1
|
Sun J, Zhang C, Gao F, Stathopoulos A. Single-cell transcriptomics illuminates regulatory steps driving anterior-posterior patterning of Drosophila embryonic mesoderm. Cell Rep 2023; 42:113289. [PMID: 37858470 DOI: 10.1016/j.celrep.2023.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
Single-cell technologies promise to uncover how transcriptional programs orchestrate complex processes during embryogenesis. Here, we apply a combination of single-cell technology and genetic analysis to investigate the dynamic transcriptional changes associated with Drosophila embryo morphogenesis at gastrulation. Our dataset encompassing the blastoderm-to-gastrula transition provides a comprehensive single-cell map of gene expression across cell lineages validated by genetic analysis. Subclustering and trajectory analyses revealed a surprising stepwise progression in patterning to transition zygotic gene expression and specify germ layers as well as uncovered an early role for ecdysone signaling in epithelial-to-mesenchymal transition in the mesoderm. We also show multipotent progenitors arise prior to gastrulation by analyzing the transcription trajectory of caudal mesoderm cells, including a derivative that ultimately incorporates into visceral muscles of the midgut and hindgut. This study provides a rich resource of gastrulation and elucidates spatially regulated temporal transitions of transcription states during the process.
Collapse
Affiliation(s)
- Jingjing Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chen Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Fan Gao
- Bioinformatics Resource Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Moucaud B, Prince E, Jagla K, Soler C. Developmental origin of tendon diversity in Drosophila melanogaster. Front Physiol 2023; 14:1176148. [PMID: 37143929 PMCID: PMC10151533 DOI: 10.3389/fphys.2023.1176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Myogenesis is a developmental process that is largely conserved in both Drosophila and higher organisms. Consequently, the fruit fly is an excellent in vivo model for identifying the genes and mechanisms involved in muscle development. Moreover, there is growing evidence indicating that specific conserved genes and signaling pathways govern the formation of tissues that connect the muscles to the skeleton. In this review, we present an overview of the different stages of tendon development, from the specification of tendon progenitors to the assembly of a stable myotendinous junction across three different myogenic contexts in Drosophila: larval, flight and leg muscle development. We underline the different aspects of tendon cell specification and differentiation in embryo and during metamorphosis that result into tendon morphological and functional diversity.
Collapse
|
3
|
Pérez-Moreno JJ, Santa-Cruz Mateos C, Martín-Bermudo MD, Estrada B. LanB1 Cooperates With Kon-Tiki During Embryonic Muscle Migration in Drosophila. Front Cell Dev Biol 2022; 9:749723. [PMID: 35047493 PMCID: PMC8762229 DOI: 10.3389/fcell.2021.749723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle development is a multistep process that involves cell specification, myoblast fusion, myotube migration, and attachment to the tendons. In spite of great efforts trying to understand the basis of these events, little is known about the molecular mechanisms underlying myotube migration. Knowledge of the few molecular cues that guide this migration comes mainly from studies in Drosophila. The migratory process of Drosophila embryonic muscles involves a first phase of migration, where muscle progenitors migrate relative to each other, and a second phase, where myotubes migrate searching for their future attachment sites. During this phase, myotubes form extensive filopodia at their ends oriented preferentially toward their attachment sites. This myotube migration and the subsequent muscle attachment establishment are regulated by cell adhesion receptors, such as the conserved proteoglycan Kon-tiki/Perdido. Laminins have been shown to regulate the migratory behavior of many cell populations, but their role in myotube migration remains largely unexplored. Here, we show that laminins, previously implicated in muscle attachment, are indeed required for muscle migration to tendon cells. Furthermore, we find that laminins genetically interact with kon-tiki/perdido to control both myotube migration and attachment. All together, our results uncover a new role for the interaction between laminins and Kon-tiki/Perdido during Drosophila myogenesis. The identification of new players and molecular interactions underlying myotube migration broadens our understanding of muscle development and disease.
Collapse
|
4
|
Laurichesse Q, Moucaud B, Laddada L, Renaud Y, Jagla K, Soler C. Transcriptomic and Genetic Analyses Identify the Krüppel-Like Factor Dar1 as a New Regulator of Tube-Shaped Long Tendon Development. Front Cell Dev Biol 2021; 9:747563. [PMID: 34977007 PMCID: PMC8716952 DOI: 10.3389/fcell.2021.747563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
To ensure locomotion and body stability, the active role of muscle contractions relies on a stereotyped muscle pattern set in place during development. This muscle patterning requires a precise assembly of the muscle fibers with the skeleton via a specialized connective tissue, the tendon. Like in vertebrate limbs, Drosophila leg muscles make connections with specific long tendons that extend through different segments. During the leg disc development, cell precursors of long tendons rearrange and collectively migrate to form a tube-shaped structure. A specific developmental program underlies this unique feature of tendon-like cells in the Drosophila model. We provide for the first time a transcriptomic profile of leg tendon precursors through fluorescence-based cell sorting. From promising candidates, we identified the Krüppel-like factor Dar1 as a critical actor of leg tendon development. Specifically expressed in the leg tendon precursors, loss of dar1 disrupts actin-rich filopodia formation and tendon elongation. Our findings show that Dar1 acts downstream of Stripe and is required to set up the correct number of tendon progenitors.
Collapse
|
5
|
Núñez Y, Radović Č, Savić R, García-Casco JM, Čandek-Potokar M, Benítez R, Radojković D, Lukić M, Gogić M, Muñoz M, Fontanesi L, Óvilo C. Muscle Transcriptome Analysis Reveals Molecular Pathways Related to Oxidative Phosphorylation, Antioxidant Defense, Fatness and Growth in Mangalitsa and Moravka Pigs. Animals (Basel) 2021; 11:ani11030844. [PMID: 33809803 PMCID: PMC8002519 DOI: 10.3390/ani11030844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022] Open
Abstract
This work was aimed at evaluating loin transcriptome and metabolic pathway differences between the two main Serbian local pig breeds with divergent characteristics regarding muscle growth and fatness, as well as exploring nutrigenomic effects of tannin supplementation in Mangalitsa (MA) pigs. The study comprised 24 Mangalitsa and 10 Moravka (MO) males, which were kept under identical management conditions. Mangalitsa animals were divided in two nutritional groups (n = 12) receiving a standard (control) or tannin-supplemented diet (1.5%; MAT). Moravka pigs were fed the standard mixture. All animals were slaughtered at a similar age; 120 kg of average live weight (LW) and loin tissue was used for RNA-seq analysis. Results showed 306 differentially expressed genes (DEGs) according to breed, enriched in genes involved in growth, lipid metabolism, protein metabolism and muscle development, such as PDK4, FABP4, MYOD1 and STAT3, as well as a relevant number of genes involved in mitochondrial respiratory activity (MT-NDs, NDUFAs among others). Oxidative phosphorylation was the most significantly affected pathway, activated in Mangalitsa muscle, revealing the basis of a different muscle metabolism. Also, many other relevant pathways were affected by breed and involved in oxidative stress response, fat accumulation and development of skeletal muscle. Results also allowed the identification of potential regulators and causal networks such as those controlled by FLCN, PPARGC1A or PRKAB1 with relevant regulatory roles on DEGs involved in mitochondrial and lipid metabolism, or IL3 and TRAF2 potentially controlling DEGs involved in muscle development. The Tannin effect on transcriptome was small, with only 23 DEGs, but included interesting ones involved in lipid deposition such as PPARGC1B. The results indicate a significant effect of the breed on muscle tissue gene expression, affecting relevant biological pathways and allowing the identification of strong regulatory candidate genes to underlie the gene expression and phenotypic differences between the compared groups.
Collapse
Affiliation(s)
- Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Čedomir Radović
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | | | - Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Dragan Radojković
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (R.S.); (D.R.)
| | - Miloš Lukić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - Marija Gogić
- Institute for Animal Husbandry, 11080 Belgrade, Serbia; (Č.R.); (M.L.); (M.G.)
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; (Y.N.); (J.M.G.-C.); (R.B.); (M.M.)
- Correspondence: ; Tel.: +34-913471492
| |
Collapse
|
6
|
Peppriell AE, Gunderson JT, Vorojeikina D, Rand MD. Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology 2020; 443:152561. [PMID: 32800841 PMCID: PMC7530093 DOI: 10.1016/j.tox.2020.152561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant and developmental toxicant known to cause a variety of persistent motor and cognitive deficits. While previous research has focused predominantly on neurotoxic MeHg effects, emerging evidence points to a myotoxic role whereby MeHg induces defects in muscle development and maintenance. A genome wide association study for developmental sensitivity to MeHg in Drosophila has revealed several conserved muscle morphogenesis candidate genes that function in an array of processes from myoblast migration and fusion to myotendinous junction (MTJ) formation and myofibrillogenesis. Here, we investigated candidates for a role in mediating MeHg disruption of muscle development by evaluating morphological and functional phenotypes of the indirect flight muscles (IFMs) in pupal and adult flies following 0, 5, 10, and 15 μM MeHg exposure via feeding at the larval stage. Developmental MeHg exposure induced a dose-dependent increase in muscle detachments (myospheres) within dorsal bundles of the IFMs, which paralleled reductions eclosion and adult flight behaviors. These effects were selectively phenocopied by altered expression of kon-tiki (kon), a chondroitin sulfate proteoglycan 4/NG2 homologue and a central component of MTJ formation. MeHg elevated kon transcript expression at a crucial window of IFM development and transgene overexpression of kon could also phenocopy myosphere phenotypes and eclosion and flight deficits. Finally, the myosphere phenotype resulting from 10 μM MeHg was partially rescued in a background of reduced kon expression using a targeted RNAi approach. Our findings implicate a component of the MTJ as a MeHg toxicity target which broaden the understanding of how motor deficits can emerge from early life MeHg exposure.
Collapse
Affiliation(s)
- Ashley E Peppriell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Jakob T Gunderson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
7
|
Pérez-Moreno JJ, Espina-Zambrano AG, García-Calderón CB, Estrada B. Kon-tiki/Perdido enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction. J Cell Sci 2017; 130:950-962. [DOI: 10.1242/jcs.197459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Cell-extracellular matrix adhesion is mediated by cell receptors, mainly integrins and transmembrane proteoglycans, which can functionally interact. How these receptors are regulated and coordinated is largely unknown and key to understand cell adhesion in development. We show that the conserved transmembrane proteoglycan Kon-tiki/Perdido (Kon) interacts with αPS2βPS integrin to mediate muscle-tendon adhesion. Double mutant embryos for kon and inflated show a synergistic increase in muscle detachment. Furthermore, Kon modulates αPS2βPS signaling at the muscle attachment, since P-Fak is reduced in kon mutants. This reduction in integrin signaling can be rescued by the expression of a truncated Kon protein containing the transmembrane and extracellular domains, suggesting that these domains are sufficient to mediate this signaling. We show that these domains are sufficient to properly localize the αPS2βPS ligand, Thrombospondin, to the muscle attachment, and to partially rescue Kon dependent muscle-tendon adhesion. We propose that Kon can engage in a protein complex with αPS2βPS and enhance integrin-mediated signaling and adhesion by recruiting its ligand, which would increase integrin-binding affinity to the extracellular matrix, resulting in the consolidation of the myotendinous junction.
Collapse
Affiliation(s)
- J. J. Pérez-Moreno
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
- Present address: Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - A. G. Espina-Zambrano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| | - C. B. García-Calderón
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
- Present address: Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - B. Estrada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| |
Collapse
|
8
|
The Extracellular and Cytoplasmic Domains of Syndecan Cooperate Postsynaptically to Promote Synapse Growth at the Drosophila Neuromuscular Junction. PLoS One 2016; 11:e0151621. [PMID: 26987116 PMCID: PMC4795781 DOI: 10.1371/journal.pone.0151621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
The heparan sulfate proteoglycan (HSPG) Syndecan (Sdc) is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS) sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ). To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.
Collapse
|
9
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
10
|
Schulman VK, Dobi KC, Baylies MK. Morphogenesis of the somatic musculature in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:313-34. [PMID: 25758712 DOI: 10.1002/wdev.180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
Abstract
In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once the mesodermal cells destined for the myogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical for muscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease.
Collapse
Affiliation(s)
- Victoria K Schulman
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Krista C Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Mary K Baylies
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.,Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
11
|
Abstract
Individuals are genetically variable for the way in which they process nutrients and in the effects of dietary content on reproductive success, immunity, and development. Here, we surveyed genetic variation for nutrient stores (glucose, glycogen, glycerol, protein, triglycerides, and wet weight) in the Drosophila Genetic Reference Panel (DGRP) after rearing the flies on either a low-glucose or high-glucose diet. We found significant genetic variation for these nutritional phenotypes and identified candidate genes that underlie that variation using genome-wide associations. In addition, we found several significant correlations between the nutritional phenotypes measured in this study and other previously published phenotypes, such as starvation stress resistance, oxidative stress sensitivity, and endoplasmic reticulum stress, which reinforce the notion that these lines can be used to robustly measure related phenotypes across distinct laboratories.
Collapse
|
12
|
Ge X, Grotjahn D, Welch E, Lyman-Gingerich J, Holguin C, Dimitrova E, Abrams EW, Gupta T, Marlow FL, Yabe T, Adler A, Mullins MC, Pelegri F. Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction. PLoS Genet 2014; 10:e1004422. [PMID: 24967891 PMCID: PMC4072529 DOI: 10.1371/journal.pgen.1004422] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/20/2014] [Indexed: 11/18/2022] Open
Abstract
Maternal homozygosity for three independent mutant hecate alleles results in embryos with reduced expression of dorsal organizer genes and defects in the formation of dorsoanterior structures. A positional cloning approach identified all hecate mutations as stop codons affecting the same gene, revealing that hecate encodes the Glutamate receptor interacting protein 2a (Grip2a), a protein containing multiple PDZ domains known to interact with membrane-associated factors including components of the Wnt signaling pathway. We find that grip2a mRNA is localized to the vegetal pole of the oocyte and early embryo, and that during egg activation this mRNA shifts to an off-center vegetal position corresponding to the previously proposed teleost cortical rotation. hecate mutants show defects in the alignment and bundling of microtubules at the vegetal cortex, which result in defects in the asymmetric movement of wnt8a mRNA as well as anchoring of the kinesin-associated cargo adaptor Syntabulin. We also find that, although short-range shifts in vegetal signals are affected in hecate mutant embryos, these mutants exhibit normal long-range, animally directed translocation of cortically injected dorsal beads that occurs in lateral regions of the yolk cortex. Furthermore, we show that such animally-directed movement along the lateral cortex is not restricted to a single arc corresponding to the prospective dorsal region, but occur in multiple meridional arcs even in opposite regions of the embryo. Together, our results reveal a role for Grip2a function in the reorganization and bundling of microtubules at the vegetal cortex to mediate a symmetry-breaking short-range shift corresponding to the teleost cortical rotation. The slight asymmetry achieved by this directed process is subsequently amplified by a general cortical animally-directed transport mechanism that is neither dependent on hecate function nor restricted to the prospective dorsal axis. One of the earliest and most crucial events in animal development is the establishment of the embryonic dorsal axis. In amphibians and fish, this event depends on the transport of so-called “dorsal determinants” from one region of the egg, at the pole opposite from the site where the oocyte nucleus lies, towards the site of axis induction. There, the dorsal determinant activates the Wnt signaling pathway, which in turn triggers dorsal gene expression. Dorsal determinant transport is mediated by the reorganization of a cellular network composed of microtubules. We determine that hecate, a zebrafish gene active during egg formation that is essential for embryonic axis induction, is required for an early step in this microtubule reorganization. We find that hecate corresponds to glutamate receptor interacting protein 2a, which participates in other animal systems in Wnt-based pathways. We also show that the microtubule reorganization dependent on hecate results in a subtle symmetry-breaking event that subsequently becomes amplified by a more general transport process independent of hecate function. Our data reveal new links between glutamate receptor interacting protein 2a, Wnt signaling and axis induction, and highlights basic mechanisms by which small changes early in development translate into global changes in the embryo.
Collapse
Affiliation(s)
- Xiaoyan Ge
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Danielle Grotjahn
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Elaine Welch
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Jamie Lyman-Gingerich
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Christiana Holguin
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Eva Dimitrova
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Elliot W. Abrams
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tripti Gupta
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Taijiro Yabe
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Anna Adler
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
13
|
Johnson AN, Mokalled MH, Valera JM, Poss KD, Olson EN. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. Development 2013; 140:3645-56. [PMID: 23942517 DOI: 10.1242/dev.095596] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Striated muscle development requires the coordinated expression of genes involved in sarcomere formation and contractility, as well as genes that determine muscle morphology. However, relatively little is known about the molecular mechanisms that control the early stages of muscle morphogenesis. To explore this facet of myogenesis, we performed a genetic screen for regulators of somatic muscle morphology in Drosophila, and identified the putative RNA-binding protein (RBP) Hoi Polloi (Hoip). Hoip is expressed in striated muscle precursors within the muscle lineage and controls two genetically separable events: myotube elongation and sarcomeric protein expression. Myotubes fail to elongate in hoip mutant embryos, even though the known regulators of somatic muscle elongation, target recognition and muscle attachment are expressed normally. In addition, a majority of sarcomeric proteins, including Myosin Heavy Chain (MHC) and Tropomyosin, require Hoip for their expression. A transgenic MHC construct that contains the endogenous MHC promoter and a spliced open reading frame rescues MHC protein expression in hoip embryos, demonstrating the involvement of Hoip in pre-mRNA splicing, but not in transcription, of muscle structural genes. In addition, the human Hoip ortholog NHP2L1 rescues muscle defects in hoip embryos, and knockdown of endogenous nhp2l1 in zebrafish disrupts skeletal muscle development. We conclude that Hoip is a conserved, post-transcriptional regulator of muscle morphogenesis and structural gene expression.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390-9148, USA.
| | | | | | | | | |
Collapse
|
14
|
Liu ZC, Odell N, Geisbrecht ER. Drosophila importin-7 functions upstream of the Elmo signaling module to mediate the formation and stability of muscle attachments. J Cell Sci 2013; 126:5210-23. [PMID: 24046451 DOI: 10.1242/jcs.132241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of stable muscle attachments is essential for coordinated body movement. Studies in Drosophila have pioneered a molecular understanding of the morphological events in the conserved process of muscle attachment formation, including myofiber migration, muscle-tendon signaling, and stable junctional adhesion between muscle cells and their corresponding target insertion sites. In both Drosophila and vertebrate models, integrin complexes play a key role in the biogenesis and stability of muscle attachments through the interactions of integrins with extracellular matrix (ECM) ligands. We show that Drosophila importin-7 (Dim7) is an upstream regulator of the conserved Elmo-Mbc→Rac signaling pathway in the formation of embryonic muscle attachment sites (MASs). Dim7 is encoded by the moleskin (msk) locus and was identified as an Elmo-interacting protein. Both Dim7 and Elmo localize to the ends of myofibers coincident with the timing of muscle-tendon attachment in late myogenesis. Phenotypic analysis of elmo mutants reveal muscle attachment defects similar to those previously described for integrin mutants. Furthermore, Elmo and Dim7 interact both biochemically and genetically in the developing musculature. The muscle detachment phenotype resulting from mutations in the msk locus can be rescued by components in the Elmo signaling pathway, including the Elmo-Mbc complex, an activated Elmo variant, or a constitutively active form of Rac. In larval muscles, the localization of Dim7 and activated Elmo to the sites of muscle attachment is attenuated upon RNAi knockdown of integrin heterodimer complex components. Our results show that integrins function as upstream signals to mediate Dim7-Elmo enrichment to the MASs.
Collapse
Affiliation(s)
- Ze Cindy Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
15
|
Thomas GM, Hayashi T. Smarter neuronal signaling complexes from existing components: How regulatory modifications were acquired during animal evolution. Bioessays 2013; 35:929-39. [DOI: 10.1002/bies.201300076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gareth M. Thomas
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology; Temple University Medical School; Philadelphia PA USA
| | - Takashi Hayashi
- Department of Molecular Neurobiology and Pharmacology; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
16
|
Microarray comparison of anterior and posterior Drosophila wing imaginal disc cells identifies novel wing genes. G3-GENES GENOMES GENETICS 2013; 3:1353-62. [PMID: 23749451 PMCID: PMC3737175 DOI: 10.1534/g3.113.006569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Signaling between cells in the anterior (A) and posterior (P) compartments directs Drosophila wing disc development and is dependent on expression of the homeodomain transcription factor Engrailed (En) in P cells. Downstream of en, posteriorly expressed Hedgehog (Hh) protein signals across the A/P border to establish a developmental organizer that directs pattern formation and growth throughout the wing primordium. Here we extend investigations of the processes downstream of en by using expression array analysis to compare A and P cells. A total of 102 candidate genes were identified that express differentially in the A and P compartments; four were characterized: Stubble (Sb) expression is restricted to A cells due to repression by en. CG15905, CG16884; CG10200/hase und igel (hui) are expressed in A cells downstream of Hh signaling; and RNA interference for hui, Stubble, and CG16884 revealed that each is essential to wing development.
Collapse
|
17
|
The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev 2012; 26:2222-35. [PMID: 23028146 DOI: 10.1101/gad.193136.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila transmembrane semaphorin-1a (Sema-1a) is a repulsive guidance cue that uses the Plexin A (PlexA) receptor during neural development. Sema-1a is required in axons to facilitate motor axon defasciculation at guidance choice points. We found that mutations in the trol gene strongly suppress Sema-1a-mediated repulsive axon guidance. trol encodes the phylogenetically conserved secreted heparan sulfate proteoglycan (HSPG) perlecan, a component of the extracellular matrix. Motor axon guidance defects in perlecan mutants resemble those observed in Sema-1a- and PlexA-null mutant embryos, and perlecan mutants genetically interact with PlexA and Sema-1a. Perlecan protein is found in both the CNS and the periphery, with higher expression levels in close proximity to motor axon trajectories and pathway choice points. Restoring perlecan to mutant motor neurons rescues perlecan axon guidance defects. Perlecan augments the reduction in phospho-focal adhesion kinase (phospho-FAK) levels that result from treating insect cells in vitro with Sema-1a, and genetic interactions among integrin, Sema-1a, and FAK in vivo support an antagonistic relationship between Sema-1a and integrin signaling. Therefore, perlecan is required for Sema-1a-PlexA-mediated repulsive guidance, revealing roles for extracellular matrix proteoglycans in modulating transmembrane guidance cue signaling during neural development.
Collapse
|
18
|
Liu ZC, Geisbrecht ER. "Importin" signaling roles for import proteins: the function of Drosophila importin-7 (DIM-7) in muscle-tendon signaling. Cell Adh Migr 2012; 6:4-12. [PMID: 22647935 DOI: 10.4161/cam.19774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of a mature myotendinous junction (MTJ) between a muscle and its site of attachment is a highly regulated process that involves myofiber migration, cell-cell signaling, and culminates with the stable adhesion between the adjacent muscle-tendon cells. Improper establishment or maintenance of muscle-tendon attachment sites results in a decrease in force generation during muscle contraction and progressive muscular dystrophies in vertebrate models. Many studies have demonstrated the important role of the integrins and integrin-associated proteins in the formation and maintenance of the MTJ. We recently demonstrated that moleskin (msk), the gene that encodes for Drosophila importin-7 (DIM-7), is required for the proper formation of muscle-tendon adhesion sites in the developing embryo. Further studies demonstrated an enrichment of DIM-7 to the ends of muscles where the muscles attach to their target tendon cells. Genetic analysis supports a model whereby msk is required in the muscle and signals via the secreted epidermal growth factor receptor (Egfr) ligand Vein to regulate tendon cell maturation. These data demonstrate a novel role for the canonical nuclear import protein DIM-7 in establishment of the MTJ.
Collapse
Affiliation(s)
- Ze Cindy Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO, USA
| | | |
Collapse
|
19
|
Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, Anholt RRH. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster. PLoS One 2012; 7:e34745. [PMID: 22496853 PMCID: PMC3319608 DOI: 10.1371/journal.pone.0034745] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/08/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. METHODS AND FINDINGS We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. CONCLUSIONS We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.
Collapse
Affiliation(s)
- Allison L Weber
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.
| | | | | | | | | | | |
Collapse
|
20
|
Enriquez J, de Taffin M, Crozatier M, Vincent A, Dubois L. Combinatorial coding of Drosophila muscle shape by Collier and Nautilus. Dev Biol 2011; 363:27-39. [PMID: 22200594 DOI: 10.1016/j.ydbio.2011.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/28/2022]
Abstract
The diversity of Drosophila muscles correlates with the expression of combinations of identity transcription factors (iTFs) in muscle progenitors. Here, we address the question of when and how a combinatorial code is translated into muscle specific properties, by studying the roles of the Collier and Nautilus iTFs that are expressed in partly overlapping subsets of muscle progenitors. We show that the three dorso-lateral (DL) progenitors which express Nautilus and Collier are specified in a fixed temporal sequence and that each expresses additionally other, distinct iTFs. Removal of Collier leads to changes in expression of some of these iTFs and mis-orientation of several DL muscles, including the dorsal acute DA3 muscle which adopts a DA2 morphology. Detailed analysis of this transformation revealed the existence of two steps in the attachment of elongating muscles to specific tendon cells: transient attachment to alternate tendon cells, followed by a resolution step selecting the final sites. The multiple cases of triangular-shaped muscles observed in col mutant embryos indicate that transient binding of elongating muscle to exploratory sites could be a general feature of the developing musculature. In nau mutants, the DA3 muscle randomly adopts the attachment sites of the DA3 or DO5 muscles that derive from the same progenitor, resulting in a DA3, DO5-like or bifid DA3-DO5 orientation. In addition, nau mutant embryos display thinner muscle fibres. Together, our data show that the sequence of expression and combinatorial activities of Col and Nau control the pattern and morphology of DL muscles.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Urbano JM, Domínguez-Giménez P, Estrada B, Martín-Bermudo MD. PS integrins and laminins: key regulators of cell migration during Drosophila embryogenesis. PLoS One 2011; 6:e23893. [PMID: 21949686 PMCID: PMC3174947 DOI: 10.1371/journal.pone.0023893] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/27/2011] [Indexed: 01/16/2023] Open
Abstract
During embryonic development, there are numerous cases where organ or tissue formation depends upon the migration of primordial cells. In the Drosophila embryo, the visceral mesoderm (vm) acts as a substrate for the migration of several cell populations of epithelial origin, including the endoderm, the trachea and the salivary glands. These migratory processes require both integrins and laminins. The current model is that αPS1βPS (PS1) and/or αPS3βPS (PS3) integrins are required in migrating cells, whereas αPS2βPS (PS2) integrin is required in the vm, where it performs an as yet unidentified function. Here, we show that PS1 integrins are also required for the migration over the vm of cells of mesodermal origin, the caudal visceral mesoderm (CVM). These results support a model in which PS1 might have evolved to acquire the migratory function of integrins, irrespective of the origin of the tissue. This integrin function is highly specific and its specificity resides mainly in the extracellular domain. In addition, we have identified the Laminin α1,2 trimer, as the key extracellular matrix (ECM) component regulating CVM migration. Furthermore, we show that, as it is the case in vertebrates, integrins, and specifically PS2, contributes to CVM movement by participating in the correct assembly of the ECM that serves as tracks for migration.
Collapse
Affiliation(s)
- Jose M. Urbano
- Centro Andaluz de Biología del Desarrollo, (CSIC)-Universidad Pablo de Olavide, Sevilla, Spain
| | - Paloma Domínguez-Giménez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Estrada
- Centro Andaluz de Biología del Desarrollo, (CSIC)-Universidad Pablo de Olavide, Sevilla, Spain
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, (CSIC)-Universidad Pablo de Olavide, Sevilla, Spain
- * E-mail:
| |
Collapse
|
22
|
Moleskin is essential for the formation of the myotendinous junction in Drosophila. Dev Biol 2011; 359:176-89. [PMID: 21925492 DOI: 10.1016/j.ydbio.2011.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/07/2011] [Accepted: 08/02/2011] [Indexed: 02/04/2023]
Abstract
It is the precise connectivity between skeletal muscles and their corresponding tendon cells to form a functional myotendinous junction (MTJ) that allows for the force generation required for muscle contraction and organismal movement. The Drosophila MTJ is composed of secreted extracellular matrix (ECM) proteins deposited between integrin-mediated hemi-adherens junctions on the surface of muscle and tendon cells. In this paper, we have identified a novel, cytoplasmic role for the canonical nuclear import protein Moleskin (Msk) in Drosophila embryonic somatic muscle attachment. Msk protein is enriched at muscle attachment sites in late embryogenesis and msk mutant embryos exhibit a failure in muscle-tendon cell attachment. Although the muscle-tendon attachment sites are reduced in size, components of the integrin complexes and ECM proteins are properly localized in msk mutant embryos. However, msk mutants fail to localize phosphorylated focal adhesion kinase (pFAK) to the sites of muscle-tendon cell junctions. In addition, the tendon cell specific proteins Stripe (Sr) and activated mitogen-activated protein kinase (MAPK) are reduced in msk mutant embryos. Our rescue experiments demonstrate that Msk is required in the muscle cell, but not in the tendon cells. Moreover, muscle attachment defects due to loss of Msk are rescued by an activated form of MAPK or the secreted epidermal growth factor receptor (Egfr) ligand Vein. Taken together, these findings provide strong evidence that Msk signals non-autonomously through the Vein-Egfr signaling pathway for late tendon cell late differentiation and/or maintenance.
Collapse
|
23
|
Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T, Kerr R, Luo L, Zlatic M, Kolodkin AL. A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 2011; 70:281-98. [PMID: 21521614 DOI: 10.1016/j.neuron.2011.02.050] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2011] [Indexed: 01/19/2023]
Abstract
Longitudinal axon fascicles within the Drosophila embryonic CNS provide connections between body segments and are required for coordinated neural signaling along the anterior-posterior axis. We show here that establishment of select CNS longitudinal tracts and formation of precise mechanosensory afferent innervation to the same CNS region are coordinately regulated by the secreted semaphorins Sema-2a and Sema-2b. Both Sema-2a and Sema-2b utilize the same neuronal receptor, plexin B (PlexB), but serve distinct guidance functions. Localized Sema-2b attraction promotes the initial assembly of a subset of CNS longitudinal projections and subsequent targeting of chordotonal sensory afferent axons to these same longitudinal connectives, whereas broader Sema-2a repulsion serves to prevent aberrant innervation. In the absence of Sema-2b or PlexB, chordotonal afferent connectivity within the CNS is severely disrupted, resulting in specific larval behavioral deficits. These results reveal that distinct semaphorin-mediated guidance functions converge at PlexB and are critical for functional neural circuit assembly.
Collapse
Affiliation(s)
- Zhuhao Wu
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schejter ED, Baylies MK. Born to run: creating the muscle fiber. Curr Opin Cell Biol 2011; 22:566-74. [PMID: 20817426 DOI: 10.1016/j.ceb.2010.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/27/2022]
Abstract
From the muscles that control the blink of your eye to those that allow you to walk, the basic architecture of muscle is the same: muscles consist of bundles of the unit muscle cell, the muscle fiber. The unique morphology of the individual muscle fiber is dictated by the functional demands necessary to generate and withstand the forces of contraction, which in turn leads to movement. Contractile muscle fibers are elongated, syncytial cells, which interact with both the nervous and skeletal systems to govern body motion. In this review, we focus on three key cell-cell and cell-matrix contact processes, that are necessary to create this exquisitely specialized cell: cell fusion, cell elongation, and establishment of a myotendinous junction. We address these processes by highlighting recent findings from the Drosophila model system.
Collapse
Affiliation(s)
- Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
25
|
Tarbashevich K, Dzementsei A, Pieler T. A novel function for KIF13B in germ cell migration. Dev Biol 2011; 349:169-78. [DOI: 10.1016/j.ydbio.2010.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 09/19/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
|
26
|
Ismat A, Schaub C, Reim I, Kirchner K, Schultheis D, Frasch M. HLH54F is required for the specification and migration of longitudinal gut muscle founders from the caudal mesoderm of Drosophila. Development 2010; 137:3107-17. [PMID: 20736287 DOI: 10.1242/dev.046573] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HLH54F, the Drosophila ortholog of the vertebrate basic helix-loop-helix domain-encoding genes capsulin and musculin, is expressed in the founder cells and developing muscle fibers of the longitudinal midgut muscles. These cells descend from the posterior-most portion of the mesoderm, termed the caudal visceral mesoderm (CVM), and migrate onto the trunk visceral mesoderm prior to undergoing myoblast fusion and muscle fiber formation. We show that HLH54F expression in the CVM is regulated by a combination of terminal patterning genes and snail. We generated HLH54F mutations and show that this gene is crucial for the specification, migration and survival of the CVM cells and the longitudinal midgut muscle founders. HLH54F mutant embryos, larvae, and adults lack all longitudinal midgut muscles, which causes defects in gut morphology and integrity. The function of HLH54F as a direct activator of gene expression is exemplified by our analysis of a CVM-specific enhancer from the Dorsocross locus, which requires combined inputs from HLH54F and Biniou in a feed-forward fashion. We conclude that HLH54F is the earliest specific regulator of CVM development and that it plays a pivotal role in all major aspects of development and differentiation of this largely twist-independent population of mesodermal cells.
Collapse
Affiliation(s)
- Afshan Ismat
- Mount Sinai School of Medicine, Department of Molecular, Cell and Developmental Biology (currently Developmental and Regenerative Biology), Box 1020, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 2010; 137:2807-17. [PMID: 20699295 DOI: 10.1242/dev.047498] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.
Collapse
Affiliation(s)
- Ronen Schweitzer
- Shriners Hospital for Children, Research Division, Portland, OR 97239, USA.
| | | | | |
Collapse
|
28
|
Yu W, Charych EI, Serwanski DR, Li RW, Ali R, Bahr BA, De Blas AL. Gephyrin interacts with the glutamate receptor interacting protein 1 isoforms at GABAergic synapses. J Neurochem 2010; 105:2300-14. [PMID: 18315564 DOI: 10.1111/j.1471-4159.2008.05311.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously shown that the glutamate receptor interacting protein 1 (GRIP1) splice forms GRIP1a/b and GRIP1c4-7 are present at the GABAergic post-synaptic complex. Nevertheless, the role that these GRIP1 protein isoforms play at the GABAergic post-synaptic complex is not known. We are now showing that GRIP1c4-7 and GRIP1a/b interact with gephyrin, the main post-synaptic scaffold protein of GABAergic and glycinergic synapses. Gephyrin coprecipitates with GRIP1c4-7 or GRIP1a/b from rat brain extracts and from extracts of human embryonic kidney 293 cells that have been cotransfected with gephyrin and one of the GRIP1 protein isoforms. Moreover, purified gephyrin binds to purified GRIP1c4-7 or GRIP1a/b, indicating that gephyrin directly interacts with the common region of these GRIP1 proteins, which includes PDZ domains 4-7. An engineered deletion construct of GRIP1a/b (GRIP1a4-7), which both contains the aforementioned common region and binds to gephyrin, targets to the post-synaptic GABAergic complex of transfected cultured hippocampal neurons. In these hippocampal cultures, endogenous gephyrin colocalizes with endogenous GRIP1c4-7 and GRIP1a/b in over 90% of the GABAergic synapses. Double-labeling electron microscopy immunogold reveals that in the rat brain GRIP1c4-7 and GRIP1a/b colocalize with gephyrin at the post-synaptic complex of individual synapses. These results indicate that GRIP1c4-7 and GRIP1a/b colocalize and interact with gephyrin at the GABAergic post-synaptic complex and suggest that this interaction plays a role in GABAergic synaptic function.
Collapse
Affiliation(s)
- Wendou Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269-3156, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Deng H, Bell JB, Simmonds AJ. Vestigial is required during late-stage muscle differentiation in Drosophila melanogaster embryos. Mol Biol Cell 2010; 21:3304-16. [PMID: 20685961 PMCID: PMC2947467 DOI: 10.1091/mbc.e10-04-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Drosophila member of the vestigial-like gene family (vestigial) is known primarily as a transcriptional activator that defines cell identity during Drosophila wing differentiation. We show that during embryo development Vestigial also has a role during specification of muscle–muscle attachments in ventral longitudinal muscles. The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.
Collapse
Affiliation(s)
- Hua Deng
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H8, Canada
| | | | | |
Collapse
|
30
|
Guerin CM, Kramer SG. Cytoskeletal remodeling during myotube assembly and guidance: coordinating the actin and microtubule networks. Commun Integr Biol 2010; 2:452-7. [PMID: 19907716 DOI: 10.4161/cib.2.5.9158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022] Open
Abstract
The formation of a multinucleated muscle fiber from individual myoblasts is a complex morphological event that requires dramatic cytoskeletal rearrangements. This multistep process includes myoblast fusion, myotube migration and elongation, myotube target recognition, and finally attachment to form a stable adhesion complex. Many of the studies directed towards understanding the developmental process of muscle morphogenesis at the cellular level have relied on forward genetic screens in model systems such as Drosophila melanogaster for mutations affecting individual stages in myogenesis. Through the analyses of these gene products, proteins that regulate the actin or microtubule cytoskeleton have emerged as important players in each of these steps. We recently demonstrated that RacGAP50C, an essential protein that functions as a cytoskeletal regulator during cell division, also plays an important role in organizing the polarized microtubule network in the elongating myotube. Here we review the current literature regarding Drosophila myogenesis and illustrate several steps of muscle development with respect to the diverse roles that the cytoskeleton plays during this process. Furthermore, we discuss the significance of cytoskeletal coordination during these multiple steps.
Collapse
Affiliation(s)
- Colleen M Guerin
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
31
|
Urbano JM, Torgler CN, Molnar C, Tepass U, López-Varea A, Brown NH, de Celis JF, Martín-Bermudo MD. Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development 2009; 136:4165-76. [PMID: 19906841 DOI: 10.1242/dev.044263] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Laminins are heterotrimeric molecules found in all basement membranes. In mammals, they have been involved in diverse developmental processes, from gastrulation to tissue maintenance. The Drosophila genome encodes two laminin alpha chains, one beta and one Gamma, which form two distinct laminin trimers. So far, only mutations affecting one or other trimer have been analysed. In order to study embryonic development in the complete absence of laminins, we mutated the gene encoding the sole laminin beta chain in Drosophila, LanB1, so that no trimers can be made. We show that LanB1 mutant embryos develop until the end of embryogenesis. Electron microscopy analysis of mutant embryos reveals that the basement membranes are absent and the remaining extracellular material appears disorganised and diffuse. Accordingly, abnormal accumulation of major basement membrane components, such as Collagen IV and Perlecan, is observed in mutant tissues. In addition, we show that elimination of LanB1 prevents the normal morphogenesis of most organs and tissues, including the gut, trachea, muscles and nervous system. In spite of the above structural roles for laminins, our results unravel novel functions in cell adhesion, migration and rearrangement. We propose that while an early function of laminins in gastrulation is not conserved in Drosophila and mammals, their function in basement membrane assembly and organogenesis seems to be maintained throughout evolution.
Collapse
Affiliation(s)
- Jose M Urbano
- Centro Andaluz de Biología de Desarrollo (CABD), Univ. Pablo de Olavide-CSIC, 41013 Sevilla, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Guerin CM, Kramer SG. RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development 2009; 136:1411-21. [PMID: 19297411 DOI: 10.1242/dev.031823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The microtubule (MT) cytoskeleton is reorganized during myogenesis as individual myoblasts fuse into multinucleated myotubes. Although this reorganization has long been observed in cell culture, these findings have not been validated during development, and proteins that regulate this process are largely unknown. We have identified a novel postmitotic function for the cytokinesis proteins RacGAP50C (Tumbleweed) and Pavarotti as essential regulators of MT organization during Drosophila myogenesis. We show that the localization of the MT nucleator gamma-tubulin changes from diffuse cytoplasmic staining in mononucleated myoblasts to discrete cytoplasmic puncta at the nuclear periphery in multinucleated myoblasts, and that this change in localization depends on RacGAP50C. RacGAP50C and gamma-tubulin colocalize at perinuclear sites in myotubes, and in RacGAP50C mutants gamma-tubulin remains dispersed throughout the cytoplasm. Furthermore, we show that the mislocalization of RacGAP50C in pavarotti mutants is sufficient to redistribute gamma-tubulin to the muscle fiber ends. Finally, myotubes in RacGAP50C mutants have MTs with non-uniform polarity, resulting in multiple guidance errors. Taken together, these findings provide strong evidence that the reorganization of the MT network that has been observed in vitro plays an important role in myotube extension and muscle patterning in vivo, and also identify two molecules crucial for this process.
Collapse
Affiliation(s)
- Colleen M Guerin
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
33
|
Bahri SM, Choy JM, Manser E, Lim L, Yang X. The Drosophila homologue of Arf-GAP GIT1, dGIT, is required for proper muscle morphogenesis and guidance during embryogenesis. Dev Biol 2008; 325:15-23. [PMID: 18996366 DOI: 10.1016/j.ydbio.2008.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/29/2008] [Accepted: 09/01/2008] [Indexed: 11/18/2022]
Abstract
GIT1-like proteins are GTPase-activating proteins (GAPs) for Arfs and interact with a variety of signaling molecules to function as integrators of pathways controlling cytoskeletal organization and cell motility. In this report, we describe the characterization of a Drosophila homologue of GIT1, dGIT, and show that it is required for proper muscle morphogenesis and myotube guidance in the fly embryo. The dGIT protein is concentrated at the termini of growing myotubes and localizes to muscle attachment sites in late stage embryos. dgit mutant embryos show muscle patterning defects and aberrant targeting in subsets of their muscles. dgit mutant muscles fail to localize the p21-activated kinase, dPak, to their termini. dPak and dGIT form a complex in the presence of dPIX and dpak mutant embryos show similar muscle morphogenesis and targeting phenotypes to that of dgit. We propose that dGIT and dPak are part of a complex that promotes proper muscle morphogenesis and myotube targeting during embryogenesis.
Collapse
Affiliation(s)
- Sami M Bahri
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore.
| | | | | | | | | |
Collapse
|
34
|
Estrada B, Gisselbrecht SS, Michelson AM. The transmembrane protein Perdido interacts with Grip and integrins to mediate myotube projection and attachment in the Drosophilaembryo. Development 2007; 134:4469-78. [DOI: 10.1242/dev.014027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms underlying muscle guidance and formation of myotendinous junctions are poorly understood both in vertebrates and in Drosophila. We have identified a novel gene that is essential for Drosophila embryonic muscles to form proper projections and stable attachments to epidermal tendon cells. Loss-of-function of this gene - which we named perdido (perd)-results in rounded, unattached muscles. perd is expressed prior to myoblast fusion in a subset of muscle founder cells, and it encodes a conserved single-pass transmembrane cell adhesion protein that contains laminin globular extracellular domains and a small intracellular domain with a C-terminal PDZ-binding consensus sequence. Biochemical experiments revealed that the Perd intracellular domain interacts directly with one of the PDZ domains of the Glutamate receptor interacting protein (Grip), another factor required for formation of proper muscle projections. In addition, Perd is necessary to localize Grip to the plasma membrane of developing myofibers. Using a newly developed, whole-embryo RNA interference assay to analyze genetic interactions, perd was shown to interact not only with Grip but also with multiple edematous wings, which encodes one subunit of the αPS1-βPS integrin expressed in tendon cells. These experiments uncovered a previously unrecognized role for the αPS1-βPS integrin in the formation of muscle projections during early stages of myotendinous junction development. We propose that Perd regulates projection of myotube processes toward and subsequent differentiation of the myotendinous junction by priming formation of a protein complex through its intracellular interaction with Grip and its transient engagement with the tendon cell-expressed laminin-bindingαPS1-βPS integrin.
Collapse
Affiliation(s)
- Beatriz Estrada
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, Carretera de Utrera Km. 1, 41013 Sevilla, Spain
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alan M. Michelson
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- National Heart, Lung and Blood Institute, National Institutes of Health,Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Nguyen HT, Voza F, Ezzeddine N, Frasch M. Drosophila mind bomb2 is required for maintaining muscle integrity and survival. ACTA ACUST UNITED AC 2007; 179:219-27. [PMID: 17954605 PMCID: PMC2064758 DOI: 10.1083/jcb.200708135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report that the Drosophila mind bomb2 (mib2) gene is a novel regulator of muscle development. Unlike its paralogue, mib1, zygotic expression of mib2 is restricted to somatic and visceral muscle progenitors, and their respective differentiated musculatures. We demonstrate that in embryos that lack functional Mib2, muscle detachment is observed beginning in mid stage 15 and progresses rapidly, culminating in catastrophic degeneration and loss of most somatic muscles by stage 17. Notably, the degenerating muscles are positive for apoptosis markers, and inhibition of apoptosis in muscles prevents to a significant degree the muscle defects. Rescue experiments with Mib1 and Neuralized show further that these E3 ubiquitin ligases are not capable of ameliorating the muscle mutant phenotype of mib2. Our data suggest strongly that mib2 is involved in a novel Notch- and integrin-independent pathway that maintains the integrity of fully differentiated muscles and prevents their apoptotic degeneration.
Collapse
Affiliation(s)
- Hanh T Nguyen
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
36
|
Kirilenko P, Weierud FK, Zorn AM, Woodland HR. The efficiency of Xenopus primordial germ cell migration depends on the germplasm mRNA encoding the PDZ domain protein Grip2. Differentiation 2007; 76:392-403. [PMID: 17924960 DOI: 10.1111/j.1432-0436.2007.00229.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microarray analysis of vegetal pole sequences in the egg and early Xenopus laevis embryo identified Unigene Xl.14891 as a vegetally localized RNA. Analysis of the Xenopus tropicalis genome showed this Unigene to be localized near the 3' end of the Grip2 (glutamate receptor interacting protein 2) transcription unit. RACE showed that the Unigene represented the 3' UTR of Grip2 mRNA. Grip2 mRNA is present in the mitochondrial cloud of late pre-vitellogenic oocytes and then in the germplasm through oogenesis and early development until tailbud tadpole stages. Interference with Grip2 mRNA translation using two antisense morpholino oligos (MOs) impairs primordial germ cell (PGC) migration to the germinal ridges. Both MOs also inhibit swimming movements of the tailbud tadpole, known to involve glutamate receptors. We conclude that Grip2 has several functions in the embryo, including enabling efficient PGC migration.
Collapse
Affiliation(s)
- Pavel Kirilenko
- Department of Biological Science, University of Warwick, Coventry CV4 7AL, U.K
| | | | | | | |
Collapse
|
37
|
XGRIP2.1 is encoded by a vegetally localizing, maternal mRNA and functions in germ cell development and anteroposterior PGC positioning in Xenopus laevis. Dev Biol 2007; 311:554-65. [PMID: 17936745 DOI: 10.1016/j.ydbio.2007.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/24/2007] [Accepted: 09/05/2007] [Indexed: 01/23/2023]
Abstract
The Xenopus germ line is derived from a specialized region in the vegetal hemisphere of the oocyte, the germ plasm. Several maternal transcripts harboured in this region have been connected to the process of germ cell specification. We identified and functionally characterized a novel vegetally localizing mRNA encoding a glutamate receptor interacting protein (GRIP) family member in Xenopus, termed XGRIP2.1. XGRIP2.1 is specifically associated with the germ plasm and PGCs throughout Xenopus embryogenesis. Morpholino-mediated knockdown and overexpression of a putative dominant negative XGRIP2.1 protein fragment reduced average PGC numbers and interfered with the proper anteroposterior positioning of PGCs at tailbud stages. Thus, our results suggest that XGRIP2.1 is required for normal PGC development and migration in Xenopus.
Collapse
|
38
|
Schnorrer F, Kalchhauser I, Dickson BJ. The transmembrane protein Kon-tiki couples to Dgrip to mediate myotube targeting in Drosophila. Dev Cell 2007; 12:751-66. [PMID: 17488626 DOI: 10.1016/j.devcel.2007.02.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 12/06/2006] [Accepted: 02/20/2007] [Indexed: 11/29/2022]
Abstract
Directed cell migration and target recognition are critical for the development of both the nervous and muscular systems. Molecular mechanisms that control these processes in the nervous system have been intensively studied, whereas those that act during muscle development are still largely uncharacterized. Here we identify a transmembrane protein, Kon-tiki (Kon), that mediates myotube target recognition in the Drosophila embryo. Kon is expressed in a specific subset of myotubes and is required autonomously for these myotubes to recognize their tendon cell targets and to establish a stable connection. Kon is enriched at myotube tips during targeting and signals through the intracellular adaptor Dgrip in a conserved molecular pathway. Forced overexpression of Kon stimulates muscle motility. We propose that Kon promotes directed myotube migration and transduces a target-derived signal that initiates the formation of a stable connection.
Collapse
Affiliation(s)
- Frank Schnorrer
- Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria.
| | | | | |
Collapse
|
39
|
Kaneshiro K, Miyauchi M, Tanigawa Y, Ikenishi K, Komiya T. The mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) is maternally transcribed, transported through the late pathway and localized to the germ plasm. Biochem Biophys Res Commun 2007; 355:902-6. [PMID: 17320814 DOI: 10.1016/j.bbrc.2007.02.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 02/11/2007] [Indexed: 10/23/2022]
Abstract
Using a large-scale in situ hybridization screening, we found that the mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) was localized to the germ plasm of Xenopus laevis. The mRNA is maternally transcribed in oocytes and, during maturation, transported to the vegetal germ plasm through the late pathway where VegT and Vg1 mRNAs are transported. In the 3'-untranslated region (UTR) of the mRNA, there are clusters of E2 and VM1 localization motifs that were reported to exist in the mRNAs classified as the late pathway group. With in situ hybridization to the sections of embryos, the signal could be detected in the cytoplasm of migrating presumptive primordial germ cells (pPGCs) until stage 35. At stage 40, when the cells cease to migrate and reach the dorsal mesentery, the signal disappeared. A possible role of XGRIP2 in pPGCs of Xenopus will be discussed.
Collapse
Affiliation(s)
- Kazuki Kaneshiro
- Department of Biological Function, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
40
|
Swan LE, Schmidt M, Schwarz T, Ponimaskin E, Prange U, Boeckers T, Thomas U, Sigrist SJ. Complex interaction of Drosophila GRIP PDZ domains and Echinoid during muscle morphogenesis. EMBO J 2006; 25:3640-51. [PMID: 16858411 PMCID: PMC1538559 DOI: 10.1038/sj.emboj.7601216] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 06/05/2006] [Indexed: 12/26/2022] Open
Abstract
Glutamate receptor interacting protein (GRIP) homologues, initially characterized in synaptic glutamate receptor trafficking, consist of seven PDZ domains (PDZDs), whose conserved arrangement is of unknown significance. The Drosophila GRIP homologue (DGrip) is needed for proper guidance of embryonic somatic muscles towards epidermal attachment sites, with both excessive and reduced DGrip activity producing specific phenotypes in separate muscle groups. These phenotypes were utilized to analyze the molecular architecture underlying DGrip signaling function in vivo. Surprisingly, removing PDZDs 1-3 (DGripDelta1-3) or deleting ligand binding in PDZDs 1 or 2 convert DGrip to excessive in vivo activity mediated by ligand binding to PDZD 7. Yeast two-hybrid screening identifies the cell adhesion protein Echinoid's (Ed) type II PDZD-interaction motif as binding PDZDs 1, 2 and 7 of DGrip. ed loss-of-function alleles exhibit muscle defects, enhance defects caused by reduced DGrip activity and suppress the dominant DGripDelta1-3 effect during embryonic muscle formation. We propose that Ed and DGrip form a signaling complex, where competition between N-terminal and the C-terminal PDZDs of DGrip for Ed binding controls signaling function.
Collapse
Affiliation(s)
- Laura E Swan
- European Neuroscience Institute Göttingen, Göttingen, Germany
- Present address: Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA
- These authors contributed equally to this work
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA. Tel.: +1 203 737 4473; Fax: +1 203 737 1762; E-mail:
| | - Manuela Schmidt
- European Neuroscience Institute Göttingen, Göttingen, Germany
- Present address: Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06510, USA
| | - Tobias Schwarz
- European Neuroscience Institute Göttingen, Göttingen, Germany
- Department of Neural and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Evgeni Ponimaskin
- Department of Neural and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Ulrike Prange
- European Neuroscience Institute Göttingen, Göttingen, Germany
| | | | - Ulrich Thomas
- Federal Institute for Neurobiology, Department of Neurochemistry and Molecular Biology, Magdeburg, Germany
| | - Stephan J Sigrist
- European Neuroscience Institute Göttingen, Göttingen, Germany
- Institut für Klinische Neurobiologie und Rudolf-Virchow-Zentrum, Universität Würzburg, Würzburg, Germany
- European Neuroscience Institute, Griesbachstr. 5, 37077 Göttingen, Germany. Tel.: +49 551 391 2350; Fax: +49 551 391 2346; E-mail:
| |
Collapse
|
41
|
Ataman B, Ashley J, Gorczyca D, Gorczyca M, Mathew D, Wichmann C, Sigrist SJ, Budnik V. Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proc Natl Acad Sci U S A 2006; 103:7841-6. [PMID: 16682643 PMCID: PMC1472532 DOI: 10.1073/pnas.0600387103] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Wingless pathway plays an essential role during synapse development. Recent studies at Drosophila glutamatergic synapses suggest that Wingless is secreted by motor neuron terminals and binds to postsynaptic Drosophila Frizzled-2 (DFz2) receptors. DFz2 is, in turn, endocytosed and transported to the muscle perinuclear area, where it is cleaved, and the C-terminal fragment is imported into the nucleus, presumably to regulate transcription during synapse growth. Alterations in this pathway interfere with the formation of new synaptic boutons and lead to aberrant synaptic structures. Here, we show that the 7 PDZ protein dGRIP is necessary for the trafficking of DFz2 to the nucleus. dGRIP is localized to Golgi and trafficking vesicles, and dgrip mutants mimic the synaptic phenotypes observed in wg and dfz2 mutants. DFz2 and dGRIP colocalize in trafficking vesicles, and a severe decrease in dGRIP levels prevents the transport of endocytosed DFz2 receptors to the nucleus. Moreover, coimmunoprecipitation experiments in transfected cells and yeast two-hybrid assays suggest that the C terminus of DFz2 interacts directly with the PDZ domains 4 and 5. These results provide a mechanism by which DFz2 is transported from the postsynaptic membrane to the postsynaptic nucleus during synapse formation and implicate dGRIP as an essential molecule in the transport of this signal.
Collapse
Affiliation(s)
- Bulent Ataman
- *Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - James Ashley
- *Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - David Gorczyca
- *Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Michael Gorczyca
- *Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Dennis Mathew
- *Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324
| | - Carolin Wichmann
- European Neuroscience Institute Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany; and
| | - Stephan J. Sigrist
- European Neuroscience Institute Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany; and
| | - Vivian Budnik
- *Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324
- To whom correspondence should be addressed at:
Department of Neurobiology, Aaron Lazare Medical Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324. E-mail:
| |
Collapse
|
42
|
Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, Kappei D, Ponimaskin E, Heckmann M, Sigrist SJ. Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J Neurosci 2006; 25:3209-18. [PMID: 15788778 PMCID: PMC6725071 DOI: 10.1523/jneurosci.4194-04.2005] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Three ionotropic glutamate receptor subunits, designated GluRIIA, GluRIIB, and GluRIII, have been identified at neuromuscular junctions of Drosophila. Whereas GluRIIA and GluRIIB are redundant for viability, it was shown recently that GluRIII is essential for both the synaptic localization of GluRIIA and GluRIIB and the viability of Drosophila. Here we identify a fourth and a fifth subunit expressed in the neuromuscular system, which we name GluRIID and GluRIIE. Both new subunits we show to be necessary for survival. Moreover, both GluRIID and GluRIIE are required for the synaptic expression of all other glutamate receptor subunits. All five subunits are interdependent for receptor function, synaptic receptor expression, and viability. This indicates that synaptic glutamate receptors incorporate the GluRIII, GluRIID, and GluRIIE subunit together with either GluRIIA or GluRIIB at the Drosophila neuromuscular junction. At this widely used model synapse, the assembly of four different subunits to form an individual glutamate receptor channel may thus be obligatory. This study opens the way for a further characterization of in vivo glutamate receptor assembly and trafficking using the efficient genetics of Drosophila.
Collapse
Affiliation(s)
- Gang Qin
- European Neuroscience Institute Göttingen, Max-Planck-Society, D-37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ataman B, Budnik V, Thomas U. Scaffolding proteins at the Drosophila neuromuscular junction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 75:181-216. [PMID: 17137929 DOI: 10.1016/s0074-7742(06)75009-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bulent Ataman
- Department of Neurobiology, University of Massachusetts, Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
44
|
Staudt N, Molitor A, Somogyi K, Mata J, Curado S, Eulenberg K, Meise M, Siegmund T, Häder T, Hilfiker A, Brönner G, Ephrussi A, Rørth P, Cohen SM, Fellert S, Chung HR, Piepenburg O, Schäfer U, Jäckle H, Vorbrüggen G. Gain-of-function screen for genes that affect Drosophila muscle pattern formation. PLoS Genet 2005; 1:e55. [PMID: 16254604 PMCID: PMC1270011 DOI: 10.1371/journal.pgen.0010055] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/29/2005] [Indexed: 12/01/2022] Open
Abstract
This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation. Muscle pattern formation during embryogenesis requires the activity of a distinct network of genes. In the model organism Drosophila, this process involves the determination of stem-cell-like muscle founder cells, their differentiation, and their attraction to tendon-like epidermal cells, termed apodemes, to which the muscles attach. In order to systematically identify genes involved in these processes, a collection of fruit fly strains was generated that can be used for the ectopic expression of more than 3,700 individual fruit fly genes in a spatiotemporally restricted manner. In order to address muscle pattern formation, the collection was used to express the genes in the developing apodemes and in a series of distinct epidermal cells that serve as migration substrate for developing muscles towards the apodemes. In addition to already known factors, some 60 novel gene activities were found to interfere under these circumstances with the formation of the muscle pattern. In addition to providing a most valuable tool for the Drosophila community of researchers, the results provide a framework for a detailed analysis of the gene network and insight into molecular mechanisms underlying embryonic muscle pattern formation.
Collapse
Affiliation(s)
- Nicole Staudt
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Andreas Molitor
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
- DeveloGen, Göttingen, Germany
| | - Kalman Somogyi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Juan Mata
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Silvia Curado
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pernille Rørth
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephen M Cohen
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sonja Fellert
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Ho-Ryun Chung
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Olaf Piepenburg
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Ulrich Schäfer
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Herbert Jäckle
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
| | - Gerd Vorbrüggen
- Max Planck Institut für biophysikalische Chemie, Göttingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Soustelle L, Jacques C, Altenhein B, Technau GM, Volk T, Giangrande A. Terminal tendon cell differentiation requires the glide/gcm complex. Development 2004; 131:4521-32. [PMID: 15342477 DOI: 10.1242/dev.01290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Locomotion relies on stable attachment of muscle fibres to their target sites, a process that allows for muscle contraction to generate movement. Here, we show that glide/gcm and glide2/gcm2, the fly glial cell determinants, are expressed in a subpopulation of embryonic tendon cells and required for their terminal differentiation. By using loss-of-function approaches, we show that in the absence of both genes, muscle attachment to tendon cells is altered, even though the molecular cascade induced by stripe, the tendon cell determinant, is normal. Moreover, we show that glide/gcm activates a new tendon cell gene independently of stripe. Finally, we show that segment polarity genes control the epidermal expression of glide/gcm and determine, within the segment,whether it induces glial or tendon cell-specific markers. Thus, under the control of positional cues, glide/gcm triggers a new molecular pathway involved in terminal tendon cell differentiation, which allows the establishment of functional muscle attachment sites and locomotion.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The complex muscle patterns of higher organisms arise as migrating myoblasts are guided toward and connect with specific attachment sites. We review here the current understanding of myotube migration, focusing on its dynamic nature and the few molecular cues that have been identified to date. Much of this knowledge comes from studies in Drosophila, where powerful methods for in vivo imaging and genetic manipulation can be used to tackle this important but largely unsolved problem in developmental biology.
Collapse
Affiliation(s)
- Frank Schnorrer
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Dr. Bohr-Gasse 3-5, 1030 Vienna, Austria.
| | | |
Collapse
|