1
|
Wang W, Sun J, Fan C, Yuan G, Zhou R, Lu J, Liu J, Wang C. RcSRR1 interferes with the RcCSN5B-mediated deneddylation of RcCRL4 to modulate RcCO proteolysis and prevent rose flowering under red light. HORTICULTURE RESEARCH 2025; 12:uhaf025. [PMID: 40206513 PMCID: PMC11979331 DOI: 10.1093/hr/uhaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/12/2025] [Indexed: 04/11/2025]
Abstract
Light is essential for rose (Rosa spp.) growth and development. Different light qualities play differing roles in the rose floral transition, but the molecular mechanisms underlying their effects are not fully understood. Here, we observed that red light suppresses rose flowering and increases the expression of sensitivity to red light reduced 1 (RcSRR1) compared with white light. Virus-induced gene silencing (VIGS) of RcSRR1 led to early flowering under white light and especially under red light, suggesting that this gene is a flowering repressor with a predominant function under red light. We determined that RcSRR1 interacts with the COP9 signalosome subunit 5B (RcCSN5B), while RcCSN5B, RcCOP1, and RcCO physically interact with each other. Furthermore, the RcCSN5B-induced deneddylation of Cullin4-RING E3 ubiquitin ligase (RcCRL4) in rose was reduced by the addition of RcSRR1, suggesting that the interaction between RcSRR1 and RcCSN5B relieves the deneddylation of the RcCRL4-COP1/SPA complex to enhance RcCO proteolysis, which subsequently suppresses the transcriptional activation of RcFT and ultimately flowering. Far-red light-related sequence like 1 (RcFRSL3) was shown to specifically bind to the G-box motif of the RcSRR1 promoter to repress its transcription, removing its inhibition of RcFT expression and inducing flowering. Red light inhibited RcFRSL3 expression, thereby promoting the expression of RcSRR1 to inhibit flowering. Taken together, these results provide a previously uncharacterized mechanism by which the RcFRSL3-RcSRR1-RcCSN5B module targets RcCO stability to regulate flowering under different light conditions in rose plants.
Collapse
Affiliation(s)
- Weinan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Chunguo Fan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Guozhen Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Rui Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jun Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, Nanjing 210095, China
| |
Collapse
|
2
|
Wang Y, Lv T, Fan T, Zhou Y, Tian CE. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1523788. [PMID: 40123949 PMCID: PMC11926150 DOI: 10.3389/fpls.2025.1523788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025]
Abstract
Flowering represents a pivotal phase in the reproductive and survival processes of plants, with the photoperiod serving as a pivotal regulator of plant-flowering timing. An investigation of the mechanism of flowering inhibition in the model plant Arabidopsis thaliana under short-day (SD) conditions will facilitate a comprehensive approach to crop breeding for flowering time, reducing or removing flowering inhibition, for example, can extend the range of adaptation of soybean to high-latitude environments. In A. thaliana, CONSTANS (CO) is the most important component for promoting flowering under long-day (LD) conditions. However, CO inhibited flowering under the SD conditions. Furthermore, the current studies revealed that A. thaliana delayed flowering through multiple pathways that inhibit the transcription and sensitivity of FLOWERING LOCUS T (FT) and suppresses the response to, or synthesis of, gibberellins (GA) at different times, for potential crop breeding resources that can be explored in both aspects. However, the underlying mechanism remains poorly understood. In this review, we summarized the current understanding of delayed flowering under SD conditions and discussed future directions for related topics.
Collapse
Affiliation(s)
| | | | | | | | - Chang-en Tian
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of
Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
3
|
Larrondo LF. Circadian rhythms: pervasive, and often times evasive. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230477. [PMID: 39842475 DOI: 10.1098/rstb.2023.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 01/24/2025] Open
Abstract
Most circadian texts begin by stating that clocks are pervasive throughout the tree of life. Indeed, clock mechanisms have been described from cyanobacteria to humans, representing a notable example of convergent evolution: yet, there are several phyla in animals, protists or within fungi and bacteria, in which homologs of some-or all-known clock components seem to be absent, posing inevitable questions about the evolution of circadian systems. Moreover, as we move away from model organisms, there are several taxa in which core clock elements can be identified at the genomic levels. However, the functional description of those putative clocks has been hard to achieve, as rhythmicity is not observed unless defined abiotic or nutritional cues are provided. The mechanisms 'conditioning' the functionality of clocks remain uncertain, emphasizing the need to delve further into non-model circadian systems. As the absence of evidence is not evidence of absence, the lack of known core-clock homologs or of observable rhythms in a given organism, cannot be an a priori criterion to discard the presence of a functional clock, as rhythmicity may be limited to yet untested experimental conditions or phenotypes. This article seeks to reflect on these topics, highlighting some of the pressing questions awaiting to be addressed.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Luis F Larrondo
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
4
|
Mongia P, Toyofuku N, Pan Z, Xu R, Kinoshita Y, Oki K, Takahashi H, Ogura Y, Hayashi T, Nakagawa T. Fission yeast Srr1 and Skb1 promote isochromosome formation at the centromere. Commun Biol 2023; 6:551. [PMID: 37237082 DOI: 10.1038/s42003-023-04925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rad51 maintains genome integrity, whereas Rad52 causes non-canonical homologous recombination leading to gross chromosomal rearrangements (GCRs). Here we find that fission yeast Srr1/Ber1 and Skb1/PRMT5 promote GCRs at centromeres. Genetic and physical analyses show that srr1 and skb1 mutations reduce isochromosome formation mediated by centromere inverted repeats. srr1 increases DNA damage sensitivity in rad51 cells but does not abolish checkpoint response, suggesting that Srr1 promotes Rad51-independent DNA repair. srr1 and rad52 additively, while skb1 and rad52 epistatically reduce GCRs. Unlike srr1 or rad52, skb1 does not increase damage sensitivity. Skb1 regulates cell morphology and cell cycle with Slf1 and Pom1, respectively, but neither Slf1 nor Pom1 causes GCRs. Mutating conserved residues in the arginine methyltransferase domain of Skb1 greatly reduces GCRs. These results suggest that, through arginine methylation, Skb1 forms aberrant DNA structures leading to Rad52-dependent GCRs. This study has uncovered roles for Srr1 and Skb1 in GCRs at centromeres.
Collapse
Affiliation(s)
- Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yakumo Kinoshita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keitaro Oki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
5
|
Global Analysis of Dark- and Heat-Regulated Alternative Splicing in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065299. [PMID: 36982373 PMCID: PMC10049525 DOI: 10.3390/ijms24065299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.
Collapse
|
6
|
Johansson M, Steffen A, Lewinski M, Kobi N, Staiger D. HDF1, a novel flowering time regulator identified in a mutant suppressing sensitivity to red light reduced 1 early flowering. Sci Rep 2023; 13:1404. [PMID: 36697433 PMCID: PMC9876914 DOI: 10.1038/s41598-023-28049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Arabidopsis SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) delays the transition from vegetative to reproductive development in noninductive conditions. A second-site suppressor screen for novel genes that overcome early flowering of srr1-1 identified a range of suppressor of srr1-1 mutants flowering later than srr1-1 in short photoperiods. Here, we focus on mutants flowering with leaf numbers intermediate between srr1-1 and Col. Ssm67 overcomes srr1-1 early flowering independently of day-length and ambient temperature. Full-genome sequencing and linkage mapping identified a causative SNP in a gene encoding a Haloacid dehalogenase superfamily protein, named HAD-FAMILY REGULATOR OF DEVELOPMENT AND FLOWERING 1 (HDF1). Both, ssm67 and hdf1-1 show increased levels of FLC, indicating that HDF1 is a novel regulator of this floral repressor. HDF1 regulates flowering largely independent of SRR1, as the effect is visible in srr1-1 and in Col, but full activity on FLC may require SRR1. Furthermore, srr1-1 has a delayed leaf initiation rate that is dependent on HDF1, suggesting that SRR1 and HDF1 act together in leaf initiation. Another mutant flowering intermediate between srr1-1 and wt, ssm15, was identified as a new allele of ARABIDOPSIS SUMO PROTEASE 1, previously implicated in the regulation of FLC stability.
Collapse
Affiliation(s)
- Mikael Johansson
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| | - Alexander Steffen
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Natalie Kobi
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
7
|
Kang L, Qian L, Zheng M, Chen L, Chen H, Yang L, You L, Yang B, Yan M, Gu Y, Wang T, Schiessl SV, An H, Blischak P, Liu X, Lu H, Zhang D, Rao Y, Jia D, Zhou D, Xiao H, Wang Y, Xiong X, Mason AS, Chris Pires J, Snowdon RJ, Hua W, Liu Z. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat Genet 2021; 53:1392-1402. [PMID: 34493868 PMCID: PMC8423626 DOI: 10.1038/s41588-021-00922-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Despite early domestication around 3000 BC, the evolutionary history of the ancient allotetraploid species Brassica juncea (L.) Czern & Coss remains uncertain. Here, we report a chromosome-scale de novo assembly of a yellow-seeded B. juncea genome by integrating long-read and short-read sequencing, optical mapping and Hi-C technologies. Nuclear and organelle phylogenies of 480 accessions worldwide supported that B. juncea is most likely a single origin in West Asia, 8,000-14,000 years ago, via natural interspecific hybridization. Subsequently, new crop types evolved through spontaneous gene mutations and introgressions along three independent routes of eastward expansion. Selective sweeps, genome-wide trait associations and tissue-specific RNA-sequencing analysis shed light on the domestication history of flowering time and seed weight, and on human selection for morphological diversification in this versatile species. Our data provide a comprehensive insight into the origin and domestication and a foundation for genomics-based breeding of B. juncea.
Collapse
Affiliation(s)
- Lei Kang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, China
| | - Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Liu Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Liang You
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Bin Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanguo Gu
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tianyi Wang
- Novogene Bioinformatics Institute, Beijing, China
| | | | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Paul Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Xianjun Liu
- College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Hongfeng Lu
- Novogene Bioinformatics Institute, Beijing, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan, China
| | - Yong Rao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Donghai Jia
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dinggang Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan, China
| | - Huagui Xiao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yonggang Wang
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- Plant Breeding Department, University of Bonn, Bonn, Germany
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
8
|
Schiessl S, Williams N, Specht P, Staiger D, Johansson M. Different copies of SENSITIVITY TO RED LIGHT REDUCED 1 show strong subfunctionalization in Brassica napus. BMC PLANT BIOLOGY 2019; 19:372. [PMID: 31438864 PMCID: PMC6704554 DOI: 10.1186/s12870-019-1973-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Correct timing of flowering is critical for plants to produce enough viable offspring. In Arabidopsis thaliana (Arabidopsis), flowering time is regulated by an intricate network of molecular signaling pathways. Arabidopsis srr1-1 mutants lacking SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) expression flower early, particularly under short day (SD) conditions (1). SRR1 ensures that plants do not flower prematurely in such non-inductive conditions by controlling repression of the key florigen FT. Here, we have examined the role of SRR1 in the closely related crop species Brassica napus. RESULTS Arabidopsis SRR1 has five homologs in Brassica napus. They can be divided into two groups, where the A02 and C02 copies show high similarity to AtSRR1 on the protein level. The other group, including the A03, A10 and C09 copies all carry a larger deletion in the amino acid sequence. Three of the homologs are expressed at detectable levels: A02, C02 and C09. Notably, the gene copies show a differential expression pattern between spring and winter type accessions of B. napus. When the three expressed gene copies were introduced into the srr1-1 background, only A02 and C02 were able to complement the srr1-1 early flowering phenotype, while C09 could not. Transcriptional analysis of known SRR1 targets in Bna.SRR1-transformed lines showed that CYCLING DOF FACTOR 1 (CDF1) expression is key for flowering time control via SRR1. CONCLUSIONS We observed subfunctionalization of the B. napus SRR1 gene copies, with differential expression between early and late flowering accessions of some Bna.SRR1 copies. This suggests involvement of Bna.SRR1 in regulation of seasonal flowering in B. napus. The C09 gene copy was unable to complement srr1-1 plants, but is highly expressed in B. napus, suggesting specialization of a particular function. Furthermore, the C09 protein carries a deletion which may pinpoint a key region of the SRR1 protein potentially important for its molecular function. This is important evidence of functional domain annotation in the highly conserved but unique SRR1 amino acid sequence.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Giessen, Germany
| | - Natalie Williams
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Pascal Specht
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Giessen, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Mikael Johansson
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Johansson M, Köster T. On the move through time - a historical review of plant clock research. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:13-20. [PMID: 29607587 DOI: 10.1111/plb.12729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock is an important regulator of growth and development that has evolved to help organisms to anticipate the predictably occurring events on the planet, such as light-dark transitions, and adapt growth and development to these. This review looks back in history on how knowledge about the endogenous biological clock has been acquired over the centuries, with a focus on discoveries in plants. Key findings at the physiological, genetic and molecular level are described and the role of the circadian clock in important molecular processes is reviewed.
Collapse
Affiliation(s)
- M Johansson
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - T Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
10
|
Zikhali M, Wingen LU, Leverington‐Waite M, Specel S, Griffiths S. The identification of new candidate genes Triticum aestivum FLOWERING LOCUS T3-B1 (TaFT3-B1) and TARGET OF EAT1 (TaTOE1-B1) controlling the short-day photoperiod response in bread wheat. PLANT, CELL & ENVIRONMENT 2017; 40:2678-2690. [PMID: 28667827 PMCID: PMC5669021 DOI: 10.1111/pce.13018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 06/16/2017] [Accepted: 06/18/2017] [Indexed: 05/04/2023]
Abstract
Perception of photoperiod changes enables plants to flower under optimum conditions for survival. We used doubled haploid populations of crosses among Avalon × Cadenza, Charger × Badger and Spark × Rialto and identified short-day flowering time response quantitative trait loci (QTL) on wheat chromosomes 1BS and 1BL. We used synteny between Brachypodium distachyon and wheat to identify potential candidates for both QTL. The 1BL QTL peak coincided with TaFT3-B1, a homologue of the barley gene HvFT3, the most likely candidate gene. The 1BS QTL peak coincided with homologues of Arabidopsis thaliana SENSITIVITY TO RED LIGHT REDUCED 1, WUSCHEL-like and RAP2.7, which is also known as Zea mays TARGET OF EAT1, named TaSRR1-B1, TaWUSCHELL-B1 and TaTOE1-B1, respectively. Gene expression assays suggest that TaTOE1-B1 and TaFT3-B1 are expressed more during short days. We identified four alleles of TaFT3-B1 and three alleles of TaTOE1-B1. We studied the effect of these alleles in the Watkins and GEDIFLUX diversity panels by using 936 and 431 accessions, respectively. Loss of TaFT3-B1 by deletion was associated with late flowering. Increased TaFT3-B1 copy number was associated with early flowering, suggesting that TaFT3-B1 promotes flowering. Significant association was observed in the GEDIFLUX collection for TaTOE1-B1, a putative flowering repressor.
Collapse
Affiliation(s)
- Meluleki Zikhali
- John Innes CentreNorwich Research ParkNR4 7UHNorwichUK
- Seed Co Limited, Rattray Arnold Research StationPO Box CH142HarareZimbabwe
| | | | | | - Sebastien Specel
- Limagrain Europe Centre de Recherche de ChappesBâtiment 1, Route d'Ennezat63720ChappesFrance
| | | |
Collapse
|
11
|
The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms. Arch Biochem Biophys 2017; 631:19-29. [PMID: 28802827 DOI: 10.1016/j.abb.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022]
Abstract
Heme plays a role in the regulation of the expression of genes related to circadian rhythms and heme metabolism. In order to identify new heme-regulated proteins, an RNA sequence analysis using mouse NIH3T3 cells treated without or with 5-aminolevulinic acid (ALA) was performed. Among the changes observed in the levels of various mRNAs including heme oxygenase-1 (HO-1) and ALA synthase-1 (ALAS1), a mouse homologue of the plant circadian-regulating protein SRR1, SRR1 domain containing (SRRD) was induced by the ALA treatment. The expression of SRRD was dependent on heme biosynthesis, and increased the production of heme. SRRD was expressed under circadian rhythms, and influenced the expression of clock genes including PER2, BMAL1, and CLOCK. The knockout of SRRD arrested the growth of cells, indicating that SRRD plays roles in heme-regulated circadian rhythms and cell proliferation.
Collapse
|
12
|
Wagner L, Schmal C, Staiger D, Danisman S. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana. PLANT METHODS 2017; 13:2. [PMID: 28053647 PMCID: PMC5209843 DOI: 10.1186/s13007-016-0153-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/01/2016] [Indexed: 05/25/2023]
Abstract
BACKGROUND The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. RESULTS We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 (srr1-1). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. CONCLUSIONS PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.
Collapse
Affiliation(s)
- Lucas Wagner
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christoph Schmal
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Institute for Theoretical Biology, Charité Universitätsmedizin, Berlin, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Selahattin Danisman
- Molecular Cell Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Park MJ, Kwon YJ, Gil KE, Park CM. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. BMC PLANT BIOLOGY 2016; 16:114. [PMID: 27207270 PMCID: PMC4875590 DOI: 10.1186/s12870-016-0810-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/17/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plants constantly monitor changes in photoperiod or day length to trigger the flowering cycle at the most appropriate time of the year. It is well established that photoperiodic flowering is intimately associated with the circadian clock in Arabidopsis. In support of this notion, many clock-defective mutants exhibit altered photoperiodic sensitivity in inducing flowering. LATE ELONGATED HYPOCOTYL (LHY) and its functional paralogue CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) constitute the core of the circadian clock together with TIMING OF CAB EXPRSSION 1 (TOC1). While it is known that TOC1 contributes to the timing of flowering entirely by modulating the clock function, molecular mechanisms by which LHY and CCA1 regulate flowering time have not been explored. RESULTS We investigated how LHY and CCA1 regulate photoperiodic flowering through molecular genetic and biochemical studies. It was found that LHY-defective mutants (lhy-7 and lhy-20) exhibit accelerated flowering under both long days (LDs) and short days (SDs). Consistent with the accelerated flowering phenotypes, gene expression analysis revealed that expression of the floral integrator FLOWERING LOCUS T (FT) is up-regulated in the lhy mutants. In addition, the expression peaks of GIGANTEA (GI) and FLAVIN-BINDING, KELCH REPEAT, F-BOX PROTEIN 1 (FKF1) genes, which constitute the clock output pathway that is linked with photoperiodic flowering, were advanced by approximately 4 h in the mutants. Furthermore, the up-regulation of FT disappeared when the endogenous circadian period is matched to the external light/dark cycles in the lhy-7 mutant. Notably, whereas CCA1 binds strongly to FT gene promoter, LHY does not show such DNA-binding activity. CONCLUSIONS Our data indicate that the advanced expression phases of photoperiodic flowering genes are associated with the clock defects in the lhy mutants and responsible for the reduced photoperiodic sensitivity of the mutant flowering, demonstrating that LHY regulates photoperiodic flowering via the circadian clock, similar to what has been shown with TOC1. It is notable that while LHY regulates photoperiodic flowering in a similar manner as with TOC1, the underlying molecular mechanism would be somewhat distinct from that exerted by CCA1 in Arabidopsis.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Young-Ju Kwon
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-742, Korea.
| |
Collapse
|
14
|
Endo M, Araki T, Nagatani A. Tissue-specific regulation of flowering by photoreceptors. Cell Mol Life Sci 2016; 73:829-39. [PMID: 26621669 PMCID: PMC11108494 DOI: 10.1007/s00018-015-2095-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Plants use various kinds of environmental signals to adjust the timing of the transition from the vegetative to reproductive phase (flowering). Since flowering at the appropriate time is crucial for plant reproductive strategy, several kinds of photoreceptors are deployed to sense environmental light conditions. In this review, we will update our current understanding of light signaling pathways in flowering regulation, especially, in which tissue do photoreceptors regulate flowering in response to light quality and photoperiod. Since light signaling is also integrated into other flowering pathways, we also introduce recent progress on how photoreceptors are involved in tissue-specific thermosensation and the gibberellin pathway. Finally, we discuss the importance of cell-type-specific analyses for future plant studies.
Collapse
Affiliation(s)
- Motomu Endo
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Akira Nagatani
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
15
|
Johansson M, Staiger D. Time to flower: interplay between photoperiod and the circadian clock. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:719-30. [PMID: 25371508 DOI: 10.1093/jxb/eru441] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants precisely time the onset of flowering to ensure reproductive success. A major factor in seasonal control of flowering time is the photoperiod. The length of the daily light period is measured by the circadian clock in leaves, and a signal is conveyed to the shoot apex to initiate floral transition accordingly. In the last two decades, the molecular players in the photoperiodic pathway have been identified in Arabidopsis thaliana. Moreover, the intricate connections between the circadian clockwork and components of the photoperiodic pathway have been unravelled. In particular, the molecular basis of time-of-day-dependent sensitivity to floral stimuli, as predicted by Bünning and Pittendrigh, has been elucidated. This review covers recent insights into the molecular mechanisms underlying clock regulation of photoperiodic responses and the integration of the photoperiodic pathway into the flowering time network in Arabidopsis. Furthermore, examples of conservation and divergence in photoperiodic flower induction in other plant species are discussed.
Collapse
Affiliation(s)
- Mikael Johansson
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Germany
| |
Collapse
|
16
|
Johansson M, Staiger D. SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5811-22. [PMID: 25129129 PMCID: PMC4203120 DOI: 10.1093/jxb/eru317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Timing of flowering is determined by environmental and developmental signals, leading to promotion or repression of key floral integrators. SENSITIVITY TO RED LIGHT REDUCED (SRR1) is a pioneer protein previously shown to be involved in regulation of the circadian clock and phytochrome B signalling in Arabidopsis thaliana. This report has examined the role of SRR1 in flowering time control. Loss-of-function srr1-1 plants flowered very early compared with the wild type under short-day conditions and had a weak flowering response to increasing daylength. Furthermore, FLOWERING LOCUS T (FT) transcript levels were elevated already in short days in srr1-1 compared with the wild type. This correlated with elevated end of day levels of CONSTANS (CO), whereas levels of CYCLING DOF FACTOR 1 (CDF1), a repressor of CO transcription, were reduced. srr1-1 gi-2 and srr1-1 co-9 double mutants showed that SRR1 can also repress flowering independently of the photoperiodic pathway. srr1-1 flowered consistently early between 16 °C and 27 °C, showing that SRR1 prevents premature flowering over a wide temperature range. SRR1 also promotes expression of the repressors TEMPRANILLO 1 (TEM1) and TEM2. Consequently their targets in the gibberellin biosynthesis pathway were elevated in srr1-1. SRR1 is thus an important focal point of both photoperiodic and photoperiod-independent regulation of flowering. By stimulating expression of the FT-binding repressors CDF1, TEM1 and TEM2, and FLC, flowering is inhibited in non-inductive conditions.
Collapse
Affiliation(s)
- Mikael Johansson
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
17
|
Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4503-16. [PMID: 24078668 PMCID: PMC3808329 DOI: 10.1093/jxb/ert264] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, with subgenomes having evolved by genome fractionation. The question of whether this genome fractionation is a random process, or whether specific genes are preferentially retained, such as flowering time (Ft) genes that play a role in the extreme morphological variation within the B. rapa species (displayed by the diverse morphotypes), is addressed. Data are presented showing that indeed Ft genes are preferentially retained, so the next intriguing question is whether these different orthologues of Arabidopsis Ft genes play similar roles compared with Arabidopsis, and what is the role of these different orthologues in B. rapa. Using a genetical-genomics approach, co-location of flowering quantitative trait loci (QTLs) and expression QTLs (eQTLs) resulted in identification of candidate genes for flowering QTLs and visualization of co-expression networks of Ft genes and flowering time. A major flowering QTL on A02 at the BrFLC2 locus co-localized with cis eQTLs for BrFLC2, BrSSR1, and BrTCP11, and trans eQTLs for the photoperiod gene BrCO and two paralogues of the floral integrator genes BrSOC1 and BrFT. It is concluded that the BrFLC2 Ft gene is a major regulator of flowering time in the studied doubled haploid population.
Collapse
Affiliation(s)
- Dong Xiao
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Horticultural College, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- *These authors contributed equally to this work
| | - Jian J. Zhao
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- Horticultural College, Hebei Agricultural University, 071001 Baoding, China
- *These authors contributed equally to this work
| | - Xi L. Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Horticultural College, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Ram K. Basnet
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- Center for Biosystems Genomics, Wageningen University, AJ 6700 Wageningen, The Netherlands
| | - Dunia P.D. Carpio
- Institute of Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Ning W. Zhang
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
| | - Johan Bucher
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
| | - Ke Lin
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xiao W. Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- Center for Biosystems Genomics, Wageningen University, AJ 6700 Wageningen, The Netherlands
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D. A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. MOLECULAR PLANT 2013; 6:1518-30. [PMID: 23434876 DOI: 10.1093/mp/sst040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolution fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluorescent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localization analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each photoactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants. Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.
Collapse
Affiliation(s)
- Martina Lummer
- Molecular Cell Physiology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Brachi B, Faure N, Bergelson J, Cuguen J, Roux F. Genome-wide association mapping of flowering time in Arabidopsis thaliana in nature: genetics for underlying components and reaction norms across two successive years. ACTA BOTANICA GALLICA : BULLETIN DE LA SOCIETE BOTANIQUE DE FRANCE 2013; 160:205-219. [PMID: 24470785 PMCID: PMC3901435 DOI: 10.1080/12538078.2013.807302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Often used as a proxy for the transition to reproduction, flowering time (FT) is an integrative trait of two successive biological processes, i.e. bolting time (BT) and the interval between bolting and flowering time (INT). In this study, we aimed to identify candidate genes associated with these composite traits in Arabidopsis thaliana using a field experiment. Genome-wide association (GWA) mapping was performed on BT, INT and FT based on a sample of 179 worldwide natural accessions genotyped for 216,509 SNPs. The high resolution conferred by GWA mapping indicates that FT is an integrative trait at the genetic level, with distinct genetics for BT and INT. BT is shaped largely by genes involved in the circadian clock whereas INT is shaped by genes involved in both the hormone pathways and cold acclimation. Finally, the florigen TSF appears to be the main integrator of environmental and internal signals in ecologically realistic conditions. Based on FT scored in a previous field experiment, we also studied the genetics underlying reaction norms across two years. Only four genes were common to both years, emphasizing the need to repeat field experiments. The gene regulation model appeared as the main genetic model for genotype × year interactions.
Collapse
Affiliation(s)
- Benjamin Brachi
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| | - Nathalie Faure
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57 Street, Chicago, IL 60637, USA
| | - Joël Cuguen
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| | - Fabrice Roux
- Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille – Lille 1, F-59655 Villeneuve d'Ascq cedex France
| |
Collapse
|
20
|
Abstract
Circadian regulated changes in growth rates have been observed in numerous plants as well as in unicellular and multicellular algae. The circadian clock regulates a multitude of factors that affect growth in plants, such as water and carbon availability and light and hormone signalling pathways. The combination of high-resolution growth rate analyses with mutant and biochemical analysis is helping us elucidate the time-dependent interactions between these factors and discover the molecular mechanisms involved. At the molecular level, growth in plants is modulated through a complex regulatory network, in which the circadian clock acts at multiple levels.
Collapse
Affiliation(s)
- E M Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A. Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3339-51. [PMID: 22223810 DOI: 10.1093/jxb/err334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.
Collapse
Affiliation(s)
- Tom Ruts
- Forschungszentrum Jülich, IBG-2: Plant Sciences, Wilhelm-Johnen-Strasse, Jülich, Germany
| | | | | | | |
Collapse
|
22
|
Identification of miRNAs and Their Target Genes Using Deep Sequencing and Degradome Analysis in Trifoliate Orange [Poncirus trifoliate (L.) Raf]. Mol Biotechnol 2011; 51:44-57. [DOI: 10.1007/s12033-011-9439-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Dai S, Wei X, Pei L, Thompson RL, Liu Y, Heard JE, Ruff TG, Beachy RN. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock. THE PLANT CELL 2011; 23:961-72. [PMID: 21447790 PMCID: PMC3082275 DOI: 10.1105/tpc.111.084293] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/03/2011] [Accepted: 03/14/2011] [Indexed: 05/18/2023]
Abstract
BROTHER OF LUX ARRHYTHMO (BOA) is a GARP family transcription factor in Arabidopsis thaliana and is regulated by circadian rhythms. Transgenic lines that constitutively overexpress BOA exhibit physiological and developmental changes, including delayed flowering time and increased vegetative growth under standard growing conditions. Arabidopsis circadian clock protein CIRCADIAN CLOCK ASSOCIATED1 (CCA1) binds to the evening element of the BOA promoter and negatively regulates its expression. Furthermore, the period of BOA rhythm was shortened in cca1-11, lhy-21 (for LATE ELONGATED HYPOCOTYL), and cca1-11 lhy-21 genetic backgrounds. BOA binds to the promoter of CCA1 through newly identified promoter binding sites and activates the transcription of CCA1 in vivo and in vitro. In transgenic Arabidopsis lines that overexpress BOA, the period length of CCA1 rhythm was increased and the amplitude was enhanced. Rhythmic expression of other clock genes, including LHY, GIGANTEA (GI), and TIMING OF CAB EXPRESSION1 (TOC1), was altered in transgenic lines that overexpress BOA. Rhythmic expression of BOA was also affected in mutant lines of toc1-1, gi-3, and gi-4. Results from these studies indicate that BOA is a critical component of the regulatory circuit of the circadian clock.
Collapse
Affiliation(s)
- Shunhong Dai
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sanchez A, Shin J, Davis SJ. Abiotic stress and the plant circadian clock. PLANT SIGNALING & BEHAVIOR 2011; 6:223-31. [PMID: 21325898 PMCID: PMC3121982 DOI: 10.4161/psb.6.2.14893] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 05/20/2023]
Abstract
In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes.
Collapse
Affiliation(s)
- Alfredo Sanchez
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | |
Collapse
|
25
|
Kim J, Somers DE. Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. PLANT PHYSIOLOGY 2010; 154:611-21. [PMID: 20709829 PMCID: PMC2949038 DOI: 10.1104/pp.110.162271] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 08/09/2010] [Indexed: 05/19/2023]
Abstract
Rapid assessment of the effect of reduced levels of gene products is often a bottleneck in determining how to proceed with an interesting gene candidate. Additionally, gene families with closely related members can confound determination of the role of even a single one of the group. We describe here an in vivo method to rapidly determine gene function using transient expression of artificial microRNAs (amiRNAs) in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. We use a luciferase-based reporter of circadian clock activity to optimize and validate this system. Protoplasts transiently cotransfected with promoter-luciferase and gene-specific amiRNA plasmids sustain free-running rhythms of bioluminescence for more than 6 d. Using both amiRNA plasmids available through the Arabidopsis Biological Resource Center, as well as custom design of constructs using the Weigel amiRNA design algorithm, we show that transient knockdown of known clock genes recapitulates the same circadian phenotypes reported in the literature for loss-of-function mutant plants. We additionally show that amiRNA designed to knock down expression of the casein kinase II β-subunit gene family lengthens period, consistent with previous reports of a short period in casein kinase II β-subunit overexpressors. Our results demonstrate that this system can facilitate a much more rapid analysis of gene function by obviating the need to initially establish stably transformed transgenics to assess the phenotype of gene knockdowns. This approach will be useful in a wide range of plant disciplines when an endogenous cell-based phenotype is observable or can be devised, as done here using a luciferase reporter.
Collapse
|
26
|
Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 2010; 6:e1000940. [PMID: 20463887 PMCID: PMC2865524 DOI: 10.1371/journal.pgen.1000940] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/06/2010] [Indexed: 12/28/2022] Open
Abstract
Flowering time is a key life-history trait in the plant life cycle. Most studies to unravel the genetics of flowering time in Arabidopsis thaliana have been performed under greenhouse conditions. Here, we describe a study about the genetics of flowering time that differs from previous studies in two important ways: first, we measure flowering time in a more complex and ecologically realistic environment; and, second, we combine the advantages of genome-wide association (GWA) and traditional linkage (QTL) mapping. Our experiments involved phenotyping nearly 20,000 plants over 2 winters under field conditions, including 184 worldwide natural accessions genotyped for 216,509 SNPs and 4,366 RILs derived from 13 independent crosses chosen to maximize genetic and phenotypic diversity. Based on a photothermal time model, the flowering time variation scored in our field experiment was poorly correlated with the flowering time variation previously obtained under greenhouse conditions, reinforcing previous demonstrations of the importance of genotype by environment interactions in A. thaliana and the need to study adaptive variation under natural conditions. The use of 4,366 RILs provides great power for dissecting the genetic architecture of flowering time in A. thaliana under our specific field conditions. We describe more than 60 additive QTLs, all with relatively small to medium effects and organized in 5 major clusters. We show that QTL mapping increases our power to distinguish true from false associations in GWA mapping. QTL mapping also permits the identification of false negatives, that is, causative SNPs that are lost when applying GWA methods that control for population structure. Major genes underpinning flowering time in the greenhouse were not associated with flowering time in this study. Instead, we found a prevalence of genes involved in the regulation of the plant circadian clock. Furthermore, we identified new genomic regions lacking obvious candidate genes.
Collapse
Affiliation(s)
- Benjamin Brachi
- Laboratoire Génétique et Evolution des Populations Végétales, Unité Mixte de Recherche CNRS 8016, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Perry SF, Spinelli Oliveira E. Respiration in a changing environment. Respir Physiol Neurobiol 2010; 173 Suppl:S20-5. [PMID: 20381649 DOI: 10.1016/j.resp.2010.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/27/2010] [Accepted: 04/01/2010] [Indexed: 01/10/2023]
Abstract
Multidisciplinary respiratory research highlighted in the present symposium uses existing and new models from all Kingdoms in both basic and applied research and bears upon molecular signaling processes that have been present from the beginning of life and have been maintained as an integral part of it. Many of these old mechanisms are still recognizable as ROS and oxygen-dependent pathways that probably were in place even before photosynthesis evolved. These processes are not only recognizable through relatively small molecules such as nucleotides and their derivatives. Also some DNA sequences such as the hypoxia response elements and pas gene family are ancient and have been co-opted in various functions. The products of pas genes, in addition to their function in regulating nuclear response to hypoxia as part of the hypoxia-inducible factor HIF, play key roles in development, phototransduction, and control of circadian rhythmicity. Also RuBisCO, an enzyme best known for incorporating CO(2) into organic substrates in plants also has an ancient oxygenase function, which plays a key role in regulating peroxide balance in cells. As life forms became more complex and aerobic metabolism became dominant in multicellular organisms, the signaling processes also took on new levels of complexity but many ancient elements remained. The way in which they are integrated into remodeling processes involved in tradeoffs between respiration and nutrition or in control of aging in complex organisms is an exciting field for future research.
Collapse
Affiliation(s)
- Steven F Perry
- Institut für Zoologie, Rheinische Friedrich-Wilhlems-Universität Bonn, Germany.
| | | |
Collapse
|
28
|
Mouhu K, Hytönen T, Folta K, Rantanen M, Paulin L, Auvinen P, Elomaa P. Identification of flowering genes in strawberry, a perennial SD plant. BMC PLANT BIOLOGY 2009; 9:122. [PMID: 19785732 PMCID: PMC2761920 DOI: 10.1186/1471-2229-9-122] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 09/28/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15 degrees C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants. RESULTS We have searched homologs for 118 Arabidopsis flowering time genes from Fragaria by EST sequencing and bioinformatics analysis and identified 66 gene homologs that by sequence similarity, putatively correspond to genes of all known genetic flowering pathways. The expression analysis of 25 selected genes representing various flowering pathways did not reveal large differences between the everbearing and the short-day genotypes. However, putative floral identity and floral integrator genes AP1 and LFY were co-regulated during early floral development. AP1 mRNA was specifically accumulating in the shoot apices of the everbearing genotype, indicating its usability as a marker for floral initiation. Moreover, we showed that flowering induction in everbearing 'Baron Solemacher' and 'Hawaii-4' was inhibited by short-day and low temperature, in contrast to short-day genotypes. CONCLUSION We have shown that many central genetic components of the flowering pathways in Arabidopsis can be identified from strawberry. However, novel regulatory mechanisms exist, like SFL that functions as a switch between short-day/low temperature and long-day/high temperature flowering responses between the short-day genotype and the everbearing 'Baron Solemacher'. The identification of putative flowering gene homologs and AP1 as potential marker gene for floral initiation will strongly facilitate the exploration of strawberry flowering pathways.
Collapse
Affiliation(s)
- Katriina Mouhu
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Helsinki, Finland
- Finnish Graduate School in Plant Biology, PO Box 56, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Timo Hytönen
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Helsinki, Finland
- Viikki Graduate School in Biosciences, PO Box 56, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Kevin Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Marja Rantanen
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, PO Box 56, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, PO Box 56, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Paula Elomaa
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Staneloni RJ, Rodriguez-Batiller MJ, Legisa D, Scarpin MR, Agalou A, Cerdán PD, Meijer AH, Ouwerkerk PBF, Casal JJ. Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A. Proc Natl Acad Sci U S A 2009; 106:13624-9. [PMID: 19666535 PMCID: PMC2726377 DOI: 10.1073/pnas.0906598106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Indexed: 11/18/2022] Open
Abstract
Plant responses mediated by phytochrome A display a first phase saturated by transient light signals and a second phase requiring sustained excitation with far-red light (FR). These discrete outcomes, respectively so-called very-low-fluence response (VLFR) and high-irradiance response (HIR), are appropriate in different environmental and developmental contexts but the mechanisms that regulate the switch remain unexplored. Promoter analysis of a light-responsive target gene revealed a motif necessary for HIR but not for VLFR. This motif is required for binding of the Bell-like homeodomain 1 (BLH1) to the promoter in in vitro and in yeast 1-hybrid experiments. Promoter substitutions that increased BLH1 binding also enhanced HIR. blh1 mutants showed reduced responses to continuous FR and to deep canopy shadelight, but they retained normal responses to pulsed FR or red light and unfiltered sunlight. BLH1 enhanced BLH1 expression and its promotion by FR. We conclude that BLH1 specifically regulates HIR and not VLFR of phytochrome A.
Collapse
Affiliation(s)
- Roberto J. Staneloni
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - María José Rodriguez-Batiller
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - Danilo Legisa
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - María R. Scarpin
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - Adamantia Agalou
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands; and
| | - Pablo D. Cerdán
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Cientificas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE Buenos Aires, Argentina
| | - Annemarie H. Meijer
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands; and
| | - Pieter B. F. Ouwerkerk
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands; and
| | - Jorge J. Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Cientificas y Técnicas, Avenue San Martín 4453,1417 Buenos Aires, Argentina
| |
Collapse
|
30
|
Abstract
The circadian clock regulates diverse aspects of plant growth and development and promotes plant fitness. Molecular identification of clock components, primarily in Arabidopsis, has led to recent rapid progress in our understanding of the clock mechanism in higher plants. Using mathematical modeling and experimental approaches, workers in the field have developed a model of the clock that incorporates both transcriptional and posttranscriptional regulation of clock genes. This cell-autonomous clock, or oscillator, generates rhythmic outputs that can be monitored at the cellular and whole-organism level. The clock not only confers daily rhythms in growth and metabolism, but also interacts with signaling pathways involved in plant responses to the environment. Future work will lead to a better understanding of how the clock and other signaling networks are integrated to provide plants with an adaptive advantage.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
31
|
|
32
|
Wu JF, Wang Y, Wu SH. Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. PLANT PHYSIOLOGY 2008; 148:948-59. [PMID: 18676661 PMCID: PMC2556813 DOI: 10.1104/pp.108.124917] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 07/21/2008] [Indexed: 05/18/2023]
Abstract
The "light" signal from the environment sets the circadian clock to regulate multiple physiological processes for optimal rhythmic growth and development. One such process is the control of flowering time by photoperiod perception in plants. In Arabidopsis (Arabidopsis thaliana), the flowering time is determined by the correct interconnection of light input and signal output by the circadian clock. The identification of additional clock proteins will help to better dissect the complex nature of the circadian clock in Arabidopsis. Here, we show LIGHT-REGULATED WD1 (LWD1)/LWD2 as new clock proteins involved in photoperiod control. The lwd1lwd2 double mutant has an early-flowering phenotype, contributed by the significant phase shift of CONSTANS (CO), and, therefore, an increased expression of FLOWERING LOCUS T (FT) before dusk. Under entrainment conditions, the expression phase of oscillator (CIRCADIAN CLOCK ASSOCIATED1 [CCA1], LATE ELONGATED HYPOCOTYL [LHY], TIMING OF CAB EXPRESSION1 [TOC1], and EARLY FLOWERING4 [ELF4]) and output (GIGANTEA, FLAVIN-BINDING, KELCH REPEAT, F-BOX1, CYCLING DOF FACTOR1, CO, and FT) genes in the photoperiod pathway shifts approximately 3 h forward in the lwd1lwd2 double mutant. Both the oscillator (CCA1, LHY, TOC1, and ELF4) and output (COLD, CIRCADIAN RHYTHM, AND RNA BINDING2 and CHLOROPHYLL A/B-BINDING PROTEIN2) genes have a short period length in the lwd1lwd2 double mutant. Our data imply that LWD1/LWD2 proteins function in close proximity to or within the circadian clock for photoperiodic flowering control.
Collapse
Affiliation(s)
- Jing-Fen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
33
|
Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D. The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:239-250. [PMID: 18573194 DOI: 10.1111/j.1365-313x.2008.03591.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RNA binding protein AtGRP7 is part of a circadian slave oscillator in Arabidopsis thaliana that negatively autoregulates its own mRNA, and affects the levels of other transcripts. Here, we identify a novel role for AtGRP7 as a flowering-time gene. An atgrp7-1 T-DNA mutant flowers later than wild-type plants under both long and short days, and independent RNA interference lines with reduced levels of AtGRP7, and the closely related AtGRP8 protein, are also late flowering, particularly in short photoperiods. Consistent with the retention of a photoperiodic response, the transcript encoding the key photoperiodic regulator CONSTANS oscillates with a similar pattern in atgrp7-1 and wild-type plants. In both the RNAi lines and in the atgrp7-1 mutant transcript levels for the floral repressor FLC are elevated. Conversely, in transgenic plants ectopically overexpressing AtGRP7, the transition to flowering is accelerated mainly in short days, with a concomitant reduction in FLC abundance. The late-flowering phenotype of the RNAi lines is suppressed by introducing the flc-3 loss-of-function mutation, suggesting that AtGRP7 promotes floral transition, at least partly by downregulating FLC. Furthermore, vernalization overrides the late-flowering phenotype. Retention of both the photoperiodic response and vernalization response are features of autonomous pathway mutants, suggesting that AtGRP7 is a novel member of the autonomous pathway.
Collapse
Affiliation(s)
- Corinna Streitner
- Department of Molecular Cell Physiology, University of Bielefeld, Bielefeld, GermanyCenter for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Selahattin Danisman
- Department of Molecular Cell Physiology, University of Bielefeld, Bielefeld, GermanyCenter for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Franziska Wehrle
- Department of Molecular Cell Physiology, University of Bielefeld, Bielefeld, GermanyCenter for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Jan C Schöning
- Department of Molecular Cell Physiology, University of Bielefeld, Bielefeld, GermanyCenter for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - James R Alfano
- Department of Molecular Cell Physiology, University of Bielefeld, Bielefeld, GermanyCenter for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Dorothee Staiger
- Department of Molecular Cell Physiology, University of Bielefeld, Bielefeld, GermanyCenter for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
34
|
Martin-Tryon EL, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER coordinates light signals for proper timing of photomorphogenesis and the circadian clock in Arabidopsis. THE PLANT CELL 2008; 20:1244-59. [PMID: 18515502 PMCID: PMC2438460 DOI: 10.1105/tpc.107.056655] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 04/24/2008] [Accepted: 05/08/2008] [Indexed: 05/24/2023]
Abstract
Numerous, varied, and widespread taxa have an internal circadian clock that allows anticipation of rhythmic changes in the environment. We have identified XAP5 CIRCADIAN TIMEKEEPER (XCT), an Arabidopsis thaliana gene important for light regulation of the circadian clock and photomorphogenesis. XCT is essential for proper clock function: xct mutants display a shortened circadian period in all conditions tested. Interestingly, XCT plays opposite roles in plant responses to light depending both on trait and wavelength. The clock in xct plants is hypersensitive to red but shows normal responses to blue light. By contrast, inhibition of hypocotyl elongation in xct is hyposensitive to red light but hypersensitive to blue light. Finally, XCT is important for ribulose-1,5-bisphosphate carboxylase/oxygenase production and plant greening in response to light. This novel combination of phenotypes suggests XCT may play a global role in coordinating growth in response to the light environment. XCT contains a XAP5 domain and is well conserved across diverse taxa, suggesting it has a common function in higher eukaryotes. Downregulation of the XCT ortholog in Caenorhabditis elegans is lethal, suggesting that studies in Arabidopsis may be instrumental to understanding the biochemical activity of XCT.
Collapse
Affiliation(s)
- Ellen L Martin-Tryon
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
35
|
Kim J, Kim Y, Yeom M, Kim JH, Nam HG. FIONA1 is essential for regulating period length in the Arabidopsis circadian clock. THE PLANT CELL 2008; 20:307-19. [PMID: 18281507 PMCID: PMC2276451 DOI: 10.1105/tpc.107.055715] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/07/2007] [Accepted: 01/30/2008] [Indexed: 05/18/2023]
Abstract
In plants, the circadian clock controls daily physiological cycles as well as daylength-dependent developmental processes such as photoperiodic flowering and seedling growth. Here, we report that FIONA1 (FIO1) is a genetic regulator of period length in the Arabidopsis thaliana circadian clock. FIO1 was identified by screening for a mutation in daylength-dependent flowering. The mutation designated fio1-1 also affects daylength-dependent seedling growth. fio1-1 causes lengthening of the free-running circadian period of leaf movement and the transcription of various genes, including the central oscillators CIRCADIAN CLOCK-ASSOCIATED1, LATE ELONGATED HYPOCOTYL, TIMING OF CAB EXPRESSION1, and LUX ARRHYTHMO. However, period lengthening is not dependent upon environmental light or temperature conditions, which suggests that FIO1 is not a simple input component of the circadian system. Interestingly, fio1-1 exerts a clear effect on the period length of circadian rhythm but has little effect on its amplitude and robustness. FIO1 encodes a novel nuclear protein that is highly conserved throughout the kingdoms. We propose that FIO1 regulates period length in the Arabidopsis circadian clock in a close association with the central oscillator and that the circadian period can be controlled separately from amplitude and robustness.
Collapse
Affiliation(s)
- Jeongsik Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Hyoja-dong, Pohang, Gyungbuk 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
The evolutionary conserved BER1 gene is involved in microtubule stability in yeast. Curr Genet 2007; 53:107-15. [DOI: 10.1007/s00294-007-0169-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/12/2007] [Accepted: 11/21/2007] [Indexed: 12/20/2022]
|
37
|
Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1119-30. [PMID: 17924945 DOI: 10.1111/j.1365-313x.2007.03302.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The clock-regulated RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein) influences circadian oscillations of its transcript by negative feedback at the post-transcriptional level. Here we show that site-specific mutation of one conserved arginine to glutamine within the RNA recognition motif impairs binding of recombinant AtGRP7 to its pre-mRNA in vitro. This correlates with the loss of the negative auto-regulation in vivo: in transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox), a shift occurs to an alternatively spliced AtGRP7 transcript that decays rapidly, and thus does not accumulate to high levels. In contrast, constitutive ectopic overexpression of the AtGRP7-RQ mutant does not lead to alternative splicing of the endogenous AtGRP7 transcript and concomitant damping of the oscillations. This highlights the importance of AtGRP7 binding to its own transcript for the negative auto-regulatory circuit. Moreover, regulation of AtGRP7 downstream targets also depends on its RNA-binding activity, as AtGRP8 and other targets identified by transcript profiling of wild-type and AtGRP7-ox plants using fluorescent differential display are negatively affected by AtGRP7 but not by AtGRP7-RQ. In mutants impaired in the nonsense-mediated decay (NMD) components UPF1 or UPF3, levels of the alternatively spliced AtGRP7 and AtGRP8 transcripts that contain premature termination codons are strongly elevated, implicating UPF1 and UPF3 in the decay of these clock-regulated transcripts.
Collapse
Affiliation(s)
- Jan C Schöning
- Department of Molecular Cell Physiology, University of Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ. GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. PLANT PHYSIOLOGY 2007; 144:495-502. [PMID: 17384162 PMCID: PMC1913770 DOI: 10.1104/pp.107.097048] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GIGANTEA (GI) is a nuclear protein involved in the promotion of flowering by long days, in light input to the circadian clock, and in seedling photomorphogenesis under continuous red light but not far-red light (FR). Here, we report that in Arabidopsis (Arabidopsis thaliana) different alleles of gi have defects in the hypocotyl-growth and cotyledon-unfolding responses to hourly pulses of FR, a treatment perceived by phytochrome A (phyA). This phenotype is rescued by overexpression of GI. The very-low-fluence response of seed germination was also reduced in gi. Since the circadian clock modulates many light responses, we investigated whether these gi phenotypes were due to alterations in the circadian system or light signaling per se. In experiments where FR pulses were given to dark-incubated seeds or seedlings at different times of the day, gi showed reduced seed germination, cotyledon unfolding, and activity of a luciferase reporter fused to the promoter of a chlorophyll a/b-binding protein gene; however, rhythmic sensitivity was normal in these plants. We conclude that while GI does not affect the high-irradiance responses of phyA, it does affect phyA-mediated very-low-fluence responses via mechanisms that do not obviously involve its circadian functions.
Collapse
Affiliation(s)
- Karina Andrea Oliverio
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, 1417-Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
This review examines the connections between circadian and metabolic rhythms. Examples from a wide variety of well-studied organisms are used to illustrate some of the genetic and molecular pathways linking circadian timekeeping to metabolism. The principles underlying biological timekeeping by intrinsic circadian clocks are discussed briefly. Genetic and molecular studies have unambiguously identified the importance of gene expression feedback circuits to the generation of overt circadian rhythms. This is illustrated particularly well by the results of genome-wide expression studies, which have uncovered hundreds of clock-controlled genes in cyanobacteria, fungi, plants, and animals. The potential connections between circadian oscillations in gene expression and circadian oscillations in metabolic activity are a major focus of this review.
Collapse
Affiliation(s)
- Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA.
| | | |
Collapse
|
40
|
Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR. Modulation of environmental responses of plants by circadian clocks. PLANT, CELL & ENVIRONMENT 2007; 30:333-349. [PMID: 17263778 DOI: 10.1111/j.1365-3040.2006.01627.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Circadian clocks are signalling networks that enhance an organism's relationship with the rhythmic environment. The plant circadian clock modulates a wide range of physiological and biochemical events, such as stomatal and organ movements, photosynthesis and induction of flowering. Environmental signals regulate the phase and period of the plant circadian clock, which results in an approximate synchronization of clock outputs with external events. One of the consequences of circadian control is that stimuli of the same strength applied at different times of the day can result in responses of different intensities. This is known as 'gating'. Gating of a signal may allow plants to better process and react to the wide range and intensities of environmental signals to which they are constantly subjected. Light signalling, stomatal movements and low-temperature responses are examples of signalling pathways that are gated by the circadian clock. In this review, we describe the many levels at which the circadian clock interacts with responses to the environment. We discuss how environmental rhythms of temperature and light intensity entrain the circadian clock, how photoperiodism may be regulated by the relationship between environmental rhythms and the phasing of clock outputs, and how gating modulates the sensitivity of the clock and other responses to environmental and physiological signals. Finally, we describe evidence that the circadian clock can increase plant fitness.
Collapse
Affiliation(s)
- Carlos T Hotta
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Michael J Gardner
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Katharine E Hubbard
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Seong Jin Baek
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Neil Dalchau
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Dontamala Suhita
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Antony N Dodd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
41
|
Schöning JC, Streitner C, Staiger D. Clockwork green—the circadian oscillator inArabidopsis. BIOL RHYTHM RES 2007. [DOI: 10.1080/09291010600804577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
|
43
|
|
44
|
Quecini V. Identification of photoperception and light signal transduction pathways in citrus. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Faigón-Soverna A, Harmon FG, Storani L, Karayekov E, Staneloni RJ, Gassmann W, Más P, Casal JJ, Kay SA, Yanovsky MJ. A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. THE PLANT CELL 2006; 18:2919-28. [PMID: 17114357 PMCID: PMC1693933 DOI: 10.1105/tpc.105.038810] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, light signals caused by the presence of neighbors accelerate stem growth and flowering and induce a more erect position of the leaves, a developmental strategy known as shade-avoidance syndrome. In addition, mutations in the photoreceptors that mediate shade-avoidance responses enhance disease susceptibility in Arabidopsis thaliana. Here, we describe the Arabidopsis constitutive shade-avoidance1 (csa1) mutant, which shows a shade-avoidance phenotype in the absence of shade and enhanced growth of a bacterial pathogen. The csa1 mutant has a T-DNA inserted within the second exon of a Toll/Interleukin1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NBS-LRR) gene, which leads to the production of a truncated mRNA. Arabidopsis plants transformed with the truncated TIR-NBS-LRR gene recapitulate the mutant phenotype, indicating that csa1 is a dominant-negative mutation that interferes with phytochrome signaling. TIR-NBS-LRR proteins have been implicated in defense responses in plants. RPS4, the closest homolog of CSA1, confers resistance to Pseudomonas syringae and complements the csa1 mutant phenotype, indicating that responses to pathogens and neighbors share core-signaling components in Arabidopsis. In Drosophila melanogaster and Caenorhabditis elegans, TIR domain proteins are implicated in both development and immunity. Thus, the dual role of the TIR domain is conserved across kingdoms.
Collapse
Affiliation(s)
- Ana Faigón-Soverna
- IFEVA-Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kaldis AD, Prombona A. Synergy between the light-induced acute response and the circadian cycle: a new mechanism for the synchronization of the Phaseolus vulgaris clock to light. PLANT MOLECULAR BIOLOGY 2006; 61:883-95. [PMID: 16927202 DOI: 10.1007/s11103-006-0056-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 03/27/2006] [Indexed: 05/11/2023]
Abstract
PvLHY and Lhcb expression has been studied in primary bean leaves after exposure of etiolated leaves to two or three white light-pulses and under different photoperiods. Under the tested photoperiods, the steady-state mRNA levels exhibit diurnal oscillations with zenith in the morning between ZT21 and 4 for PvLHY and between ZT4 and 6 for Lhcb. Nadir is in the evening between ZT12 and 18 for PvLHY and ZT18 and 24 for Lhcb. Light-pulses to etiolated seedlings induce a differentiated acute response that is reciprocally correlated with the amplitude of the following circadian cycle. In addition, the clock modulates the duration of the acute response (descending part of the curve included), which according to the phase of the rhythm at light application extends from 7 to 18 h. This constitutes the response dynamics of the Phaseolus clock to light. Similarly, the waveform of PvLHY and Lhcb expression during the day of different photoperiods resembles in induction capability (accomplishment of peak after lights-on) and duration (from lights-on phase to trough) the phase-dependent progression of acute response in etiolated seedlings. Consequently, the peak of Lhcb (all tested photoperiods) and PvLHY (in LD 18:6) attained in the photophase corresponds to the acute response peak, while the peak of PvLHY during the scotophase (in LD 12:12 and 6:18) corresponds to the circadian peak. Thus, the effect of the response dynamics in the photoperiod determines the coincidence of the peak with the photo- or scotophase, respectively. This represents a new model mechanism for the adaptation of the Phaseolus clock to light.
Collapse
|
47
|
Torres-Galea P, Huang LF, Chua NH, Bolle C. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses. Mol Genet Genomics 2006; 276:13-30. [PMID: 16680434 DOI: 10.1007/s00438-006-0123-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 03/25/2006] [Indexed: 01/27/2023]
Abstract
Phytochrome photoreceptors enable plants to perceive divergent light signals leading to adaptive changes in response to differing environmental conditions. However, the mechanism of light signal transduction is not fully understood. Here we report the identification of a new signaling intermediate from Arabidopsis thaliana, Scarecrow-like (SCL)13, which serves as a positive regulator of continuous red light signals downstream of phytochrome B (phyB). SCL13 antisense lines exhibit reduced sensitivity towards red light, but only a distinct subset of phyB-mediated responses is affected, indicating that SCL13 executes its major role in hypocotyl elongation during de-etiolation. Genetic evidence suggests that SCL13 is also needed to modulate phytochrome A (phyA) signal transduction in a phyB-independent way. The SCL13 protein is localized in the cytoplasm, but can also be detected in the nucleus. Overexpression of both a nuclear and cytoplasmic localized SCL13 protein leads to a hypersensitive phenotype under red light indicating that SCL13 is biologically active in both compartments. SCL13 is a member of the plant-specific GRAS protein family, which is involved in various different developmental and signaling pathways. A previously identified phytochrome A signaling intermediate, PAT1, belongs to the same subbranch of GRAS proteins as SCL13. Although both proteins are involved in phytochrome signaling, each is specific for a different light condition and regulates a different subset of responses.
Collapse
Affiliation(s)
- Patricia Torres-Galea
- Department für Biologie I/Bereich Botanik, Ludwig-Maximilians-University, Menzinger Str. 67, 80638, Munich, Germany
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College Hanover, NH 03755-3576, USA.
| |
Collapse
|
49
|
Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG. Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:1464-74. [PMID: 16461388 PMCID: PMC1435814 DOI: 10.1104/pp.105.074518] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/26/2006] [Accepted: 01/26/2006] [Indexed: 05/06/2023]
Abstract
In response to exogenous rhythms of light and temperature, most organisms exhibit endogenous circadian rhythms (i.e. cycles of behavior and gene expression with a periodicity of approximately 24 h). One of the defining characteristics of the circadian clock is its ability to synchronize (entrain) to an environmental rhythm. Entrainment is arguably the most salient feature of the clock in evolutionary terms. Previous quantitative trait studies of circadian characteristics in Arabidopsis (Arabidopsis thaliana) considered leaf movement under constant (free-running) conditions. This study, however, addressed the important circadian parameter of phase, which reflects the entrained relationship between the clock and the external cycle. Here it is shown that, when exposed to the same photoperiod, Arabidopsis accessions differ dramatically in phase. Variation in the timing of circadian LUCIFERASE expression was used to map loci affecting the entrained phase of the clock in a recombinant population derived from two geographically distant accessions, Landsberg erecta and Cape Verde Islands. Four quantitative trait loci (QTL) were found with major effects on circadian phase. A QTL on chromosome 5 contained SIGNALING IN RED LIGHT REDUCED 1 and PSEUDORESPONSE REGULATOR 3, both genes known to affect the circadian clock. Previously unknown polymorphisms were found in both genes, making them candidates for the effect on phase. Fine mapping of two other QTL highlighted genomic regions not previously identified in any circadian screens, indicating their effects are likely due to genes not hitherto considered part of the circadian system.
Collapse
Affiliation(s)
- Chiarina Darrah
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Kang X, Ni M. Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. THE PLANT CELL 2006; 18:921-34. [PMID: 16500988 PMCID: PMC1425848 DOI: 10.1105/tpc.105.037879] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 12/05/2005] [Accepted: 02/02/2006] [Indexed: 05/06/2023]
Abstract
Photomorphogenesis is regulated by red/far-red light-absorbing phytochromes and blue/UV-A light-absorbing cryptochromes. We isolated an Arabidopsis thaliana blue light mutant, short hypocotyl under blue1 (shb1), a knockout allele. However, shb1-D, a dominant allele, exhibited a long-hypocotyl phenotype under red, far-red, and blue light. The phenotype conferred by shb1-D was caused by overaccumulation of SHB1 transcript and recapitulated by overexpression of SHB1 in Arabidopsis. Therefore, SHB1 acts in cryptochrome signaling but overexpression may expand its signaling activity to red and far-red light. Consistent with this, overexpression of SHB1 enhanced the expression of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) under red light. PIF4 appears to specifically mediate SHB1 regulation of hypocotyl elongation and CHLOROPHYLL a/b BINDING PROTEIN3 or CHALCONE SYNTHASE expression under red light. Overexpression of SHB1 also promoted proteasome-mediated degradation of phytochrome A and hypocotyl elongation under far-red light. Under blue light, shb1 suppressed LONG HYPOCOTYL IN FAR-RED LIGHT1 (HFR1) expression and showed several deetiolation phenotypes similar to hfr1-201. However, the hypocotyl and cotyledon-opening phenotypes of shb1 were opposite to those of hfr1-201, and HFR1 acts downstream of SHB1. SHB1 encodes a nuclear and cytosolic protein that has motifs homologous with SYG1 protein family members. Therefore, our studies reveal a signaling step in regulating cryptochrome- and possibly phytochrome-mediated light responses.
Collapse
Affiliation(s)
- Xiaojun Kang
- Department of Plant Biology, University of Minesota, St. Paul, Minesota 55108, USA
| | | |
Collapse
|