9 knockout library (lentiG-miR) of 8107 distinct sgRNAs targeting a total of 1769 human miRNAs and benchmarked its single guide RNA (sgRNA) composition, predicted on- and off-target activity, and screening performance against previous libraries. Using a total of 45 human cancer cell lines, representing 16 different tumor entities, we performed negative selection screens to identify miRNA fitness genes. Fitness miRNAs in each cell line were scored using a combination of supervised and unsupervised essentiality classifiers. Common essential miRNAs across distinct cancer cell lines were determined using the 90th percentile method. For subsequent validation, we performed knockout experiments for selected common essential miRNAs in distinct cancer cell lines and gene expression profiling. RESULTS We found significantly lower off-target activity for protein-coding genes and a higher miRNA gene coverage for lentiG-miR as compared to previously described miRNA-targeting libraries, while preserving high on-target activity. A minor fraction of miRNAs displayed robust depletion of targeting sgRNAs, and we observed a high level of consistency between redundant sgRNAs targeting the same miRNA gene. Across 45 human cancer cell lines, only 217 (12%) of all targeted human miRNAs scored as a fitness gene in at least one model, and fitness effects for most miRNAs were confined to small subsets of cell lines. In contrast, we identified 49 common essential miRNAs with a homogenous fitness profile across the vast majority of all cell lines. Transcriptional profiling verified highly consistent gene expression changes in response to knockout of individual common essential miRNAs across a diverse set of cancer cell lines. CONCLUSIONS Our study presents a miRNA-targeting CRISPR-Cas9 knockout library with high gene coverage and optimized on- and off-target activities. Taking advantage of the lentiG-miR library, we define a catalogue of miRNA fitness genes in human cancer cell lines, providing the foundation for further investigation of miRNAs in human cancer.
Collapse
Affiliation(s)
- Daniel J Merk
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Linda Paul
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Foteini Tsiami
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Helen Hohenthanner
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Ghazal Mohseni Kouchesfahani
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Lara A Haeusser
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Bianca Walter
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany
| | - Adam Brown
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nicole S Persky
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, 72076, Germany.
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
6
|
Wang Z, Zhang Y, Li K. Nuclear miRNAs as transcriptional regulators in processes related to various cancers (Review). Int J Oncol 2024; 64:56. [PMID: 38606502 PMCID: PMC11015916 DOI: 10.3892/ijo.2024.5644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
MicroRNAs (miRNAs) are noncoding small nucleic acids that contain ~22 nucleotides and are considered to promote the degradation or inhibit the translation of mRNA by targeting its 3'‑untranslated region. However, growing evidence has revealed that nuclear miRNAs, combined with gene promoters or enhancers, are able to directly mediate gene transcription. These miRNAs exert a critical influence on cancer progression by affecting cell growth, migration and invasion. In this review, the direct regulation of gene expression by nuclear miRNAs at the transcriptional level was discussed and summarized, and their mechanisms of action in cancers were highlighted with reference to the various body systems.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
7
|
Alfaifi J. miRNAs Role in Wilms tumor pathogenesis: Signaling pathways interplay. Pathol Res Pract 2024; 256:155254. [PMID: 38460245 DOI: 10.1016/j.prp.2024.155254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Wilms' tumors (WTs) are the most common type of kidney tumor in children, and a negative outlook is generally associated with widespread anaplastic. MicroRNAs (miRNAs) are crucial in the development of WT by regulating the expression of specific genes. There is an increasing amount of research that connects the dysregulation of miRNAs to the development of various renal illnesses. The conditions encompassed are renal fibrosis, renal cancers, and chronic and polycystic kidney disease. Dysregulation of several important miRNAs, either oncogenic or tumor-suppressing, has been found in WT. The present state of knowledge on the involvement of dysregulated miRNAs in the progression of WT is summarized in this review.
Collapse
Affiliation(s)
- Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
8
|
Valle-Garcia D, Pérez de la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa KF. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. Int J Mol Sci 2024; 25:2464. [PMID: 38473710 DOI: 10.3390/ijms25052464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) is the most aggressive and common type of cancer within the central nervous system (CNS). Despite the vast knowledge of its physiopathology and histology, its etiology at the molecular level has not been completely understood. Thus, attaining a cure has not been possible yet and it remains one of the deadliest types of cancer. Usually, GB is diagnosed when some symptoms have already been presented by the patient. This diagnosis is commonly based on a physical exam and imaging studies, such as computed tomography (CT) and magnetic resonance imaging (MRI), together with or followed by a surgical biopsy. As these diagnostic procedures are very invasive and often result only in the confirmation of GB presence, it is necessary to develop less invasive diagnostic and prognostic tools that lead to earlier treatment to increase GB patients' quality of life. Therefore, blood-based biomarkers (BBBs) represent excellent candidates in this context. microRNAs (miRNAs) are small, non-coding RNAs that have been demonstrated to be very stable in almost all body fluids, including saliva, serum, plasma, urine, cerebrospinal fluid (CFS), semen, and breast milk. In addition, serum-circulating and exosome-contained miRNAs have been successfully used to better classify subtypes of cancer at the molecular level and make better choices regarding the best treatment for specific cases. Moreover, as miRNAs regulate multiple target genes and can also act as tumor suppressors and oncogenes, they are involved in the appearance, progression, and even chemoresistance of most tumors. Thus, in this review, we discuss how dysregulated miRNAs in GB can be used as early diagnosis and prognosis biomarkers as well as molecular markers to subclassify GB cases and provide more personalized treatments, which may have a better response against GB. In addition, we discuss the therapeutic potential of miRNAs, the current challenges to their clinical application, and future directions in the field.
Collapse
Affiliation(s)
- David Valle-Garcia
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Itamar Flores
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Aleli Salazar
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Karla F Meza-Sosa
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| |
Collapse
|
9
|
Yu J, Zhao W, Chen X, Lu H, Xiao Y, Li Q, Luo L, Kang L, Cui F. A plant virus manipulates the long-winged morph of insect vectors. Proc Natl Acad Sci U S A 2024; 121:e2315341121. [PMID: 38190519 PMCID: PMC10801844 DOI: 10.1073/pnas.2315341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.
Collapse
Affiliation(s)
- Jinting Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaofang Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Yan Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Lan Luo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
10
|
Chellini L, Scarfò M, Bonvissuto D, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma. Oncogene 2024; 43:225-234. [PMID: 38017132 DOI: 10.1038/s41388-023-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Ewing sarcomas (ES) are aggressive paediatric tumours of bone and soft tissues. Resistance to chemotherapy and high propensity to metastasize remain the main causes of treatment failure. Thus, identifying novel targets for alternative therapeutic approaches is urgently needed. DNA/RNA helicases are emerging as crucial regulators of many cellular processes often deregulated in cancer. Among them, DHX9 is up-regulated in ES and collaborates with EWS-FLI1 in ES transformation. We report that DHX9 silencing profoundly impacts on the oncogenic properties of ES cells. Transcriptome profiling combined to bioinformatic analyses disclosed a gene signature commonly regulated by DHX9 and the Lysine Demethylase KDM2B, with the Hippo pathway regulator YAP1 as a prominent target. Mechanistically, we found that DHX9 enhances H3K9 chromatin demethylation by KDM2B and favours RNA Polymerase II recruitment, thus promoting YAP1 expression. Conversely, EWS-FLI1 binding to the promoter represses YAP1 expression. These findings identify the DHX9/KDM2B complex as a new druggable target to counteract ES malignancy.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Marzia Scarfò
- Plaisant Polo Tecnologico s.r.l, Castel Romano, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- GSTeP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
11
|
Soltaninezhad P, Arab F, Mohtasham N, FakherBaheri M, Kavishahi NN, Aghaee-Bakhtiari SH, Zare-Mahmoodabadi R, Pakfetrat A, Taban KI, Mohajertehran F. Unveiling the Potential of Serum MiR-483-5p: A Promising Diagnostic and Prognostic Biomarker in OLP and OSCC Patients by In silico Analysis of Differential Gene Expression. Curr Pharm Des 2024; 30:310-322. [PMID: 38310566 DOI: 10.2174/0113816128276149240108163407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) and oral lichen planus (OLP) are two separate conditions affecting the mouth and result in varying clinical outcomes and levels of malignancy. Achieving early diagnosis and effective therapy planning requires the identification of reliable diagnostic biomarkers for these disorders. MicroRNAs (miRNAs) have recently received attention as powerful biomarkers for various illnesses, including cancer. In particular, miR-483-5p is a promising diagnostic and prognostic biomarker in various cancers. Therefore, this study aimed to investigate the role of serum miR-483-5p in the diagnosis and prognosis of OLP and OSCC patients by in silico analysis of differential gene expression. METHODS GSE23558 and GSE52130 data sets were selected, and differential gene expression analysis was performed using microarray data from GSE52130 and GSE23558. The analysis focused on comparing OLP and OSCC samples with normal samples. The genes intersected through the differential gene expression analysis were then extracted to determine the overlapping genes among the upregulated or downregulated DEGs. The downregulated genes among the DEGs were subsequently imported into the miRWalk database to search for potential target genes of miRNA 483-5p that lacked validation. To gain insight into the biological pathways associated with the DEGs, we conducted pathway analysis utilizing tools, such as Enrichr. Additionally, the cellular components associated with these DEGs were investigated by analyzing the String database. On the other hand, blood serum samples were collected from 35 OSCC patients, 34 OLP patients, and 34 healthy volunteers. The expression level of miR-483-5p was determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The Kruskal-Wallis test was utilized to investigate the considerable correlation. Moreover, this study explored the prognostic value of miR-483-5p through its association with clinicopathological parameters in OSCC patients. RESULTS The results showed that serum expression of miR-483-5p was considerably higher in OSCC patients compared to OLP patients and healthy controls (p 0.0001) and that this difference was statistically significant. Furthermore, elevated miR-483-5p expression was associated with tumor size, lymph node metastasis, and stage of tumor nodal metastasis in OSCC patients (p 0.001, p 0.038, and p 0.0001, respectively). In silico analysis found 71 upregulated genes at the intersection of upregulated DEGs and 44 downregulated genes at the intersection of downregulated DEGs, offering insight into the potential underlying mechanisms of miR-483-5p's engagement in OSCC and OLP. The majority of these DEGs were found to be involved in autophagy pathways, but DEGs involved in the histidine metabolism pathway showed significant results. Most of these DEGs were located in the extracellular region. After screening for downregulated genes that were invalidated, miRNA 483-5p had 7 target genes. CONCLUSION This study demonstrates the potential of serum miR-483-5p as a promising diagnostic and prognostic biomarker in OSCC and OLP patients. Its upregulation in OSCC patients and its association with advanced tumor stage and potential metastasis suggest the involvement of miR-483-5p in critical signaling pathways involved in cell proliferation, apoptosis, and cell cycle regulation, making it a reliable indicator of disease progression. Nevertheless, additional experimental studies are essential to validate these findings and establish a foundation for the advancement of targeted therapies and personalized treatment approaches.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/pathology
- Computer Simulation
- Gene Expression Regulation, Neoplastic
- Lichen Planus, Oral/genetics
- Lichen Planus, Oral/blood
- Lichen Planus, Oral/diagnosis
- MicroRNAs/blood
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/blood
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/pathology
- Prognosis
Collapse
Affiliation(s)
| | - Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadhossein FakherBaheri
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Nikbin Kavishahi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Reza Zare-Mahmoodabadi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Izadi Taban
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Ray A, Sarkar A, Banerjee S, Biswas K. Non-Canonical Targets of MicroRNAs: Role in Transcriptional Regulation, Disease Pathogenesis and Potential for Therapeutic Targets. Microrna 2024; 13:83-95. [PMID: 38317474 DOI: 10.2174/0122115366278651240105071533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
MicroRNAs are a class of regulatory, non-coding small ribonucleic acid (RNA) molecules found in eukaryotes. Dysregulated expression of microRNAs can lead to downregulation or upregulation of their target gene. In general, microRNAs bind with the Argonaute protein and its interacting partners to form a silencing complex. This silencing complex binds with fully or partial complementary sequences in the 3'-UTR of their cognate target mRNAs and leads to degradation of the transcripts or translational inhibition, respectively. However, recent developments point towards the ability of these microRNAs to bind to the promoters, enhancers or coding sequences, leading to upregulation of their target genes. This review briefly summarizes the various non-canonical binding sites of microRNAs and their regulatory roles in various diseased conditions.
Collapse
Affiliation(s)
- Aishwarya Ray
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Abhisek Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, 700091, India
| |
Collapse
|
13
|
Bai Y, Li Y, Qin Y, Yang X, Tseng GC, Kim S, Park HJ. The microRNA target site profile is a novel biomarker in the immunotherapy response. Front Oncol 2023; 13:1225221. [PMID: 38188295 PMCID: PMC10771317 DOI: 10.3389/fonc.2023.1225221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
MicroRNAs (miRNAs) bind on the 3' untranslated region (3'UTR) of messenger RNAs (mRNAs) and regulate mRNA expression in physiological and pathological conditions, including cancer. Thus, studies have identified miRNAs as potential biomarkers by correlating the miRNA expression with the expression of important mRNAs and/or clinical outcomes in cancers. However, tumors undergo pervasive 3'UTR shortening/lengthening events through alternative polyadenylation (APA), which varies the number of miRNA target sites in mRNA, raising the number of miRNA target sites (numTS) as another important regulatory axis of the miRNA binding effects. In this study, we developed the first statistical method, BIOMATA-APA, to identify predictive miRNAs based on numTS features. Running BIOMATA-APA on The Cancer Genome Atlas (TCGA) and independent cohort data both with immunotherapy and no immunotherapy, we demonstrated for the first time that the numTS feature 1) distinguishes different cancer types, 2) predicts tumor proliferation and immune infiltration status, 3) explains more variation in the proportion of tumor-infiltrating immune cells, 4) predicts response to immune checkpoint blockade (ICB) therapy, and 5) adds prognostic power beyond clinical and miRNA expression. To the best of our knowledge, this is the first pan-cancer study to systematically demonstrate numTS as a novel type of biomarker representing the miRNA binding effects underlying tumorigenesis and pave the way to incorporate miRNA target sites for miRNA biomarker identification. Another advantage of examining the miRNA binding effect using numTS is that it requires only RNA-Seq data, not miRNAs, thus resulting in high power in the miRNA biomarker identification.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yujia Li
- Statistics-Oncology, Eli Lilly and Company, Indianapolis, IN, United States
| | - Yidi Qin
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinshuo Yang
- Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Soyeon Kim
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Avčin SL, Črepinšek K, Jenko Bizjan B, Šket R, Kovač J, Vrhovšek B, Blazina J, Blatnik O, Kordič R, Kitanovski L, Jazbec J, Debeljak M, Tesovnik T. Integrative Transcriptomic Profiling of the Wilms Tumor. Cancers (Basel) 2023; 15:3846. [PMID: 37568662 PMCID: PMC10416970 DOI: 10.3390/cancers15153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Our study aimed to identify relevant transcriptomic biomarkers for the Wilms tumor, the most common pediatric kidney cancer, independent of the histological type and stage. Using next-generation sequencing, we analyzed the miRNA profiles of 74 kidney samples, which were divided into two independent groups: fresh frozen tissue and formalin-fixed paraffin-embedded tissue samples. Subsequent mRNA expression profiling and pathway analysis were performed to establish the interplay and potential involvement of miRNAs and mRNA in the Wilms tumor. Comparative analysis, irrespective of post-dissection tissue processing, revealed 41 differentially expressed miRNAs, with 27 miRNAs having decreased expression and 14 miRNAs having increased expression in the Wilms tumor tissue compared to healthy kidney tissue. Among global mRNA transcriptomic profile differences, cross-sectional analysis suggested a limited list of genes potentially regulated by differentially expressed miRNAs in the Wilms tumor. This study identified the comprehensive miRNA and mRNA profile of the Wilms tumor using next-generation sequencing and bioinformatics approach, providing better insights into the pathogenesis of the Wilms tumor. The identified Wilms tumor miRNAs have potential as biomarkers for the diagnosis and treatment of the Wilms tumor, regardless of histological subtype and disease stage.
Collapse
Affiliation(s)
- Simona Lucija Avčin
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Klementina Črepinšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Robert Šket
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Blaž Vrhovšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Jerca Blazina
- Department of Pathology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Olga Blatnik
- Department of Pathology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Kordič
- Department of Pediatric Surgery, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Lidija Kitanovski
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Jazbec
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maruša Debeljak
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y. Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior. Biomedicines 2023; 11:1655. [PMID: 37371750 DOI: 10.3390/biomedicines11061655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.
Collapse
Key Words
- (IGF2/H19) IG-DMR, intergenic differentially methylated region
- BWS, Beckwith–Wiedemann syndrome
- CCD, centrally conserved domain
- CNV, copy number variation
- CTCF, CCCTC binding factor
- DMD, differentially methylated domain
- DMR, differentially methylated region
- GOM, gain of methylation
- ICR1, imprinting control region 1
- IGF-II, insulin-like growth factor-2 peptide
- IGF2, insulin-like growth factor 2 gene
- LOI, loss of imprinting
- LOM, loss of methylation
- MOI, maintenance of imprinting
- SRS, Silver Russel Syndrome
- TF: transcription factor
- UPD, uniparental disomy
- WT1, Wilms Tumor protein 1
- mRNA transcript
- p0–p4: IGF2 promoters 0–4
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Csók Á, Micsik T, Magyar Z, Tornóczky T, Kuthi L, Nishi Y, Szirák K, Csóka M, Ottóffy G, Soltész B, Balogh I, Buglyó G. Alterations of miRNA Expression in Diffuse Hyperplastic Perilobar Nephroblastomatosis: Mapping the Way to Understanding Wilms' Tumor Development and Differential Diagnosis. Int J Mol Sci 2023; 24:8793. [PMID: 37240139 PMCID: PMC10218489 DOI: 10.3390/ijms24108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Wilms' tumor (WT) is the most common renal malignancy in children. In diffuse hyperplastic perilobar nephroblastomatosis (DHPLN), nephrogenic rests result in a bulky enlargement of the kidney, a condition considered as a premalignant state before WT. Despite relevant clinical differences between WT and DHPLN, they are often challenging to distinguish based on histology. Molecular markers would improve differential diagnosis, but none are available at present. In our study, we investigated the potential of microRNAs (miRNAs) as such biomarkers, also aiming to shed light on the chronological order of expression changes. Formalin-fixed, paraffin-embedded (FFPE) samples from four DHPLN cases and adjacent healthy tissues were tested using a PCR array containing primers for 84 miRNAs implicated in genitourinary cancer. Expression in DHPLN was compared to WT data available in dbDEMC. Let-7, miR-135, miR-146a-5p, miR-182-5p, miR-183-5p, miR-20b-3p, miR-29b-3p, miR-195-5p and miR-17-5p showed potential to be used as biomarkers to distinguish WT and DHPLN in cases when traditional differential diagnosis is inconclusive. Our study also revealed miRNAs which may play a role in the initial steps of the pathogenesis (at a precancerous stage) and ones which become deregulated later in WT. More experiments are needed to confirm our observations and find new candidate markers.
Collapse
Affiliation(s)
- Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - Tamás Micsik
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, 1088 Budapest, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School and Clinical Center, 7624 Pécs, Hungary
| | - Levente Kuthi
- Department of Pathology, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Yumika Nishi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - Krisztina Szirák
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - Monika Csóka
- Department of Paediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Medical School and Clinical Center, 7623 Pécs, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| |
Collapse
|
17
|
Liu X, Chen C, Jiang Y, Wan M, Jiao B, Liao X, Rao S, Hong C, Yang Q, Zhu Y, Liu Q, Luo Z, Duan R, Wang Y, Tan Y, Cao J, Liu Z, Wang Z, Xie H, Shen L. Brain-derived extracellular vesicles promote bone-fat imbalance in Alzheimer's disease. Int J Biol Sci 2023; 19:2409-2427. [PMID: 37215980 PMCID: PMC10197897 DOI: 10.7150/ijbs.79461] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Inadequate osteogenesis and excessive adipogenesis of bone marrow mesenchymal stem cells (BMSCs) are key factors in the pathogenesis of osteoporosis. Patients with Alzheimer's disease (AD) have a higher incidence of osteoporosis than healthy adults, but the underlying mechanism is not clear. Here, we show that brain-derived extracellular vesicles (EVs) from adult AD or wild-type mice can cross the blood-brain barrier to reach the distal bone tissue, while only AD brain-derived EVs (AD-B-EVs) significantly promote the shift of the BMSC differentiation fate from osteogenesis to adipogenesis and induce a bone-fat imbalance. MiR-483-5p is highly enriched in AD-B-EVs, brain tissues from AD mice, and plasma-derived EVs from AD patients. This miRNA mediates the anti-osteogenic, pro-adipogenic, and pro-osteoporotic effects of AD-B-EVs by inhibiting Igf2. This study identifies the role of B-EVs as a promoter of osteoporosis in AD by transferring miR-483-5p.
Collapse
Affiliation(s)
- Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Chunyuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Meidan Wan
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 410008 Changsha, Hunan, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, 410008 Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, 410008 Changsha, Hunan, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 410008 Changsha, Hunan, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, 410008 Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, 410008 Changsha, Hunan, China
| | - Shanshan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Qianqian Liu
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Zhongwei Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Ran Duan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yiyi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Yijuan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Zhengzhao Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 410008 Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 410008 Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 410008 Changsha, Hunan, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, 410008 Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, 410008 Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, 410008 Changsha, Hunan, China
| |
Collapse
|
18
|
Tao J, Ge Q, Meng J, Liang C, Hao Z, Zhou J. Overexpression of DDX49 in prostate cancer is associated with poor prognosis. BMC Urol 2023; 23:66. [PMID: 37106339 PMCID: PMC10134639 DOI: 10.1186/s12894-023-01251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND There is increasing evidence that DEAD-box helicases (DDX) can act either as promoters or suppressors in various cancer types. Nevertheless, the function of DDX49 in prostate cancer (PCa) is unknown. This study reveals the prognostic and predictive value of DDX49 in PCa. METHODS First, we evaluated the expression of DDX49 between PCa and normal tissues based on TCGA and GEO databases. Univariate and multivariate regression analyses were conducted to reveal the risk factors for PCa recurrence. A K-M curve was employed to assess the relationship between DDX49 and recurrence-free survival. In vitro, DDX49 expression was evaluated in PCa and normal prostate cell lines. Furthermore, we constructed a shDDX49 lentivirus to knock down the expression of DDX49. Celigo® Image Cytometer and MTT assay were performed to analyse cell proliferation in PC-3 cells. Cell cycle distribution was detected with flow cytometry analysis. Apoptosis affected by the lack of DDX49 was metred with the PathScan® Stress and Apoptosis Signalling Antibody Array Kit. RESULTS This study shows a high increase in DDX49 in PCa tissues in comparison with normal tissues and that increased DDX49 indicates a poor prognosis among PCa patients. Meanwhile, DDX49 knockdown suppressed the proliferation and migration of PC-3 cells, causing cell cycle arrest in the G1 phase. Stress and apoptosis pathway analysis revealed that the phosphorylation of HSP27, p53, and SAPK/JNK was reduced in the DDX49 knockdown group compared with the control group. CONCLUSIONS In summary, these results suggest that high expression of DDX49 predicts a poor prognosis among PCa patients. Downregulation of DDX49 can suppress cell proliferation, block the cell cycle, and facilitate cell apoptosis. Therefore, knockdown of DDX49 is a promising novel therapy for treating patients with PCa.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Qintao Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jialing Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei City, 230022, Anhui Province, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, 230032, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
19
|
Abril-Fornaguera J, Torrens L, Andreu-Oller C, Carrillo-Reixach J, Rialdi A, Balaseviciute U, Pinyol R, Montironi C, Haber PK, Del Río-Álvarez Á, Domingo-Sàbat M, Royo L, Akers NK, Willoughby CE, Peix J, Torres-Martin M, Puigvehi M, Cairo S, Childs M, Maibach R, Alaggio R, Czauderna P, Morland B, Losic B, Mazzaferro V, Guccione E, Sia D, Armengol C, Llovet JM. Identification of IGF2 as Genomic Driver and Actionable Therapeutic Target in Hepatoblastoma. Mol Cancer Ther 2023; 22:485-498. [PMID: 36780225 PMCID: PMC10073300 DOI: 10.1158/1535-7163.mct-22-0335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/28/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Management of hepatoblastoma (HB), the most frequent pediatric liver cancer, is based on surgical resection and perioperative chemotherapy regimens. In this study, we aimed to identify actionable targets in HB and assess the efficacy of molecular therapies in preclinical models of HB. Paired tumor and adjacent tissues from 31 HBs and a validation set of 50 HBs were analyzed using RNA-seq, SNP, and methylation arrays. IGF2 overexpression was identified as the top targetable HB driver, present in 71% of HBs (22/31). IGF2high tumors displayed progenitor cell features and shorter recurrence-free survival. IGF2 overexpression was associated in 91% of cases with fetal promoter hypomethylation, ICR1 deregulation, 11p15.5 loss of heterozygosity or miR483-5p overexpression. The antitumor effect of xentuzumab (a monoclonal antibody targeting IGF1/2) alone or in combination with the conventional therapeutic agent cisplatin was assessed in HB cell lines, in PDX-derived HB organoids and in a xenograft HB murine model. The combination of xentuzumab with cisplatin showed strong synergistic antitumor effects in organoids and in IGF2high cell lines. In mice (n = 55), the combination induced a significant decrease in tumor volume and improved survival compared with cisplatin alone. These results suggest that IGF2 is an HB actionable driver and that, in preclinical models of HB, the combination of IGF1/2 inhibition with cisplatin induces superior antitumor effects than cisplatin monotherapy. Overall, our study provides a rationale for testing IGF2 inhibitors in combination with cisplatin in HB patients with IGF2 overexpression.
Collapse
Affiliation(s)
- Jordi Abril-Fornaguera
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Torrens
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carmen Andreu-Oller
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Juan Carrillo-Reixach
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Alex Rialdi
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ugne Balaseviciute
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roser Pinyol
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carla Montironi
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Philipp K. Haber
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Álvaro Del Río-Álvarez
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Laura Royo
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Nicholas K. Akers
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Catherine E. Willoughby
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Judit Peix
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miguel Torres-Martin
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marc Puigvehi
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Hepatology Section, Gastroenterology Department, Parc de Salut Mar, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
| | | | | | - Rudolf Maibach
- International Breast Cancer Study Group Coordinating Center, Bern, Switzerland
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Piotr Czauderna
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, Gdansk, Poland
| | - Bruce Morland
- Department of Oncology, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Bojan Losic
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Ernesto Guccione
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Madrid, Spain
- Program for Predictive and Personalized Medicine of Cancer (PMPPC), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Josep M. Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Translational Research in Hepatic Oncology Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| |
Collapse
|
20
|
Li Z, Qin Y, Liu X, Chen J, Tang A, Yan S, Zhang G. Identification of predictors for neurological outcome after cardiac arrest in peripheral blood mononuclear cells through integrated bioinformatics analysis and machine learning. Funct Integr Genomics 2023; 23:83. [PMID: 36930329 PMCID: PMC10023777 DOI: 10.1007/s10142-023-01016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Neurological prognostication after cardiac arrest (CA) is important to avoid pursuing futile treatments for poor outcome and inappropriate withdrawal of life-sustaining treatment for good outcome. To predict neurological outcome after CA through biomarkers in peripheral blood mononuclear cells, four datasets were downloaded from the Gene Expression Omnibus database. GSE29546 and GSE74198 were used as training datasets, while GSE92696 and GSE34643 were used as verification datasets. The intersection of differentially expressed genes and hub genes from multiscale embedded gene co-expression network analysis (MEGENA) was utilized in the machine learning screening. Key genes were identified using support vector machine recursive feature elimination (SVM-RFE), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF). The results were validated using receiver operating characteristic curve analysis. An mRNA-miRNA network was constructed. The distribution of immune cells was evaluated using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT). Five biomarkers were identified as predictors for neurological outcome after CA, with an area under the curve (AUC) greater than 0.7: CASP8 and FADD-like apoptosis regulator (CFLAR), human protein kinase X (PRKX), miR-483-5p, let-7a-5p, and let-7c-5p. Interestingly, the combination of CFLAR minus PRKX showed an even higher AUC of 0.814. The mRNA-miRNA network consisted of 30 nodes and 76 edges. Statistical differences were found in immune cell distribution, including neutrophils, NK cells active, NK cells resting, T cells CD4 memory activated, T cells CD4 memory resting, T cells CD8, B cells memory, and mast cells resting between individuals with good and poor neurological outcome after CA. In conclusion, our study identified novel predictors for neurological outcome after CA. Further clinical and laboratory studies are needed to validate our findings.
Collapse
Affiliation(s)
- Zhonghao Li
- Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China
| | - Ying Qin
- Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China
| | - Xiaoyu Liu
- Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China
- Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical Collage, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China
| | - Jie Chen
- Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China
- Institute of Clinical Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical Collage, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China
| | - Aling Tang
- Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China
- Graduate School of Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 10029, China
| | - Shengtao Yan
- Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China.
| | - Guoqiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, 2 Ying Hua Dong Jie, Chaoyang District, Beijing, 10029, China.
| |
Collapse
|
21
|
Uhlmann EJ, Mackel CE, Deforzh E, Rabinovsky R, Brastianos PK, Varma H, Vega RA, Krichevsky AM. Inhibition of the epigenetically activated miR-483-5p/IGF-2 pathway results in rapid loss of meningioma tumor cell viability. J Neurooncol 2023; 162:109-118. [PMID: 36809604 PMCID: PMC10050031 DOI: 10.1007/s11060-023-04264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Meningioma is the most common primary central nervous system tumor often causing serious complications, and presently no medical treatment is available. The goal of this study was to discover miRNAs dysregulated in meningioma, and explore miRNA-associated pathways amenable for therapeutic interventions. METHODS Small RNA sequencing was performed on meningioma tumor samples to study grade-dependent changes in microRNA expression. Gene expression was analyzed by chromatin marks, qRT-PCR and western blot. miRNA modulation, anti-IGF-2 neutralizing antibodies, and inhibitors against IGF1R were evaluated in a tumor-derived primary cultures of meningioma cells. RESULTS Meningioma tumor samples showed high, grade-dependent expression of miR-483-5p, associated with high mRNA and protein expression of its host gene IGF-2. Inhibition of miR-483-5p reduced the growth of cultured meningioma cells, whereas a miR-483 mimic increased cell proliferation. Similarly, inhibition of this pathway with anti-IGF-2 neutralizing antibodies reduced meningioma cell proliferation. Small molecule tyrosine kinase inhibitor blockade of the IGF-2 receptor (IGF1R) resulted in rapid loss of viability of cultured meningioma tumor-derived cells, suggesting that autocrine IGF-2 feedback is obligatory for meningioma tumor cell survival and growth. The observed IGF1R-inhibitory IC50 for GSK1838705A and ceritinib in cell-based assays along with the available pharmacokinetics data predicted that effective drug concentration could be achieved in vivo as a new medical treatment of meningioma. CONCLUSION Meningioma cell growth is critically dependent on autocrine miR-483/IGF-2 stimulation and the IGF-2 pathway provides a feasible meningioma treatment target.
Collapse
Affiliation(s)
- Erik J Uhlmann
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Charles E Mackel
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Priscilla K Brastianos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Rafael A Vega
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
22
|
Giuliani A, Sabbatinelli J, Amatori S, Graciotti L, Silvestrini A, Matacchione G, Ramini D, Mensà E, Prattichizzo F, Babini L, Mattiucci D, Busilacchi EM, Bacalini MG, Espinosa E, Lattanzio F, Procopio AD, Olivieri F, Poloni A, Fanelli M, Rippo MR. MiR-422a promotes adipogenesis via MeCP2 downregulation in human bone marrow mesenchymal stem cells. Cell Mol Life Sci 2023; 80:75. [PMID: 36847916 PMCID: PMC9971129 DOI: 10.1007/s00018-023-04719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/16/2022] [Accepted: 01/22/2023] [Indexed: 03/01/2023]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | | | - Lucia Babini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Domenico Mattiucci
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Laboratorio Brain Aging, Bologna, Italy
| | - Emma Espinosa
- Geriatrics, Santa Croce Hospital, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Fano, Italy
| | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| |
Collapse
|
23
|
Maxia C, Isola M, Grecu E, Cuccu A, Scano A, Orrù G, Di Girolamo N, Diana A, Murtas D. Synergic Action of Insulin-like Growth Factor-2 and miRNA-483 in Pterygium Pathogenesis. Int J Mol Sci 2023; 24:ijms24054329. [PMID: 36901760 PMCID: PMC10002351 DOI: 10.3390/ijms24054329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Pterygium is a multifactorial disease in which UV-B is speculated to play a key role by inducing oxidative stress and phototoxic DNA damage. In search for candidate molecules that are useful for justifying the intense epithelial proliferation observed in pterygium, our attention has been focused on Insulin-like Growth Factor 2 (IGF-2), mainly detected in embryonic and fetal somatic tissues, which regulate metabolic and mitogenic functions. The binding between IGF-2 and its receptor Insulin-like Growth Factor 1 Receptor (IGF-1R) activates the PI3K-AKT pathway, which leads to the regulation of cell growth, differentiation, and the expression of specific genes. Since IGF2 is regulated by parental imprinting, in different human tumors, the IGF2 Loss of Imprinting (LOI) results in IGF-2- and IGF2-derived intronic miR-483 overexpression. Based on these activities, the purpose of this study was to investigate the overexpression of IGF-2, IGF-1R, and miR-483. Using an immunohistochemical approach, we demonstrated an intense colocalized epithelial overexpression of IGF-2 and IGF-1R in most pterygium samples (Fisher's exact test, p = 0.021). RT-qPCR gene expression analysis confirmed IGF2 upregulation and demonstrated miR-483 expression in pterygium compared to normal conjunctiva (253.2-fold and 12.47-fold, respectively). Therefore, IGF-2/IGF-1R co-expression could suggest their interplay through the two different paracrine/autocrine IGF-2 routes for signaling transfer, which would activate the PI3K/AKT signaling pathway. In this scenario, miR-483 gene family transcription might synergically reinforce IGF-2 oncogenic function through its boosting pro-proliferative and antiapoptotic activity.
Collapse
Affiliation(s)
- Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| | - Michela Isola
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Eleonora Grecu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Alberto Cuccu
- Department of Surgical Science, Eye Clinic, Azienda Ospedaliero-Universitaria (AOU), 09123 Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Sciences, Molecular Biology Service Laboratory, University of Cagliari, 09123 Cagliari, Italy
| | - Nick Di Girolamo
- Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 4385, Australia
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
24
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
25
|
Zhu Y, Chen L, Song B, Cui Z, Chen G, Yu Z, Song B. Insulin-like Growth Factor-2 (IGF-2) in Fibrosis. Biomolecules 2022; 12:1557. [PMID: 36358907 PMCID: PMC9687531 DOI: 10.3390/biom12111557] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
The insulin family consists of insulin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2), their receptors (IR, IGF-1R and IGF-2R), and their binding proteins. All three ligands are involved in cell proliferation, apoptosis, protein synthesis and metabolism due to their homologous sequences and structural similarities. Insulin-like growth factor 2, a member of the insulin family, plays an important role in embryonic development, metabolic disorders, and tumorigenesis by combining with three receptors with different degrees of affinity. The main pathological feature of various fibrotic diseases is the excessive deposition of extracellular matrix (ECM) after tissue and organ damage, which eventually results in organic dysfunction because scar formation replaces tissue parenchyma. As a mitogenic factor, IGF-2 is overexpressed in many fibrotic diseases. It can promote the proliferation of fibroblasts significantly, as well as the production of ECM in a time- and dose-dependent manner. This review aims to describe the expression changes and fibrosis-promoting effects of IGF-2 in the skin, oral cavity, heart, lung, liver, and kidney fibrotic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
26
|
Wang Y, Wang L, Yu X, Gong W. MiR-30a-3p Targeting FLT1 Modulates Trophoblast Cell Proliferation in the Pathogenesis of Preeclampsia. Horm Metab Res 2022; 54:633-640. [PMID: 35981547 DOI: 10.1055/a-1880-1126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preeclampsia (PE) may pose significant adverse effects on pregnant women. Dysregulation of angiogenesis, trophoblast invasion, and proliferation are known to be associated with PE development and progression. Fms related tyrosine kinase 1 (FLT1), an anti-angiogenic factor, is consistently upregulated in PE patients. Recent papers highlight that aberrant miR-30a-3p expression contributes to PE development. More effects are needed to assess the biological function of placental miR-30a-3p in PE. The soluble FLT1 (sFLT1) and FLT1 levels were tested by ELISA assay and Western blotting assay. mRNA levels were measured by RT-qPCR assay. Colony formation and MTT assays were applied to assess the effect of miR-30a-3p on trophoblast cell proliferation. The serum sFLT1 and placental FLT1 levels were substantially high in patients with PE. Using miRNA microarray assay, we identified miR-30a-3p upregulation in PE patients' placenta tissues. We further confirmed that miR-30a-3p binds to the 3'-UTR of FLT1 gene and positively regulate its expression. Forcing miR-30a-3p expression inhibited trophoblast cell proliferation and vice versa. In conclusion, persistent high levels of FLT1 and miR-30a-3p may pose adverse effects on angiogenesis and trophoblast proliferation in placenta of PE patients. Therefore, targeting FLT1 and miR-30a-3p may serve as ideal strategies for managing patients with PE.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lanlan Wang
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xiaoyan Yu
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wenwen Gong
- Department of Obstetrics and Gynecology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
27
|
Dong X, Chen J, Xue L, Al‐hawwas M. Treadmill training improves cognitive function by increasing IGF2 targeted downregulation of miRNA-483. IBRAIN 2022; 8:264-275. [PMID: 37786740 PMCID: PMC10529000 DOI: 10.1002/ibra.12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/04/2023]
Abstract
Optimal exercise can promote the development of cognitive functions. Nevertheless, mechanisms that elicit these positive effects of exercise still need to be elucidated. Insulin-like growth factor 2 (IGF2) is known to act as a potent enhancer of memory and cognitive functions, whereas the mechanism by which IGF2 regulates cognitive functions in terms of moderate treadmill exercise remains largely vague. In the study, rats were subjected to low-, moderate-, and high-intensity treadmill training for 6 weeks. Then, the Morris water maze test was used to investigate spatial learning and memory ability in rats subjected to treadmill exercises of different intensities. Subsequently, gene chip and bioinformatics analyses were used to explore IGF2 and predict target microRNAs (miRNAs). Quantitative real-time polymerase chain reaction, western blot, and immunofluorescence analysis were performed to detect the levels of IGF2. Furthermore, IGF2-small interfering RNA, the miRNA-483-mimic, and the miRNA-483-inhibitor were transfected to determine the role of IGF2 and miRNA-483 in the growth of hippocampal neurons. The results of the Morris water maze test showed that moderate-intensity treadmill training enhanced cognitive functions; meanwhile, the expression of IGF2 was significantly upregulated in the hippocampus after moderate-intensity treadmill exercise. From databases, miRNA-483 was screened and predicted as the target gene of IGF2. Moreover, silencing IGF2 inhibited neurite growth in the hippocampus of rats, the miRNA-483-inhibitor ameliorated silencing IGF2 induced impairment of hippocampal neurons. These findings suggested that treadmill training could enhance cognitive functions, wherein the underlying mechanism involved an increase in the expression of IGF2 and downregulation of miRNA-483.
Collapse
Affiliation(s)
- Xiu‐Juan Dong
- College of Physical EducationHainan Normal UniversityHaikouHainanChina
| | - Jun‐Jie Chen
- Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Lu‐Lu Xue
- Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Mohammed Al‐hawwas
- School of Pharmacy and Medical Sciences, Faculty of Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
28
|
Jang J, Song G, Pettit SM, Li Q, Song X, Cai CL, Kaushal S, Li D. Epicardial HDAC3 Promotes Myocardial Growth Through a Novel MicroRNA Pathway. Circ Res 2022; 131:151-164. [PMID: 35722872 PMCID: PMC9308743 DOI: 10.1161/circresaha.122.320785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Establishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells instruct myocardial growth by secreting essential factors including FGF (fibroblast growth factor) 9 and IGF (insulin-like growth factor) 2. However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation. The current study is to investigate whether and how HDAC (histone deacetylase) 3 in the developing epicardium regulates myocardial growth. METHODS Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of HDAC3 in the developing epicardium. RESULTS We deleted Hdac3 in the developing murine epicardium, and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of epicardium-derived cells. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly downregulated in Hdac3 KO mouse epicardial cells. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO mouse epicardial cells and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO mouse epicardial cells. CONCLUSIONS Our findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322 or miR-503, providing novel insights in elucidating the etiology of congenital heart defects and conceptual strategies to promote myocardial regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Guang Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sarah M. Pettit
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qinshan Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiaosu Song
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Chen-leng Cai
- Department of Pediatrics, Herman Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46201
| | - Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Deqiang Li
- Center for Vascular and Inflammation Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
29
|
Huang X, Lai S, Qu F, Li Z, Fu X, Li Q, Zhong X, Wang C, Li H. CCL18 promotes breast cancer progression by exosomal miR-760 activation of ARF6/Src/PI3K/Akt pathway. Mol Ther Oncolytics 2022; 25:1-15. [PMID: 35399607 PMCID: PMC8971730 DOI: 10.1016/j.omto.2022.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/13/2022] [Indexed: 11/02/2022] Open
Abstract
The small GTPase ADP-ribosylation factor 6 (ARF6) mediates chemokine (C-C motif) ligand 18 (CCL18)-induced activation of breast cancer (BC) metastasis through its downstream effector AMAP1. However, the molecular mechanisms underlying CCL18 up-regulating ARF6 remain largely unclear. Here, microRNAs (miRNAs) that target ARF6 were predicted and selected in high metastatic BC cells treated with CCL18. Next, we assessed the role of exosomal miR-760 in vitro and in vivo. We further analyzed the expression of ARF6, AMAP1, and phosphorylated (p)-AMAP1 in tumor and adjacent normal tissues. We first observed that CCL18 increased the expression of ARF6 and p-AMAP1 and activated the Src/phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. ARF6 knockdown significantly impaired CCL18-induced malignant cellular behaviors and the Src/PI3K/Akt signaling pathway. Next, ARF6 was confirmed as a target gene of miR-760 in exosomes derived from CCL18-stimulated high metastatic BC cells. Moreover, recipient MCF-7 cells could effectively uptake these miR-760-rich exosomes that significantly promoted proliferation, tumor growth in vivo, migration, invasion, and chemoresistance by activating ARF6-mediated Src/PI3K/Akt signaling and the epithelial-mesenchymal transition (EMT) pathway. Together, our results support that exosomal miR-760 secreted by CCL18-stimulated high metastatic BC cells promoted the malignant behaviors in low metastatic BC cells by up-regulating the ARF6-mediated Src/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Shengqing Lai
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Fanli Qu
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Zongyan Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Xiaoyan Fu
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Qian Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Xiaofang Zhong
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| | - Chao Wang
- Department of Pathology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Haiyan Li
- Department of Breast Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Erheng Road, Yuancun, Tianhe District, Guangzhou, Guangdong 510655, China
| |
Collapse
|
30
|
Liu J, Yang T, Huang Z, Chen H, Bai Y. Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 2022; 50:92. [PMID: 35593304 DOI: 10.3892/ijmm.2022.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of endogenous non‑coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post‑transcriptional level by targeting the 3'‑untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus‑cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non‑canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.
Collapse
Affiliation(s)
- Junjie Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Tianhao Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Zishen Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Huifang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| |
Collapse
|
31
|
Nuclear microRNAs release paused Pol II via the DDX21-CDK9 complex. Cell Rep 2022; 39:110673. [PMID: 35417682 DOI: 10.1016/j.celrep.2022.110673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
RNA activation (RNAa) is an uncharacterized mechanism of transcriptional activation mediated by small RNAs, such as microRNAs (miRNAs). A critical issue in RNAa research is that it is difficult to distinguish between changes in gene expression caused indirectly by post-transcriptional regulation and direct induction of gene expression by RNAa. Therefore, in this study, we seek to identify a key factor involved in RNAa, using the induction of ZMYND10 by miR-34a as a system to evaluate RNAa. We identify the positive transcription elongation factors CDK9 and DDX21, which form a complex with nuclear AGO and TNRC6A, as important transcriptional activators of RNAa. In addition, we find that inhibition of DDX21 suppresses RNAa by miR-34a and other miRNAs without inhibiting post-transcriptional regulation. Our findings reveal a strong connection between RNAa and release of paused Pol II, facilitating RNAa research by making it possible to separately analyze post-transcriptional regulation and RNAa.
Collapse
|
32
|
Kato M, Ogata H, Tahara H, Shimamoto A, Takekita Y, Koshikawa Y, Nishida K, Nonen S, Higasa K, Kinoshita T. Multiple Pre-Treatment miRNAs Levels in Untreated Major Depressive Disorder Patients Predict Early Response to Antidepressants and Interact with Key Pathways. Int J Mol Sci 2022; 23:ijms23073873. [PMID: 35409234 PMCID: PMC8999364 DOI: 10.3390/ijms23073873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Major depressive disorder (MDD) is a life-impairing disorder, and early successful treatment is important for a favorable prognosis. However, early response to antidepressants differs widely among individuals, and is difficult to predict pre-treatment. As miRNAs have been reported to play important roles in depression, identification of miRNAs associated with antidepressant treatment responses and their interacting genes and pathways will be beneficial in understanding the predictors and molecular mechanisms of depression treatment. This randomized control trial examined miRNAs correlated with the early therapeutic effect of selective serotonin reuptake inhibitors (SSRIs; paroxetine or sertraline) and mirtazapine monotherapy. Before medication, we comprehensively analyzed the miRNA expression of 92 depressed participants and identified genes and pathways interacting with miRNAs. A total of 228 miRNAs were significantly correlated with depressive symptoms improvements after 2 weeks of SSRIs treatment, with miR-483.5p showing the most robust correlation. These miRNAs are involved in 21 pathways, including TGF-β, glutamatergic synapse, long-term depression, and the mitogen-activated protein kinase (MAPK) signaling pathways. Using these miRNAs enabled us to predict SSRI response at week 2 with a 57% difference. This study shows that pre-treatment levels of miRNAs could be used to predict early responses to antidepressant administration, a knowledge of genes, and an identification of genes and pathways associated with the antidepressant response.
Collapse
Affiliation(s)
- Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (H.O.); (Y.T.); (Y.K.); (K.N.); (T.K.)
- Correspondence:
| | - Haruhiko Ogata
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (H.O.); (Y.T.); (Y.K.); (K.N.); (T.K.)
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8533, Japan;
| | - Akira Shimamoto
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda 756-0084, Japan;
| | - Yoshiteru Takekita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (H.O.); (Y.T.); (Y.K.); (K.N.); (T.K.)
| | - Yosuke Koshikawa
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (H.O.); (Y.T.); (Y.K.); (K.N.); (T.K.)
| | - Keiichiro Nishida
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (H.O.); (Y.T.); (Y.K.); (K.N.); (T.K.)
| | - Shinpei Nonen
- Department of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan;
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka 573-1191, Japan;
| | - Toshihiko Kinoshita
- Department of Neuropsychiatry, Kansai Medical University, Osaka 573-1191, Japan; (H.O.); (Y.T.); (Y.K.); (K.N.); (T.K.)
| |
Collapse
|
33
|
Palombo R, Paronetto MP. pncCCND1_B Engages an Inhibitory Protein Network to Downregulate CCND1 Expression upon DNA Damage. Cancers (Basel) 2022; 14:cancers14061537. [PMID: 35326688 PMCID: PMC8946712 DOI: 10.3390/cancers14061537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Promoter-associated noncoding RNAs (pancRNAs) represent a class of noncoding transcripts driven from the promoter region of protein-coding or non-coding genes that operate as cis-acting elements to regulate the expression of the host gene. PancRNAs act by altering the chromatin structure and recruiting transcription regulators. PncCCND1_B is driven by the promoter region of CCND1 and regulates CCND1 expression in Ewing sarcoma through recruitment of a multi-molecular complex composed of the RNA binding protein Sam68 and the DNA/RNA helicase DHX9. In this study, we investigated the regulation of CCND1 expression in Ewing sarcoma cells upon exposure to chemotherapeutic drugs. Pan-inhibitor screening indicated that etoposide, a drug used for Ewing sarcoma treatment, promotes transcription of pncCCND1_B and repression of CCND1 expression. RNA immunoprecipitation experiments showed increased binding of Sam68 to the pncCCND1_B after treatment, despite the significant reduction in DHX9 protein. This effect was associated with the formation of DNA:RNA duplexes at the CCND1 promoter. Furthermore, Sam68 interacted with HDAC1 in etoposide treated cells, thus contributing to chromatin remodeling and epigenetic changes. Interestingly, inhibition of the ATM signaling pathway by KU 55,933 treatment was sufficient to inhibit etoposide-induced Sam68-HDAC1 interaction without rescuing DHX9 expression. In these conditions, the DNA:RNA hybrids persist, thus contributing to the local chromatin inactivation at the CCND1 promoter region. Altogether, our results show an active role of Sam68 in DNA damage signaling and chromatin remodeling on the CCND1 gene by fine-tuning transitions of epigenetic complexes on the CCND1 promoter.
Collapse
Affiliation(s)
- Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
34
|
Buglyó G, Magyar Z, Görbe ÉR, Bánusz R, Csóka M, Micsik T, Mezei M, Yani JAS, Varga P, Sápi Z, Nagy B. miRNA Profiling of Hungarian Regressive Wilms' Tumor Formalin-Fixed Paraffin-Embedded (FFPE) Samples by Quantitative Real-Time Polymerase Chain Reaction (RT-PCR). Med Sci Monit 2021; 27:e932731. [PMID: 34608109 PMCID: PMC8501895 DOI: 10.12659/msm.932731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Wilms' tumor is a common renal malignancy of early childhood with a generally favorable prognosis depending upon histological subtype. It is becoming increasingly clear that differences in miRNA (microRNA) expression signature represent important clues helping us predict a tumor's response to chemotherapy. In our study, we aimed to reveal miRNAs deregulated in regressive Wilms' tumors from FFPE (formalin-fixed, paraffin-embedded) samples, also showing whether such samples are reliable miRNA sources in Wilms' tumor. MATERIAL AND METHODS Samples from 8 Hungarian patients (3 males, 5 females, aged 1 to 7 years) were analyzed by qRT-PCR (quantitative real-time PCR). A PCR array was used in a pilot experiment, and selected miRNAs (miR-128-3p, miR-184, miR-194-5p, miR-203a) were studied in the rest of the samples using individual primers. RESULTS miR-194-5p was underexpressed in all tumor samples. miR-184 and miR-203a were underexpressed in 7 cases, the exception being a case with a high ratio of necrotic blastemal tissue. Results obtained with miR-128-3p are difficult to interpret due to varying directions of expression changes. CONCLUSIONS We conclude that a downregulation of miR-184, miR-194-5p, and miR-203a expression is observed in both regressive and blastemal tumors, but larger-scale studies are needed to confirm whether the degree of their underexpression correlates with the number of blastemal elements in a sample. In most of our FFPE samples aged up to 9 years, RNA extraction provided miRNA with quantity and quality sufficient for qRT-PCR-based analysis, emphasizing the relevance of pathological archives as miRNA sources in future studies.
Collapse
Affiliation(s)
- Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Éva Romicsné Görbe
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Rita Bánusz
- 2 Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Monika Csóka
- 2 Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Tamás Micsik
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Márta Mezei
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jaxi Ayman Shawky Yani
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Varga
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Zoltán Sápi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
35
|
Naboulsi R, Larsson M, Andersson L, Younis S. ZBED6 regulates Igf2 expression partially through its regulation of miR483 expression. Sci Rep 2021; 11:19484. [PMID: 34593874 PMCID: PMC8484269 DOI: 10.1038/s41598-021-98777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
The expression of Igf2 in mammals shows a complex regulation involving multiple promoters and epigenetic mechanisms. We previously identified a novel regulatory mechanism based on the interaction between the transcriptional factor ZBED6 and Igf2 intron. Disruption of the ZBED6-Igf2 interaction leads to a dramatic up-regulation of IGF2 expression postnatally. In the current study we characterize an additional layer of regulation involving miR483 encoded by another Igf2 intron. We found a highly significant up-regulation of miR483 expression when the ZBED6-Igf2 axis is disrupted in transgenic mice. Furthermore, CRISPR/Cas9 mediated knock-out of miR483 in C2C12 myoblast cells, both wild-type and cells with disrupted ZBED6-Igf2 axis (Igf2dGGCT), resulted in down-regulation of Igf2 expression and a reduced proliferation rate. This was further validated using miR483 mimics and inhibitors. RNA-seq analysis revealed a significant enrichment of genes involved in the PI3K-Akt signaling pathway among genes down-regulated in miR483-/- cells, including Igf2 down-regulation. The opposite pattern was observed in Igf2dGGCT cells, where Igf2 is up-regulated. Our data suggest a positive feedback between miR483 and Igf2 promoter activity, strongly affecting how ZBED6 controls Igf2 expression in various cell types.
Collapse
Affiliation(s)
- Rakan Naboulsi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23, Uppsala, Sweden.
- Department of Animal Breeding and Genetics, Ain Shams University, Shoubra El-Kheima, Cairo, 11241, Egypt.
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
36
|
Sun L, Wan A, Zhou Z, Chen D, Liang H, Liu C, Yan S, Niu Y, Lin Z, Zhan S, Wang S, Bu X, He W, Lu X, Xu A, Wan G. RNA-binding protein RALY reprogrammes mitochondrial metabolism via mediating miRNA processing in colorectal cancer. Gut 2021; 70:1698-1712. [PMID: 33219048 PMCID: PMC8355885 DOI: 10.1136/gutjnl-2020-320652] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Dysregulated cellular metabolism is a distinct hallmark of human colorectal cancer (CRC). However, metabolic programme rewiring during tumour progression has yet to be fully understood. DESIGN We analysed altered gene signatures during colorectal tumour progression, and used a complex of molecular and metabolic assays to study the regulation of metabolism in CRC cell lines, human patient-derived xenograft mouse models and tumour organoid models. RESULTS We identified a novel RNA-binding protein, RALY (also known as hnRNPCL2), that is highly associated with colorectal tumour aggressiveness. RALY acts as a key regulatory component in the Drosha complex, and promotes the post-transcriptional processing of a specific subset of miRNAs (miR-483, miR-676 and miR-877). These miRNAs systematically downregulate the expression of the metabolism-associated genes (ATP5I, ATP5G1, ATP5G3 and CYC1) and thereby reprogramme mitochondrial metabolism in the cancer cell. Analysis of The Cancer Genome Atlas (TCGA) reveals that increased levels of RALY are associated with poor prognosis in the patients with CRC expressing low levels of mitochondrion-associated genes. Mechanistically, induced processing of these miRNAs is facilitated by their N6-methyladenosine switch under reactive oxygen species (ROS) stress. Inhibition of the m6A methylation abolishes the RALY recognition of the terminal loop of the pri-miRNAs. Knockdown of RALY inhibits colorectal tumour growth and progression in vivo and in organoid models. CONCLUSIONS Collectively, our results reveal a critical metabolism-centric role of RALY in tumour progression, which may lead to cancer therapeutics targeting RALY for treating CRC.
Collapse
Affiliation(s)
- Lei Sun
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Arabella Wan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhuolong Zhou
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dongshi Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heng Liang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chuwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shijia Yan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi Niu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ziyou Lin
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Siyue Zhan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shanfeng Wang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xianzhang Bu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China,Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA .,Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China .,State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Wu W, Gou H, Dong J, Yang X, Zhao Y, Peng H, Chen D, Geng R, Chen L, Liu J. Usnic Acid Inhibits Proliferation and Migration through ATM Mediated DNA Damage Response in RKO Colorectal Cancer Cell. Curr Pharm Biotechnol 2021; 22:1129-1138. [PMID: 33006536 DOI: 10.2174/1389201021666201002155955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Usnic Acid (UA), also known as lichenol, has been reported to have inhibitory effects on a variety of cancer cells, but its specific mechanism remained to be elucidated. Tumor chemotherapy drugs, especially DNA damage chemotherapeutic drugs, target Chromosomal DNA, but their spontaneous and acquired drug resistance are also an urgent problem to be solved. Therefore, drug combination research has become the focus of researchers. METHODS Here, we evaluated the tumor-suppressing molecular mechanism of UA in colorectal cancer cells RKO from the perspective of the ATM-mediated DNA damage signaling pathway through H2O2 simulating DNA damage chemotherapeutic drugs. CCK8 cell proliferation assay was used to determine the inhibition of RKO cells by hydrogen peroxide and UA alone or in combination, and wound healing assay was applied to determine the effect of the drug on cell migration. RESULTS Transfected cells with miRNA18a-5p mimics and inhibitors, MDC and DCFH-DA staining for the measurement of autophagy and ROS, cell cycle and apoptosis were detected by flow cytometry, expressions of microRNA and mRNA were determined by fluorescence quantitative PCR, and protein by Western blot. DISCUSSION We found that UA can upregulate ATM via miR-18a to activate the DNA damage signaling pathway and inhibit the proliferation and migration of RKO cells in a concentration-dependent manner. CONCLUSION At the same time, DNA damage responses, including cell cycle, autophagy, apoptosis and ROS levels, are also regulated by UA. Therefore, UA combined with DNA damage chemotherapeutic drugs may be an effective treatment for cancer.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Gou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jingying Dong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaolong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yanan Zhao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Heng Peng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
38
|
Huang Y, Chen L, Feng Z, Chen W, Yan S, Yang R, Xiao J, Gao J, Zhang D, Ke X. EPC-Derived Exosomal miR-1246 and miR-1290 Regulate Phenotypic Changes of Fibroblasts to Endothelial Cells to Exert Protective Effects on Myocardial Infarction by Targeting ELF5 and SP1. Front Cell Dev Biol 2021; 9:647763. [PMID: 34055778 PMCID: PMC8155602 DOI: 10.3389/fcell.2021.647763] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Endothelial progenitor cell (EPC)-derived exosomes have been found to be effective in alleviating MI, while the detailed mechanisms remain unclear. The present study aimed to determine the protective effects of EPC-derived exosomal miR-1246 and miR-1290 on MI-induced injury and to explore the underlying molecular mechanisms. The exosomes were extracted from EPCs; gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot and immunofluorescence staining, respectively. The angiogenesis and proliferation of human cardiac fibroblasts (HCFs) were determined by tube formation assay and immunofluorescence staining of PKH67, respectively. Luciferase reporter, CHIP, and EMSA assays determined the interaction between miR-1246/1290 and the targeted genes (EFL5 and SP1). The protective effects of miR-1246/1290 on MI were evaluated in a rat model of MI. EPC-derived exosomes significantly upregulated miR-1246 and miR-1290 expression and promoted phenotypic changes of fibroblasts to endothelial cells, angiogenesis, and proliferation in HCFs. Exosomes from EPCs with miR-1246 or miR-1290 mimics transfection promoted phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs, while exosomes from EPCs with miR-1246 or miR-1290 knockdown showed opposite effects in HCFs. Mechanistically, miR-1246 and miR-1290 from EPC-derived exosomes induced upregulation of ELF5 and SP1, respectively, by targeting the promoter regions of corresponding genes. Overexpression of both ELF5 and SP1 enhanced phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs pretreated with exosomes from EPCs with miR-1246 or miR-1290 mimics transfection, while knockdown of both EFL5 and SP1 exerted the opposite effects in HCFs. Both ELF5 and SP1 can bind to the promoter of CD31, leading to the upregulation of CD31 in HCFs. Furthermore, in vivo animal studies showed that exosomes from EPCs with miR-1246 or miR-1290 overexpression attenuated the MI-induced cardiac injury in the rats and caused an increase in ELF5, SP1, and CD31 expression, respectively, but suppressed α-SMA expression in the cardiac tissues. In conclusion, our study revealed that miR-1246 and miR-1290 in EPC-derived exosomes enhanced in vitro and in vivo angiogenesis in MI, and these improvements may be associated with amelioration of cardiac injury and cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Yulang Huang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Lifang Chen
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Zongming Feng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Weixin Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Jian Xiao
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Debao Zhang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
39
|
Pan Y, Zhan L, Chen L, Chen L, Sun C. miR-660 promotes liver cancer cell proliferation by targeting PPP2R2A. Exp Ther Med 2021; 22:683. [PMID: 33986848 DOI: 10.3892/etm.2021.10115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Liver cancer (LC) is the leading cause for tumor-related death worldwide, and microRNAs (miRs) have been demonstrated to regulate the progression of LC. In the current study, the function of miR-660 in LC cells was investigated, and the results indicated that miR-660 was highly expressed in LC tissues and cells. This increased expression promoted LC cell proliferation and increased the percentage of S phase cells, while miR-660 knockdown inhibited cell proliferation and increased the percentage of G0/G1 phase cells. A Ser/Thr phosphatase protein phosphatase 2 regulatory subunit βα (PPP2R2A) was indicated as the target of miR-660, and miR-660 could inhibit PPP2R2A levels. The luciferase reporter assay suggested that miR-660 directly bound to the 3'-untranslated region of PPP2R2A. Additionally, it was revealed that miR-660 inhibited p21 expression and promoted cyclin D1 expression, confirming that miR-660 regulated LC cell proliferation by regulating cell cycle progression. The double knockdown of miR-660 and PPP2R2A promoted LC cell proliferation, suggesting that miR-660 promoted LC proliferation by targeting PPP2R2A.
Collapse
Affiliation(s)
- Yaozhen Pan
- Department of Biliary-Hepatic Surgery, The Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R China.,Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| | - Lei Zhan
- Department of Biliary-Hepatic Surgery, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550000, P.R China
| | - Ling Chen
- Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| | - Liwen Chen
- Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| | - Chengyi Sun
- Department of Biliary-Hepatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R China
| |
Collapse
|
40
|
Nagaraj S, Want A, Laskowska-Kaszub K, Fesiuk A, Vaz S, Logarinho E, Wojda U. Candidate Alzheimer's Disease Biomarker miR-483-5p Lowers TAU Phosphorylation by Direct ERK1/2 Repression. Int J Mol Sci 2021; 22:ijms22073653. [PMID: 33915734 PMCID: PMC8037306 DOI: 10.3390/ijms22073653] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been demonstrated as key regulators of gene expression in the etiology of a range of diseases including Alzheimer's disease (AD). Recently, we identified miR-483-5p as the most upregulated miRNA amongst a panel of miRNAs in blood plasma specific to prodromal, early-stage Alzheimer's disease patients. Here, we investigated the functional role of miR-483-5p in AD pathology. Using TargetScan and miRTarBase, we identified the microtubule-associated protein MAPT, often referred to as TAU, and the extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), known to phosphorylate TAU, as predicted direct targets of miR-483-5p. Employing several functional assays, we found that miR-483-5p regulates ERK1 and ERK2 at both mRNA and protein levels, resulting in lower levels of phosphorylated forms of both kinases. Moreover, miR-483-5p-mediated repression of ERK1/2 resulted in reduced phosphorylation of TAU protein at epitopes associated with TAU neurofibrillary pathology in AD. These results indicate that upregulation of miR-483-5p can decrease phosphorylation of TAU via ERK pathway, representing a compensatory neuroprotective mechanism in AD pathology. This miR-483-5p/ERK1/TAU axis thus represents a novel target for intervention in AD.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
| | - Aleksandra Fesiuk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Sara Vaz
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
| | - Elsa Logarinho
- i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (S.V.); (E.L.)
- Aging and Aneuploidy Laboratory, IBMC, Institute of Molecular and Cellular Biology, University of Porto, 4200-135 Porto, Portugal
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland; (S.N.); (A.W.); (K.L.-K.); (A.F.)
- Correspondence: ; Tel.: +48-22-5892578
| |
Collapse
|
41
|
Nuclear functions of microRNAs relevant to the cardiovascular system. Transl Res 2021; 230:151-163. [PMID: 33186782 DOI: 10.1016/j.trsl.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
A fraction of the transcriptome is translated into proteins. The rest is classified as non-protein coding RNA (Ribonucleic Acid) but has gained increased attention as functional and regulatory group of transcripts. The gene regulatory role of non-coding RNAs (ncRNAs) has now been widely accepted in diverse biological processes in both physiology and disease. MicroRNAs fall into this latter group and are widely known for their diverse post-transcriptional regulatory role. MicroRNA sequences are embedded in the long ncRNAs, known as primary microRNAs, are processed into precursor microRNAs and are typically transported out of the nucleus for maturation and loading into a protein complex forming RNA-induced silencing complex (RISC) that either drives the degradation of messenger RNA (mRNA) or blocks its translation. A new phenomenon is emerging where microRNAs have active roles within the nucleus. The presence of RISC components including microRNAs in the nucleus supports this notion. They may integrate with chromatin modifiers, microprocessing machinery and mRNA stabilizing transcripts to play a multifunctional role in the nucleus. Although a limited number of studies appreciate this novel activity of microRNAs relevant to the cardiovascular system, they provide proof-of-concept that requires consideration while targeting miRNAs with therapeutic potential.
Collapse
|
42
|
Modulation of IGF2 Expression in the Murine Thymus and Thymic Epithelial Cells Following Coxsackievirus-B4 Infection. Microorganisms 2021; 9:microorganisms9020402. [PMID: 33672010 PMCID: PMC7919294 DOI: 10.3390/microorganisms9020402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus B4 (CV-B4) can infect human and murine thymic epithelial cells (TECs). In a murine TEC cell line, CV-B4 can downregulate the transcription of the insulin-like growth factor 2 (Igf2) gene coding for the self-peptide of the insulin family. In this study, we show that CV-B4 infections of a murine TEC cell line decreased Igf2 P3 promoter activity by targeting a region near the transcription start site; however, the stability of Igf2 transcripts remained unchanged, indicating a regulation of Igf2 transcription. Furthermore, CV-B4 infections decreased STAT3 phosphorylation in vitro. We also showed that mice infected with CV-B4 had an altered expression of Igf2 isoforms as detected in TECs, followed by a decrease in the pro-IGF2 precursor in the thymus. Our study sheds new light on the intrathymic regulation of Igf2 transcription during CV-B4 infections and supports the hypothesis that a viral infection can disrupt central self-tolerance to insulin by decreasing Igf2 transcription in the thymic epithelium.
Collapse
|
43
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
44
|
Unraveling Molecular Pathways Altered in MeCP2-Related Syndromes, in the Search for New Potential Avenues for Therapy. Biomedicines 2021; 9:biomedicines9020148. [PMID: 33546327 PMCID: PMC7913493 DOI: 10.3390/biomedicines9020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is an X-linked epigenetic modulator whose dosage is critical for neural development and function. Loss-of-function mutations in MECP2 cause Rett Syndrome (RTT, OMIM #312750) while duplications in the Xq28 locus containing MECP2 and Interleukin-1 receptor-associated kinase 1 (IRAK1) cause MECP2 duplication syndrome (MDS, OMIM #300260). Both are rare neurodevelopmental disorders that share clinical symptoms, including intellectual disability, loss of speech, hand stereotypies, vasomotor deficits and seizures. The main objective of this exploratory study is to identify novel signaling pathways and potential quantitative biomarkers that could aid early diagnosis and/or the monitoring of disease progression in clinical trials. We analyzed by RT-PCR gene expression in whole blood and microRNA (miRNA) expression in plasma, in a cohort of 20 females with Rett syndrome, 2 males with MECP2 duplication syndrome and 28 healthy controls, and correlated RNA expression with disease and clinical parameters. We have identified a set of potential biomarker panels for RTT diagnostic and disease stratification of patients with microcephaly and vasomotor deficits. Our study sets the basis for larger studies leading to the identification of specific miRNA signatures for early RTT detection, stratification, disease progression and segregation from other neurodevelopmental disorders. Nevertheless, these data will require verification and validation in further studies with larger sample size including a whole range of ages.
Collapse
|
45
|
Weiss JBW, Wagner AE, Eberherr C, Häberle B, Vokuhl C, von Schweinitz D, Kappler R. High expression of IGF2-derived intronic miR-483 predicts outcome in hepatoblastoma. Cancer Biomark 2021; 28:321-328. [PMID: 32390604 DOI: 10.3233/cbm-191390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The role of microRNAs (miRs) as biomarkers to predict outcome in hepatoblastoma (HB), the most common malignant liver tumor in childhood, has still to be determined. Recently, the so-called four-miR signature has been described to efficiently stratify HB patients according to their prognosis. OBJECTIVE We examined the recently described four-miR signature for its clinical relevance in an independent validation cohort of HB patients and tried to optimize its predictive value by analyzing four additional miRs involved in HB biology. METHODS Expression of eight miR was determined in 29 tumor and 10 normal liver samples by TaqMan assays and association studies and Kaplan-Meier estimators determined their clinical relevance. RESULTS Stratifying HB patients by the four-miR signature showed no difference in patients' outcome, which was also reflected by the lack of association with any clinical risk parameter. Adding miR-23b-5p and miR-23b-3p did also not increase its discriminating power. However, the integration of miR-483-5p and miR-483-3p into the four-miR signature could predict patients with poor outcome that were associated with large tumors and vessel invasive growth with high accuracy. CONCLUSIONS The expansion of the four-miR signature by miR-483 serves as a useful biomarker to predict outcome of HB patients.
Collapse
Affiliation(s)
- Jakob Benjamin Wilhelm Weiss
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Department of Plastic and Hand Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Elisabeth Wagner
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Corinna Eberherr
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Beate Häberle
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
46
|
Xing F, Zhao D, Wu SY, Tyagi A, Wu K, Sharma S, Liu Y, Deshpande R, Wang Y, Cleary J, Miller LD, Chittiboyina AG, Yalamanchili C, Mo YY, Watabe K. Epigenetic and Posttranscriptional Modulation of SOS1 Can Promote Breast Cancer Metastasis through Obesity-Activated c-Met Signaling in African-American Women. Cancer Res 2021; 81:3008-3021. [PMID: 33446575 DOI: 10.1158/0008-5472.can-19-4031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Ethnicity is considered to be one of the major risk factors in certain subtypes of breast cancer. However, the mechanism of this racial disparity remains poorly understood. Here, we demonstrate that SOS1, a key regulator of Ras pathway, is highly expressed in African-American (AA) patients with breast cancer compared with Caucasian-American patients. Because of the higher obesity rate in AA women, increased levels of SOS1 facilitated signal transduction of the c-Met pathway, which was highly activated in AA patients with breast cancer via hepatocyte growth factor secreted from adipocytes. Elevated expression of SOS1 also enhanced cancer stemness through upregulation of PTTG1 and promoted M2 polarization of macrophages by CCL2 in metastatic sites. SOS1 was epigenetically regulated by a super-enhancer identified by H3K27ac in AA patients. Knockout of the super-enhancer by CRISPR in AA cell lines significantly reduced SOS1 expression. Furthermore, SOS1 was posttranscriptionally regulated by miR-483 whose expression is reduced in AA patients through histone trimethylation (H3K27me3) on its promoter. The natural compound, taxifolin, suppressed signaling transduction of SOS1 by blocking the interaction between SOS1 and Grb2, suggesting a potential utility of this compound as a therapeutic agent for AA patients with breast cancer. SIGNIFICANCE: These findings elucidate the signaling network of SOS1-mediated metastasis in African-American patients, from the epigenetic upregulation of SOS1 to the identification of taxifolin as a potential therapeutic strategy against SOS1-driven tumor progression.
Collapse
Affiliation(s)
- Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Yin Liu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ravindra Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jacob Cleary
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, Mississippi
| | - Chinni Yalamanchili
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, Mississippi
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
47
|
Zhang F, Zeng L, Cai Q, Xu Z, Liu R, Zhong H, Mukiibi R, Deng L, Tang X, Xin H. Comprehensive Analysis of a Long Noncoding RNA-Associated Competing Endogenous RNA Network in Wilms Tumor. Cancer Control 2021; 27:1073274820936991. [PMID: 32597194 PMCID: PMC7324900 DOI: 10.1177/1073274820936991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays crucial roles in various biological processes of different cancers, especially acting as a competing endogenous RNA (ceRNA). However, the role of lncRNA-mediated ceRNA in Wilms tumor (WT), which is the most common malignant kidney cancer in children, remains unknown. In present study, RNA sequence profiles and clinical data of 125 patients with WT consisting of 119 tumor and 6 normal tissues from Therapeutically Applicable Research To Generate Effective Treatments database were analyzed. A total of 1833 lncRNAs, 156 microRNAs (miRNAs), and 3443 messenger RNAs (mRNAs) were identified as differentially expressed (DE) using "DESeq2" package. The lncRNA-miRNA-mRNA ceRNA regulatory network involving 748 DElncRNAs, 33 DEmiRNAs, and 189 DEmRNAs was constructed based on miRcode, Targetscan, miRTarBase, and miRDB database. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that DEmRNAs were mainly enriched in cell proliferation-related processes and tumor-related pathways, respectively, and 13 hub genes were identified by a protein-protein interaction network. Survival analysis detected 48 lncRNAs, 7 miRNAs, and 16 mRNAs to have significant impact on the overall survival of patients with WT. Additionally, we found that 6 DElncRNAs with potential prognostic value were correlated with tumor stage (DENND5B-AS1) and histologic classification (TMPO-AS1, RP3-523K23.2, RP11-598F7.3, LAMP5-AS1, and AC013275.2) of patients with WT. Our research provides a great insight into understanding the molecular mechanism underlying occurrence and progression of WT, as well as the potential to develop targeted therapies and prognostic biomarkers.
Collapse
Affiliation(s)
- Feng Zhang
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Liping Zeng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | | | - Zihao Xu
- Nanchang University, Nanchang, China
| | - Ruida Liu
- Nanchang University, Nanchang, China
| | | | - Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Libin Deng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiaoli Tang
- Nanchang University, Nanchang, China.,Department of Biochemistry, School of Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Castro-Vega LJ, Calsina B, Burnichon N, Drossart T, Martínez-Montes ÁM, Verkarre V, Amar L, Bertherat J, Rodríguez-Antona C, Favier J, Robledo M, Gimenez-Roqueplo AP. Overexpression of miR-483-5p is confined to metastases and linked to high circulating levels in patients with metastatic pheochromocytoma/paraganglioma. Clin Transl Med 2020; 10:e260. [PMID: 33377638 PMCID: PMC7752161 DOI: 10.1002/ctm2.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Luis Jaime Castro-Vega
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nelly Burnichon
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
| | - Tom Drossart
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
| | - Ángel M Martínez-Montes
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Virginie Verkarre
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Laurence Amar
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Hypertension unit, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Bertherat
- Paris University, INSERM, Institut Cochin, Paris, France.,Rare Adrenal Cancer Network COMETE, Paris, France
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Judith Favier
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France.,Rare Adrenal Cancer Network COMETE, Paris, France
| |
Collapse
|
49
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
50
|
Lambo S, von Hoff K, Korshunov A, Pfister SM, Kool M. ETMR: a tumor entity in its infancy. Acta Neuropathol 2020; 140:249-266. [PMID: 32601913 PMCID: PMC7423804 DOI: 10.1007/s00401-020-02182-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Embryonal tumor with Multilayered Rosettes (ETMR) is a relatively rare but typically deadly type of brain tumor that occurs mostly in infants. Since the discovery of the characteristic chromosome 19 miRNA cluster (C19MC) amplification a decade ago, the methods for diagnosing this entity have improved and many new insights in the molecular landscape of ETMRs have been acquired. All ETMRs, despite their highly heterogeneous histology, are characterized by specific high expression of the RNA-binding protein LIN28A, which is, therefore, often used as a diagnostic marker for these tumors. ETMRs have few recurrent genetic aberrations, mainly affecting the miRNA pathway and including amplification of C19MC (embryonal tumor with multilayered rosettes, C19MC-altered) and mutually exclusive biallelic DICER1 mutations of which the first hit is typically inherited through the germline (embryonal tumor with multilayered rosettes, DICER1-altered). Identification of downstream pathways affected by the deregulated miRNA machinery has led to several proposed potential therapeutical vulnerabilities including targeting the WNT, SHH, or mTOR pathways, MYCN or chromosomal instability. However, despite those findings, treatment outcomes have only marginally improved, since the initial description of this tumor entity. Many patients do not survive longer than a year after diagnosis and the 5-year overall survival rate is still lower than 30%. Thus, there is an urgent need to translate the new insights in ETMR biology into more effective treatments. Here, we present an overview of clinical and molecular characteristics of ETMRs and the current progress on potential targeted therapies.
Collapse
Affiliation(s)
- Sander Lambo
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology/Hematology, Charité University Medicine, Berlin, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|