1
|
Meng X, Chen X, Pan B, Jiang H, Si N. A novel mutation in the BTB domain impairs transcriptional repression function of KCTD1 leading to syndromic microtia. Gene 2025; 933:149012. [PMID: 39424163 DOI: 10.1016/j.gene.2024.149012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Microtia is a common birth defect affecting the external ears and encompasses a spectrum of congenital anomalies of the auricle. For some of the microtia-associated syndromes, the additional abnormalities are not easily observed or with variable expressivity. Identifying pathogenic mutations through genetic testing is of great help in recognizing these highly heterogeneous syndromes in clinical practice. We reported a novel de novo KCTD1 mutation in a Chinese patient with congenital microtia. It expands the mutational spectrum of KCTD1 and provide an additional scalp-ear-nipple patient with typical and atypical clinical presentations. The identified mutation in the BTB domain impairs the suppressive activity of the AP-2 transcription factor family and may impact on maintaining the finely tuned activity of WNT pathway, which directs stem cell development in ectoderm patterning and craniofacial development. Due to the variable expressive clinical phenotypes of syndromic microtia, genetic molecular testing could be of great help in the definite diagnosis.
Collapse
Affiliation(s)
- Xiaolu Meng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| | - Xinyuan Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| | - Nuo Si
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100043, China.
| |
Collapse
|
2
|
Yuan BT, Li MN, Zhu LP, Xu ML, Gu J, Gao YJ, Ma LJ. TFAP2A is involved in neuropathic pain by regulating Grin1 expression in glial cells of the dorsal root ganglion. Biochem Pharmacol 2024; 227:116427. [PMID: 39009095 DOI: 10.1016/j.bcp.2024.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Neuropathic pain is a highly prevalent and refractory condition, yet its mechanism remains poorly understood. While NR1, the essential subunit of NMDA receptors, has long been recognized for its pivotal role in nociceptive transmission, its involvement in presynaptic stimulation is incompletely elucidated. Transcription factors can regulate the expression of both pro-nociceptive and analgesic factors. Our study shows that transcription factor TFAP2A was up-regulated in the dorsal root ganglion (DRG) neurons, satellite glial cells (SGCs), and Schwann cells following spinal nerve ligation (SNL). Intrathecal injection of siRNA targeting Tfap2a immediately or 7 days after SNL effectively alleviated SNL-induced pain hypersensitivity and reduced Tfap2a expression levels. Bioinformatics analysis revealed that TFAP2A may regulate the expression of the Grin1 gene, which encodes NR1. Dual-luciferase reporter assays confirmed TFAP2A's positive regulation of Grin1 expression. Notably, both Tfap2a and Grin1 were expressed in the primary SGCs and upregulated by lipopolysaccharides. The expression of Grin1 was also down-regulated in the DRG following Tfap2a knockdown. Furthermore, intrathecal injection of siRNA targeting Grin1 immediately or 7 days post-SNL effectively alleviated SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, intrathecal Tfap2a siRNA alleviated SNL-induced neuronal hypersensitivity, and incubation of primary SGCs with Tfap2a siRNA decreased NMDA-induced upregulation of proinflammatory cytokines. Collectively, our study reveals the role of TFAP2A-Grin1 in regulating neuropathic pain in peripheral glia, offering a new strategy for the development of novel analgesics.
Collapse
Affiliation(s)
- Bao-Tong Yuan
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Lin-Peng Zhu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Meng-Lin Xu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Jun Gu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| | - Ling-Jie Ma
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
3
|
Lin PH, Hsieh CH, Yu KJ, Shao IH, Chuang CK, Hsu T, Weng WH, Pang ST. AP-2α gene deregulation is associated with renal cell carcinoma patient survival. BMC Cancer 2024; 24:966. [PMID: 39112969 PMCID: PMC11304775 DOI: 10.1186/s12885-024-12526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 06/17/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC), one of the most fatal urologic tumors, accounts for approximately 3% of all adult cancers and exhibits a high metastatic index at diagnosis and a high rate of relapse. Radical or partial nephrectomy is a curative option for nonmetastatic RCCs. Targeted therapy has been shown to improve the survival of patients with metastatic RCCs. However, the underlying cellular and molecular events associated with RCC pathogenesis are not well known. METHODS To investigate the clinical role of the transcription factor activator protein (AP)-2α in RCC, methylated CpG island recovery assays and microarray analysis were employed. COBRA and RT‒qPCR assays were performed to assess AP-2α expression in RCC. RESULTS A negative correlation was noted between AP-2α mRNA expression levels and methylation status. Multivariate analyses showed that AP-2α mRNA was a major risk factor not only for overall and disease-free survival in RCC but also for disease-free survival in clear cell RCC. CONCLUSIONS Our results indicated that AP-2α expression was deregulated in RCC and associated with overall patient survival and disease-free survival. Such findings suggest that AP-2α might play an important role in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Po-Hung Lin
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chin-Hsuan Hsieh
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
| | - Kai-Jie Yu
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - I-Hung Shao
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Todd Hsu
- Institute of Bioscience and Biotechnology, Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Wen-Hui Weng
- Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, LinKou Branch. No. 5, Fushing St, Taoyuan, 333, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
4
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
5
|
Zhang H, Raymundo JR, Daly KE, Zhu W, Senapati B, Zhong H, Ahilan AR, Marneros AG. AP-2α/AP-2β Transcription Factors Are Key Regulators of Epidermal Homeostasis. J Invest Dermatol 2024; 144:1505-1521.e12. [PMID: 38237728 PMCID: PMC11193656 DOI: 10.1016/j.jid.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
AP-2 transcription factors regulate ectodermal development, but their roles in epidermal homeostasis in adult skin are unknown. We find that AP-2α is the predominant AP-2 family member in adult epidermis, followed by AP-2β. Through inactivation of AP-2α, AP-2β, or both in keratinocytes, we assessed the effects of a gradient of epidermal AP-2 activity on skin function. We find that (i) loss of AP-2β in keratinocytes is compensated for by AP-2α, (ii) loss of AP-2α impairs terminal keratinocyte differentiation and hair morphogenesis, and (iii) the combined loss of AP-2α/AP-2β results in more severe skin and hair abnormalities. Keratinocyte differentiation defects precede progressive neutrophilic skin inflammation. Inducible inactivation of AP-2α/AP-2β in the adult phenocopies these manifestations. Transcriptomic analyses of epidermis lacking AP-2α or AP-2α/AP-2β in keratinocytes demonstrate a terminal keratinocyte differentiation defect with upregulation of alarmin keratins and of several immune pathway regulators. Moreover, our analyses suggest a key role of reduced AP-2α-dependent gene expression of CXCL14 and the keratin 15 gene K15 as an early pathogenic event toward the manifestation of skin inflammation. Thus, AP-2α and AP-2β are critical regulators of epidermal homeostasis in adult skin.
Collapse
Affiliation(s)
- Hui Zhang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jackelyn R Raymundo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kathleen E Daly
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Wenjuan Zhu
- Stanford Cardiovascular Institute, Stanford Univeristy, Stanford, California, USA
| | - Bill Senapati
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hanyu Zhong
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Arjun R Ahilan
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
6
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early BMP-driven transcriptional cascade during human amnion specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.19.545574. [PMID: 38496419 PMCID: PMC10942271 DOI: 10.1101/2023.06.19.545574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna C. Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linnea E. Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226 USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Zhang H, Raymundo J, Daly KE, Zhu W, Senapati B, Marneros AG. AP-2α/AP-2β transcription factors are key regulators of epidermal homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569763. [PMID: 38105942 PMCID: PMC10723278 DOI: 10.1101/2023.12.03.569763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
AP-2 transcription factors regulate ectodermal development but their roles for epidermal homeostasis in the adult skin are unknown. We find that AP-2α is the predominant AP-2 family member in adult epidermis, followed by AP-2β. Through inactivation of AP-2α, AP-2β, or both in keratinocytes we assessed the effects of a gradient of epidermal AP-2 activity on skin function. We find that (1) loss of AP-2β in keratinocytes is compensated for by AP-2α, (2) loss of AP-2α impairs terminal keratinocyte differentiation and hair morphogenesis, and (3) the combined loss of AP-2α/AP-2β results in more severe skin and hair abnormalities. Keratinocyte differentiation defects precede a progressive neutrophilic skin inflammation. Inducible inactivation of AP-2α/AP-2β in the adult phenocopies these manifestations. Transcriptomic analyses of epidermis lacking AP-2α or AP-2α/AP-2β in keratinocytes demonstrate a terminal keratinocyte differentiation defect with upregulation of alarmin keratins and of several immune pathway regulators. Moreover, our analyses suggest a key role of loss of AP-2α-dependent gene expression of CXCL14 and KRT15 as an early pathogenic event towards the manifestation of skin inflammation. Thus, AP-2α/AP-2β are critical regulators of epidermal homeostasis in the adult skin.
Collapse
Affiliation(s)
- Hui Zhang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jackelyn Raymundo
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kathleen E. Daly
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Wenjuan Zhu
- Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Bill Senapati
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alexander G. Marneros
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
8
|
Liu K, Xiao Y, Gan L, Li W, Zhang J, Min J. Structural basis for specific DNA sequence motif recognition by the TFAP2 transcription factors. Nucleic Acids Res 2023; 51:8270-8282. [PMID: 37409559 PMCID: PMC10450164 DOI: 10.1093/nar/gkad583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
The TFAP2 family regulates gene expression during differentiation, development, and organogenesis, and includes five homologs in humans. They all possess a highly conserved DNA binding domain (DBD) followed by a helix-span-helix (HSH) domain. The DBD-HSH tandem domain specifically binds to a GCC(N3)GGC consensus sequence, but the precise recognition mechanisms remain unclear. Here, we found that TFAP2 preferred binding to the GCC(N3)GGC sequence, and the pseudo-palindromic GCC and GGC motifs and the length of the central spacer between the two motifs determined their binding specificity. Structural studies revealed that the two flat amphipathic α-helical HSH domains of TFAP2A stacked with each other to form a dimer via hydrophobic interactions, while the stabilized loops from both DBD domains inserted into two neighboring major grooves of the DNA duplex to form base-specific interactions. This specific DNA binding mechanism controlled the length of the central spacer and determined the DNA sequence specificity of TFAP2. Mutations of the TFAP2 proteins are implicated in various diseases. We illustrated that reduction or disruption of the DNA binding ability of the TFAP2 proteins is the primary cause of TFAP2 mutation-associated diseases. Thus, our findings also offer valuable insights into the pathogenesis of disease-associated mutations in TFAP2 proteins.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yuqing Xiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Linyao Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Weifang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jin Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
9
|
Overexpression of Tfap2a in Mouse Oocytes Impaired Spindle and Chromosome Organization. Int J Mol Sci 2022; 23:ijms232214376. [PMID: 36430853 PMCID: PMC9699359 DOI: 10.3390/ijms232214376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transcription factor AP-2-alpha (Tfap2a) is an important sequence-specific DNA-binding protein that can regulate the transcription of multiple genes by collaborating with inducible viral and cellular enhancer elements. In this experiment, the expression, localization, and functions of Tfap2a were investigated in mouse oocytes during maturation. Overexpression via microinjection of Myc-Tfap2a mRNA into the ooplasm, immunofluorescence, and immunoblotting were used to study the role of Tfap2a in mouse oocyte meiosis. According to our results, Tfap2a plays a vital role in mouse oocyte maturation. Levels of Tfap2a in GV oocytes of mice suffering from type 2 diabetes increased considerably. Tfap2a was distributed in both the ooplasm and nucleoplasm, and its level gradually increased as meiosis resumption progressed. The overexpression of Tfap2a loosened the chromatin, accelerated germinal vesicle breakdown (GVBD), and blocked the first polar body extrusion 14 h after maturation in vitro. The width of the metaphase plate at metaphase I stage increased, and the spindle and chromosome organization at metaphase II stage were disrupted in the oocytes by overexpressed Tfap2a. Furthermore, Tfap2a overexpression dramatically boosted the expression of p300 in mouse GV oocytes. Additionally, the levels of pan histone lysine acetylation (Pan Kac), histone H4 lysine 12 acetylation (H4K12ac), and H4 lysine 16 acetylation (H4K16ac), as well as pan histone lysine lactylation (Pan Kla), histone H3 lysine18 lactylation (H3K18la), and H4 lysine12 lactylation (H4K12la), were all increased in GV oocytes after Tfap2a overexpression. Collectively, Tfap2a overexpression upregulated p300, increased the levels of histone acetylation and lactylation, impeded spindle assembly and chromosome alignment, and ultimately hindered mouse oocyte meiosis.
Collapse
|
10
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
11
|
Ullah R, Ali G, Baseer A, Irum Khan S, Akram M, Khan S, Ahmad N, Farooq U, Kanwal Nawaz N, Shaheen S, Kumari G, Ullah I. Tannic acid inhibits lipopolysaccharide-induced cognitive impairment in adult mice by targeting multiple pathological features. Int Immunopharmacol 2022; 110:108970. [DOI: 10.1016/j.intimp.2022.108970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
|
12
|
Liu H, He J, Bagheri-Yarmand R, Li Z, Liu R, Wang Z, Bach DH, Huang YH, Lin P, Guise TA, Gagel RF, Yang J. Osteocyte CIITA aggravates osteolytic bone lesions in myeloma. Nat Commun 2022; 13:3684. [PMID: 35760800 PMCID: PMC9237076 DOI: 10.1038/s41467-022-31356-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Osteolytic destruction is a hallmark of multiple myeloma, resulting from activation of osteoclast-mediated bone resorption and reduction of osteoblast-mediated bone formation. However, the molecular mechanisms underlying the differentiation and activity of osteoclasts and osteoblasts within a myelomatous microenvironment remain unclear. Here, we demonstrate that the osteocyte-expressed major histocompatibility complex class II transactivator (CIITA) contributes to myeloma-induced bone lesions. CIITA upregulates the secretion of osteolytic cytokines from osteocytes through acetylation at histone 3 lysine 14 in the promoter of TNFSF11 (encoding RANKL) and SOST (encoding sclerostin), leading to enhanced osteoclastogenesis and decreased osteoblastogenesis. In turn, myeloma cell-secreted 2-deoxy-D-ribose, the product of thymidine catalyzed by the function of thymidine phosphorylase, upregulates CIITA expression in osteocytes through the STAT1/IRF1 signaling pathway. Our work thus broadens the understanding of myeloma-induced osteolysis and indicates a potential strategy for disrupting tumor-osteocyte interaction to prevent or treat patients with myeloma bone disease.
Collapse
Affiliation(s)
- Huan Liu
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.,Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Jin He
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.,Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rozita Bagheri-Yarmand
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zongwei Li
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.,Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rui Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiming Wang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.,Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duc-Hiep Bach
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yung-Hsing Huang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Pei Lin
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert F Gagel
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jing Yang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA. .,Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Van Otterloo E, Milanda I, Pike H, Thompson JA, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development. eLife 2022; 11:e70511. [PMID: 35333176 PMCID: PMC9038197 DOI: 10.7554/elife.70511] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The facial surface ectoderm is essential for normal development of the underlying cranial neural crest cell populations, providing signals that direct appropriate growth, patterning, and morphogenesis. Despite the importance of the ectoderm as a signaling center, the molecular cues and genetic programs implemented within this tissue are understudied. Here, we show that removal of two members of the AP-2 transcription factor family, AP-2α and AP-2ß, within the early embryonic ectoderm of the mouse leads to major alterations in the craniofacial complex. Significantly, there are clefts in both the upper face and mandible, accompanied by fusion of the upper and lower jaws in the hinge region. Comparison of ATAC-seq and RNA-seq analyses between controls and mutants revealed significant changes in chromatin accessibility and gene expression centered on multiple AP-2 binding motifs associated with enhancer elements within these ectodermal lineages. In particular, loss of these AP-2 proteins affects both skin differentiation as well as multiple signaling pathways, most notably the WNT pathway. We also determined that the mutant clefting phenotypes that correlated with reduced WNT signaling could be rescued by Wnt1 ligand overexpression in the ectoderm. Collectively, these findings highlight a conserved ancestral function for AP-2 transcription factors in ectodermal development and signaling, and provide a framework from which to understand the gene regulatory network operating within this tissue that directs vertebrate craniofacial development.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Periodontics, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Isaac Milanda
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Hamish Pike
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jamie A Thompson
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of IowaIowa CityUnited States
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital ColoradoAuroraUnited States
| |
Collapse
|
14
|
Wu M, Harafuji N, O'Connor AK, Caldovic L, Guay-Woodford LM. Transcription factor Ap2b regulates the mouse autosomal recessive polycystic kidney disease genes, Pkhd1 and Cys1. Front Mol Biosci 2022; 9:946344. [PMID: 36710876 PMCID: PMC9877354 DOI: 10.3389/fmolb.2022.946344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Transcription factor Ap2b (TFAP2B), an AP-2 family transcription factor, binds to the palindromic consensus DNA sequence, 5'-GCCN3-5GGC-3'. Mice lacking functional Tfap2b gene die in the perinatal or neonatal period with cystic dilatation of the kidney distal tubules and collecting ducts, a phenotype resembling autosomal recessive polycystic kidney disease (ARPKD). Human ARPKD is caused by mutations in PKHD1, DZIP1L, and CYS1, which are conserved in mammals. In this study, we examined the potential role of TFAP2B as a common regulator of Pkhd1 and Cys1. We determined the transcription start site (TSS) of Cys1 using 5' Rapid Amplification of cDNA Ends (5'RACE); the TSS of Pkhd1 has been previously established. Bioinformatic approaches identified cis-regulatory elements, including two TFAP2B consensus binding sites, in the upstream regulatory regions of both Pkhd1 and Cys1. Based on reporter gene assays performed in mouse renal collecting duct cells (mIMCD-3), TFAP2B activated the Pkhd1 and Cys1 promoters and electromobility shift assay (EMSA) confirmed TFAP2B binding to the in silico identified sites. These results suggest that Tfap2b participates in a renal epithelial cell gene regulatory network that includes Pkhd1 and Cys1. Disruption of this network impairs renal tubular differentiation, causing ductal dilatation that is the hallmark of recessive PKD.
Collapse
Affiliation(s)
- Maoqing Wu
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Naoe Harafuji
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Amber K O'Connor
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Hospital, Washington, DC, United States.,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
15
|
Kumar T, Maitra S, Rahman A, Bhattacharjee S. A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum. PLoS Pathog 2021; 17:e1009595. [PMID: 34780541 PMCID: PMC8629386 DOI: 10.1371/journal.ppat.1009595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/29/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
Tail-anchored (TA) proteins are defined by the absence of N-terminus signal sequence and the presence of a single transmembrane domain (TMD) proximal to their C-terminus. They play fundamental roles in cellular processes including vesicular trafficking, protein translocation and quality control. Some of the TA proteins are post-translationally integrated by the Guided Entry of TA (GET) pathway to the cellular membranes; with their N-terminus oriented towards the cytosol and C-terminus facing the organellar lumen. The TA repertoire and the GET machinery have been extensively characterized in the yeast and mammalian systems, however, they remain elusive in the human malaria parasite Plasmodium falciparum. In this study, we bioinformatically predicted a total of 63 TA proteins in the P. falciparum proteome and revealed the association of a subset with the P. falciparum homolog of Get3 (PfGet3). In addition, our proximity labelling studies either definitively identified or shortlisted the other eligible GET constituents, and our in vitro association studies validated associations between PfGet3 and the corresponding homologs of Get4 and Get2 in P. falciparum. Collectively, this study reveals the presence of proteins with hallmark TA signatures and the involvement of evolutionary conserved GET trafficking pathway for their targeted delivery within the parasite. Tail-anchored (TA) membrane proteins are known to play essential cellular functions in the eukaryotes. These proteins are trafficked to their respective destinations by post-translational translocation pathways that are evolutionarily conserved from yeast to human. However, they remain unidentified in the malaria parasite Plasmodium falciparum. We have used bioinformatic prediction algorithms in conjunction with functional validation studies to identify the candidate TA repertoire and some of the homologs of the trafficking machinery in P. falciparum. Initially, we predicted the presence of 63 putative TA proteins localized to distinct compartments within this parasite, including a few confirmed TA homologs in other eukaryotic systems. We then identified and characterized PfGet3 as a central component in the Guided-Entry of TA (GET) translocation machinery, and our bacterial co-expression and pulldown assays with two selected recombinant TA proteins, PfBOS1 and PfUSE1, showed co-association with PfGet3. We also identified PfGet2 and PfGet4 as the other two components of the GET machinery in P. falciparum using proximity biotinylation followed by mass spectrometry. Interestingly, we also found six TA proteins in the parasite enriched in this fraction. We further validated the direct interactions between a few TA candidates, PfGet4 and PfGet2 with PfGet3 using recombinant-based pulldown studies. In conclusion, this study classified a subset of membrane proteins with the TA nomenclature and implicated a previously unidentified GET pathway for their translocation in this apicomplexan parasite.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
16
|
An X, Zhang S, Li T, Chen N, Wang X, Zhang B, Ma Y. Transcriptomics analysis reveals the effect of Broussonetia papyrifera L. fermented feed on meat quality traits in fattening lamb. PeerJ 2021; 9:e11295. [PMID: 33987003 PMCID: PMC8086582 DOI: 10.7717/peerj.11295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/27/2021] [Indexed: 11/20/2022] Open
Abstract
To date, utilization of feed grains is increasing, which competes for human food. It is imperative to develop and utilize unconventional feed materials. Broussonetia papyrifera L. (B. papyrifera) is a good feeding material with high crude protein, crude fat, and low crude fiber, which is widely distributed in China. In this study, 12 Dorper ♂×Hu ♀ crossbred weaned male lambs were seleted into four groups based on the feed that ratio of the B. papyrifera fermented feed in the total mixed diet (0%, 6%, 18%, and 100%), to character the lambs' longissimus dorsi (LD) fatty acids, morphology and transcriptome. Results showed that the muscle fiber's diameter and area were the smallest in the 100% group. The highest content of beneficial fatty acids and the lowest content of harmful fatty acids in group 18%. RNA-seq identified 443 differentially expressed genes (DEGs) in the LD of lambs from 4 groups. Among these genes, 169 (38.1%) were up-regulated and 274 (61.9%) were down-regulated. The DEGs were mostly enriched in in fatty acid metabolism, arginine and proline metabolism, and PPAR signaling pathways. Our results provide knowledge to understand effect of different ratios of B. papyrifera fermented feed on sheep meat quality traits, also a basis for understanding of the molecular regulation mechanism of B. papyrifera fermented feed affecting on sheep meat quality.
Collapse
Affiliation(s)
- Xuejiao An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shengwei Zhang
- Gansu Provincial Farmer Education and Training Station, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Baojun Zhang
- Gansu Provincial Farmer Education and Training Station, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
17
|
Woodruff ED, Gutierrez GC, Van Otterloo E, Williams T, Cohn MJ. Anomalous incisor morphology indicates tissue-specific roles for Tfap2a and Tfap2b in tooth development. Dev Biol 2021; 472:67-74. [PMID: 33460639 PMCID: PMC8018193 DOI: 10.1016/j.ydbio.2020.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023]
Abstract
Mice possess two types of teeth that differ in their cusp patterns; incisors have one cusp and molars have multiple cusps. The patterning of these two types of teeth relies on fine-tuning of the reciprocal molecular signaling between dental epithelial and mesenchymal tissues during embryonic development. The AP-2 transcription factors, particularly Tfap2a and Tfap2b, are essential components of such epithelial-mesenchymal signaling interactions that coordinate craniofacial development in mice and other vertebrates, but little is known about their roles in the regulation of tooth development and shape. Here we demonstrate that incisors and molars differ in their temporal and spatial expression of Tfap2a and Tfap2b. At the bud stage, Tfap2a is expressed in both the epithelium and mesenchyme of the incisors and molars, but Tfap2b expression is restricted to the molar mesenchyme, only later appearing in the incisor epithelium. Tissue-specific deletions show that loss of the epithelial domain of Tfap2a and Tfap2b affects the number and spatial arrangement of the incisors, notably resulting in duplicated lower incisors. In contrast, deletion of these two genes in the mesenchymal domain has little effect on tooth development. Collectively these results implicate epithelial expression of Tfap2a and Tfap2b in regulating the extent of the dental lamina associated with patterning the incisors and suggest that these genes contribute to morphological differences between anterior (incisor) and posterior (molar) teeth within the mammalian dentition.
Collapse
Affiliation(s)
- Emily D Woodruff
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | | | - Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Martin J Cohn
- Department of Biology, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Zeng Q, Wang S, Tan J, Chen L, Wang J. The methylation level of TFAP2A is a potential diagnostic biomarker for retinoblastoma: an analytical validation study. PeerJ 2021; 9:e10830. [PMID: 33717678 PMCID: PMC7934648 DOI: 10.7717/peerj.10830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-derived circulating tumor DNA (ctDNA) has demonstrated its excellent potential for cancer diagnosis by DNA methylome; therefore, this study aimed to identify the retinoblastoma (RB) specific methylated CpG loci as the RB diagnostic biomarkers and design a methylation specific assay to detect these biomarker from aqueous humor of RB patients. Through a genome-wide methylation profiling of tissue samples from patients with RB, normal retina and other retinal diseases, we shortlisted two CpG loci were only methylated in RB but not in normal retina or other retinal diseases. Both of these two CpG loci were located in the genome of TFAP2A. Through the screening, a primer and probe set for the two CpG loci were tested in fully methylated standards and RB tissues with a significant differentiation of RB. Our results of this assay tested in aqueous humor from RB revealed an accuracy of 92.7% for RB diagnosis. These results suggested our assay targeting the TFAP2A ctDNA methylation can be utilized for RB diagnosis and cancer monitoring.
Collapse
Affiliation(s)
- Qi Zeng
- Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Sha Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Jia Tan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Lu Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Jinwei Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
19
|
Lombardo D, Saitta C, Giosa D, Di Tocco FC, Musolino C, Caminiti G, Chines V, Franzè MS, Alibrandi A, Navarra G, Raimondo G, Pollicino T. Frequency of somatic mutations in TERT promoter, TP53 and CTNNB1 genes in patients with hepatocellular carcinoma from Southern Italy. Oncol Lett 2020; 19:2368-2374. [PMID: 32194736 PMCID: PMC7039085 DOI: 10.3892/ol.2020.11332] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Somatic mutations in the TERT promoter and in the TP53 and CTNNB1 genes are considered drivers for hepatocellular carcinoma (HCC) development. They show variable frequencies in different geographic areas, possibly depending on liver disease etiology and environmental factors. TP53, CTNNB1 and TERT genetic mutations were investigated in tumor and non-tumor liver tissues from 67 patients with HCC and liver tissue specimens from 41 control obese subjects from Southern Italy. Furthermore, TERT expression was assessed by reverse transcription-quantitative PCR. Neither CTNNB1 mutations or TP53 R249S substitution were detected in any case. The TP53 R72P polymorphism was found in 10/67 (14.9%) tumors, but was not found in either non-tumor tissues (P=0.001) or controls (P=0.009). TERT gene promoter mutations were found in 29/67 (43.3%) tumor tissues but were not found in either non-tumor (P<0.0001) or control liver specimens (P<0.0001). The most frequent mutation in the tumors was the known hot spot at -124 bp from the TERT ATG start site (-124G>A, 28 cases, 41.8%; P<0.0001). A new previously never reported TERT promoter mutation (at -297 bp from the ATG, -297C>T) was found in 5/67 (7.5%) tumors, in 0/67 (0%) non-tumor (P<0.0001), and in 0/41 (0%) controls (P=0.07). This mutation creates an AP2 consensus sequence, and was found alone (1 case) or in combination (4 cases) with the -124 bp mutation. The mutation at -124 and -297 bp induced a 33-fold (P<0.0001) and 40-fold increase of TERT expression levels, respectively. When both mutations were present, TERT expression levels were increased >300-fold (P=0.001). A new TERT promoter mutation was identified, which generates a de novo binding motif for AP2 transcription factors, and which significantly increases TERT promoter transcriptional activity.
Collapse
Affiliation(s)
- Daniele Lombardo
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Carlo Saitta
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Internal Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Domenico Giosa
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Francesca Casuscelli Di Tocco
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Cristina Musolino
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Giuseppe Caminiti
- Department of Internal Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Valeria Chines
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Maria Stella Franzè
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Angela Alibrandi
- Department of Economics, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Giuseppe Navarra
- Department of Human Pathology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Giovanni Raimondo
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Clinical and Experimental Medicine, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| | - Teresa Pollicino
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy.,Department of Human Pathology, University Hospital 'G. Martino' of Messina, 98124 Messina, Italy
| |
Collapse
|
20
|
Rothstein M, Simoes-Costa M. Heterodimerization of TFAP2 pioneer factors drives epigenomic remodeling during neural crest specification. Genome Res 2019; 30:35-48. [PMID: 31848212 PMCID: PMC6961570 DOI: 10.1101/gr.249680.119] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022]
Abstract
Cell fate commitment involves the progressive restriction of developmental potential. Recent studies have shown that this process requires not only shifts in gene expression but also an extensive remodeling of the epigenomic landscape. To examine how chromatin states are reorganized during cellular specification in an in vivo system, we examined the function of pioneer factor TFAP2A at discrete stages of neural crest development. Our results show that TFAP2A activates distinct sets of genomic regions during induction of the neural plate border and specification of neural crest cells. Genomic occupancy analysis revealed that the repertoire of TFAP2A targets depends upon its dimerization with paralogous proteins TFAP2C and TFAP2B. During gastrula stages, TFAP2A/C heterodimers activate components of the neural plate border induction program. As neurulation begins, TFAP2A trades partners, and TFAP2A/B heterodimers reorganize the epigenomic landscape of progenitor cells to promote neural crest specification. We propose that this molecular switch acts to drive progressive cell commitment, remodeling the epigenomic landscape to define the presumptive neural crest. Our findings show how pioneer factors regulate distinct genomic targets in a stage-specific manner and highlight how paralogy can serve as an evolutionary strategy to diversify the function of the regulators that control embryonic development.
Collapse
Affiliation(s)
- Megan Rothstein
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
21
|
DHX33 Interacts with AP-2β To Regulate Bcl-2 Gene Expression and Promote Cancer Cell Survival. Mol Cell Biol 2019; 39:MCB.00017-19. [PMID: 31182639 DOI: 10.1128/mcb.00017-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
The RNA helicase DHX33 has been found to be overexpressed in human cancers, where it promotes cancer development. Previous reports have shown that DHX33 deficiency caused cancer cell apoptosis, but the underlying mechanism remains unknown. In this study, we discovered that DHX33 regulates Bcl-2 family protein expression. In multiple human cancer cell lines, DHX33 was found to stimulate the transcription of Bcl-2 Mechanistically, we found that DHX33 interacts with the AP-2β transcription factor and acts as a coactivator to stimulate Bcl-2 gene transcription. DHX33 deficiency abolished the loading of AP-2β onto the promoter of Bcl-2 and thereby reduced the recruitment of active RNA polymerase II during transcription initiation. Acute knockdown of DHX33 in multiple human cancer cells caused decreased Bcl-2 protein level, which ultimately triggered mitochondrion-mediated cellular apoptosis. In addition, we found that normal human lung and mammary epithelial cells were less sensitive to acute DHX33 knockdown, implying that cancer cells are uniquely responsive to DHX33 reduction. These data support the notion that disruption of DHX33 function could be an important application for cancer therapy.
Collapse
|
22
|
Huang W, Zhong Z, Luo C, Xiao Y, Li L, Zhang X, Yang L, Xiao K, Ning Y, Chen L, Liu Q, Hu X, Zhang J, Ding X, Xiang S. The miR-26a/AP-2α/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma. Am J Cancer Res 2019; 9:5497-5516. [PMID: 31534499 PMCID: PMC6735392 DOI: 10.7150/thno.33800] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of transcription factor AP-2α has been functionally associated with various cancers, but its clinical significance and molecular mechanisms in human glioma are largely elusive. Methods: AP-2α expression was analyzed in human glioma tissues by immunohistochemistry (IHC) and in glioma cell lines by Western blot. The effects of AP-2α on glioma cell proliferation, migration, invasion and tumor formation were evaluated by the 3-(4,5-dimethyNCthiazol-2-yl)-25-diphenyltetrazolium bromide (MTT) and transwell assays in vitro and in nude mouse models in vivo. The influence of AP-2α on glioma cell stemness was analyzed by sphere-formation, self-renewal and limiting dilution assays in vitro and in intracranial mouse models in vivo. The effects of AP-2α on temozolomide (TMZ) resistance were detected by the MTT assay, cell apoptosis, real-time PCR analysis, western blotting and mouse experiments. The correlation between AP-2α expression and the expression of miR-26a, Nanog was determined by luciferase reporter assays, electrophoretic mobility shift assay (EMSA) and expression analysis. Results: AP-2α expression was downregulated in 58.5% of glioma tissues and in 4 glioma cell lines. AP-2α overexpression not only reduced the proliferation, migration and invasion of glioma cell lines but also suppressed the sphere-formation and self-renewal abilities of glioma stem cells in vitro. Moreover, AP-2α overexpression inhibited subcutaneous and intracranial xenograft tumor growth in vivo. Furthermore, AP-2α enhanced the sensitivity of glioma cells to TMZ. Finally, AP-2α directly bound to the regulatory region of the Nanog gene, reduced Nanog, Sox2 and CD133 expression. Meanwhile, AP-2α indirectly downregulated Nanog expression by inhibiting the interleukin 6/janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, consequently decreasing O6-methylguanine methyltransferase (MGMT) and programmed death-ligand 1 (PD-L1) expression. In addition, miR-26a decreased AP-2α expression by binding to the 3' untranslated region (UTR) of AP-2α and reversed the tumor suppressive role of AP-2α in glioma, which was rescued by a miR-26a inhibitor. TMZ and the miR-26a inhibitor synergistically suppressed intracranial GSC growth. Conclusion: These results suggest that AP-2α reduces the stemness and TMZ resistance of glioma by inhibiting the Nanog/Sox2/CD133 axis and IL6/STAT3 signaling pathways. Therefore, AP-2α and miR-26a inhibition might represent a new target for developing new therapeutic strategies in TMZ resistance and recurrent glioma patients.
Collapse
|
23
|
Dooley CM, Wali N, Sealy IM, White RJ, Stemple DL, Collins JE, Busch-Nentwich EM. The gene regulatory basis of genetic compensation during neural crest induction. PLoS Genet 2019; 15:e1008213. [PMID: 31199790 PMCID: PMC6594659 DOI: 10.1371/journal.pgen.1008213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a vertebrate-specific cell type that contributes to a wide range of different tissues across all three germ layers. The gene regulatory network (GRN) responsible for the formation of neural crest is conserved across vertebrates. Central to the induction of the NC GRN are AP-2 and SoxE transcription factors. NC induction robustness is ensured through the ability of some of these transcription factors to compensate loss of function of gene family members. However the gene regulatory events underlying compensation are poorly understood. We have used gene knockout and RNA sequencing strategies to dissect NC induction and compensation in zebrafish. We genetically ablate the NC using double mutants of tfap2a;tfap2c or remove specific subsets of the NC with sox10 and mitfa knockouts and characterise genome-wide gene expression levels across multiple time points. We find that compensation through a single wild-type allele of tfap2c is capable of maintaining early NC induction and differentiation in the absence of tfap2a function, but many target genes have abnormal expression levels and therefore show sensitivity to the reduced tfap2 dosage. This separation of morphological and molecular phenotypes identifies a core set of genes required for early NC development. We also identify the 15 somites stage as the peak of the molecular phenotype which strongly diminishes at 24 hpf even as the morphological phenotype becomes more apparent. Using gene knockouts, we associate previously uncharacterised genes with pigment cell development and establish a role for maternal Hippo signalling in melanocyte differentiation. This work extends and refines the NC GRN while also uncovering the transcriptional basis of genetic compensation via paralogues. Embryonic development is an intricate process that requires genes to be active at the right time and place. Organisms have evolved mechanisms that ensure faithful execution of developmental programmes even if genes fail to function. For example, in a process called genetic compensation, one or more genes become activated in response to loss of function of another. In this work we use the zebrafish model to investigate how two related genes, tfap2a and tfap2c, interact to ensure establishment of the neural crest, a vertebrate-specific cell type that contributes to many different tissues. Losing tfap2a activity causes mild morphological defects and losing tfap2c has no visible effect. Yet when both are inactive, embryos are severely abnormal due to lack of neural crest-derived tissues. Here we show that loss of tfap2a triggers upregulation of tfap2c which prevents the loss of neural crest tissue. However, the genes normally regulated by tfap2a respond differently to tfap2c allowing us to identify the first tier of the Ap2 network and new players in neural crest biology. Our work demonstrates that the expression signature of partial, but morphologically sufficient, genetic compensation provides an opportunity to dissect gene regulatory networks.
Collapse
Affiliation(s)
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian M. Sealy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Richard J. White
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Derek L. Stemple
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - John E. Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Artigas-Jerónimo S, Estrada-Peña A, Cabezas-Cruz A, Alberdi P, Villar M, de la Fuente J. Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the Identification of New Control Targets. Front Physiol 2019; 10:462. [PMID: 31057429 PMCID: PMC6482211 DOI: 10.3389/fphys.2019.00462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Ticks act as vectors of pathogens affecting human and animal health worldwide, and recent research has focused on the characterization of tick-pathogen interactions using omics technologies to identify new targets for developing novel control interventions. The regulome (transcription factors-target genes interactions) plays a critical role in cell response to pathogen infection. Therefore, the application of regulomics to tick-pathogen interactions would advance our understanding of these molecular interactions and contribute to the identification of novel control targets for the prevention and control of tick infestations and tick-borne diseases. However, limited information is available on the role of tick regulome in response to pathogen infection. In this study, we applied complementary in silico approaches to modeling how Anaplasma phagocytophilum infection modulates tick vector regulome. This proof-of-concept research provided support for the use of network analysis in the study of regulome response to infection, resulting in new information on tick-pathogen interactions and potential targets for developing interventions for the control of tick infestations and pathogen transmission. Deciphering the precise nature of circuits that shape the tick regulome in response to pathogen infection is an area of research that in the future will advance our knowledge of tick-pathogen interactions, and the identification of new antigens for the control of tick infestations and pathogen infection/transmission.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
25
|
Wang J, Ji W, Zhu D, Wang W, Chen Y, Zhang Z, Li F. Tfap2b mutation in mice results in patent ductus arteriosus and renal malformation. J Surg Res 2018; 227:178-185. [DOI: 10.1016/j.jss.2018.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
|
26
|
Takahashi C, Miyatake K, Kusakabe M, Nishida E. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture. J Biol Chem 2018; 293:8342-8361. [PMID: 29674317 PMCID: PMC5986203 DOI: 10.1074/jbc.ra117.000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A.
Collapse
Affiliation(s)
- Chika Takahashi
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Koichi Miyatake
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Morioh Kusakabe
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
27
|
Chen XF, Zhu DL, Yang M, Hu WX, Duan YY, Lu BJ, Rong Y, Dong SS, Hao RH, Chen JB, Chen YX, Yao S, Thynn HN, Guo Y, Yang TL. An Osteoporosis Risk SNP at 1p36.12 Acts as an Allele-Specific Enhancer to Modulate LINC00339 Expression via Long-Range Loop Formation. Am J Hum Genet 2018; 102:776-793. [PMID: 29706346 PMCID: PMC5986728 DOI: 10.1016/j.ajhg.2018.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have reproducibly associated variants within intergenic regions of 1p36.12 locus with osteoporosis, but the functional roles underlying these noncoding variants are unknown. Through an integrative functional genomic and epigenomic analyses, we prioritized rs6426749 as a potential causal SNP for osteoporosis at 1p36.12. Dual-luciferase assay and CRISPR/Cas9 experiments demonstrate that rs6426749 acts as a distal allele-specific enhancer regulating expression of a lncRNA (LINC00339) (∼360 kb) via long-range chromatin loop formation and that this loop is mediated by CTCF occupied near rs6426749 and LINC00339 promoter region. Specifically, rs6426749-G allele can bind transcription factor TFAP2A, which efficiently elevates the enhancer activity and increases LINC00339 expression. Downregulation of LINC00339 significantly increases the expression of CDC42 in osteoblast cells, which is a pivotal regulator involved in bone metabolism. Our study provides mechanistic insight into how a noncoding SNP affects osteoporosis by long-range interaction, a finding that could indicate promising therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Man Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bing-Jie Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jia-Bin Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yi-Xiao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shi Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hlaing Nwe Thynn
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
28
|
Genetic Dissection of a Supergene Implicates Tfap2a in Craniofacial Evolution of Threespine Sticklebacks. Genetics 2018; 209:591-605. [PMID: 29593029 DOI: 10.1534/genetics.118.300760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023] Open
Abstract
In nature, multiple adaptive phenotypes often coevolve and can be controlled by tightly linked genetic loci known as supergenes. Dissecting the genetic basis of these linked phenotypes is a major challenge in evolutionary genetics. Multiple freshwater populations of threespine stickleback fish (Gasterosteus aculeatus) have convergently evolved two constructive craniofacial traits, longer branchial bones and increased pharyngeal tooth number, likely as adaptations to dietary differences between marine and freshwater environments. Prior QTL mapping showed that both traits are partially controlled by overlapping genomic regions on chromosome 21 and that a regulatory change in Bmp6 likely underlies the tooth number QTL. Here, we mapped the branchial bone length QTL to a 155 kb, eight-gene interval tightly linked to, but excluding the coding regions of Bmp6 and containing the candidate gene Tfap2a Further recombinant mapping revealed this bone length QTL is separable into at least two loci. During embryonic and larval development, Tfap2a was expressed in the branchial bone primordia, where allele specific expression assays revealed the freshwater allele of Tfap2a was expressed at lower levels relative to the marine allele in hybrid fish. Induced loss-of-function mutations in Tfap2a revealed an essential role in stickleback craniofacial development and show that bone length is sensitive to Tfap2a dosage in heterozygotes. Combined, these results suggest that closely linked but genetically separable changes in Bmp6 and Tfap2a contribute to a supergene underlying evolved skeletal gain in multiple freshwater stickleback populations.
Collapse
|
29
|
AP-2ε Expression in Developing Retina: Contributing to the Molecular Diversity of Amacrine Cells. Sci Rep 2018; 8:3386. [PMID: 29467543 PMCID: PMC5821864 DOI: 10.1038/s41598-018-21822-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
Abstract
AP-2 transcription factors play important roles in the regulation of gene expression during development. Four of the five members of the AP-2 family (AP-2α, AP-2β, AP-2γ and AP-2δ) have previously been shown to be expressed in developing retina. Mouse knockouts have revealed roles for AP-2α, AP-2β and AP-2δ in retinal cell specification and function. Here, we show that the fifth member of the AP-2 family, AP-2ε, is also expressed in amacrine cells in developing mammalian and chicken retina. Our data indicate that there are considerably fewer AP-2ε-positive cells in the developing mouse retina compared to AP-2α, AP-2β and AP-2γ-positive cells, suggesting a specialized role for AP-2ε in a subset of amacrine cells. AP-2ε, which is restricted to the GABAergic amacrine lineage, is most commonly co-expressed with AP-2α and AP-2β, especially at early stages of retinal development. Co-expression of AP-2ε and AP-2γ increases with differentiation. Analysis of previously published Drop-seq data from single retinal cells supports co-expression of multiple AP-2s in the same cell. Since AP-2s bind to their target sequences as either homodimers or heterodimers, our work suggests spatially- and temporally-coordinated roles for combinations of AP-2 transcription factors in amacrine cells during retinal development.
Collapse
|
30
|
Van Otterloo E, Li H, Jones KL, Williams T. AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning. Development 2018; 145:dev157438. [PMID: 29229773 PMCID: PMC5825845 DOI: 10.1242/dev.157438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
The evolution of a hinged moveable jaw with variable morphology is considered a major factor behind the successful expansion of the vertebrates. DLX homeobox transcription factors are crucial for establishing the positional code that patterns the mandible, maxilla and intervening hinge domain, but how the genes encoding these proteins are regulated remains unclear. Herein, we demonstrate that the concerted action of the AP-2α and AP-2β transcription factors within the mouse neural crest is essential for jaw patterning. In the absence of these two proteins, the hinge domain is lost and there are alterations in the size and patterning of the jaws correlating with dysregulation of homeobox gene expression, with reduced levels of Emx, Msx and Dlx paralogs accompanied by an expansion of Six1 expression. Moreover, detailed analysis of morphological features and gene expression changes indicate significant overlap with various compound Dlx gene mutants. Together, these findings reveal that the AP-2 genes have a major function in mammalian neural crest development, influencing patterning of the craniofacial skeleton via the DLX code, an effect that has implications for vertebrate facial evolution, as well as for human craniofacial disorders.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Öztürk-Kaloglu D, Hercher D, Heher P, Posa-Markaryan K, Sperger S, Zimmermann A, Wolbank S, Redl H, Hacobian A. A Noninvasive In Vitro Monitoring System Reporting Skeletal Muscle Differentiation. Tissue Eng Part C Methods 2017; 23:1-11. [PMID: 27901409 DOI: 10.1089/ten.tec.2016.0366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Monitoring of cell differentiation is a crucial aspect of cell-based therapeutic strategies depending on tissue maturation. In this study, we have developed a noninvasive reporter system to trace murine skeletal muscle differentiation. Either a secreted bioluminescent reporter (Metridia luciferase) or a fluorescent reporter (green fluorescent protein [GFP]) was placed under the control of the truncated muscle creatine kinase (MCK) basal promoter enhanced by variable numbers of upstream MCK E-boxes. The engineered pE3MCK vector, coding a triple tandem of E-Boxes and the truncated MCK promoter, showed twentyfold higher levels of luciferase activation compared with a Cytomegalovirus (CMV) promoter. This newly developed reporter system allowed noninvasive monitoring of myogenic differentiation in a straining bioreactor. Additionally, binding sequences of endogenous microRNAs (miRNAs; seed sequences) that are known to be downregulated in myogenesis were ligated as complementary seed sequences into the reporter vector to reduce nonspecific signal background. The insertion of seed sequences improved the signal-to-noise ratio up to 25% compared with pE3MCK. Due to the highly specific, fast, and convenient expression analysis for cells undergoing myogenic differentiation, this reporter system provides a powerful tool for application in skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Deniz Öztürk-Kaloglu
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Philipp Heher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Katja Posa-Markaryan
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Alice Zimmermann
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| |
Collapse
|
32
|
Fan Y, Wang K. Nicotine induces EP4 receptor expression in lung carcinoma cells by acting on AP-2α: The intersection between cholinergic and prostanoid signaling. Oncotarget 2017; 8:75854-75863. [PMID: 29100274 PMCID: PMC5652668 DOI: 10.18632/oncotarget.18023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 02/05/2023] Open
Abstract
It was demonstrated that nicotine increased non-small cell lung cancer cell proliferation through nicotinic acetylcholine receptor -mediated signals. However, the detailed mechanism remains incompletely understood. We evaluated whether nicotine increased EP4 receptor expression in lung carcinoma cells by activating on AP-2α. Methods: The non-small cell lung cancer cells of A549 and H1838 were cultured and treated with EP4 inhibitor AH23848, also with EP4 and control siRNAs. The extracellular signal-regulated kinases inhibitor PD98059, the p38 mitogen-activated protein kinase inhibitor SB239063, the α7 nicotinic acetylcholine receptor inhibitor α-bungarotoxin, the α4 nicotinic acetylcholine receptor inhibitor dihydro-β-erythroidine, the PI3K inhibitor wortmannin, the PKC inhibitor calphostin C, and the PKA inhibitor H89 have been used to evaluate the effects on proliferations. It indicates that nicotine increases EP4 expression through α7 nicotinic acetylcholine receptor-dependent activations of PI3-K, JNK and PKC pathways that leads to reduction of AP-2α-DNA binding. This, together with the elevated secretion of PGE2, further enhances the tumor promoting effects of nicotine. These studies suggest a novel molecular mechanism by which nicotine increases non-small cell lung cancer cell proliferation.
Collapse
Affiliation(s)
- Yu Fan
- Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China 610041
| | - Ke Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China 610041.,Lung Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China 610041
| |
Collapse
|
33
|
AP-2α and AP-2β regulate dorsal interneuron specification in the spinal cord. Neuroscience 2017; 340:232-242. [DOI: 10.1016/j.neuroscience.2016.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022]
|
34
|
Budirahardja Y, Tan PY, Doan T, Weisdepp P, Zaidel-Bar R. The AP-2 Transcription Factor APTF-2 Is Required for Neuroblast and Epidermal Morphogenesis in Caenorhabditis elegans Embryogenesis. PLoS Genet 2016; 12:e1006048. [PMID: 27176626 PMCID: PMC4866721 DOI: 10.1371/journal.pgen.1006048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/21/2016] [Indexed: 11/19/2022] Open
Abstract
The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development. Mutations in the evolutionarily conserved family of AP-2 transcription factors are associated with multiple birth defects in Char syndrome and Brancio-oculo-facial syndrome. These DNA-binding proteins are known to regulate the proliferation, differentiation and death of specific cells during embryonic development but how point mutations in the AP-2 DNA-binding domain lead to these diseases during development is currently unknown. We have identified a mutation in one of the AP-2 orthologs of the nematode Caenorhabditis elegans, APTF-2, which falls in the same mutation hotspot as in human Char syndrome and Brancio-oculo-facial syndrome patients. Compromised APTF-2 activity in C. elegans results in embryonic lethality and embryos that survive to hatching displays body morphological defects, reminiscent of the aforementioned human diseases. Using time-lapse microscopy, we found that misregulation of cell division in the skin, muscle and neuronal cell lineages is the primary cause of developmental arrest. Our study provides insight into the regulation of cell division timing by AP-2 transcription factors and provides a model to study human diseases associated with AP-2 mutations.
Collapse
Affiliation(s)
| | - Pei Yi Tan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Thang Doan
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Peter Weisdepp
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
35
|
Su HJ, Zhang Y, Zhang L, Ma JL, Li JY, Pan KF, You WC. Methylation status of COX-2 in blood leukocyte DNA and risk of gastric cancer in a high-risk Chinese population. BMC Cancer 2015; 15:979. [PMID: 26674784 PMCID: PMC4682260 DOI: 10.1186/s12885-015-1962-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
Background Methylation is a common epigenetic modification which may play a crucial role in cancer development. To investigate the association between methylation of COX-2 in blood leukocyte DNA and risk of gastric cancer (GC), a nested case–control study was conducted in Linqu County, Shandong Province, a high risk area of GC in China. Methods Association between blood leukocyte DNA methylation of COX-2 and risk of GC was investigated in 133 GCs and 285 superficial gastritis (SG)/ chronic atrophic gastritis (CAG). The temporal trend of COX-2 methylation level during GC development was further explored in 74 pre-GC and 95 post-GC samples (including 31 cases with both pre- and post-GC samples). In addition, the association of DNA methylation and risk of progression to GC was evaluated in 74 pre-GC samples and their relevant intestinal metaplasia (IM)/dysplasia (DYS) controls. Methylation level was determined by quantitative methylation-specific PCR (QMSP). Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by unconditional logistic regression analysis. Results The medians of COX-2 methylation levels were 2.3 % and 2.2 % in GC cases and controls, respectively. No significant association was found between COX-2 methylation and risk of GC (OR, 1.15; 95 % CI: 0.70-1.88). However, the temporal trend analysis showed that COX-2 methylation levels were elevated at 1–4 years ahead of clinical GC diagnosis compared with the year of GC diagnosis (3.0 % vs. 2.2 %, p = 0.01). Further validation in 31 GCs with both pre- and post-GC samples indicated that COX-2 methylation levels were significantly decreased at the year of GC diagnosis compared with pre-GC samples (1.5 % vs. 2.5 %, p = 0.02). No significant association between COX-2 methylation and risk of progression to GC was found in subjects with IM (OR, 0.50; 95 % CI: 0.18–1.42) or DYS (OR, 0.70; 95 % CI: 0.23–2.18). Additionally, we found that elder people had increased risk of COX-2 hypermethylation (OR, 1.55; 95 % CI: 1.02–2.36) and subjects who ever infected with H. pylori had decreased risk of COX-2 hypermethylation (OR, 0.54; 95 % CI: 0.34–0.88). Conclusions COX-2 methylation exists in blood leukocyte DNA but at a low level. COX-2 methylation levels in blood leukocyte DNA may change during GC development.
Collapse
Affiliation(s)
- Hui-juan Su
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Jun-ling Ma
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Ji-You Li
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Kai-feng Pan
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| | - Wei-cheng You
- Key Laboratory of Carcinogenesis and Translation Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China.
| |
Collapse
|
36
|
Maiti P, Ghorai P, Ghosh S, Kamthan M, Tyagi RK, Datta A. Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans. Fungal Genet Biol 2015; 83:45-57. [PMID: 26291891 DOI: 10.1016/j.fgb.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/09/2015] [Accepted: 08/15/2015] [Indexed: 11/26/2022]
Abstract
Cph1, a transcription factor of the Mitogen Activated Protein (MAP) kinase pathway, regulates morphogenesis in human fungal pathogen Candida albicans. Here, by following a systemic deletion approach, we have identified functional domains and motifs of Cph1 that are involved in transcription factor activity and cellular morphogenesis. We found that the N-terminal homeodomain is essential for the DNA binding activity; however, C-terminal domain and polyglutamine motif (PQ) are indispensable for the transcriptional activation function. Complementation analysis of the cph1Δ null mutant using various deletion derivatives revealed functional significance of the N- and C-terminal domains and PQ motif in filamentation process, chlamydospore formation and sensitivity to the cell wall interfering compounds. Genome-wide identification of the Cph1 binding site and quantitative RT-PCR transcript analysis in cph1Δ null mutant revealed that a number of genes which are associated with the filamentous growth, maintaining cell wall organization and mitochondrial function, and the genes of the pH response pathway are the transcriptional targets of Cph1. The data also suggest that Cph1 may function as a positive or negative regulator depending on the morphological state and physiological conditions. Moreover, differential expression of the upstream MAP kinase pathway genes in wild type and cph1Δ null mutant indicated the existence of a feedback regulation.
Collapse
Affiliation(s)
- Protiti Maiti
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; National Institute of Plant Genome Research, New Delhi 110067, India
| | - Priyanka Ghorai
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Sumit Ghosh
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Mohan Kamthan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Rakesh Kumar Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Asis Datta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
37
|
Sun J, Du N, Li J, Zhou J, Tao G, Sun S, He J. Transcription Factor AP2ε: A Potential Predictor of Chemoresistance in Patients With Gastric Cancer. Technol Cancer Res Treat 2015; 15:285-95. [PMID: 25810491 DOI: 10.1177/1533034615577028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/09/2015] [Indexed: 01/14/2023] Open
Abstract
Chemotherapy is a mainstay of therapy for advanced gastric cancer (GC); however, owing to drug resistances, the effectiveness of chemotherapy is not satisfactory for some patients with GC. Therefore, identification of a marker that predicts treatment response is beneficial to patients. Hypermethylation of transcription factor activating enhancer-binding protein 2∊ (TFAP2E) has been implicated in chemotherapy resistance to fluorouracil-based chemotherapy in patients with colorectal cancer, but its role in GC is still unknown. In this study, we investigated TFAP2E as a predictor of treatment response in GC. We used methylation-sensitive high-resolution melting analysis to study the methylation of TFAP2E in 141 GC tissue specimens and 45 adjacent nontumor tissue specimens. In vitro experiments, we analyzed the expression and methylation of TFAP2E and to examine the sensitivity of GC cell lines to 5-fluorouracil (5-FU). The TFAP2E methylation occurred at a significantly higher incidence rate in tumor tissues compared to adjacent nontumor tissues (chi-square [χ2] = 38.919, P < .001). Hypermethylation of TFAP2E occurred more frequently in tumors with lower differentiation grades (P < .001) and was significantly associated with nonresponse to fluorouracil-based chemotherapy (P = .010). Hypermethylation was also associated with decreased expression of TFAP2E (P < .01) and nonresponse to 5-FU exposure in vitro (P < .001). Hypermethylation of TFAP2E was associated with lack of response to fluorouracil-based chemotherapy, indicating that it might be a potential predictor of treatment response in patients with GC.
Collapse
Affiliation(s)
- Jingyue Sun
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Nan Du
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jin Li
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guoquan Tao
- Department of Gastrointestinal surgery, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Suan Sun
- Department of Pathology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Jingdong He
- Department of Oncology, The Huai'an First People's Hospital, Affiliated to Nanjing Medical University, Huai'an, Jiangsu Province, China
| |
Collapse
|
38
|
AP2 suppresses osteoblast differentiation and mineralization through down-regulation of Frizzled-1. Biochem J 2015; 465:395-404. [DOI: 10.1042/bj20140668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AP2 is an important transcription factor in bone development. AP2 binds to the human Frizzled 1 (FZD1) promoter and down-regulates FZD1 expression in osteoblasts. In addition, AP2 negatively regulates osteoblast differentiation and mineralization in part through down-regulation of FZD1 expression.
Collapse
|
39
|
Green RM, Feng W, Phang T, Fish JL, Li H, Spritz RA, Marcucio RS, Hooper J, Jamniczky H, Hallgrímsson B, Williams T. Tfap2a-dependent changes in mouse facial morphology result in clefting that can be ameliorated by a reduction in Fgf8 gene dosage. Dis Model Mech 2015; 8:31-43. [PMID: 25381013 PMCID: PMC4283648 DOI: 10.1242/dmm.017616] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Failure of facial prominence fusion causes cleft lip and palate (CL/P), a common human birth defect. Several potential mechanisms can be envisioned that would result in CL/P, including failure of prominence growth and/or alignment as well as a failure of fusion of the juxtaposed epithelial seams. Here, using geometric morphometrics, we analyzed facial outgrowth and shape change over time in a novel mouse model exhibiting fully penetrant bilateral CL/P. This robust model is based upon mutations in Tfap2a, the gene encoding transcription factor AP-2α, which has been implicated in both syndromic and non-syndromic human CL/P. Our findings indicate that aberrant morphology and subsequent misalignment of the facial prominences underlies the inability of the mutant prominences to fuse. Exencephaly also occured in some of the Tfap2a mutants and we observed additional morphometric differences that indicate an influence of neural tube closure defects on facial shape. Molecular analysis of the CL/P model indicates that Fgf signaling is misregulated in the face, and that reducing Fgf8 gene dosage can attenuate the clefting pathology by generating compensatory changes. Furthermore, mutations in either Tfap2a or Fgf8 increase variance in facial shape, but the combination of these mutations restores variance to normal levels. The alterations in variance provide a potential mechanistic link between clefting and the evolution and diversity of facial morphology. Overall, our findings suggest that CL/P can result from small gene-expression changes that alter the shape of the facial prominences and uncouple their coordinated morphogenesis, which is necessary for normal fusion.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Tzulip Phang
- Department of Pharmacology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Jennifer L Fish
- University of California San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, San Francisco, CA 94110, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 17th Avenue, Aurora, CO 80045, USA
| | - Ralph S Marcucio
- University of California San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, San Francisco, CA 94110, USA
| | - Joan Hooper
- Department of Cell and Developmental Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Heather Jamniczky
- McCaig Institute for Bone and Joint Health, Department of Cell Biology & Anatomy, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada
| | - Benedikt Hallgrímsson
- McCaig Institute for Bone and Joint Health, Department of Cell Biology & Anatomy, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada. Alberta Children's Hospital Research Institute, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA. Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 17th Avenue, Aurora, CO 80045, USA. Department of Cell and Developmental Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
40
|
Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet 2014; 46:1160-5. [PMID: 25261935 PMCID: PMC4217527 DOI: 10.1038/ng.3101] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/03/2014] [Indexed: 01/05/2023]
Abstract
Cancer primarily develops due to somatic alterations in the genome. Advances in sequencing have enabled large-scale sequencing studies across many tumor types, emphasizing discovery of alterations in protein-coding genes. However, the protein-coding exome comprises less than 2% of the human genome. Here, we analyze complete genome sequences of 863 human tumors from The Cancer Genome Atlas and other sources to systematically identify non-coding regions that are recurrently mutated in cancer. We utilize novel frequency and sequence-based approaches to comprehensively scan the genome for non-coding mutations with potential regulatory impact. We identified recurrent mutations in regulatory elements upstream of PLEKHS1, WDR74, and SDHD, as well as previously identified mutations in the TERT promoter. SDHD promoter mutations are frequent in melanoma and associated with reduced gene expression and poor patient prognosis. The non-protein-coding cancer genome remains widely unexplored and our findings represent a step towards targeting the entire genome for clinical purposes.
Collapse
|
41
|
Sohn YA, Lee SI, Choi HJ, Kim HJ, Kim KH, Park TS, Han JY. The CCAAT element in the CIWI promoter regulates transcriptional initiation in chicken primordial germ cells. Mol Reprod Dev 2014; 81:871-82. [PMID: 25196532 DOI: 10.1002/mrd.22356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
The P-element-induced wimpy testis (PIWI) protein, which associates with small non-coding RNAs, is responsible for maintaining the integrity of germ cells and stem cells. Thus, transcriptional regulation of PIWI is critical for its effective functional modulation. In this study, we identified the promoter region of the PIWI homolog in chicken (CIWI), and investigated the transcriptional regulatory elements that control expression of CIWI in chicken primordial germ cells (PGCs). We constructed a vector that included the enhanced green fluorescent protein (eGFP) gene controlled by the 4-kb CIWI promoter. The vector was expressed in chicken PGCs, but not in chicken embryonic fibroblasts. Based on promoter deletion and fragmentation assays, we found that a 252-bp fragment of the CIWI promoter (-577 to -326 bp) was crucial for CIWI expression in PGCs. A CCAAT transcriptional regulatory element (-498 to -494 bp) was detected in the proximal region from the transcription initiation site of CIWI, and mutational analysis confirmed that this element regulates transcriptional initiation in chicken PGCs. Interestingly, the regions flanking the CCAAT element, which are positioned differently in HIWI (human), Miwi (mouse), and CIWI orthologs, were highly conserved. In addition, we predicted that specificity protein 1 (SP1) motifs modulate the transcriptional initiation of CIWI by binding to the 5'-flanking regions of the CCAAT box. Overall, 252 bp of the CIWI promoter possessing the transcriptional regulatory element CCAAT is crucial for regulating CIWI gene expression in chicken PGCs. This promoter may be applicable for the regulation of CIWI expression during germ-cell development.
Collapse
Affiliation(s)
- Yoon Ah Sohn
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Bogachek MV, Chen Y, Kulak MV, Woodfield GW, Cyr AR, Park JM, Spanheimer PM, Li Y, Li T, Weigel RJ. Sumoylation pathway is required to maintain the basal breast cancer subtype. Cancer Cell 2014; 25:748-61. [PMID: 24835590 PMCID: PMC4096794 DOI: 10.1016/j.ccr.2014.04.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 01/28/2023]
Abstract
The TFAP2C/AP-2γ transcription factor regulates luminal breast cancer genes, and loss of TFAP2C induces epithelial-mesenchymal transition. By contrast, the highly homologous family member, TFAP2A, lacks transcriptional activity at luminal gene promoters. A detailed structure-function analysis identified that sumoylation of TFAP2A blocks its ability to induce the expression of luminal genes. Disruption of the sumoylation pathway by knockdown of sumoylation enzymes, mutation of the SUMO-target lysine of TFAP2A, or treatment with sumoylation inhibitors induced a basal-to-luminal transition, which was dependent on TFAP2A. Sumoylation inhibitors cleared the CD44(+/hi)/CD24(-/low) cell population characterizing basal cancers and inhibited tumor outgrowth of basal cancer xenografts. These findings establish a critical role for sumoylation in regulating the transcriptional mechanisms that maintain the basal cancer phenotype.
Collapse
Affiliation(s)
- Maria V Bogachek
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Yizhen Chen
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Anthony R Cyr
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Jung M Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Yingyue Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Tiandao Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA; The Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
43
|
Ji W, Benson MA, Bhattacharya S, Chen Y, Hu J, Li F. Characterization of transcription factor AP-2 β mutations involved in familial isolated patent ductus arteriosus suggests haploinsufficiency. J Surg Res 2014; 188:466-472. [PMID: 24507797 DOI: 10.1016/j.jss.2014.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/30/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Patent ductus arteriosus (PDA) is one of the most common congenital heart defects. Transcription factor AP-2 beta (TFAP2B) mutations are associated with the Char syndrome, a disorder associated with PDA, and with facial and fingers abnormalities. Recently, we identified two TFAP2B mutations in two families without Char syndrome phenotype, c.601+5G>A and c.435_438delCCGG, and these TFAP2B mutations were associated with familial isolated PDA. The aim of this study was to identify the effects of these mutations on TFAP2B function. METHODS Plasmids containing the wild-type or mutated TFAP2B were constructed and transfected in cells. Plasmids containing the TFAP2B coactivator, Cpb/p300-interacting transactivator 2 (CITED2), was also transfected. TFAP2B expression was detected by luciferase expression and by Western blot analysis. RESULTS These mutations resulted in loss of transactivation function, which could not be improved by Cpb/p300-interacting transactivator 2. The c.601+5G>A mutated gene did not express any protein, whereas the c.435_438delCCGG mutation did not impact the transactivation function activated by the wild-type TFAP2B. CONCLUSIONS These results suggest that a haploinsufficiency effect of TFAP2B could be involved in familial isolated PDA.
Collapse
Affiliation(s)
- Wei Ji
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Matthew A Benson
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Yiwei Chen
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jingjing Hu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Distinct pathways regulated by RET and estrogen receptor in luminal breast cancer demonstrate the biological basis for combination therapy. Ann Surg 2014; 259:793-9. [PMID: 24045439 DOI: 10.1097/sla.0b013e3182a6f552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We investigated directed therapy based on TFAP2C-regulated pathways to inform new therapeutic approaches for treatment of luminal breast cancer. BACKGROUND TFAP2C regulates the expression of genes characterizing the luminal phenotype including ESR1 and RET, but pathway cross talk and potential for distinct elements have not been characterized. METHODS Activation of extracellular signal-regulated kinases (ERK) and AKT was assessed using phosphorylation-specific Western blot. Cell proliferation was measured with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] after siRNA (small interfering RNA) gene knockdown or drug treatment. Cell cycle, Ki-67, and cleaved caspase 3 were measured by fluorescence-activated cell sorting. Tumorigenesis was assessed in mice xenografts. RESULTS Knockdown of TFAP2C or RET inhibited GDNF (glial cell line-derived neurotrophic factor)-mediated activation of ERK and AKT in MCF-7 cells. Similarly, sunitinib, a small-molecule inhibitor of RET, blocked GDNF-mediated activation of ERK and AKT. Inhibition of RET either by gene knockdown or by treatment with sunitinib or vandetanib reduced RET-dependent growth of luminal breast cancer cells. Interestingly, knockdown of TFAP2C, which controls both ER (estrogen receptor) and RET, demonstrated a greater effect on cell growth than either RET or ER alone. Parallel experiments using treatment with tamoxifen and sunitinib confirmed the increased effectiveness of dual inhibition of the ER and RET pathways in regulating cell growth. Whereas targeting the ER pathway altered cell proliferation, as measured by Ki-67 and S-phase, anti-RET primarily increased apoptosis, as demonstrated by cleaved caspase 3 and increased TUNEL (terminal deoxyneucleotidyl transferase dUTP nick end labeling) expression in xenografts. CONCLUSIONS ER and RET primarily function through distinct pathways regulating proliferation and cell survival, respectively. The findings inform a therapeutic approach based on combination therapy with antiestrogen and anti-RET in luminal breast cancer.
Collapse
|
45
|
Sun L, Zhao Y, Gu S, Mao Y, Ji C, Xin X. Regulation of the HMOX1 gene by the transcription factor AP-2δ with unique DNA binding site. Mol Med Rep 2014; 10:423-8. [PMID: 24789576 DOI: 10.3892/mmr.2014.2196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
AP-2 transcription factors are important sequence-specific DNA-binding regulators that are expressed in the neural crest and other tissues during mammalian development. The human AP-2 family of transcription factors consists of five members, AP-2α, -β, -γ, -δ and -ε, which have an important role in the regulation of gene expression during development and in the differentiation of multiple organs and tissues. The present study aimed to investigate the mechanism by which AP-2δ mediates heme oxygenase-1 (HMOX1) gene expression. It was identified that the human AP-2δ protein exhibited weak binding to a suboptimal AP-2 sequence, 5'-GCCN3GGC-3', to which all other AP-2 proteins bind in vitro, providing the first example of DNA target specificity amongst the AP-2 family. AP-2δ protein bound to an optimized AP-2 consensus DNA sequence, 5'-GCCTGAGGC-3', in vitro and transactivated gene expression in eukaryotic cells. The transactivation domain of Ap-2δ differs notably from those in the other AP-2 proteins as it lacks the PY motif (XPPXY) and several other conserved residues that are important for the transcriptional activity of AP-2 proteins, yet it functions as an equally strong activator.
Collapse
Affiliation(s)
- Liyun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yuxia Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yumin Mao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
46
|
de los Angeles Rivera-Juarez M, Rosas-Murrieta NH, Mendieta-Carmona V, Hernandez-Pacheco RE, Zamora-Ginez I, Rodea-Avila C, Apresa-Garcia T, Garay-Villar O, Aguilar-Lemarroy A, Jave-Suarez LF, Diaz-Orea MA, Milflores-Flores L, Reyes-Salinas JS, Ceja-Utrera FJ, Vazquez-Zamora VJ, Vargas-Maldonado T, Reyes-Carmona S, Sosa-Jurado F, Santos-Lopez G, Reyes-Leyva J, Vallejo-Ruiz V. Promoter Polymorphisms of ST3GAL4 and ST6GAL1 Genes and Associations with Risk of Premalignant and Malignant Lesions of the Cervix. Asian Pac J Cancer Prev 2014; 15:1181-6. [DOI: 10.7314/apjcp.2014.15.3.1181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
47
|
Zhao R, Meng F, Wang N, Ma W, Yan Q. Silencing of CHD5 gene by promoter methylation in leukemia. PLoS One 2014; 9:e85172. [PMID: 24454811 PMCID: PMC3890315 DOI: 10.1371/journal.pone.0085172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/23/2013] [Indexed: 01/25/2023] Open
Abstract
Chromodomain helicase DNA binding protein 5 (CHD5) was previously proposed to function as a potent tumor suppressor by acting as a master regulator of a tumor-suppressive network. CHD5 is down-regulated in several cancers, including leukemia and is responsible for tumor generation and progression. However, the mechanism of CHD5 down-regulation in leukemia is largely unknown. In this study, quantitative reverse-transcriptase polymerase chain reaction and western blotting analyses revealed that CHD5 was down-regulated in human leukemia cell lines and samples. Luciferase reporter assays showed that most of the baseline regulatory activity was localized from 500 to 200 bp upstream of the transcription start site. Bisulfite DNA sequencing of the identified regulatory element revealed that the CHD5 promoter was hypermethylated in human leukemia cells and samples. Thus, CHD5 expression was inversely correlated with promoter DNA methylation in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) activates CHD5 expression in human leukemia cell lines. In vitro luciferase reporter assays demonstrated that methylation of the CHD5 promoter repressed its promoter activity. Furthermore, a chromatin immunoprecipitation assay combined with qualitative PCR identified activating protein 2 (AP2) as a potential transcription factor involved in CHD5 expression and indicated that treatment with DAC increases the recruitment of AP2 to the CHD5 promoter. In vitro transcription-factor activity studies showed that AP2 over-expression was able to activate CHD5 promoter activity. Our findings indicate that repression of CHD5 gene expression in human leukemia is mediated in part by DNA methylation of its promoter.
Collapse
Affiliation(s)
- Rui Zhao
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Nisha Wang
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Wenli Ma
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Qitao Yan
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
- * E-mail:
| |
Collapse
|
48
|
Lukman S, Moh Aung KM, Liang Lim MG, Hong S, Tan SK, Cheung E, Su X. Hybrid assembly of DNA-coated gold nanoparticles with water soluble conjugated polymers for studying protein–DNA interaction and ligand inhibition. RSC Adv 2014. [DOI: 10.1039/c3ra46752j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
49
|
Hahn SS, Tang Q, Zheng F, Zhao S, Wu J, Chen J. Repression of integrin-linked kinase by antidiabetes drugs through cross-talk of PPARγ- and AMPKα-dependent signaling: role of AP-2α and Sp1. Cell Signal 2013; 26:639-47. [PMID: 24361375 DOI: 10.1016/j.cellsig.2013.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/14/2013] [Indexed: 01/18/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common cancers of the head and neck, particularly in Southern China and Southeast Asia with high treatment failure due to the development of local recurrence and distant metastasis. The molecular mechanisms related to the progression of NPC have not been fully understood. In this study, we showed that antidiabetes drugs rosiglitazone and metformin inhibit NPC cell growth through reducing the expression of integrin-linked kinase (ILK). Blockade of PPARγ and AMPKα overcame the effects of rosiglitazone and metformin on ILK protein. Importantly, overexpression of ILK abrogated the effect of rosiglitazone and metformin on NPC cell growth. Furthermore, these agents reduced ILK promoter activity, which was not observed in AP-2α, but not Sp1 site mutation in ILK gene promoter. In addition, silencing of AP-2α or overexpression of Sp1 reversed the effect of these agents on ILK protein expression and cell growth. Chromatin immunoprecipitation (ChIP) assay showed that rosiglitazone induced AP-2α, while metformin reduced Sp1 protein binding to the DNA sequences in the ILK gene promoter. Intriguingly, overexpression of Sp1 abolished the effect of rosiglitazone on AP-2α protein expression. Collectively, we show that rosiglitazone and metformin inhibit ILK gene expression through PPARγ- and AMPKα-dependent signaling pathways that are involved in the regulation of AP-2α and Sp1 protein expressions. The effect of combination of rosiglitazone and metformin demonstrates greater extent than single agent alone. The cross-talk of PPARγ and AMPKα signaling enhances the synergistic effects of rosiglitazone and metformin. This study unveils novel mechanisms by which oral antidiabetes drugs inhibit the growth of human NPC cells.
Collapse
Affiliation(s)
- Swei Sunny Hahn
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| | - Qing Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Shunyu Zhao
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Jingjing Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, 00852, Hong Kong, China
| |
Collapse
|
50
|
A functional and genetic analysis of SOD2 promoter variants and their contribution to age-related hearing loss. Mech Ageing Dev 2013; 134:298-306. [DOI: 10.1016/j.mad.2013.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/11/2013] [Accepted: 02/26/2013] [Indexed: 11/18/2022]
|