1
|
Neagu MC, David VL, Iacob ER, Chiriac SD, Muntean FL, Boia ES. Wilms' Tumor: A Review of Clinical Characteristics, Treatment Advances, and Research Opportunities. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:491. [PMID: 40142302 PMCID: PMC11943957 DOI: 10.3390/medicina61030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Nephroblastoma is a complex childhood cancer with a generally favorable prognosis, well-defined incidence, and demographic profile but with significant challenges in terms of recurrence and long-term health outcomes. Although the management of this pathology has evolved, leading to improved survival rates, continued research into the long-term effects of treatment and the genetic factors influencing its development is still required. The survival landscape for Wilms tumor is evolving, with emerging research focusing on therapeutic biomarkers and genetic predispositions that influence treatment efficacy and survival rates. Identifying predictors for treatment response, such as specific genetic markers and histologic features, emerges as a critical area of study that could refine future interventions. The management of Wilms tumor is complex, taking into account the stage of the disease, histological classification, and individual patient factors, including age and the presence of syndromic associations. As treatment paradigms evolve, the integration of precision medicine approaches may enhance the ability of clinicians to personalize treatment to improve long-term survival outcomes for a broader range of patients. Recent advances in technology, including machine-learning approaches, have facilitated the identification of therapeutic biomarkers that correlate with clinical outcomes. This innovative method enhances the ability to integrate clinical and genetic data to predict disease trajectory and therapeutic response.
Collapse
Affiliation(s)
- Mihai Cristian Neagu
- Department of Pediatric Surgery and Orthopedics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.C.N.); (V.L.D.); (E.R.I.); (E.S.B.)
| | - Vlad Laurenţiu David
- Department of Pediatric Surgery and Orthopedics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.C.N.); (V.L.D.); (E.R.I.); (E.S.B.)
| | - Emil Radu Iacob
- Department of Pediatric Surgery and Orthopedics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.C.N.); (V.L.D.); (E.R.I.); (E.S.B.)
| | - Sorin Dan Chiriac
- Department X—Surgery II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Florin Lucian Muntean
- Department X—Surgery II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Eugen Sorin Boia
- Department of Pediatric Surgery and Orthopedics, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (M.C.N.); (V.L.D.); (E.R.I.); (E.S.B.)
| |
Collapse
|
2
|
Pop NS, Dolt KS, Hohenstein P. Understanding developing kidneys and Wilms tumors one cell at a time. Curr Top Dev Biol 2025; 163:129-167. [PMID: 40254343 DOI: 10.1016/bs.ctdb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Single-cell sequencing-based techniques are revolutionizing all fields of biomedical sciences, including normal kidney development and how this is disturbed in the development of Wilms tumor. The many different techniques and the differences between them can obscure which technique is best used to answer which question. In this review we summarize the techniques currently available, discuss which have been used in kidney development or Wilms tumor context, and which techniques can or should be combined to maximize the increase in biological understanding we can get from them.
Collapse
Affiliation(s)
- Nine Solee Pop
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Karamjit Singh Dolt
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
3
|
Lim KT, Loh AHP. Inter-Ethnic Variations in the Clinical, Pathological, and Molecular Characteristics of Wilms Tumor. Cancers (Basel) 2024; 16:3051. [PMID: 39272909 PMCID: PMC11393868 DOI: 10.3390/cancers16173051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Wilms tumor is the commonest primary renal malignancy in children and demonstrates substantial inter-ethnic variation in clinical, pathological, and molecular characteristics. Wilms tumor occurs at a lower incidence and at a younger age in Asians compared to Caucasians and Africans. Asians also present at an earlier stage of disease, with a higher incidence of favorable histology tumors and a lower incidence of perilobar nephrogenic rests compared to Caucasians, while African children present with more advanced disease. Studies have implicated population differences in the incidence of WT1 mutations, loss of imprinting of the IGF2 locus, and loss of heterozygosity of 1p/16q, or 1q gain as possible bases for epidemiological differences in the disease profile of Wilms tumors in various ethnic groups. Yet, evidence to support these associations is confounded by differences in treatment protocols and inequalities in the availability of treatment resources and remains limited by the quality of population-based data, especially in resource-limited settings.
Collapse
Affiliation(s)
- Kia Teng Lim
- Ministry of Health Holdings, Singapore 139691, Singapore
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore 229899, Singapore
- SingHealth-Duke NUS Global Health Institute, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore 229899, Singapore
| |
Collapse
|
4
|
Song L, Li Q, Xia L, Sahay AE, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. Nat Commun 2024; 15:5937. [PMID: 39009564 PMCID: PMC11250843 DOI: 10.1038/s41467-024-50171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.
Collapse
Affiliation(s)
- Lele Song
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qinglan Li
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lingbo Xia
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of the School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arushi Eesha Sahay
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuanyuan Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Liling Wan
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Fu W, Deng L, Yan X, Hua RX, Zhang J, Zhou H, Deng C, Li S, Cheng J, Ruan J, He J, Liu G. LMO family gene polymorphisms and Wilms tumor susceptibility in Chinese children: a five-center case-control study. BMC Cancer 2024; 24:772. [PMID: 38937681 PMCID: PMC11209997 DOI: 10.1186/s12885-024-12557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Wilms tumor is the most prevalent embryonal kidney malignancy in children worldwide. Previous genome-wide association study (GWAS) identified that LIM domain only 1 (LMO1) gene polymorphisms affected the susceptibility to develop certain tumor types. Apart from LMO1, the LMO gene family members also include LMO2-4, each of which has oncogenic potential. METHODS We conducted this five-center case‒control study to assess the correlations between single nucleotide polymorphisms in LMO family genes and Wilms tumor susceptibility. Odds ratios and 95% confidence intervals were calculated to evaluate the strength of the association. RESULTS We found LMO1 rs2168101 G > T and rs11603024 C > T as well as LMO2 rs7933499 G > A were significantly associated with Wilms tumor risk. Stratified analysis demonstrated a protective role of rs2168101 GT/TT genotypes against Wilms tumor in the subgroups of age ≤ 18 months, males and clinical stages I/II compared to the rs2168101 GG genotype. Nevertheless, carriers with the rs11603024 TT genotype were more likely to have an increased risk of Wilms tumor than those with rs11603024 CC/CT genotypes in age > 18 months. And the rs11603024 was identified as a protective polymorphism for reducing the risk of Wilms tumor in the sex- and gender- subgroup. Likewise, carriers with the rs7933499 GA/AA genotypes were at significantly elevated risk of Wilms tumor in age ≤ 18 months and clinical stages I/II. CONCLUSION Overall, our study identified the importance of LMO family gene polymorphisms on Wilms tumor susceptibility in Chinese children. Further investigations are needed to validate our conclusions.
Collapse
Affiliation(s)
- Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| | - Linqing Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Xiaosong Yan
- Department of Pathology, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710003, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Changmi Deng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi, 030013, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jichen Ruan
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
6
|
Song L, Li Q, Xia L, Sahay A, Qiu Q, Li Y, Li H, Sasaki K, Susztak K, Wu H, Wan L. Single-Cell multiomics reveals ENL mutation perturbs kidney developmental trajectory by rewiring gene regulatory landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.591709. [PMID: 38766219 PMCID: PMC11100752 DOI: 10.1101/2024.05.09.591709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Cell differentiation during organogenesis relies on precise epigenetic and transcriptional control. Disruptions to this regulation can result in developmental abnormalities and malignancies, yet the underlying mechanisms are not well understood. Wilms tumors, a type of embryonal tumor closely linked to disrupted organogenesis, harbor mutations in epigenetic regulators in 30-50% of cases. However, the role of these regulators in kidney development and pathogenesis remains unexplored. By integrating mouse modeling, histological characterizations, and single-cell transcriptomics and chromatin accessibility profiling, we show that a Wilms tumor-associated mutation in the chromatin reader protein ENL disrupts kidney development trajectory by rewiring the gene regulatory landscape. Specifically, the mutant ENL promotes the commitment of nephron progenitors while simultaneously restricting their differentiation by dysregulating key transcription factor regulons, particularly the HOX clusters. It also induces the emergence of abnormal progenitor cells that lose their chromatin identity associated with kidney specification. Furthermore, the mutant ENL might modulate stroma-nephron interactions via paracrine Wnt signaling. These multifaceted effects caused by the mutation result in severe developmental defects in the kidney and early postnatal mortality in mice. Notably, transient inhibition of the histone acetylation binding activity of mutant ENL with a small molecule displaces transcriptional condensates formed by mutant ENL from target genes, abolishes its gene activation function, and restores developmental defects in mice. This work provides new insights into how mutations in epigenetic regulators can alter the gene regulatory landscape to disrupt kidney developmental programs at single-cell resolution in vivo . It also offers a proof-of-concept for the use of epigenetics-targeted agents to rectify developmental defects.
Collapse
|
7
|
Trink Y, Urbach A, Dekel B, Hohenstein P, Goldberger J, Kalisky T. Characterization of Alternative Splicing in High-Risk Wilms' Tumors. Int J Mol Sci 2024; 25:4520. [PMID: 38674106 PMCID: PMC11050615 DOI: 10.3390/ijms25084520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The significant heterogeneity of Wilms' tumors between different patients is thought to arise from genetic and epigenetic distortions that occur during various stages of fetal kidney development in a way that is poorly understood. To address this, we characterized the heterogeneity of alternative mRNA splicing in Wilms' tumors using a publicly available RNAseq dataset of high-risk Wilms' tumors and normal kidney samples. Through Pareto task inference and cell deconvolution, we found that the tumors and normal kidney samples are organized according to progressive stages of kidney development within a triangle-shaped region in latent space, whose vertices, or "archetypes", resemble the cap mesenchyme, the nephrogenic stroma, and epithelial tubular structures of the fetal kidney. We identified a set of genes that are alternatively spliced between tumors located in different regions of latent space and found that many of these genes are associated with the epithelial-to-mesenchymal transition (EMT) and muscle development. Using motif enrichment analysis, we identified putative splicing regulators, some of which are associated with kidney development. Our findings provide new insights into the etiology of Wilms' tumors and suggest that specific splicing mechanisms in early stages of development may contribute to tumor development in different patients.
Collapse
Affiliation(s)
- Yaron Trink
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute and Division of Pediatric Nephrology, Edmond and Lily Safra Children’s Hospital, Sheba Tel-HaShomer Medical Centre, Ramat Gan 5262000, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacob Goldberger
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel; (Y.T.); (J.G.)
| |
Collapse
|
8
|
Pichavaram P, Jablonowski CM, Fang J, Fleming AM, Gil HJ, Boghossian AS, Rees MG, Ronan MM, Roth JA, Morton CL, Zambetti GP, Davidoff AM, Yang J, Murphy AJ. Oncogenic Cells of Renal Embryonic Lineage Sensitive to the Small-Molecule Inhibitor QC6352 Display Depletion of KDM4 Levels and Disruption of Ribosome Biogenesis. Mol Cancer Ther 2024; 23:478-491. [PMID: 37988559 PMCID: PMC10987284 DOI: 10.1158/1535-7163.mct-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The histone lysine demethylases KDM4A-C are involved in physiologic processes including stem cell identity and self-renewal during development, DNA damage repair, and cell-cycle progression. KDM4A-C are overexpressed and associated with malignant cell behavior in multiple human cancers and are therefore potential therapeutic targets. Given the role of KDM4A-C in development and cancer, we aimed to test the potent, selective KDM4A-C inhibitor QC6352 on oncogenic cells of renal embryonic lineage. The anaplastic Wilms tumor cell line WiT49 and the tumor-forming human embryonic kidney cell line HEK293 demonstrated low nanomolar QC6352 sensitivity. The cytostatic response to QC6352 in WiT49 and HEK293 cells was marked by induction of DNA damage, a DNA repair-associated protein checkpoint response, S-phase cell-cycle arrest, profound reduction of ribosomal protein gene and rRNA transcription, and blockade of newly synthesized proteins. QC6352 caused reduction of KDM4A-C levels by a proteasome-associated mechanism. The cellular phenotype caused by QC6352 treatment of reduced migration, proliferation, tumor spheroid growth, DNA damage, and S-phase cell-cycle arrest was most closely mirrored by knockdown of KDM4A as determined by siRNA knockdown of KDM4A-C. QC6352 sensitivity correlated with high basal levels of ribosomal gene transcription in more than 900 human cancer cell lines. Targeting KDM4A may be of future therapeutic interest in oncogenic cells of embryonic renal lineage or cells with high basal expression of ribosomal protein genes.
Collapse
Affiliation(s)
| | | | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Matthew G. Rees
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Melissa M. Ronan
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Jennifer A. Roth
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
9
|
Nirgude S, Naveh NSS, Kavari SL, Traxler EM, Kalish JM. Cancer predisposition signaling in Beckwith-Wiedemann Syndrome drives Wilms tumor development. Br J Cancer 2024; 130:638-650. [PMID: 38142265 PMCID: PMC10876704 DOI: 10.1038/s41416-023-02538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.
Collapse
Affiliation(s)
- Snehal Nirgude
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Natali S Sobel Naveh
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sanam L Kavari
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily M Traxler
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Orgen Calli A, Issin G, Yilmaz I, Ince D, Tural E, Guzelis I, Cecen RE, Olgun HN, Gokcay D, Ozer E. The association of miR-204 and mir-483 5p expression with clinicopathological features of Wilms tumor: Could this provide foresight? Jpn J Clin Oncol 2023; 53:1170-1176. [PMID: 37647636 DOI: 10.1093/jjco/hyad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Wilms tumor is the most common cancer of the kidney that occurs during childhood, and histologically, it mimics renal embryogenesis. With the development and improvement of up-to-date treatment protocols, the survival rates of Wilms tumor have increased. However, metastases or local relapses are still observed in 15% of patients. The search for reliable biomarkers to identify at-risk patients is ongoing to predict the variability in treatment success. Currently, the evaluation of clinical, histopathological and genetic features are common diagnostic methods; however, epigenetic features can be examined with microRNA expression analyses and might allow us to comment on the behavior of the tumor and treatment response. METHODS In this study, we aimed to evaluate the relationship between microRNA-204 and microRNA-483-5p expression with clinicopathological data and the effect on Wilms tumor survival. For this purpose, the expression levels of RNU6B, microRNA-204 and microRNA-483-5p were evaluated in tumor and normal tissue by qreal time-polymerase chain reaction. We also investigated the relationship between microRNA expression levels with the clinicopathological and histological features of Wilms tumor. RESULTS AND CONCLUSION The results of our study indicate that the relative expression levels of microRNA-204 in Wilms tumor tissues were significantly lower than that in adjacent normal tissues. By contrast, tumor tissue had a higher microRNA-483-5p expression than the corresponding normal tissues. A statistically significant difference between microRNA-204 expression level with age and the presence of anaplasia was observed. The upregulation of microRNA-483-5p was found to have a significant correlation with patients after preoperative chemotherapy and complete tumor necrosis. Taken together, our data suggest that microRNA-204 could play a critical role as a tumor suppressor, whereas microRNA-483-5p acts as an oncogene in Wilms tumor progression. More importantly, microRNA-204 might be a novel predictive biomarker for anaplastic histology and could be useful for developing therapeutic interventions targeting this marker.
Collapse
Affiliation(s)
- Aylin Orgen Calli
- Department of Pathology, Ataturk Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkiye
| | - Gizem Issin
- Department of Pathology, Mengucek Gazi Training and Research Hospital, Erzincan Binali Yıldırım University, Erzincan, Turkiye
| | - Ismail Yilmaz
- Department of Pathology, Istanbul Sultan Abdulhamid Han Training and Research Hospital, Medical Sciences University, Istanbul, Turkiye
| | - Dilek Ince
- Department of Pediatric Oncology, Institute of Oncology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Ersin Tural
- Department of Pediatrics, Istanbul Sultan Abdulhamid Han Training and Research Hospital, Medical Sciences University, Istanbul, Turkiye
| | - Ismail Guzelis
- Department of Pathology, Ataturk Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkiye
| | - Refik Emre Cecen
- Department of Pediatric Oncology, Institute of Oncology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Hatice Nur Olgun
- Department of Pediatric Oncology, Institute of Oncology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Deniz Gokcay
- Department of Pathology, Izmir Dokuz Eylul University, Izmir, Turkiye
| | - Erdener Ozer
- Department of Pathology, Izmir Dokuz Eylul University, Izmir, Turkiye
| |
Collapse
|
11
|
Stevenson MJ, Phanor SK, Patel U, Gisselbrecht SS, Bulyk ML, O'Brien LL. Altered binding affinity of SIX1-Q177R correlates with enhanced WNT5A and WNT pathway effector expression in Wilms tumor. Dis Model Mech 2023; 16:dmm050208. [PMID: 37815464 PMCID: PMC10668032 DOI: 10.1242/dmm.050208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.
Collapse
Affiliation(s)
- Matthew J. Stevenson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sabrina K. Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Urvi Patel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lori L. O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Stoltze UK, Hildonen M, Hansen TVO, Foss-Skiftesvik J, Byrjalsen A, Lundsgaard M, Pignata L, Grønskov K, Tumer Z, Schmiegelow K, Brok JS, Wadt KAW. Germline (epi)genetics reveals high predisposition in females: a 5-year, nationwide, prospective Wilms tumour cohort. J Med Genet 2023; 60:842-849. [PMID: 37019617 PMCID: PMC10447365 DOI: 10.1136/jmg-2022-108982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Studies suggest that Wilms tumours (WT) are caused by underlying genetic (5%-10%) and epigenetic (2%-29%) mechanisms, yet studies covering both aspects are sparse. METHODS We performed prospective whole-genome sequencing of germline DNA in Danish children diagnosed with WT from 2016 to 2021, and linked genotypes to deep phenotypes. RESULTS Of 24 patients (58% female), 3 (13%, all female) harboured pathogenic germline variants in WT risk genes (FBXW7, WT1 and REST). Only one patient had a family history of WT (3 cases), segregating with the REST variant. Epigenetic testing revealed one (4%) additional patient (female) with uniparental disomy of chromosome 11 and Beckwith-Wiedemann syndrome (BWS). We observed a tendency of higher methylation of the BWS-related imprinting centre 1 in patients with WT than in healthy controls. Three patients (13%, all female) with bilateral tumours and/or features of BWS had higher birth weights (4780 g vs 3575 g; p=0.002). We observed more patients with macrosomia (>4250 g, n=5, all female) than expected (OR 9.98 (95% CI 2.56 to 34.66)). Genes involved in early kidney development were enriched in our constrained gene analysis, including both known (WT1, FBXW7) and candidate (CTNND1, FRMD4A) WT predisposition genes. WT predisposing variants, BWS and/or macrosomia (n=8, all female) were more common in female patients than male patients (p=0.01). CONCLUSION We find that most females (57%) and 33% of all patients with WT had either a genetic or another indicator of WT predisposition. This emphasises the need for scrutiny when diagnosing patients with WT, as early detection of underlying predisposition may impact treatment, follow-up and genetic counselling.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics, Rigshospitalet, Copenhagen, Denmark
| | - Mathis Hildonen
- Department of Genetics, Kennedy Center-National Research Center on Rare Genetic Diseases, Glostrup, Denmark
| | | | | | - Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Malene Lundsgaard
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, North Denmark Region, Denmark
| | - Laura Pignata
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Zeynep Tumer
- Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Jesper Sune Brok
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Karin A W Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Klimontov VV, Koshechkin KA, Orlova NG, Sekacheva MI, Orlov YL. Medical Genetics, Genomics and Bioinformatics-2022. Int J Mol Sci 2023; 24:ijms24108968. [PMID: 37240312 DOI: 10.3390/ijms24108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The analysis of molecular mechanisms of disease progression challenges the development of bioinformatics tools and omics data integration [...].
Collapse
Affiliation(s)
- Vadim V Klimontov
- Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL-Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
| | - Konstantin A Koshechkin
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Nina G Orlova
- Department of Mathematics, Financial University under the Government of the Russian Federation, 125167 Moscow, Russia
| | - Marina I Sekacheva
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Yuriy L Orlov
- Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL-Branch of IC&G SB RAS), 630060 Novosibirsk, Russia
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
14
|
Csók Á, Micsik T, Magyar Z, Tornóczky T, Kuthi L, Nishi Y, Szirák K, Csóka M, Ottóffy G, Soltész B, Balogh I, Buglyó G. Alterations of miRNA Expression in Diffuse Hyperplastic Perilobar Nephroblastomatosis: Mapping the Way to Understanding Wilms' Tumor Development and Differential Diagnosis. Int J Mol Sci 2023; 24:8793. [PMID: 37240139 PMCID: PMC10218489 DOI: 10.3390/ijms24108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Wilms' tumor (WT) is the most common renal malignancy in children. In diffuse hyperplastic perilobar nephroblastomatosis (DHPLN), nephrogenic rests result in a bulky enlargement of the kidney, a condition considered as a premalignant state before WT. Despite relevant clinical differences between WT and DHPLN, they are often challenging to distinguish based on histology. Molecular markers would improve differential diagnosis, but none are available at present. In our study, we investigated the potential of microRNAs (miRNAs) as such biomarkers, also aiming to shed light on the chronological order of expression changes. Formalin-fixed, paraffin-embedded (FFPE) samples from four DHPLN cases and adjacent healthy tissues were tested using a PCR array containing primers for 84 miRNAs implicated in genitourinary cancer. Expression in DHPLN was compared to WT data available in dbDEMC. Let-7, miR-135, miR-146a-5p, miR-182-5p, miR-183-5p, miR-20b-3p, miR-29b-3p, miR-195-5p and miR-17-5p showed potential to be used as biomarkers to distinguish WT and DHPLN in cases when traditional differential diagnosis is inconclusive. Our study also revealed miRNAs which may play a role in the initial steps of the pathogenesis (at a precancerous stage) and ones which become deregulated later in WT. More experiments are needed to confirm our observations and find new candidate markers.
Collapse
Affiliation(s)
- Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - Tamás Micsik
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Magyar
- Department of Obstetrics and Gynaecology, Baross Street Division, Semmelweis University, 1088 Budapest, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School and Clinical Center, 7624 Pécs, Hungary
| | - Levente Kuthi
- Department of Pathology, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Yumika Nishi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - Krisztina Szirák
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - Monika Csóka
- Department of Paediatrics, Semmelweis University, 1094 Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Medical School and Clinical Center, 7623 Pécs, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Á.C.); (G.B.)
| |
Collapse
|
15
|
Yong J, He J, Ning F. Hsa_circ_0093741 competes with FRS2 for miR-562 binding sites to promote nephroblastoma progression. Histol Histopathol 2023; 38:559-570. [PMID: 36286392 DOI: 10.14670/hh-18-539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
BACKGROUND Circular RNA (circRNA) has been shown to play an essential role in cancer progression, including nephroblastoma. Hsa_circ_0093741 was discovered to be highly expressed in nephroblastoma. However, its function and mechanism in nephroblastoma development are still vague. METHODS The expression levels of hsa_circ_0093741, miR-562 and FRS2 (Fibroblast Growth Factor Receptor Substrate 2) were detected using western blotting and quantitative real-time polymerase chain reaction. Functional experiments were performed by using cell counting kit-8, colony formation, 5-ethynyl-2'-deoxyuridine (EdU), transwell, scratch assays in vitro and animal experiments in vivo. The interaction analysis was conducted using dual-luciferase reporter assay and RIP assay. RESULTS Hsa_circ_0093741 was highly expressed in nephroblastoma tissues and cells. Functionally, hsa_circ_0093741 silencing significantly suppressed the growth, invasion, and migration of nephroblastoma cells in vitro. MiR-562 was decreased in nephroblastoma, and was validated to be a target of hsa_circ_0093741. Inhibition of miR-562 reversed the anticancer functions of hsa_circ_0093741 silencing on nephroblastoma cells. FRS2 expression was increased in nephroblastoma and served as a target of miR-562, moreover, FRS2 overexpression attenuated the inhibitory functions of miR-562 on the nephroblastoma cell malignant phenotypes mentioned above. Pre-clinically, lentivirus-mediated hsa_circ_0093741 silencing also impeded nephroblastoma tumor growth and metastasis in vivo. CONCLUSION Knockdown of hsa_circ_0093741 suppresses nephroblastoma cell growth, migration and invasion by regulating the miR-562/FRS2 axis, suggesting the potential involvement of hsa_circ_0093741 in nephroblastoma progression.
Collapse
Affiliation(s)
- Jiang Yong
- Department of Urology, Hunan Children's Hospital, the Paediatric Academy of University of South China Changsha, Hunan, PR China.
| | - Jun He
- Department of Urology, Hunan Children's Hospital, the Paediatric Academy of University of South China Changsha, Hunan, PR China
| | - Feng Ning
- Department of Urology, Hunan Children's Hospital, the Paediatric Academy of University of South China Changsha, Hunan, PR China
| |
Collapse
|
16
|
Petrosyan A, Villani V, Aguiari P, Thornton ME, Wang Y, Rajewski A, Zhou S, Cravedi P, Grubbs BH, De Filippo RE, Sedrakyan S, Lemley KV, Csete M, Da Sacco S, Perin L. Identification and Characterization of the Wilms Tumor Cancer Stem Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206787. [PMID: 37114795 PMCID: PMC10369255 DOI: 10.1002/advs.202206787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Indexed: 06/19/2023]
Abstract
A nephrogenic progenitor cell (NP) with cancer stem cell characteristics driving Wilms tumor (WT) using spatial transcriptomics, bulk and single cell RNA sequencing, and complementary in vitro and transplantation experiments is identified and characterized. NP from WT samples with NP from the developing human kidney is compared. Cells expressing SIX2 and CITED1 fulfill cancer stem cell criteria by reliably recapitulating WT in transplantation studies. It is shown that self-renewal versus differentiation in SIX2+CITED1+ cells is regulated by the interplay between integrins ITGβ1 and ITGβ4. The spatial transcriptomic analysis defines gene expression maps of SIX2+CITED1+ cells in WT samples and identifies the interactive gene networks involved in WT development. These studies define SIX2+CITED1+ cells as the nephrogenic-like cancer stem cells of WT and points to the renal developmental transcriptome changes as a possible driver in regulating WT formation and progression.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Valentina Villani
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
| | - Paola Aguiari
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- David Geffen School of Medicine at UCLA - VA Healthcare System, Los Angeles, CA, 90095, USA
| | - Matthew E Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Alex Rajewski
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology and Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Roger E De Filippo
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kevin V Lemley
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Children's Hospital Los Angeles, Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90027, USA
| | - Marie Csete
- Department of Anesthesiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Stefano Da Sacco
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Laura Perin
- GOFARR Laboratory, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, Los Angeles, CA, 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
17
|
Jansson C, Mengelbier LH. Retinoic acid promotes differentiation of WiT49- but not of CCG99-11 Wilms tumour cells. Cancer Rep (Hoboken) 2023:e1819. [PMID: 37186071 DOI: 10.1002/cnr2.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Most children with Wilms tumour are successfully treated with multidrug chemotherapy and surgery. These treatments cause severe side effects for the patients, an issue that needs to be addressed by exploring other treatment options with less or no side effects. One option is to complement current therapies with agents that could potentially induce tumour cell differentiation, for example retinoic acid (RA). AIMS To facilitate quick assessment of an agent's effect on Wilms tumour differentiation by a rapid in vitro model system. METHODS AND RESULTS Here WiT49 and CCG99-11 Wilms tumour cells were treated with 10 μM RA for 72 h or 9 days. Cultured cells were scraped off from Petri dishes, pelleted and embedded in paraffin in the same way as clinical tumour specimens are preserved. Cell morphology and differentiation were evaluated by analyses of haematoxylin eosin (H&E) and immunohistochemical stainings. Based on H&E, WT1 and CKAE1/3 stainings, RA treatment induced further epithelial differentiation of WiT49 cells, whereas there was no sign of induced maturation in CCG99-11 cells. Ki67 staining showed that RA inhibited cell proliferation in both cell lines. CONCLUSIONS Our study shows that in vitro culturing of WiT49 and CCG99-11 cells, followed by pelleting and paraffin embedding of cell pellets, could aid in a quick evaluation of potential differentiating agents against Wilms tumour. In addition, our results strengthen previous results that retinoic acid could be a potential complement to regular Wilms tumour treatment.
Collapse
Affiliation(s)
- Caroline Jansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Sweden
| | | |
Collapse
|
18
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
19
|
Trink Y, Urbach A, Dekel B, Hohenstein P, Goldberger J, Kalisky T. Characterization of Continuous Transcriptional Heterogeneity in High-Risk Blastemal-Type Wilms' Tumors Using Unsupervised Machine Learning. Int J Mol Sci 2023; 24:ijms24043532. [PMID: 36834944 PMCID: PMC9965420 DOI: 10.3390/ijms24043532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Wilms' tumors are pediatric malignancies that are thought to arise from faulty kidney development. They contain a wide range of poorly differentiated cell states resembling various distorted developmental stages of the fetal kidney, and as a result, differ between patients in a continuous manner that is not well understood. Here, we used three computational approaches to characterize this continuous heterogeneity in high-risk blastemal-type Wilms' tumors. Using Pareto task inference, we show that the tumors form a triangle-shaped continuum in latent space that is bounded by three tumor archetypes with "stromal", "blastemal", and "epithelial" characteristics, which resemble the un-induced mesenchyme, the cap mesenchyme, and early epithelial structures of the fetal kidney. By fitting a generative probabilistic "grade of membership" model, we show that each tumor can be represented as a unique mixture of three hidden "topics" with blastemal, stromal, and epithelial characteristics. Likewise, cellular deconvolution allows us to represent each tumor in the continuum as a unique combination of fetal kidney-like cell states. These results highlight the relationship between Wilms' tumors and kidney development, and we anticipate that they will pave the way for more quantitative strategies for tumor stratification and classification.
Collapse
Affiliation(s)
- Yaron Trink
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute and Division of Pediatric Nephrology, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer 5262000, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jacob Goldberger
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
- Correspondence: ; Tel.: +972-3-738-4656
| |
Collapse
|
20
|
Cetina-Palma A, Namorado-Tónix C, Rodríguez-Muñoz R, Vergara P, Reyes-Sánchez JL, Segovia J. Characterization of the pattern of expression of Gas1 in the kidney during postnatal development in the rat. PLoS One 2023; 18:e0284816. [PMID: 37093844 PMCID: PMC10124827 DOI: 10.1371/journal.pone.0284816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
Growth Arrest-Specific 1 (Gas1) is a pleiotropic protein with different functions, in the adult kidney Gas1 acts as an endogenous inhibitor of cell proliferation but it is also necessary for the maintenance and proliferation of Renal Progenitor Cells (RPC) during early development, thus it fulfills important functions in the adult kidney. However, it is not known whether or not Gas1 is expressed during postnatal development, a critical stage for renal maturation. For this reason, the main objective of this work was to characterize the expression pattern of Gas1 in the different regions of the kidney by immunofluorescence and Western blot analysis during the postnatal development of the rat. We found that Gas1 is present and has a differential expression pattern in the various regions of the nephron during postnatal development. We observed that the highest levels of expression of Gas1 occur in the adult, however, Gas1 is also expressed in RPC and interestingly, the expression of RPC markers such as the Neural cell adhesion molecule (NCAM) and Cluster of differentiation 24 (CD24) were found to have an inverse pattern of expression to Gas1 (decreases as the kidney matures) during postnatal renal maturation, this indicates a role for Gas1 in the regulation of renal cell proliferation at this stage of development.
Collapse
Affiliation(s)
- Andrea Cetina-Palma
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Carmen Namorado-Tónix
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - José Luis Reyes-Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
21
|
Pandya PH, Jannu AJ, Bijangi-Vishehsaraei K, Dobrota E, Bailey BJ, Barghi F, Shannon HE, Riyahi N, Damayanti NP, Young C, Malko R, Justice R, Albright E, Sandusky GE, Wurtz LD, Collier CD, Marshall MS, Gallagher RI, Wulfkuhle JD, Petricoin EF, Coy K, Trowbridge M, Sinn AL, Renbarger JL, Ferguson MJ, Huang K, Zhang J, Saadatzadeh MR, Pollok KE. Integrative Multi-OMICs Identifies Therapeutic Response Biomarkers and Confirms Fidelity of Clinically Annotated, Serially Passaged Patient-Derived Xenografts Established from Primary and Metastatic Pediatric and AYA Solid Tumors. Cancers (Basel) 2022; 15:259. [PMID: 36612255 PMCID: PMC9818438 DOI: 10.3390/cancers15010259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Establishment of clinically annotated, molecularly characterized, patient-derived xenografts (PDXs) from treatment-naïve and pretreated patients provides a platform to test precision genomics-guided therapies. An integrated multi-OMICS pipeline was developed to identify cancer-associated pathways and evaluate stability of molecular signatures in a panel of pediatric and AYA PDXs following serial passaging in mice. Original solid tumor samples and their corresponding PDXs were evaluated by whole-genome sequencing, RNA-seq, immunoblotting, pathway enrichment analyses, and the drug−gene interaction database to identify as well as cross-validate actionable targets in patients with sarcomas or Wilms tumors. While some divergence between original tumor and the respective PDX was evident, majority of alterations were not functionally impactful, and oncogenic pathway activation was maintained following serial passaging. CDK4/6 and BETs were prioritized as biomarkers of therapeutic response in osteosarcoma PDXs with pertinent molecular signatures. Inhibition of CDK4/6 or BETs decreased osteosarcoma PDX growth (two-way ANOVA, p < 0.05) confirming mechanistic involvement in growth. Linking patient treatment history with molecular and efficacy data in PDX will provide a strong rationale for targeted therapy and improve our understanding of which therapy is most beneficial in patients at diagnosis and in those already exposed to therapy.
Collapse
Affiliation(s)
- Pankita H. Pandya
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Asha Jacob Jannu
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Farinaz Barghi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nur P. Damayanti
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Courtney Young
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rada Malko
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryli Justice
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric Albright
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George E. Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - L. Daniel Wurtz
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher D. Collier
- Department of Orthopedics Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark S. Marshall
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Julia D. Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA 20110, USA
| | - Kathy Coy
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa Trowbridge
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anthony L. Sinn
- Preclinical Modeling and Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie L. Renbarger
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kun Huang
- Department of Biostatistics & Health Data Science Indiana, University School of Medicine, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E. Pollok
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
22
|
Julson JR, Beierle EA. Embryology and surgical anatomy of pediatric solid tumors. Semin Pediatr Surg 2022; 31:151233. [PMID: 36423516 PMCID: PMC10084944 DOI: 10.1016/j.sempedsurg.2022.151233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - E A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
23
|
Characterization of alternative mRNA splicing in cultured cell populations representing progressive stages of human fetal kidney development. Sci Rep 2022; 12:19548. [PMID: 36380228 PMCID: PMC9666651 DOI: 10.1038/s41598-022-24147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrons are the functional units of the kidney. During kidney development, cells from the cap mesenchyme-a transient kidney-specific progenitor state-undergo a mesenchymal to epithelial transition (MET) and subsequently differentiate into the various epithelial cell types that create the tubular structures of the nephron. Faults in this transition can lead to a pediatric malignancy of the kidney called Wilms' tumor that mimics normal kidney development. While human kidney development has been characterized at the gene expression level, a comprehensive characterization of alternative splicing is lacking. Therefore, in this study, we performed RNA sequencing on cell populations representing early, intermediate, and late developmental stages of the human fetal kidney, as well as three blastemal-predominant Wilms' tumor patient-derived xenografts. Using this newly generated RNAseq data, we identified a set of transcripts that are alternatively spliced between the different developmental stages. Moreover, we found that cells from the earliest developmental stage have a mesenchymal splice-isoform profile that is similar to that of blastemal-predominant Wilms' tumor xenografts. RNA binding motif enrichment analysis suggests that the mRNA binding proteins ESRP1, ESRP2, RBFOX2, and QKI regulate alternative mRNA splicing during human kidney development. These findings illuminate new molecular mechanisms involved in human kidney development and pediatric kidney cancer.
Collapse
|
24
|
Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney. BMC Biol 2022; 20:112. [PMID: 35550069 PMCID: PMC9102746 DOI: 10.1186/s12915-022-01309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01309-z.
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) belong to a class of endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, through both translational repression and mRNA destabilization. They are key regulators of kidney morphogenesis, modulating diverse biological processes in different renal cell lineages. Dysregulation of miRNA expression disrupts early kidney development and has been implicated in the pathogenesis of developmental kidney diseases. In this Review, we summarize current knowledge of miRNA biogenesis and function and discuss in detail the role of miRNAs in kidney morphogenesis and developmental kidney diseases, including congenital anomalies of the kidney and urinary tract and Wilms tumor. We conclude by discussing the utility of miRNAs as potentially novel biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Débora Malta Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maliha Tayeb
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Jablonowski CM, Gil HJ, Pinto EM, Pichavaram P, Fleming AM, Clay MR, Hu D, Morton CL, Pruett-Miller SM, Hansen BS, Chen X, Jones KMD, Liu Y, Ma X, Yang J, Davidoff AM, Zambetti GP, Murphy AJ. TERT Expression in Wilms Tumor Is Regulated by Promoter Mutation or Hypermethylation, WT1, and N-MYC. Cancers (Basel) 2022; 14:cancers14071655. [PMID: 35406427 PMCID: PMC8996936 DOI: 10.3390/cancers14071655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The telomerase enzyme adds repetitive genetic sequences to the ends of chromosomes called telomeres to prevent cellular senescence. Gain of telomerase function is one of the hallmarks of human cancer. The telomerase protein is coded by the gene TERT and increased TERT RNA levels have been associated with disease relapse in Wilms tumor, the most common kidney cancer of childhood. This study aimed to determine the mechanisms of increased TERT expression in Wilms tumor. This study found mutations in the TERT promoter, increased methylation of the TERT promoter, and genomic copy number amplifications of TERT as potential mechanisms of TERT activation. Conversely, this study found that inactivating WT1 mutation was associated with low TERT RNA levels and telomerase activity. N-MYC overexpression in Wilms tumor cells resulted in increased TERT promoter activity and TERT transcription. TERT transcription is associated with molecular and histologic subgroups in Wilms tumor and telomere-targeted therapies warrant future investigation. Abstract Increased TERT mRNA is associated with disease relapse in favorable histology Wilms tumor (WT). This study sought to understand the mechanism of increased TERT expression by determining the association between TERT and WT1 and N-MYC, two proteins important in Wilms tumor pathogenesis that have been shown to regulate TERT expression. Three out of 45 (6.7%) WTs and the corresponding patient-derived xenografts harbored canonical gain-of-function mutations in the TERT promoter. This study identified near ubiquitous hypermethylation of the TERT promoter region in WT compared to normal kidney. WTs with biallelic inactivating mutations in WT1 (7/45, 15.6%) were found to have lower TERT expression by RNA-seq and qRT-PCR and lower telomerase activity determined by the telomerase repeat amplification protocol. Anaplastic histology and increased percentage of blastema were positively correlated with higher TERT expression and telomerase activity. In vitro shRNA knockdown of WT1 resulted in decreased expression of TERT, reduced colony formation, and decreased proliferation of WiT49, an anaplastic WT cell line with wild-type WT1. CRISPR-Cas9-mediated knockout of WT1 resulted in decreased expression of telomere-related gene pathways. However, an inducible Wt1-knockout mouse model showed no relationship between Wt1 knockout and Tert expression in normal murine nephrogenesis, suggesting that WT1 and TERT are coupled in transformed cells but not in normal kidney tissues. N-MYC overexpression resulted in increased TERT promoter activity and TERT transcription. Thus, multiple mechanisms of TERT activation are involved in WT and are associated with anaplastic histology and increased blastema. This study is novel because it identifies potential mechanisms of TERT activation in Wilms tumor that could be of therapeutic interests.
Collapse
Affiliation(s)
- Carolyn M. Jablonowski
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Emilia M. Pinto
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Prahalathan Pichavaram
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz, Aurora, CO 80045, USA;
| | - Dongli Hu
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (S.M.P.-M.); (B.S.H.)
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Karissa M. Dieseldorff Jones
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (X.C.); (K.M.D.J.); (Y.L.); (X.M.)
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (E.M.P.); (G.P.Z.)
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Mail Stop 133, Memphis, TN 38105, USA; (C.M.J.); (H.J.G.); (P.P.); (A.M.F.); (D.H.); (C.L.M.); (J.Y.); (A.M.D.)
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
27
|
Hol JA, Kuiper RP, van Dijk F, Waanders E, van Peer SE, Koudijs MJ, Bladergroen R, van Reijmersdal SV, Morgado LM, Bliek J, Lombardi MP, Hopman S, Drost J, de Krijger RR, van den Heuvel-Eibrink MM, Jongmans MCJ. Prevalence of (Epi)genetic Predisposing Factors in a 5-Year Unselected National Wilms Tumor Cohort: A Comprehensive Clinical and Genomic Characterization. J Clin Oncol 2022; 40:1892-1902. [PMID: 35230882 PMCID: PMC9177240 DOI: 10.1200/jco.21.02510] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Wilms tumor (WT) is associated with (epi)genetic predisposing factors affecting a growing number of WT predisposing genes and loci, including those causing Beckwith-Wiedemann spectrum (BWSp) or WT1-related syndromes. To guide genetic counseling and testing, we need insight into the prevalence of WT predisposing (epi)genetic factors. PATIENTS AND METHODS All children diagnosed with WT in the Netherlands between 2015 and 2020 were referred to a clinical geneticist. Phenotypic data, disease characteristics, and diagnostic test results were collected. If no genetic predisposition was identified by targeted diagnostic testing, germline (trio-)whole-exome sequencing and BWSp testing on normal kidney-derived DNA were offered. RESULTS A total of 126 cases were analyzed of 128 identified patients. (Epi)genetic predisposing factors were present in 42 of 126 patients (33.3%) on the basis of a molecular diagnosis in blood-derived DNA (n = 26), normal kidney-derived DNA (n = 12), or solely a clinical diagnosis of BWSp (n = 4). Constitutional, heterozygous DIS3L2 variants were identified as a recurrent predisposing factor in five patients (4%), with a second somatic hit in 4 of 5 tumors. Twenty patients (16%) were diagnosed with BWSp while four additional patients without BWSp features harbored chromosome 11p15 methylation defects in normal kidney tissue. Remaining findings included WT1-related syndromes (n = 10), Fanconi anemia (n = 1), neurofibromatosis type 1 (n = 1), and a pathogenic REST variant (n = 1). In addition, (likely) pathogenic variants in adult-onset cancer predisposition genes (BRCA2, PMS2, CHEK2, and MUTYH) were identified in 5 of 56 (8.9%) patients with available whole-exome sequencing data. Several candidate WT predisposition genes were identified, which require further validation. CONCLUSION (Epi)genetic WT predisposing factors, including mosaic aberrations and recurrent heterozygous DIS3L2 variants, were present in at least 33.3% of patients with WT. On the basis of these results, we encourage standard genetic testing after counseling by a clinical geneticist.
Collapse
Affiliation(s)
- Janna A Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Freerk van Dijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Esmé Waanders
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sophie E van Peer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marco J Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Reno Bladergroen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Lionel M Morgado
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jet Bliek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Paola Lombardi
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
28
|
Legge D, Li L, Moriarty W, Lee D, Szemes M, Zahed A, Panousopoulos L, Chung WY, Aghabi Y, Barratt J, Williams R, Pritchard‐Jones K, Malik KT, Oltean S, Brown KW. The epithelial splicing regulator ESRP2 is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor. Mol Oncol 2022; 16:630-647. [PMID: 34520622 PMCID: PMC8807366 DOI: 10.1002/1878-0261.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Wilms tumour (WT), an embryonal kidney cancer, has been extensively characterised for genetic and epigenetic alterations, but a proportion of WTs still lack identifiable abnormalities. To uncover DNA methylation changes critical for WT pathogenesis, we compared the epigenome of foetal kidney with two WT cell lines, filtering our results to remove common cancer-associated epigenetic changes and to enrich for genes involved in early kidney development. This identified four hypermethylated genes, of which ESRP2 (epithelial splicing regulatory protein 2) was the most promising for further study. ESRP2 was commonly repressed by DNA methylation in WT, and this occurred early in WT development (in nephrogenic rests). ESRP2 expression was reactivated by DNA methyltransferase inhibition in WT cell lines. When ESRP2 was overexpressed in WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it suppressed tumour growth of orthotopic xenografts in nude mice. RNA-seq of the ESRP2-expressing WT cell lines identified several novel splicing targets. We propose a model in which epigenetic inactivation of ESRP2 disrupts the mesenchymal to epithelial transition in early kidney development to generate WT.
Collapse
Affiliation(s)
- Danny Legge
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Ling Li
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Whei Moriarty
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - David Lee
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Marianna Szemes
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Asef Zahed
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | | | - Wan Yun Chung
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Yara Aghabi
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Jasmin Barratt
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Richard Williams
- Cancer SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Karim T.A. Malik
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Sebastian Oltean
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Keith W. Brown
- School of Cellular and Molecular MedicineUniversity of BristolUK
| |
Collapse
|
29
|
Shen Q, Liu X, Li W, Zhao X, Li T, Zhou K, Zhou J. Emerging Role and Mechanism of circRNAs in Pediatric Malignant Solid Tumors. Front Genet 2022; 12:820936. [PMID: 35116058 PMCID: PMC8804321 DOI: 10.3389/fgene.2021.820936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures and are widely distributed in eukaryotes, conserved and stable as well as tissue-specific. Malignant solid tumors pose a serious health risk to children and are one of the leading causes of pediatric mortality. Studies have shown that circRNAs play an important regulatory role in the development of childhood malignant solid tumors, hence are potential biomarkers and therapeutic targets for tumors. This paper reviews the biological characteristics and functions of circRNAs as well as the research progress related to childhood malignant solid tumors.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Department of ENT, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Li
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| | - Jianfeng Zhou
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| |
Collapse
|
30
|
Shankar AS, Du Z, Tejeda Mora H, Boers R, Cao W, van den Bosch TPP, Korevaar SS, Boers J, van IJcken WFJ, Bindels EMJ, Eussen B, de Klein A, Pan Q, Oudijk L, Clahsen-van Groningen MC, Hoorn EJ, Baan CC, Gribnau J, Hoogduijn MJ. OUP accepted manuscript. Stem Cells 2022; 40:577-591. [PMID: 35524742 PMCID: PMC9216509 DOI: 10.1093/stmcls/sxac009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022]
Abstract
Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry−/−RAG2−/− mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.
Collapse
Affiliation(s)
- Anusha S Shankar
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Corresponding author: Anusha S. Shankar, Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, 3015 CN Rotterdam, The Netherlands.
| | - Zhaoyu Du
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hector Tejeda Mora
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ruben Boers
- Department of Developmental Biology and iPS Core Facility, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Wanlu Cao
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical CenterRotterdam, Rotterdam, The Netherlands
| | | | - Sander S Korevaar
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joachim Boers
- Department of Developmental Biology and iPS Core Facility, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Eric M J Bindels
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical CenterRotterdam, Rotterdam, The Netherlands
| | - Lindsey Oudijk
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology and iPS Core Facility, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Zhuo Z, Hua RX, Zhang H, Lin H, Fu W, Zhu J, Cheng J, Zhang J, Li S, Zhou H, Xia H, Liu G, Jia W, He J. METTL14 gene polymorphisms decrease Wilms tumor susceptibility in Chinese children. BMC Cancer 2021; 21:1294. [PMID: 34863142 PMCID: PMC8643011 DOI: 10.1186/s12885-021-09019-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Wilms tumor is a highly heritable malignancy. Aberrant METTL14, a critical component of N6-methyladenosine (m6A) methyltransferase, is involved in carcinogenesis. The association between genetic variants in the METTL14 gene and Wilms tumor susceptibility remains to be fully elucidated. We aimed to assess whether variants within this gene are implicated in Wilms tumor susceptibility. METHODS A total of 403 patients and 1198 controls were analyzed. METTL14 genotypes were assessed by TaqMan genotyping assay. RESULT Among the five SNPs analyzed, rs1064034 T > A and rs298982 G > A exhibited a significant association with decreased susceptibility to Wilms tumor. Moreover, the joint analysis revealed that the combination of five protective genotypes exerted significantly more protective effects against Wilms tumor than 0-4 protective genotypes with an OR of 0.69. The stratified analysis further identified the protective effect of rs1064034 T > A, rs298982 G > A, and combined five protective genotypes in specific subgroups. The above significant associations were further validated by haplotype analysis and false-positive report probability analysis. Preliminary mechanism exploration indicated that rs1064034 T > A and rs298982 G > A are correlated with the expression and splicing event of their surrounding genes. CONCLUSIONS Collectively, our results suggest that METTL14 gene SNPs may be genetic modifiers for the development of Wilms tumor.
Collapse
Affiliation(s)
- Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huizhu Zhang
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, 150040, Heilongjiang, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Shannxi, Taiyuan, 030013, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Wei Jia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
32
|
Lizhi L, Rongdong H, Shaohua H, Yingquan K, Huihuang X, Shan L, Kunbin T, Di X. Association Between TP53 Mutation and Prognosis in Wilms Tumor: A Meta-Analysis. Fetal Pediatr Pathol 2021; 40:653-662. [PMID: 32066305 DOI: 10.1080/15513815.2020.1725937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BackgroundTP53 mutation has been suggested to have prognostic value for patients with Wilms tumor (WT), but the results are still controversial. Methods: Relevant studies published until August 1, 2019 were identified by searching PubMed, EMBASE and Cochrane Library. A random-effect model was performed to assess pooled data. Begg's and Egger's test were used to evaluate the potential publication bias. Sensitivity analysis was used to evaluate the stability of results. Results: A total of seven eligible articles were included. There was no significant difference in the risk of death among patients with WT with different TP53 mutation status (odds ratio [OR] = 3.09, 95% confidence interval[CI]: 0.81-11.84). Combined hazard ratio (HR) suggested that TP53 mutation had an unfavorable impact on overall survival (OS) (HR = 4.17, 95% CI: 1.97-6.36) and disease-free survival (DFS) (HR = 2.23, 95% CI: 1.29-3.17) in WT. Conclusions: This meta-analysis demonstrates that TP53 mutations are associated with poorer prognosis in WT.
Collapse
Affiliation(s)
- Li Lizhi
- Fujian Provincial Clinical Medical School of Fujian Medical University, Fuzhou, China
| | - Huang Rongdong
- Fujian Provincial Health Commission, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - He Shaohua
- Fujian Provincial Hospital, Fuzhou, China
| | | | | | - Lin Shan
- Fujian Provincial Hospital, Fuzhou, China
| | | | - Xu Di
- Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
33
|
Genetic Polymorphisms of the TGFB1 Signal Peptide and Promoter Region: Role in Wilms Tumor Susceptibility? J Kidney Cancer VHL 2021; 8:22-31. [PMID: 34722128 PMCID: PMC8532353 DOI: 10.15586/jkcvhl.v8i4.182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to investigate the rs1800468 (G-800A), rs1800469 (C-509T), rs1800470 (C29T), and rs1800471 (G74C) TGFB1 genetic polymorphisms and their haplotype structures in patients with Wilms Tumor (WT) and neoplasia-free controls. The genomic DNA was extracted from 35 WT patients and 160 neoplasia-free children, and the TGFB1 polymorphisms were genotyped by polymerase chain reaction, followed by restriction fragment length polymorphism. The haplotype structures were inferred, and permutation and logistic regression tests were performed to check for differences in haplotype distribution between the control and WT individuals. Positive associations were found in the recessive model for rs1800469 T allele (OR: 8.417; 95% CI: 3.177 to 22.297; P < 0.001) and for the rs1800470 C allele (OR: 3.000; 95% CI: 1.296 to 6.944; P = 0.01). Haplotype analysis revealed a significant negative association between GCTG and WT (OR: 0.236, 95% CI: 0.105 to 0.534; P = 0.0002); by contrast, the GTTG haplotype was associated with increased risk for WT (OR: 12.0; 95% CI: 4.202 to 34.270; P < 0.001). Furthermore, rs1800469 was negatively correlated with tumor size and a trend toward a positive correlation for capsular invasion was observed in the dominant model (Tau-b: −0.43, P = 0.02 and tau-b: 0.5, P = 0.06, respectively). This is the first study with rs1800468, rs1800469, rs1800470, and rs1800471 TGFB1 polymorphisms in WT, and our results suggest that the TGFB1 promoter and signal peptide region polymorphisms may be associated with WT susceptibility and clinical presentation.
Collapse
|
34
|
Li S, Qin C, Chen Y, Wei D, Tan Z, Meng J. Implications of cell division cycle associated 4 on the Wilm's tumor cells viability via AKT/mTOR signaling pathway. Ren Fail 2021; 43:1470-1478. [PMID: 34723730 PMCID: PMC8567894 DOI: 10.1080/0886022x.2021.1994994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective The aim of present report was to elucidate the effect of cell division cycle associated 4 (CDCA4) on the proliferation and apoptosis of Wilm’s tumor cells, and to further evaluate its underlying mechanism. Methods The expression profiles of CDCA4 and clinical information of Wilm’s tumor patients were obtained from public Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database portal. Real-time qPCR and western blot analyses were utilized to determine the expression levels of CDCA4. Gain- and loss-of-function of CDCA4 assays were conducted with transfection technology to investigate the biological role of CDCA4 in Wilm’s tumor cells. Cell counting kit 8 and flow cytometer assays were employed to examine the effect of CDCA4 on the cells proliferation and apoptosis. Protein expression levels of indicated markers in each group of Wilm’s tumor cells were measured by western blot. Results The transcriptional expression of CDCA4 was drastically upregulated in Wilm’s tumor tissues according to the public TARGET database and in Wilm’s tumor cells. The cells viability was remarkably reduced whereas the cells apoptosis was increased in CDCA4-knockdown group compared with negative control group. However, CDCA4-overexpression group promoted the cells proliferation and suppressed the cells apoptosis. Furthermore, the protein expression levels of p-AKT, p-mTOR, and Cyclin D1 were significantly reduced after depletion of CDCA4, whereas overexpression of CDCA4 dramatically elevated these markers’ expression levels. Conclusions CDCA4 is highly expressed in Wilm’s tumor and promoted the proliferation whereas inhibited the apoptosis of Wilm’s tumor cells through activating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Suqing Li
- Department of Pediatrics, Guigang City People's Hospital, the Eight Affiliated Hospital of Guangxi Medical University, Guigang, P.R. China
| | - Cong Qin
- Department of Pediatrics, Guigang City People's Hospital, the Eight Affiliated Hospital of Guangxi Medical University, Guigang, P.R. China
| | - Yike Chen
- Department of Pediatrics, Guigang City People's Hospital, the Eight Affiliated Hospital of Guangxi Medical University, Guigang, P.R. China
| | - Dan Wei
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhijun Tan
- Department of Pediatrics, Guigang City People's Hospital, the Eight Affiliated Hospital of Guangxi Medical University, Guigang, P.R. China
| | - Jiadong Meng
- Department of Pediatrics, Guigang City People's Hospital, the Eight Affiliated Hospital of Guangxi Medical University, Guigang, P.R. China
| |
Collapse
|
35
|
Liu H, Zhang M, Zhang T, Shi M, Lu W, Yang S, Cui Q, Li Z. Identification of a ferroptosis-related lncRNA signature with prognosis for Wilms tumor. Transl Pediatr 2021; 10:2418-2431. [PMID: 34765465 PMCID: PMC8578763 DOI: 10.21037/tp-21-211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Wilms tumor (WT) is a widespread urologic tumor in children. Ferroptosis, on the other hand, is a novel form of cell death associated with tumor development. In this study, we aim to explore the predictability of ferroptosis-related biomarkers in estimating prognosis in WT patients. METHODS To determine a link between ferroptosis-related gene expression and WT prognosis, we first collected RNA sequencing data and clinical information, involving 124 WT and 6 healthy tissue samples, from the TARGET database. Next, we screened the collected information for ferroptosis-related long non-coding RNA using Cox regression analysis, and constructed a signature model, as well as a nomogram, related to prognosis. Finally, we explored a potential link between ferroptosis-related lncRNA and tumor immunity and screened for possible immune checkpoints. RESULTS We constructed a WT prognosis prediction signature containing 12 ferroptosis-related lncRNAs. The area under the curves values, from the ROC curves, predicting overall survival rates at the 1, 3-, and 5-year timepoints were 0.775, 0.867, and 0.891 respectively. Moreover, we generated a nomogram, using clinical features and risk scores, carrying a C-index value of 0.836, which suggested a high predictive value. We also demonstrated significant differences in tumor immunity between low- and high-risk WT patients, particularly in the presence of B cells, NK cells, Th1 cells, Treg cells, inflammation promoting, and type I and II IFN responses. In addition, we showed that immune checkpoints like SIRPA, ICOSLG, LAG3, PVRIG, NECTIN1, and SIRPB2 can serve as potential therapeutic targets for WT. CONCLUSIONS Based on our analyses, we generated a ferroptosis-related lncRNA signature that can both estimate prognosis of WT patients and may provide basis for future WT therapy.
Collapse
Affiliation(s)
- Hengchen Liu
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Mingzhao Zhang
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Wenjun Lu
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Khalid M, Hodjat M, Abdollahi M. Environmental Exposure to Heavy Metals Contributes to Diseases Via Deregulated Wnt Signaling Pathways. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:370-382. [PMID: 34567167 PMCID: PMC8457726 DOI: 10.22037/ijpr.2021.114897.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Wnt signaling plays a critical role during embryogenesis and is responsible for regulating the homeostasis of the adult stem cells and cells fate via a multitude of signaling pathways and associated transcription factors, receptors, effectors, and inhibitors. For this review, published articles were searched from PubMed Central, Embase, Medline, and Google Scholar. The search terms were Wnt, canonical, noncanonical, signaling pathway, β-catenin, environment, and heavy metals. Published articles on Wnt signaling pathways and heavy metals as contributing factors for causing diseases via influencing Wnt signaling pathways were included. Wnt canonical or noncanonical signaling pathways are the key regulators of stem cell homeostasis that control many mechanisms. There is an adequate balance between β-catenin dependent and independent Wnt signaling pathways and remain highly conserved throughout different development stages. Environmental heavy metal exposure may cause either inhibition or overexpression of any component of Wnt signaling pathways such as Wnt protein, transcription factors, receptors, ligands, or transducers to impede normal cellular function via negatively affecting Wnt signaling pathways. Environmental exposure to heavy metals potentially contributes to diseases via deregulated Wnt signaling pathways.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Maciaszek JL, Oak N, Nichols KE. Recent advances in Wilms' tumor predisposition. Hum Mol Genet 2021; 29:R138-R149. [PMID: 32412586 DOI: 10.1093/hmg/ddaa091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Wilms' tumor (WT), the most common childhood kidney cancer, develops in association with an underlying germline predisposition in up to 15% of cases. Germline alterations affecting the WT1 gene and epigenetic alterations affecting the 11p15 locus are associated with a selective increase in WT risk. Nevertheless, WT also occurs in the context of more pleiotropic cancer predispositions, such as DICER1, Li-Fraumeni and Bloom syndrome, as well as Fanconi anemia. Recent germline genomic investigations have increased our understanding of the host genetic factors that influence WT risk, with sequencing of rare familial cases and large WT cohorts revealing an expanding array of predisposition genes and associated genetic conditions. Here, we describe evidence implicating WT1, the 11p15 locus, and the recently identified genes CTR9, REST and TRIM28 in WT predisposition. We discuss the clinical features, mode of inheritance and biological aspects of tumorigenesis, when known. Despite these described associations, many cases of familial WT remain unexplained. Continued investigations are needed to fully elucidate the landscape of germline genetic alterations in children with WT. Establishing a genetic diagnosis is imperative for WT families so that individuals harboring a predisposing germline variant can undergo surveillance, which should enable the early detection of tumors and use of less intensive treatments, thereby leading to improved overall outcomes.
Collapse
Affiliation(s)
- Jamie L Maciaszek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ninad Oak
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
38
|
Hua RX, Fu W, Lin A, Zhou H, Cheng J, Zhang J, Li S, Liu G, Xia H, Zhuo Z, He J. Role of FTO gene polymorphisms in Wilms tumor predisposition: A five-center case-control study. J Gene Med 2021; 23:e3348. [PMID: 33894035 DOI: 10.1002/jgm.3348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor is the most frequently occurring renal malignancy in pediatrics. The FTO gene exhibits a featured genetic contribution to cancer development. Nonetheless, its single nucleotide polymorphism (SNP) contribution to Wilms tumor remains unknown. METHODS In the present study, 402 Wilms tumor patients and 1198 healthy controls were successfully genotyped for FTO gene SNPs (rs1477196 G>A, rs9939609 T>A, rs7206790 C>G and rs8047395 A>G) using TaqMan SNP genotyping assays. Odds ratios (ORs) and 95% confidence intervals (CIs), generated from unconditional logistic regression, were applied to quantify the effects of FTO gene SNPs on Wilms tumor risk. RESULTS We found that the rs8047395 A>G polymorphism was significantly correlated with an increased risk for Wilms tumor (GG versus AA/AG: adjusted OR = 1.38, 95% CI = 1.04-1.85, p = 0.027). Carriers with 1 and 1-2 risk genotypes are more susceptible of developing Wilms tumor than those without risk genotypes. Stratified analysis of rs8047395 and risk genotypes revealed more significant relationships with Wilms tumor risk in certain subgroups. Preliminary functional annotations revealed that the rs8047395 A allele increases expression levels of the FTO gene as determined by expression quantitative trait locus analysis. CONCLUSIONS The present study provides evidence that rs8047395 may regulate FTO gene expression and thus confer susceptibility to Wilms tumor. The candidate FTO gene rs8047395 A>G polymorphism identified in this study warrants independent investigation.
Collapse
Affiliation(s)
- Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shannxi, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Lin A, Hua RX, Zhou M, Fu W, Zhang J, Zhou H, Li S, Cheng J, Zhu J, Xia H, Liu G, He J. YTHDC1 gene polymorphisms and Wilms tumor susceptibility in Chinese children: A five-center case-control study. Gene 2021; 783:145571. [PMID: 33737126 DOI: 10.1016/j.gene.2021.145571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Wilms tumor is a common pediatric tumor with abundant genetic drivers. YTHDC1 is an important reader of the N6-methyladenosine modification that widely regulates eukaryotic transcripts. YTHDC1 has been associated with the occurrence and development of some tumors. However, this is the first study on YTHDC1 gene polymorphisms and Wilms tumor susceptibility. In brief, we conducted a five-center case-control study to explore the associations between YTHDC1 polymorphisms (rs2293596 T > C, rs2293595 T > C, and rs3813832 T > C) and Wilms tumor susceptibility in Chinese children. A total of 404 cases and 1198 controls were successfully genotyped using TaqMan real-time PCR. Odds ratios (ORs) and 95% confidence intervals (CIs) were used as the evaluation indicators. We found that children with the 2-3 risk genotypes were more likely to develop Wilms tumor than those with the 0-1 risk genotypes (adjusted OR = 1.28, 95% CI = 1.01-1.62, P = 0.042). However, no other statistically significant results were found in this research study. The combined effect of YTHDC1 polymorphisms significantly increases Wilms tumor susceptibility. Our results need to be verified in different populations after increasing the sample size and controlling for confounding factors.
Collapse
Affiliation(s)
- Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Mingming Zhou
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
40
|
Hol JA, Diets IJ, de Krijger RR, van den Heuvel-Eibrink MM, Jongmans MC, Kuiper RP. TRIM28 variants and Wilms' tumour predisposition. J Pathol 2021; 254:494-504. [PMID: 33565090 PMCID: PMC8252630 DOI: 10.1002/path.5639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
TRIM28 was recently identified as a Wilms' tumour (WT) predisposition gene, with germline pathogenic variants identified in around 1% of isolated and 8% of familial WT cases. TRIM28 variants are associated with epithelial WT, but the presence of other tumour components or anaplasia does not exclude the presence of a germline or somatic TRIM28 variant. In children with WT, TRIM28 acts as a classical tumour suppressor gene, with both alleles generally disrupted in the tumour. Therefore, loss of TRIM28 (KAP1/TIF1beta) protein expression in tumour tissue by immunohistochemistry is an effective strategy to identify patients carrying pathogenic TRIM28 variants. TRIM28 is a ubiquitously expressed corepressor that binds transcription factors in a context‐, species‐, and cell‐type‐specific manner to control the expression of genes and transposable elements during embryogenesis and cellular differentiation. In this review, we describe the inheritance patterns, histopathological and clinical features of TRIM28‐associated WT, as well as potential underlying mechanisms of tumourigenesis during embryonic kidney development. Recognizing germline TRIM28 variants in patients with WT can enable counselling, genetic testing, and potential early detection of WT in other children in the family. A further exploration of TRIM28‐associated WT will help to unravel the diverse and complex mechanisms underlying WT development. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Janna A Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marjolijn Cj Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
41
|
Cantoni C, Serra M, Parisi E, Azzarone B, Sementa AR, Nasto LA, Moretta L, Candiano G, Bottino C, Ghiggeri GM, Spaggiari GM. Stromal-like Wilms tumor cells induce human Natural Killer cell degranulation and display immunomodulatory properties towards NK cells. Oncoimmunology 2021; 10:1879530. [PMID: 33758675 PMCID: PMC7946041 DOI: 10.1080/2162402x.2021.1879530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The similarity of stromal-like Wilms tumor (str-WT) cells with mesenchymal stem cells (MSC), suggests their relevant role in the interplay with immune cells in the tumor microenvironment. We investigated the interaction between str-WT cells and NK cells. We observed that str-WT cells expressed some major ligands for activating and inhibitory NK cell receptors. Moreover, they expressed inhibitory checkpoint molecules involved in the negative regulation of anti-tumor immune response. The analysis of the interaction between str-WT cells and NK lymphocytes revealed that activated NK cells could efficiently degranulate upon interaction with str-WT cells. On the other hand, str-WT cells could exert potent inhibitory effects on cytokine-induced activation of NK cell proliferation and phenotype, which were mediated by the production of IDO and PGE2 inhibitory factors. Our data provide insight into the molecular interactions between str-WT cells and NK lymphocytes that may result in different outcomes possibly occurring in the WT microenvironment.
Collapse
Affiliation(s)
- Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Erica Parisi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Bruno Azzarone
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Luigi Aurelio Nasto
- Department of Paediatric Orthopaedics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, IRCCS Giannina Gaslini Institute, Genoa, Italy.,Division of Nephrology, Dialysis & Transplantation, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Grazia Maria Spaggiari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
42
|
Li H, Hohenstein P, Kuure S. Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor. Genes (Basel) 2021; 12:genes12020318. [PMID: 33672414 PMCID: PMC7926385 DOI: 10.3390/genes12020318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-2941-59395
| |
Collapse
|
43
|
Zhang F, Zeng L, Cai Q, Xu Z, Liu R, Zhong H, Mukiibi R, Deng L, Tang X, Xin H. Comprehensive Analysis of a Long Noncoding RNA-Associated Competing Endogenous RNA Network in Wilms Tumor. Cancer Control 2021; 27:1073274820936991. [PMID: 32597194 PMCID: PMC7324900 DOI: 10.1177/1073274820936991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNA (lncRNA) plays crucial roles in various biological processes of different cancers, especially acting as a competing endogenous RNA (ceRNA). However, the role of lncRNA-mediated ceRNA in Wilms tumor (WT), which is the most common malignant kidney cancer in children, remains unknown. In present study, RNA sequence profiles and clinical data of 125 patients with WT consisting of 119 tumor and 6 normal tissues from Therapeutically Applicable Research To Generate Effective Treatments database were analyzed. A total of 1833 lncRNAs, 156 microRNAs (miRNAs), and 3443 messenger RNAs (mRNAs) were identified as differentially expressed (DE) using "DESeq2" package. The lncRNA-miRNA-mRNA ceRNA regulatory network involving 748 DElncRNAs, 33 DEmiRNAs, and 189 DEmRNAs was constructed based on miRcode, Targetscan, miRTarBase, and miRDB database. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that DEmRNAs were mainly enriched in cell proliferation-related processes and tumor-related pathways, respectively, and 13 hub genes were identified by a protein-protein interaction network. Survival analysis detected 48 lncRNAs, 7 miRNAs, and 16 mRNAs to have significant impact on the overall survival of patients with WT. Additionally, we found that 6 DElncRNAs with potential prognostic value were correlated with tumor stage (DENND5B-AS1) and histologic classification (TMPO-AS1, RP3-523K23.2, RP11-598F7.3, LAMP5-AS1, and AC013275.2) of patients with WT. Our research provides a great insight into understanding the molecular mechanism underlying occurrence and progression of WT, as well as the potential to develop targeted therapies and prognostic biomarkers.
Collapse
Affiliation(s)
- Feng Zhang
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Liping Zeng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | | | - Zihao Xu
- Nanchang University, Nanchang, China
| | - Ruida Liu
- Nanchang University, Nanchang, China
| | | | - Robert Mukiibi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Libin Deng
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiaoli Tang
- Nanchang University, Nanchang, China.,Department of Biochemistry, School of Medicine, Nanchang University, Nanchang, China
| | - Hongbo Xin
- Nanchang University, Nanchang, China.,The National Engineering Research Center for Bioengineering Drugs and the Technologies, The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
44
|
Wang Z, Zhuo Z, Li L, Hua RX, Li L, Zhang J, Cheng J, Zhou H, Li S, He J, Yan S. The contribution of YTHDF2 gene rs3738067 A>G to the Wilms tumor susceptibility. J Cancer 2021; 12:6165-6169. [PMID: 34539889 PMCID: PMC8425210 DOI: 10.7150/jca.62154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
YTHDF2 is responsible for maintaining the dynamic N6-methyladenosine (m6A) modification balance and influences a variety of cancers. We tested whether YTHDF2 gene rs3738067 A>G polymorphism is related to Wilms tumor by genotyping samples of Chinese children (450 cases and 1317 controls). However, the rs3738067 A>G polymorphism showed no statistical significance with Wilms tumor susceptibility. Stratification analysis also revealed that there was no remarkable association of rs3738067 variant AG/GG genotype with Wilms tumor risk in every subgroup (age, gender, and clinical stages). In all, the results indicated YTHDF2 gene rs3738067 A>G polymorphism could not alter Wilms tumor risk significantly.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650031, Yunnan, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Linyan Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| | - Shan Yan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, Yunnan, China
- ✉ Corresponding authors: Shan Yan, Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrongxi Road, Kunming 650500, Yunnan, China, E-mail: ; or Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou 510623, Guangdong, China, E-mail:
| |
Collapse
|
45
|
Barati M, Akhondi M, Mousavi NS, Haghparast N, Ghodsi A, Baharvand H, Ebrahimi M, Hassani SN. Pluripotent Stem Cells: Cancer Study, Therapy, and Vaccination. Stem Cell Rev Rep 2021; 17:1975-1992. [PMID: 34115316 PMCID: PMC8193020 DOI: 10.1007/s12015-021-10199-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pluripotent stem cells (PSCs) are promising tools for modern regenerative medicine applications because of their stemness properties, which include unlimited self-renewal and the ability to differentiate into all cell types in the body. Evidence suggests that a rare population of cells within a tumor, termed cancer stem cells (CSCs), exhibit stemness and phenotypic plasticity properties that are primarily responsible for resistance to chemotherapy, radiotherapy, metastasis, cancer development, and tumor relapse. Different therapeutic approaches that target CSCs have been developed for tumor eradication. RESULTS AND DISCUSSION In this review, we first provide an overview of different viewpoints about the origin of CSCs. Particular attention has been paid to views believe that CSCs are probably appeared through dysregulation of very small embryonic-like stem cells (VSELs) which reside in various tissues as the main candidate for tissue-specific stem cells. The expression of pluripotency markers in these two types of cells can strengthen the validity of this theory. In this regard, we discuss the common properties of CSCs and PSCs, and highlight the potential of PSCs in cancer studies, therapeutic applications, as well as educating the immune system against CSCs. CONCLUSION In conclusion, the resemblance of CSCs to PSCs can provide an appropriate source of CSC-specific antigens through cultivation of PSCs which brings to light promising ideas for prophylactic and therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Mojgan Barati
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Akhondi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Sabahi Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Asma Ghodsi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
46
|
Numakura Y, Konishi S, Kumabe S, Kotera T, Ueda M. A case of spontaneous nephroblastoma characterized by two distinct morphologies in a Slc:CD(SD)IGS rat. J Toxicol Pathol 2020; 33:291-295. [PMID: 33239847 PMCID: PMC7677627 DOI: 10.1293/tox.2020-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022] Open
Abstract
We report a spontaneous case of nephroblastoma in a 26-week-old female Slc:CD(SD) rat.
Macroscopically, there was a yellow mass in the left kidney that included another small
yellowish-white mass. Histologically, the mass was located mainly in the cortex of the
kidney. The tumor showed two distinct morphologies corresponding to the macroscopic
findings: a blastemal cell dominant area (blastemal area) with primitive glomeruli and
immature tubules and a columnar epithelial tubule dominant area with blastemal cell
cuffing on (epithelial area). The epithelial area was located inside the blastemal area
and the two morphologies were characterized by the lack of a transition region.
Nephroblastoma is known to be biphasic or triphasic and showing transitional features. To
our knowledge, there is no report of such nephroblastoma comprising two histologically
distinct areas without transition. Therefore, the two distinct morphologies of this case
with no transitional characteristic is a rare feature in nephroblastoma.
Collapse
Affiliation(s)
- Yuki Numakura
- Pharmacokinetics and Safety Assessment Department, Nippon Shinyaku Co., Ltd., 14 Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Shizuka Konishi
- Pharmacokinetics and Safety Assessment Department, Nippon Shinyaku Co., Ltd., 14 Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Shino Kumabe
- Pharmacokinetics and Safety Assessment Department, Nippon Shinyaku Co., Ltd., 14 Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Takashi Kotera
- Pharmacokinetics and Safety Assessment Department, Nippon Shinyaku Co., Ltd., 14 Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Makoto Ueda
- Pharmacokinetics and Safety Assessment Department, Nippon Shinyaku Co., Ltd., 14 Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| |
Collapse
|
47
|
Cheng J, Zhuo Z, Yang L, Zhao P, Zhang J, Zhou H, He J, Li P. HMGA2 gene polymorphisms and Wilms tumor susceptibility in Chinese children: a four-center case-control study. Biotechnol Appl Biochem 2020; 67:939-945. [PMID: 31746066 DOI: 10.1002/bab.1857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/14/2019] [Indexed: 02/05/2023]
Abstract
Wilms tumor is a kidney malignancy that typically occurs in children. Aberrant expression of HMGA2 gene is commonly seen in many malignant tumors. Yet, HMGA2 gene polymorphisms on Wilms tumor risk are not established. We carried out the first four-center case-control study with 355 patients and 1,070 controls to assess the association of HMGA2 polymorphisms (rs6581658 A>G, rs8756 A>C, and rs968697 T>C) with Wilms tumor risk. All of these three polymorphisms in single could not impact Wilms tumor risk. Stratified analysis revealed a contributing Wilms tumor risk role of rs968697 TC/CC in subgroup of male (TC/CC vs. TT: adjusted odds ratio [OR] = 1.46, 95% confidence interval [CI] = 1.03-2.08, P = 0.035). However, we found that presence of 1-3 protective genotypes were less likely to develop tumor in subgroup of female (adjusted OR = 0.69, 95% CI = 0.48-0.99, P = 0.045). Our findings suggest that HMGA2 gene polymorphisms might influence Wilms tumor predisposition in a weak manner, under certain circumstances.
Collapse
Affiliation(s)
- Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liu Yang
- Clinical Laboratory Medicine Center of PLA, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Pu Zhao
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Li
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
48
|
Nishikawa T, Wojciak JM, Dyson HJ, Wright PE. RNA Binding by the KTS Splice Variants of Wilms' Tumor Suppressor Protein WT1. Biochemistry 2020; 59:3889-3901. [PMID: 32955251 DOI: 10.1021/acs.biochem.0c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wilms' tumor suppressor protein WT1 regulates the expression of multiple genes through binding of the Cys2-His2 zinc finger domain to promoter sites. WT1 has also been proposed to be involved in post-transcriptional regulation, by binding to RNA using the same set of zinc fingers. WT1 has two major splice variants, where the Lys-Thr-Ser (KTS) tripeptide is inserted into the linker between the third and fourth zinc fingers. To obtain insights into the mechanism by which the different WT1 splice variants recognize both DNA and RNA, we have determined the solution structure of the WT1 (-KTS) zinc finger domain in complex with a 29mer stem-loop RNA. Zinc fingers 1-3 bind in a widened major groove favored by the presence of a bulge nucleotide in the double-stranded helical stem. Fingers 2 and 3 make specific contacts with the nucleobases in a conserved AUGG sequence in the helical stem. Nuclear magnetic resonance chemical shift mapping and relaxation analysis show that fingers 1-3 of the two splice variants (-KTS and +KTS) of WT1 form similar complexes with RNA. Finger 4 of the -KTS isoform interacts weakly with the RNA loop, an interaction that is abrogated in the +KTS isoform, and both isoforms bind with similar affinity to the RNA. In contrast, finger 4 is required for high-affinity binding to DNA and insertion of KTS into the linker of fingers 3 and 4 abrogates DNA binding. While finger 1 is required for RNA binding, it is dispensable for binding to consensus DNA sites.
Collapse
Affiliation(s)
- Tadateru Nishikawa
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan M Wojciak
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
49
|
Wineberg Y, Bar-Lev TH, Futorian A, Ben-Haim N, Armon L, Ickowicz D, Oriel S, Bucris E, Yehuda Y, Pode-Shakked N, Gilad S, Benjamin S, Hohenstein P, Dekel B, Urbach A, Kalisky T. Single-Cell RNA Sequencing Reveals mRNA Splice Isoform Switching during Kidney Development. J Am Soc Nephrol 2020; 31:2278-2291. [PMID: 32651222 PMCID: PMC7609002 DOI: 10.1681/asn.2019080770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/23/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring gene expression from thousands of individual cells identified the different cell types in the developing kidney. However, that analysis did not include the additional layer of heterogeneity that alternative mRNA splicing creates. METHODS Full transcript length single-cell RNA sequencing characterized the transcriptomes of 544 individual cells from mouse embryonic kidneys. RESULTS Gene expression levels measured with full transcript length single-cell RNA sequencing identified each cell type. Further analysis comprehensively characterized splice isoform switching during the transition between mesenchymal and epithelial cellular states, which is a key transitional process in kidney development. The study also identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2. CONCLUSIONS Discovery of the sets of genes that are alternatively spliced as the fetal kidney mesenchyme differentiates into tubular epithelium will improve our understanding of the molecular mechanisms that drive kidney development.
Collapse
Affiliation(s)
- Yishay Wineberg
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Tali Hana Bar-Lev
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Futorian
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nissim Ben-Haim
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Debby Ickowicz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sarit Oriel
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Efrat Bucris
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yishai Yehuda
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Division of Pediatric Nephrology, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shlomit Gilad
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sima Benjamin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
- Division of Pediatric Nephrology, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tomer Kalisky
- Department of Bioengineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
50
|
Ma L, Hua RX, Lin H, Zhu J, Fu W, Lin A, Zhang J, Cheng J, Zhou H, Li S, Zhuo Z, He J. The contribution of WTAP gene variants to Wilms tumor susceptibility. Gene 2020; 754:144839. [PMID: 32504654 DOI: 10.1016/j.gene.2020.144839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Wilms tumor is the most frequently occurring pediatric renal malignancy. Wilms tumor suppressor-1-associated protein (WTAP) is a vital component of N6-methyltransferase complex involved in tumorigenesis. However, the roles of WTAP gene single nucleotide polymorphisms (SNPs) in Wilms tumor risk have not been clarified to date. We successfully genotyped three WTAP gene SNPs using TaqMan assay in 405 Wilms tumor patients and 1197 cancer-free controls of Chinese children. Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to determine the effects of WTAP gene SNPs on Wilms tumor risk. Carriers of the rs1853259 G variant are less susceptible to developing Wilms tumor, with an adjusted OR of 0.78 (AG vs. AA: 95% CI = 0.61-0.995, P = 0.046). Single locus analysis of rs9457712 G > A and rs7766006 G > T, as well as the combined analysis of risk genotypes, failed to unveil an association with Wilms tumor risk, respectively. Stratified analysis of the three SNPs and their combined risk effects showed more significant relationships with Wilms tumor risk under certain subgroups. In all, we found weak evidence of the association between WTAP gene SNPs and the risk of Wilms tumor. Further replication studies with greater sample size and different ethnicities are necessary to verify our findings.
Collapse
Affiliation(s)
- Li Ma
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Rui-Xi Hua
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Huiran Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Laboratory Animal Management Office, Public Technology Service Platform, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ao Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|