1
|
Chen J, Meng A. Maternal control of embryonic dorsal organizer in vertebrates. Cells Dev 2025:204020. [PMID: 40058595 DOI: 10.1016/j.cdev.2025.204020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
The establishment of the body axis and developmental blueprint in embryos has remained to be a central question in developmental biology, captivating scientists for centuries. A milestone in this field was achieved in 1924 when Hans Spemann and Hilde Mangold discovered the dorsal organizer for embryonic body axis formation in amphibians. Since then, extensive studies have demonstrated that the dorsal organizer is evolutionarily conserved in vertebrates. This organizer functions as a signaling center, directing adjacent cells toward specific fates and orchestrating pattern formation to establish the embryonic axis. After 70 years since the discovery of the organizer, studies in different model animal species had revealed that locally activated β-catenin signaling during blastulation plays an indispensable role in organizer induction. Then, efforts have been made to identify initiators of β-catenin activation in blastulas. Now, it appears that maternal Huluwa, a transmembrane protein, is a bona fide organizer inducer at least in teleost fish and frog, which can activate downstream signaling pathways, including but probably not limited to β-catenin pathway. More studies are needed to decode the complete molecular network controlling organizer induction.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
3
|
Azbazdar Y, De Robertis EM. Molecular analysis of a self-organizing signaling pathway for Xenopus axial patterning from egg to tailbud. Proc Natl Acad Sci U S A 2024; 121:e2408346121. [PMID: 38968117 PMCID: PMC11252917 DOI: 10.1073/pnas.2408346121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early β-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of β-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in β-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any β-catenin transcriptional activity as measured by β-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in β-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095-1662
| |
Collapse
|
4
|
Tejeda-Muñoz N, Mei KC. Wnt signaling in cell adhesion, development, and colon cancer. IUBMB Life 2024; 76:383-396. [PMID: 38230869 DOI: 10.1002/iub.2806] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Wnt signaling is essential for embryonic development, influencing processes such as axis formation, cell proliferation and differentiation, cell fate decisions, and axon guidance. It also plays a role in maintaining tissue homeostasis in adult organisms. The loss of normal cell polarity and adhesion caused by Wnt signaling activation is a fundamental step for tumor progression and metastasis. Activating the canonical Wnt pathway is a driving force in many human cancers, especially colorectal, hepatocellular, and mammary carcinomas. Wnt causes the stabilization and nuclear transport of newly synthesized transcriptional regulator β-catenin. The generally accepted view is that the canonical effects of Wnt growth factors are caused by the transcription of β-catenin target genes. Here, we review recent findings that indicate Wnt is a regulator of many other cellular physiological activities, such as macropinocytosis, endosome trafficking, protein stability, focal adhesions, and lysosomal activity. Some of these regulatory responses occur within minutes and do not require new protein synthesis, indicating that there is much more to Wnt beyond the well-established transcriptional role of β-catenin. The main conclusion that emerges from these studies is that in basal cell conditions, the activity of the key protein kinase GSK3, which is inhibited by Wnt pathway activation, normally represses the actin machinery that orchestrates macropinocytosis with implications in cancer. These contributions expand our understanding of the multifaceted roles of Wnt signaling in cellular processes, development, and cancer, providing insights into potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kuo-Ching Mei
- School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, USA
| |
Collapse
|
5
|
Albano GA, Hackam AS. Repurposing development genes for axonal regeneration following injury: Examining the roles of Wnt signaling. Front Cell Dev Biol 2024; 12:1417928. [PMID: 38882059 PMCID: PMC11176474 DOI: 10.3389/fcell.2024.1417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios. We describe various molecular cues and signaling pathways involved in neural development, with an emphasis on the versatile Wnt signaling pathway. We discuss the capacity of developmental factors to initiate axonal regrowth in adult neural tissue within the challenging environment of the injured CNS. Our discussion explores the roles of Wnt signaling and also examines the potential of other embryonic genes including Pax, BMP, Ephrin, SOX, CNTF, PTEN, mTOR and STAT3 to contribute to axonal regeneration in various CNS injury model systems, including spinal cord and optic crush injuries in mice, Xenopus and zebrafish. Additionally, we describe potential contributions of Müller glia redifferentiation to neuronal regeneration after injury. Therefore, this review provides a comprehensive summary of the state of the field, and highlights promising research directions for the potential therapeutic applications of specific embryologic molecular pathways in axonal regeneration in adults.
Collapse
Affiliation(s)
- Gabrielle A Albano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
6
|
Goutam RS, Kumar V, Lee U, Kim J. Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae. Mol Cells 2024; 47:100058. [PMID: 38522664 PMCID: PMC11031840 DOI: 10.1016/j.mocell.2024.100058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
- Laboratory of Regenerative Medicine, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| |
Collapse
|
7
|
Cooper EJ, Scholpp S. Transport and gradient formation of Wnt and Fgf in the early zebrafish gastrula. Curr Top Dev Biol 2023; 157:125-153. [PMID: 38556457 DOI: 10.1016/bs.ctdb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Within embryonic development, the occurrence of gastrulation is critical in the formation of multiple germ layers with many differentiative abilities. These cells are instructed through exposure to signalling molecules called morphogens. The secretion of morphogens from a source tissue creates a concentration gradient that allows distinct pattern formation in the receiving tissue. This review focuses on the morphogens Wnt and Fgf in zebrafish development. Wnt has been shown to have critical roles throughout gastrulation, including in anteroposterior patterning and neural posterisation. Fgf is also a vital signal, contributing to involution and mesodermal specification. Both morphogens have also been found to work in finely balanced synergy for processes such as neural induction. Thus, the signalling range of Wnts and Fgfs must be strictly controlled to target the correct target cells. Fgf and Wnts signal to local cells as well as to cells in the distance in a highly regulated way, requiring specific dissemination mechanisms that allow efficient and precise signalling over short and long distances. Multiple transportation mechanisms have been discovered to aid in producing a stable morphogen gradient, including short-range diffusion, filopodia-like extensions called cytonemes and extracellular vesicles, mainly exosomes. These mechanisms are specific to the morphogen that they transport and the intended signalling range. This review article discusses how spreading mechanisms in these two morphogenetic systems differ and the consequences on paracrine signalling, hence tissue patterning.
Collapse
Affiliation(s)
- Emma J Cooper
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
8
|
Hatakeyama Y, Saito N, Mii Y, Takada R, Shinozuka T, Takemoto T, Naoki H, Takada S. Intercellular exchange of Wnt ligands reduces cell population heterogeneity during embryogenesis. Nat Commun 2023; 14:1924. [PMID: 37024462 PMCID: PMC10079677 DOI: 10.1038/s41467-023-37350-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Wnt signaling is required to maintain bipotent progenitors for neural and paraxial mesoderm cells, the neuromesodermal progenitor (NMP) cells that reside in the epiblast and tailbud. Since epiblast/tailbud cells receive Wnt ligands produced by one another, this exchange may average out the heterogeneity of Wnt signaling levels among these cells. Here, we examined this possibility by replacing endogenous Wnt3a with a receptor-fused form that activates signaling in producing cells, but not in neighboring cells. Mutant mouse embryos show a unique phenotype in which maintenance of many NMP cells is impaired, although some cells persist for long periods. The epiblast cell population of these embryos increases heterogeneity in Wnt signaling levels as embryogenesis progresses and are sensitive to retinoic acid, an endogenous antagonist of NMP maintenance. Thus, mutual intercellular exchange of Wnt ligands in the epiblast cell population reduces heterogeneity and achieves robustness to environmental stress.
Collapse
Affiliation(s)
- Yudai Hatakeyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Nen Saito
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8511, Japan.
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Takuma Shinozuka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Tatsuya Takemoto
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-5 Kuramoto-cho, Tokushima, Tokushima, 770-8503, Japan
| | - Honda Naoki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8511, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
9
|
Abstract
Lysosomes are the digestive center of the cell and play important roles in human diseases, including cancer. Previous work has suggested that late endosomes, also known as multivesicular bodies (MVBs), and lysosomes are essential for canonical Wnt pathway signaling. Sequestration of Glycogen Synthase 3 (GSK3) and of β‐catenin destruction complex components in MVBs is required for sustained canonical Wnt signaling. Little is known about the role of lysosomes during early development. In the Xenopus egg, a Wnt-like cytoplasmic determinant signal initiates formation of the body axis following a cortical rotation triggered by sperm entry. Here we report that cathepsin D was activated in lysosomes specifically on the dorsal marginal zone of the embryo at the 64-cell stage, long before zygotic transcription starts. Expansion of the MVB compartment with low-dose hydroxychloroquine (HCQ) greatly potentiated the dorsalizing effects of the Wnt agonist lithium chloride (LiCl) in embryos, and this effect required macropinocytosis. Formation of the dorsal axis required lysosomes, as indicated by brief treatments with the vacuolar ATPase (V-ATPase) inhibitors Bafilomycin A1 or Concanamycin A at the 32-cell stage. Inhibiting the MVB-forming machinery with a dominant-negative point mutation in Vacuolar Protein Sorting 4 (Vps4-EQ) interfered with the endogenous dorsal axis. The Wnt-like activity of the dorsal cytoplasmic determinant Huluwa (Hwa), and that of microinjected xWnt8 messenger RNA, also required lysosome acidification and the MVB-forming machinery. We conclude that lysosome function is required for early dorsal axis development in Xenopus. The results highlight the intertwining between membrane trafficking, lysosomes, and vertebrate axis formation.
Collapse
|
10
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
11
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
12
|
Umair Z, Kumar V, Goutam RS, Kumar S, Lee U, Kim J. Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos. Mol Cells 2021; 44:723-735. [PMID: 34711690 PMCID: PMC8560583 DOI: 10.14348/molcells.2021.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.
Collapse
Affiliation(s)
- Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
13
|
Kumar V, Goutam RS, Umair Z, Park S, Lee U, Kim J. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula. Cells 2021; 10:cells10102779. [PMID: 34685759 PMCID: PMC8534798 DOI: 10.3390/cells10102779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.1. Thus, Chrd induces in a BMP-inhibited manner and promotes neuroectoderm formation. However, the regulatory feedback mechanism of Foxd4l1.1 on mesodermal genes expression during germ-layer specification has not been fully elucidated. In this study, we investigated the regulatory mechanism of Foxd4l1.1 on chrd (a mesodermal gene). We demonstrate that Foxd4l1.1 inhibits chrd expression during neuroectoderm formation in two ways: First, Foxd4l1.1 directly binds to FRE (Foxd4l1.1 response elements) within the chrd promoter region to inhibit transcription. Second, Foxd4l1.1 physically interacts with Smad2 and Smad3, and this interaction blocks Smad2 and Smad3 binding to activin response elements (AREs) within the chrd promoter. Site-directed mutagenesis of FRE within the chrd(-2250) promoter completely abolished repressor activity of the Foxd4l1.1. RT-PCR and reporter gene assay results indicate that Foxd4l1.1 strongly inhibits mesoderm- and ectoderm-specific marker genes to maintain neural fate. Altogether, these results suggest that Foxd4l1.1 negatively regulates chrd transcription by dual mechanism. Thus, our study demonstrates the existence of precise reciprocal regulation of chrd transcription during neuroectoderm and mesoderm germ-layer specification in Xenopus embryos.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Correspondence: (U.L.); (J.K.)
| |
Collapse
|
14
|
Reis AH, Sokol SY. Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification. Sci Rep 2021; 11:13433. [PMID: 34183732 PMCID: PMC8239024 DOI: 10.1038/s41598-021-92824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023] Open
Abstract
The Wnt pathway activates target genes by controlling the β-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.
Collapse
Affiliation(s)
- Alice H Reis
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
15
|
Colozza G, Jami-Alahmadi Y, Dsouza A, Tejeda-Muñoz N, Albrecht LV, Sosa EA, Wohlschlegel JA, De Robertis EM. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Sci Rep 2020; 10:21555. [PMID: 33299006 PMCID: PMC7726150 DOI: 10.1038/s41598-020-78019-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including β-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of β-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/β-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.
Collapse
Affiliation(s)
- Gabriele Colozza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA. .,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, 1030, Austria.
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Alyssa Dsouza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Lauren V Albrecht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Eric A Sosa
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA.
| |
Collapse
|
16
|
Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development. iScience 2020; 23:101314. [PMID: 32650116 PMCID: PMC7347983 DOI: 10.1016/j.isci.2020.101314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although Wnt/β-catenin signaling is generally conserved and well understood, the regulatory mechanisms controlling context-specific direct Wnt target gene expression in development and disease are still unclear. The onset of zygotic gene transcription in early embryogenesis represents an ideal, accessible experimental system to investigate context-specific direct Wnt target gene regulation. We combine transcriptomics using RNA-seq with genome-wide β-catenin association using ChIP-seq to identify stage-specific direct Wnt target genes. We propose coherent feedforward regulation involving two distinct classes of direct maternal Wnt target genes, which differ both in expression and persistence of β-catenin association. We discover that genomic β-catenin association overlaps with Foxh1-associated regulatory sequences and demonstrate that direct maternal Wnt target gene expression requires Foxh1 function and Nodal/Tgfβ signaling. Our results support a new paradigm for direct Wnt target gene co-regulation with context-specific mechanisms that will inform future studies of embryonic development and more widely stem cell-mediated homeostasis and human disease. Combining RNA-seq and β-catenin ChIP-seq identifies direct Wnt target genes Two distinct classes of direct maternal Wnt/β-catenin target genes can be discerned We propose coherent feedforward regulation of gene expression of the second class Maternal Wnt target gene expression of both classes requires Nodal/Foxh1 signaling
Collapse
|
17
|
Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A. Natural size variation among embryos leads to the corresponding scaling in gene expression. Dev Biol 2020; 462:165-179. [PMID: 32259520 PMCID: PMC8073595 DOI: 10.1016/j.ydbio.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
Xenopus laevis frogs from laboratory stocks normally lay eggs exhibiting extensive size variability. We find that these initial size differences subsequently affect the size of the embryos prior to the onset of growth, and the size of tadpoles during the growth period. Even though these tadpoles differ in size, their tissues, organs, and structures always seem to be properly proportioned, i.e. they display static allometry. Initial axial patterning events in Xenopus occur in a spherical embryo, allowing easy documentation of their size-dependent features. We examined the size distribution of early Xenopus laevis embryos and measured diameters that differed by about 38% with a median of about 1.43 mm. This range of embryo sizes corresponds to about a 1.9-fold difference in surface area and a 2.6-fold difference in volume. We examined the relationship between embryo size and gene expression and observed a significant correlation between diameter and RNA content during gastrula stages. In addition, we investigated the expression levels of genes that pattern the mesoderm, induce the nervous system and mediate the progression of ectodermal cells to neural precursors in large and small embryos. We found that most of these factors were expressed at levels that scaled with the different embryo sizes and total embryo RNA content. In agreement with the changes in transcript levels, the expression domains in larger embryos increased proportionally with the increase in surface area, maintaining their relative expression domain size in relation to the total size of the embryo. Thus, our study identified a mechanism for adapting gene expression domains to embryo size by adjusting the transcript levels of the genes regulating mesoderm induction and patterning. In the neural plate, besides the scaling of the expression domains, we observed similar cell sizes and cell densities in small and large embryos suggesting that additional cell divisions took place in large embryos to compensate for the increased size. Our results show in detail the size variability among Xenopus laevis embryos and the transcriptional adaptation to scale gene expression with size. The observations further support the involvement of BMP/ADMP signaling in the scaling process.
Collapse
Affiliation(s)
- Avi Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Steven L Klein
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
18
|
Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev Biol 2020; 462:20-35. [PMID: 32119833 PMCID: PMC7225061 DOI: 10.1016/j.ydbio.2020.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
As development proceeds, inductive cues are interpreted by competent tissues in a spatially and temporally restricted manner. While key inductive signaling pathways within competent cells are well-described at a molecular level, the mechanisms by which tissues lose responsiveness to inductive signals are not well understood. Localized activation of Wnt signaling before zygotic gene activation in Xenopus laevis leads to dorsal development, but competence to induce dorsal genes in response to Wnts is lost by the late blastula stage. We hypothesize that loss of competence is mediated by changes in histone modifications leading to a loss of chromatin accessibility at the promoters of Wnt target genes. We use ATAC-seq to evaluate genome-wide changes in chromatin accessibility across several developmental stages. Based on overlap with p300 binding, we identify thousands of putative cis-regulatory elements at the gastrula stage, including sites that lose accessibility by the end of gastrulation and are enriched for pluripotency factor binding motifs. Dorsal Wnt target gene promoters are not accessible after the loss of competence in the early gastrula while genes involved in mesoderm and neural crest development maintain accessibility at their promoters. Inhibition of histone deacetylases increases acetylation at the promoters of dorsal Wnt target genes and extends competence for dorsal gene induction by Wnt signaling. Histone deacetylase inhibition, however, is not sufficient to extend competence for mesoderm or neural crest induction. These data suggest that chromatin state regulates the loss of competence to inductive signals in a context-dependent manner.
Collapse
Affiliation(s)
- Melody Esmaeili
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - John W Tobias
- Penn Genomic Analysis Core and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Peter S Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Departments of Medicine (Hematology-Oncology) and Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Chang LS, Kim M, Glinka A, Reinhard C, Niehrs C. The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. eLife 2020; 9:51248. [PMID: 31934854 PMCID: PMC6996932 DOI: 10.7554/elife.51248] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/12/2020] [Indexed: 12/12/2022] Open
Abstract
A hallmark of Spemann organizer function is its expression of Wnt antagonists that regulate axial embryonic patterning. Here we identify the tumor suppressor Protein tyrosine phosphatase receptor-type kappa (PTPRK), as a Wnt inhibitor in human cancer cells and in the Spemann organizer of Xenopus embryos. We show that PTPRK acts via the transmembrane E3 ubiquitin ligase ZNRF3, a negative regulator of Wnt signaling promoting Wnt receptor degradation, which is also expressed in the organizer. Deficiency of Xenopus Ptprk increases Wnt signaling, leading to reduced expression of Spemann organizer effector genes and inducing head and axial defects. We identify a '4Y' endocytic signal in ZNRF3, which PTPRK maintains unphosphorylated to promote Wnt receptor depletion. Our discovery of PTPRK as a negative regulator of Wnt receptor turnover provides a rationale for its tumor suppressive function and reveals that in PTPRK-RSPO3 recurrent cancer fusions both fusion partners, in fact, encode ZNRF3 regulators. How human and other animals form distinct head- and tail-ends as embryos is a fundamental question in biology. The fertilized eggs of the African clawed frog (also known as Xenopus) become embryos and grow into tadpoles within two days. This rapid growth makes Xenopus particularly suitable as a model to study how animals with backbones form their body plans. In Xenopus embryos, a small group of cells known as the Spemann organizer plays a pivotal role in forming the body plan. It produces several enzymes known as Wnt inhibitors that repress a signal pathway known as Wnt signaling to determine the head- and tail-ends of the embryo. Chang, Kim et al. searched for new Wnt inhibitors in the Spemann organizer of Xenopus embryos. The experiments revealed that the Spemann organizer produced an enzyme known as PTPRK that was essential to permit the head-to-tail patterning of the brain. PTPRK inhibited Wnt signaling by activating another enzyme known as ZNRF3. Previous studies have shown that defects in Wnt signaling and in the activities of PTPRK and ZNRF3 are involved in colon cancer in mammals. Thus, these findings may help to develop new approaches for treating cancer in the future.
Collapse
Affiliation(s)
- Ling-Shih Chang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Minseong Kim
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Andrey Glinka
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Carmen Reinhard
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
20
|
Gentsch GE, Owens NDL, Smith JC. The Spatiotemporal Control of Zygotic Genome Activation. iScience 2019; 16:485-498. [PMID: 31229896 PMCID: PMC6593175 DOI: 10.1016/j.isci.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
One of the earliest and most significant events in embryonic development is zygotic genome activation (ZGA). In several species, bulk transcription begins at the midblastula transition (MBT) when, after a certain number of cleavages, the embryo attains a particular nuclear-to-cytoplasmic (N/C) ratio, maternal repressors become sufficiently diluted, and the cell cycle slows down. Here we resolve the frog ZGA in time and space by profiling RNA polymerase II (RNAPII) engagement and its transcriptional readout. We detect a gradual increase in both the quantity and the length of RNAPII elongation before the MBT, revealing that >1,000 zygotic genes disregard the N/C timer for their activation and that the sizes of newly transcribed genes are not necessarily constrained by cell cycle duration. We also find that Wnt, Nodal, and BMP signaling together generate most of the spatiotemporal dynamics of regional ZGA, directing the formation of orthogonal body axes and proportionate germ layers.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, Paris 75015, France
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
21
|
Yasuoka Y, Taira M. Microinjection of DNA Constructs into Xenopus Embryos for Gene Misexpression and cis-Regulatory Module Analysis. Cold Spring Harb Protoc 2019; 2019:pdb.prot097279. [PMID: 30131366 DOI: 10.1101/pdb.prot097279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introducing exogenous DNA into an embryo can promote misexpression of a gene of interest via transcription regulated by an attached enhancer-promoter. This protocol describes plasmid DNA microinjection into Xenopus embryos for misexpression of genes after zygotic gene expression begins. It also describes a method for coinjecting a reporter plasmid with mRNA or antisense morpholinos to perform luciferase reporter assays, which are useful for quantitative analysis of cis-regulatory sequences responding to endogenous or exogenous stimuli in embryos.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Sena E, Rocques N, Borday C, Amin HSM, Parain K, Sitbon D, Chesneau A, Durand BC. Barhl2 maintains T-cell factors as repressors, and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation. Development 2019; 146:dev.173112. [DOI: 10.1242/dev.173112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
A hallmark of Wnt/β-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in β-Catenin, which detaches the transcription factor T-cell Factor-7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/β-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/β-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Nathalie Rocques
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Caroline Borday
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Harem Sabr Muhamad Amin
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - David Sitbon
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Béatrice C. Durand
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| |
Collapse
|
23
|
Yan L, Chen J, Zhu X, Sun J, Wu X, Shen W, Zhang W, Tao Q, Meng A. Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates. Science 2018; 362:362/6417/eaat1045. [DOI: 10.1126/science.aat1045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
The vertebrate body is formed by cell movements and shape change during embryogenesis. It remains undetermined which maternal signals govern the formation of the dorsal organizer and the body axis. We found that maternal depletion of huluwa, a previously unnamed gene, causes loss of the dorsal organizer, the head, and the body axis in zebrafish and Xenopus embryos. Huluwa protein is found on the plasma membrane of blastomeres in the future dorsal region in early zebrafish blastulas. Huluwa has strong dorsalizing and secondary axis–inducing activities, which require β-catenin but can function independent of Wnt ligand/receptor signaling. Mechanistically, Huluwa binds to and promotes the tankyrase-mediated degradation of Axin. Therefore, maternal Huluwa is an essential determinant of the dorsal organizer and body axis in vertebrate embryos.
Collapse
|
24
|
Ding Y, Colozza G, Sosa EA, Moriyama Y, Rundle S, Salwinski L, De Robertis EM. Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. Proc Natl Acad Sci U S A 2018; 115:E9135-E9144. [PMID: 30209221 PMCID: PMC6166843 DOI: 10.1073/pnas.1812117115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Xenopus laevis embryo has been subjected to almost saturating screens for molecules specifically expressed in dorsal Spemann organizer tissue. In this study, we performed high-throughput RNA sequencing of ectodermal explants, called animal caps, which normally give rise to epidermis. We analyzed dissociated animal cap cells that, through sustained activation of MAPK, differentiate into neural tissue. We also microinjected mRNAs for Cerberus, Chordin, FGF8, BMP4, Wnt8, and Xnr2, which induce neural or other germ layer differentiations. The searchable database provided here represents a valuable resource for the early vertebrate cell differentiation. These analyses resulted in the identification of a gene present in frog and fish, which we call Bighead. Surprisingly, at gastrula, it was expressed in the Spemann organizer and endoderm, rather than in ectoderm as we expected. Despite the plethora of genes already mined from Spemann organizer tissue, Bighead encodes a secreted protein that proved to be a potent inhibitor of Wnt signaling in a number of embryological and cultured cell signaling assays. Overexpression of Bighead resulted in large head structures very similar to those of the well-known Wnt antagonists Dkk1 and Frzb-1. Knockdown of Bighead with specific antisense morpholinos resulted in embryos with reduced head structures, due to increased Wnt signaling. Bighead protein bound specifically to the Wnt coreceptor lipoprotein receptor-related protein 6 (Lrp6), leading to its removal from the cell surface. Bighead joins two other Wnt antagonists, Dkk1 and Angptl4, which function as Lrp6 endocytosis regulators. These results suggest that endocytosis plays a crucial role in Wnt signaling.
Collapse
Affiliation(s)
- Yi Ding
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Gabriele Colozza
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Eric A Sosa
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Yuki Moriyama
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Samantha Rundle
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| | - Lukasz Salwinski
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095-1662
| | - Edward M De Robertis
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662;
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662
| |
Collapse
|
25
|
Castro Colabianchi AM, Revinski DR, Encinas PI, Baez MV, Monti RJ, Rodríguez Abinal M, Kodjabachian L, Franchini LF, López SL. Notch1 is asymmetrically distributed from the beginning of embryogenesis and controls the ventral center. Development 2018; 145:dev.159368. [PMID: 29866901 DOI: 10.1242/dev.159368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Based on functional evidence, we have previously demonstrated that early ventral Notch1 activity restricts dorsoanterior development in Xenopus We found that Notch1 has ventralizing properties and abolishes the dorsalizing activity of β-catenin by reducing its steady state levels, in a process that does not require β-catenin phosphorylation by glycogen synthase kinase 3β. In the present work, we demonstrate that Notch1 mRNA and protein are enriched in the ventral region from the beginning of embryogenesis in Xenopus This is the earliest sign of ventral development, preceding the localized expression of wnt8a, bmp4 and Ventx genes in the ventral center and the dorsal accumulation of nuclear β-catenin. Knockdown experiments indicate that Notch1 is necessary for the normal expression of genes essential for ventral-posterior development. These results indicate that during early embryogenesis ventrally located Notch1 promotes the development of the ventral center. Together with our previous evidence, these results suggest that ventral enrichment of Notch1 underlies the process by which Notch1 participates in restricting nuclear accumulation of β-catenin to the dorsal side.
Collapse
Affiliation(s)
- Aitana M Castro Colabianchi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina.,Aix Marseille Université, CNRS, IBDM, 13288 Marseille, France
| | - Paula I Encinas
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - María Verónica Baez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Renato J Monti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | - Mateo Rodríguez Abinal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| | | | - Lucía F Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias 'Prof. E. De Robertis' (IBCN), Facultad de Medicina. Laboratorio de Embriología Molecular 'Prof. Dr. Andrés E. Carrasco', C1121ABG Buenos Aires, Argentina
| |
Collapse
|
26
|
Leibovich A, Kot-Leibovich H, Ben-Zvi D, Fainsod A. ADMP controls the size of Spemann's organizer through a network of self-regulating expansion-restriction signals. BMC Biol 2018; 16:13. [PMID: 29357852 PMCID: PMC5778663 DOI: 10.1186/s12915-018-0483-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bone morphogenetic protein (BMP) signaling gradient is central for dorsoventral patterning in amphibian embryos. This gradient is established through the interaction of several BMPs and BMP antagonists and modulators, some secreted by Spemann's organizer, a cluster of cells coordinating embryonic development. Anti-dorsalizing morphogenetic protein (ADMP), a BMP-like transforming growth factor beta ligand, negatively affects the formation of the organizer, although it is robustly expressed within the organizer itself. Previously, we proposed that this apparent discrepancy may be important for the ability of ADMP to scale the BMP gradient with embryo size, but how this is achieved is unclear. RESULTS Here we report that ADMP acts in the establishment of the organizer via temporally and mechanistically distinct signals. At the onset of gastrulation, ADMP is required to establish normal organizer-specific gene expression domains, thus displaying a dorsal, organizer-promoting function. The organizer-restricting, BMP-like function of ADMP becomes apparent slightly later, from mid-gastrula. The organizer-promoting signal of ADMP is mediated by the activin A type I receptor, ACVR1 (also known as activin receptor-like kinase-2, ALK2). ALK2 is expressed in the organizer and is required for organizer establishment. The anti-organizer function of ADMP is mediated by ACVRL1 (ALK1), a putative ADMP receptor expressed in the lateral regions flanking the organizer that blocks expansion of the organizer. Truncated ALK1 prevents the organizer-restricting effects of ADMP overexpression, suggesting a ligand-receptor interaction. We also present a mathematical model of the regulatory network controlling the size of the organizer. CONCLUSIONS We show that the opposed, organizer-promoting and organizer-restricting roles of ADMP are mediated by different receptors. A self-regulating network is proposed in which ADMP functions early through ALK2 to expand its own expression domain, the organizer, and later functions through ALK1 to restrict this domain. These effects are dependent on ADMP concentration, timing, and the spatial localization of the two receptors. This self-regulating temporal switch may control the size of the organizer and the genes expressed within in response to genetic and external stimuli during gastrulation.
Collapse
Affiliation(s)
- Avi Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Hadas Kot-Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
27
|
Darras S, Fritzenwanker JH, Uhlinger KR, Farrelly E, Pani AM, Hurley IA, Norris RP, Osovitz M, Terasaki M, Wu M, Aronowicz J, Kirschner M, Gerhart JC, Lowe CJ. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PLoS Biol 2018; 16:e2003698. [PMID: 29337984 PMCID: PMC5786327 DOI: 10.1371/journal.pbio.2003698] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/26/2018] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The Wnt family of secreted proteins has been proposed to play a conserved role in early specification of the bilaterian anteroposterior (A/P) axis. This hypothesis is based predominantly on data from vertebrate embryogenesis as well as planarian regeneration and homeostasis, indicating that canonical Wnt (cWnt) signaling endows cells with positional information along the A/P axis. Outside of these phyla, there is strong support for a conserved role of cWnt signaling in the repression of anterior fates, but little comparative support for a conserved role in promotion of posterior fates. We further test the hypothesis by investigating the role of cWnt signaling during early patterning along the A/P axis of the hemichordate Saccoglossus kowalevskii. We have cloned and investigated the expression of the complete Wnt ligand and Frizzled receptor complement of S. kowalevskii during early development along with many secreted Wnt modifiers. Eleven of the 13 Wnt ligands are ectodermally expressed in overlapping domains, predominantly in the posterior, and Wnt antagonists are localized predominantly to the anterior ectoderm in a pattern reminiscent of their distribution in vertebrate embryos. Overexpression and knockdown experiments, in combination with embryological manipulations, establish the importance of cWnt signaling for repression of anterior fates and activation of mid-axial ectodermal fates during the early development of S. kowalevskii. However, surprisingly, terminal posterior fates, defined by posterior Hox genes, are unresponsive to manipulation of cWnt levels during the early establishment of the A/P axis at late blastula and early gastrula. We establish experimental support for a conserved role of Wnt signaling in the early specification of the A/P axis during deuterostome body plan diversification, and further build support for an ancestral role of this pathway in early evolution of the bilaterian A/P axis. We find strong support for a role of cWnt in suppression of anterior fates and promotion of mid-axial fates, but we find no evidence that cWnt signaling plays a role in the early specification of the most posterior axial fates in S. kowalevskii. This posterior autonomy may be a conserved feature of early deuterostome axis specification.
Collapse
Affiliation(s)
- Sébastien Darras
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288, Marseille, France
| | - Jens H. Fritzenwanker
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Kevin R. Uhlinger
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Ellyn Farrelly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Ariel M. Pani
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Imogen A. Hurley
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Michelle Osovitz
- Department of Natural Sciences, St. Petersburg College, Clearwater, Florida
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mike Wu
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - John C. Gerhart
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| |
Collapse
|
28
|
Lee H, Cheong SM, Han W, Koo Y, Jo SB, Cho GS, Yang JS, Kim S, Han JK. March2 is required for head formation by mediating Dishevelled degradation in concert with Dapper1. Development 2018; 145:dev.143107. [DOI: 10.1242/dev.143107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/21/2018] [Indexed: 11/20/2022]
Abstract
Dishevelled (Dvl/Dsh) is a key scaffold protein that propagates Wnt signaling essential for embryogenesis and homeostasis. However, whether antagonism of Wnt signaling necessary for vertebrate head formation can be achieved through regulation of Dsh protein stability is unclear. Here we show that membrane-associated RING-CH2 (March2), a RING-type E3 ubiquitin ligase, antagonizes Wnt signaling by regulating the turnover of Dsh protein via ubiquitin-mediated lysosomal degradation in prospective head region of Xenopus. We further found that March2 acquires regional and functional specificities for head formation from the Dsh-interacting protein Dapper1 (Dpr1). Dpr1 stabilizes interaction between March2 and Dsh for mediating ubiquitination and subsequent degradation of Dsh protein only in the dorso-animal region of Xenopus embryo. These results suggest that March2 restricts cytosolic pools of Dsh protein and leads to subsequent limitation of Wnt signaling for the precise vertebrate head development.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
- Present address: Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Seong-Moon Cheong
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
- Present address: Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wonhee Han
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Youngmu Koo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Saet-Byeol Jo
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Gun-Sik Cho
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
- Present address: Laboratory of Stem Cells, NEXEL, Seoul, Republic of Korea
| | - Jae-Seong Yang
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
- Present address: EMBL/CRG Systems Biology Research Unit, Center for Genomic Regulation, Dr. Aiguader 88, Barcelona, Spain
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|
29
|
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. Dev Cell 2017; 43:71-82.e6. [PMID: 29017031 DOI: 10.1016/j.devcel.2017.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 11/23/2022]
Abstract
Angiopoietin-like 4 (ANGPTL4) is a secreted signaling protein that is implicated in cardiovascular disease, metabolic disorder, and cancer. Outside of its role in lipid metabolism, ANGPTL4 signaling remains poorly understood. Here, we identify ANGPTL4 as a Wnt signaling antagonist that binds to syndecans and forms a ternary complex with the Wnt co-receptor Lipoprotein receptor-related protein 6 (LRP6). This protein complex is internalized via clathrin-mediated endocytosis and degraded in lysosomes, leading to attenuation of Wnt/β-catenin signaling. Angptl4 is expressed in the Spemann organizer of Xenopus embryos and acts as a Wnt antagonist to promote notochord formation and prevent muscle differentiation. This unexpected function of ANGPTL4 invites re-interpretation of its diverse physiological effects in light of Wnt signaling and may open therapeutic avenues for human disease.
Collapse
|
30
|
Kjolby RAS, Harland RM. Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation. Dev Biol 2017; 426:165-175. [PMID: 27091726 PMCID: PMC6288011 DOI: 10.1016/j.ydbio.2016.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway plays multiple roles during Xenopus gastrulation, including posteriorization of the neural plate, patterning of the mesoderm, and induction of the neural crest. Wnt signaling stabilizes β-catenin, which then activates target genes. However, few targets of this signaling pathway that mediate early developmental processes are known. Here we sought to identify transcriptional targets of the Wnt/β-catenin signaling pathway using a genome-wide approach. We selected putative targets using the criteria of reduced expression upon zygotic Wnt knockdown, β-catenin binding within 50kb of the gene, and expression in tissues that receive Wnt signaling. Using these criteria, we found 21 novel direct transcriptional targets of Wnt/β-catenin signaling during gastrulation and in addition have identified putative regulatory elements for further characterization in future studies.
Collapse
Affiliation(s)
- Rachel A S Kjolby
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Nakamura Y, Hoppler S. Genome-wide analysis of canonical Wnt target gene regulation in Xenopus tropicalis challenges β-catenin paradigm. Genesis 2017; 55. [PMID: 28095618 PMCID: PMC5299483 DOI: 10.1002/dvg.22991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022]
Abstract
Wnt/β‐catenin signaling is an important cell‐to‐cell signaling mechanism that controls gene expression during embryonic development and is critically implicated in human diseases. Developmental, cellular, and transcriptional responses to Wnt signaling are remarkably context‐specific in different biological processes. While nuclear localization of β‐catenin is the key to activation of the Wnt/β‐catenin pathway and target gene expression, the molecular mechanisms of how the same Wnt/β‐catenin signaling pathway induces specific responses remain undetermined. Recent advances in high‐throughput sequencing technologies and the availability of genome information for Xenopus tropicalis have enabled us to uncover a genome‐wide view of Wnt/β‐catenin signaling in early vertebrate embryos, which challenges previous concepts about molecular mechanisms of Wnt target gene regulation. In this review, we summarize our experimental approaches, introduce the technologies we employed and focus on recent findings about Wnt target gene regulation from Xenopus research. We will also discuss potential functions of widespread β‐catenin binding in the genome that we discovered in this species.
Collapse
Affiliation(s)
- Yukio Nakamura
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
32
|
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. Proc Natl Acad Sci U S A 2017; 114:E3081-E3090. [PMID: 28348214 DOI: 10.1073/pnas.1700766114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The earliest event in Xenopus development is the dorsal accumulation of nuclear β-catenin under the influence of cytoplasmic determinants displaced by fertilization. In this study, a genome-wide approach was used to examine transcription of the 43,673 genes annotated in the Xenopus laevis genome under a variety of conditions that inhibit or promote formation of the Spemann organizer signaling center. Loss of function of β-catenin with antisense morpholinos reproducibly reduced the expression of 247 mRNAs at gastrula stage. Interestingly, only 123 β-catenin targets were enriched on the dorsal side and defined an early dorsal β-catenin gene signature. These genes included several previously unrecognized Spemann organizer components. Surprisingly, only 3 of these 123 genes overlapped with the late Wnt signature recently defined by two other groups using inhibition by Dkk1 mRNA or Wnt8 morpholinos, which indicates that the effects of β-catenin/Wnt signaling in early development are exquisitely regulated by stage-dependent mechanisms. We analyzed transcriptome responses to a number of treatments in a total of 46 RNA-seq libraries. These treatments included, in addition to β-catenin depletion, regenerating dorsal and ventral half-embryos, lithium chloride treatment, and the overexpression of Wnt8, Siamois, and Cerberus mRNAs. Only some of the early dorsal β-catenin signature genes were activated at blastula whereas others required the induction of endomesoderm, as indicated by their inhibition by Cerberus overexpression. These comprehensive data provide a rich resource for analyzing how the dorsal and ventral regions of the embryo communicate with each other in a self-organizing vertebrate model embryo.
Collapse
|
33
|
Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 2017; 7:43010. [PMID: 28220837 PMCID: PMC5318956 DOI: 10.1038/srep43010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.
Collapse
Affiliation(s)
- Bärbel Ulmer
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Melanie Tingler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Andre
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dina Mönch
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Marina Campione
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Kirsten Deißler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | - Axel Schweickert
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem 9112102, Israel
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Martin Blum
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
34
|
Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling. Sci Rep 2017; 7:42590. [PMID: 28198400 PMCID: PMC5309806 DOI: 10.1038/srep42590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
The Tcf/Lef family of transcription factors mediates the Wnt/β-catenin pathway that is involved in a wide range of biological processes, including vertebrate embryogenesis and diverse pathogenesis. Post-translational modifications, including phosphorylation, sumoylation and acetylation, are known to be important for the regulation of Tcf/Lef proteins. However, the importance of ubiquitination and ubiquitin-mediated regulatory mechanisms for Tcf/Lef activity are still unclear. Here, we newly show that ubiquitin C-terminal hydrolase 37 (Uch37), a deubiquitinase, interacts with Tcf7 (formerly named Tcf1) to activate Wnt signalling. Biochemical analyses demonstrated that deubiquitinating activity of Uch37 is not involved in Tcf7 protein stability but is required for the association of Tcf7 to target gene promoter in both Xenopus embryo and human liver cancer cells. In vivo analyses further revealed that Uch37 functions as a positive regulator of the Wnt/β-catenin pathway downstream of β-catenin stabilization that is required for the expression of ventrolateral mesoderm genes during Xenopus gastrulation. Our study provides a new mechanism for chromatin occupancy of Tcf7 and uncovers the physiological significance of Uch37 during early vertebrate development by regulating the Wnt/β-catenin pathway.
Collapse
|
35
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
36
|
Green YS, Kwon S, Mimoto MS, Xie Y, Christian JL. Tril targets Smad7 for degradation to allow hematopoietic specification in Xenopus embryos. Development 2016; 143:4016-4026. [PMID: 27633996 DOI: 10.1242/dev.141812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022]
Abstract
In Xenopus laevis, bone morphogenetic proteins (Bmps) induce expression of the transcription factor Gata2 during gastrulation, and Gata2 is required in both ectodermal and mesodermal cells to enable mesoderm to commit to a hematopoietic fate. Here, we identify tril as a Gata2 target gene that is required in both ectoderm and mesoderm for primitive hematopoiesis to occur. Tril is a transmembrane protein that functions as a co-receptor for Toll-like receptors to mediate innate immune responses in the adult brain, but developmental roles for this molecule have not been identified. We show that Tril function is required both upstream and downstream of Bmp receptor-mediated Smad1 phosphorylation for induction of Bmp target genes. Mechanistically, Tril triggers degradation of the Bmp inhibitor Smad7. Tril-dependent downregulation of Smad7 relieves repression of endogenous Bmp signaling during gastrulation and this enables mesodermal progenitors to commit to a blood fate. Thus, Tril is a novel component of a Bmp-Gata2 positive-feedback loop that plays an essential role in hematopoietic specification.
Collapse
Affiliation(s)
- Yangsook Song Green
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Sunjong Kwon
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Mizuho S Mimoto
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, Portland, OR 97239-3098, USA
| | - Yuanyuan Xie
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
37
|
Nakamura Y, de Paiva Alves E, Veenstra GJC, Hoppler S. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules. Development 2016; 143:1914-25. [PMID: 27068107 PMCID: PMC4920159 DOI: 10.1242/dev.131664] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Key signalling pathways, such as canonical Wnt/β-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear β-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling, mechanisms controlling stage- or tissue-specific transcriptional responses remain elusive. Here, a direct comparison of genome-wide occupancy of β-catenin with a stage-matched Wnt-regulated transcriptome reveals that only a subset of β-catenin-bound genomic loci are transcriptionally regulated by Wnt signalling. We demonstrate that Wnt signalling regulates β-catenin binding to Wnt target genes not only when they are transcriptionally regulated, but also in contexts in which their transcription remains unaffected. The transcriptional response to Wnt signalling depends on additional mechanisms, such as BMP or FGF signalling for the particular genes we investigated, which do not influence β-catenin recruitment. Our findings suggest a more general paradigm for Wnt-regulated transcriptional mechanisms, which is relevant for tissue-specific functions of Wnt/β-catenin signalling in embryonic development but also for stem cell-mediated homeostasis and cancer. Chromatin association of β-catenin, even to functional Wnt-response elements, can no longer be considered a proxy for identifying transcriptionally Wnt-regulated genes. Context-dependent mechanisms are crucial for transcriptional activation of Wnt/β-catenin target genes subsequent to β-catenin recruitment. Our conclusions therefore also imply that Wnt-regulated β-catenin binding in one context can mark Wnt-regulated transcriptional target genes for different contexts. Highlighted article: Dual ChIP-seq and RNA-seq in vivo experiments show that the context-specific events that occur subsequent to β-catenin binding enable gene-specific regulation, rather than β-catenin recruitment per se.
Collapse
Affiliation(s)
- Yukio Nakamura
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3RY, UK
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
38
|
Carron C, Shi DL. Specification of anteroposterior axis by combinatorial signaling during Xenopus development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:150-68. [PMID: 26544673 DOI: 10.1002/wdev.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
The specification of anteroposterior (AP) axis is a fundamental and complex patterning process that sets up the embryonic polarity and shapes a multicellular organism. This process involves the integration of distinct signaling pathways to coordinate temporal-spatial gene expression and morphogenetic movements. In the frog Xenopus, extensive embryological and molecular studies have provided major advance in understanding the mechanism implicated in AP patterning. Following fertilization, cortical rotation leads to the transport of maternal determinants to the dorsal region and creates the primary dorsoventral (DV) asymmetry. The activation of maternal Wnt/ß-catenin signaling and a high Nodal signal induces the formation of the Nieuwkoop center in the dorsal-vegetal cells, which then triggers the formation of the Spemann organizer in the overlying dorsal marginal zone. It is now well established that the Spemann organizer plays a central role in building the vertebrate body axes because it provides patterning information for both DV and AP polarities. The antagonistic interactions between signals secreted in the Spemann organizer and the opposite ventral region pattern the mesoderm along the DV axis, and this DV information is translated into AP positional values during gastrulation. The formation of anterior neural tissue requires simultaneous inhibition of zygotic Wnt and bone morphogenetic protein (BMP) signals, while an endogenous gradient of Wnt, fibroblast growth factors (FGFs), retinoic acid (RA) signaling, and collinearly expressed Hox genes patterns the trunk and posterior regions. Collectively, DV asymmetry is mostly coupled to AP polarity, and cell-cell interactions mediated essentially by the same regulatory networks operate in DV and AP patterning. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France.,School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
39
|
Mimoto MS, Kwon S, Green YS, Goldman D, Christian JL. GATA2 regulates Wnt signaling to promote primitive red blood cell fate. Dev Biol 2015; 407:1-11. [PMID: 26365900 DOI: 10.1016/j.ydbio.2015.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/06/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
Primitive erythropoiesis is regulated in a non cell-autonomous fashion across evolution from frogs to mammals. In Xenopus laevis, signals from the overlying ectoderm are required to induce the mesoderm to adopt an erythroid fate. Previous studies in our lab identified the transcription factor GATA2 as a key regulator of this ectodermal signal. To identify GATA2 target genes in the ectoderm required for red blood cell formation in the mesoderm, we used microarray analysis to compare gene expression in ectoderm from GATA2 depleted and wild type embryos. Our analysis identified components of the non-canonical and canonical Wnt pathways as being reciprocally up- and down-regulated downstream of GATA2 in both mesoderm and ectoderm. We show that up-regulation of canonical Wnt signaling during gastrulation blocks commitment to a hematopoietic fate while down-regulation of non-canonical Wnt signaling impairs erythroid differentiation. Our results are consistent with a model in which GATA2 contributes to inhibition of canonical Wnt signaling, thereby permitting progenitors to exit the cell cycle and commit to a hematopoietic fate. Subsequently, activation of non-canonical Wnt signaling plays a later role in enabling these progenitors to differentiate as mature red blood cells.
Collapse
Affiliation(s)
- Mizuho S Mimoto
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine, Portland, OR 97239-3098, USA
| | - Sunjong Kwon
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine, Portland, OR 97239-3098, USA
| | - Yangsook Song Green
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| | - Devorah Goldman
- Department of Cell and Developmental Biology Oregon Health and Science University, School of Medicine, Portland, OR 97239-3098, USA
| | - Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies University of Utah, School of Medicine, Salt Lake City, UT 94132, USA.
| |
Collapse
|
40
|
Bertolessi M, Linta L, Seufferlein T, Kleger A, Liebau S. A Fresh Look on T-Box Factor Action in Early Embryogenesis (T-Box Factors in Early Development). Stem Cells Dev 2015; 24:1833-51. [DOI: 10.1089/scd.2015.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Maíra Bertolessi
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leonhard Linta
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Endocytic Adaptor Protein Tollip Inhibits Canonical Wnt Signaling. PLoS One 2015; 10:e0130818. [PMID: 26110841 PMCID: PMC4482507 DOI: 10.1371/journal.pone.0130818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/26/2015] [Indexed: 01/12/2023] Open
Abstract
Many adaptor proteins involved in endocytic cargo transport exhibit additional functions in other cellular processes which may be either related to or independent from their trafficking roles. The endosomal adaptor protein Tollip is an example of such a multitasking regulator, as it participates in trafficking and endosomal sorting of receptors, but also in interleukin/Toll/NF-κB signaling, bacterial entry, autophagic clearance of protein aggregates and regulation of sumoylation. Here we describe another role of Tollip in intracellular signaling. By performing a targeted RNAi screen of soluble endocytic proteins for their additional functions in canonical Wnt signaling, we identified Tollip as a potential negative regulator of this pathway in human cells. Depletion of Tollip potentiates the activity of β-catenin/TCF-dependent transcriptional reporter, while its overproduction inhibits the reporter activity and expression of Wnt target genes. These effects are independent of dynamin-mediated endocytosis, but require the ubiquitin-binding CUE domain of Tollip. In Wnt-stimulated cells, Tollip counteracts the activation of β-catenin and its nuclear accumulation, without affecting its total levels. Additionally, under conditions of ligand-independent signaling, Tollip inhibits the pathway after the stage of β-catenin stabilization, as observed in human cancer cell lines, characterized by constitutive β-catenin activity. Finally, the regulation of Wnt signaling by Tollip occurs also during early embryonic development of zebrafish. In summary, our data identify a novel function of Tollip in regulating the canonical Wnt pathway which is evolutionarily conserved between fish and humans. Tollip-mediated inhibition of Wnt signaling may contribute not only to embryonic development, but also to carcinogenesis. Mechanistically, Tollip can potentially coordinate multiple cellular pathways of trafficking and signaling, possibly by exploiting its ability to interact with ubiquitin and the sumoylation machinery.
Collapse
|
42
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
43
|
Lu L, Gao Y, Zhang Z, Cao Q, Zhang X, Zou J, Cao Y. Kdm2a/b Lysine Demethylases Regulate Canonical Wnt Signaling by Modulating the Stability of Nuclear β-Catenin. Dev Cell 2015; 33:660-74. [PMID: 26004508 DOI: 10.1016/j.devcel.2015.04.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/02/2014] [Accepted: 04/02/2015] [Indexed: 11/25/2022]
Abstract
In the absence of Wnt activation, cytosolic β-catenin is degraded through GSK3/CK1-mediated phosphorylation at the N terminus. Here, we show that, upon Wnt activation, the stability of nuclear β-catenin is regulated via methylation/demethylation. The protein lysine demethylases Kdm2a and Kdm2b regulate the turnover of non-phosphorylated β-catenin specifically within the nucleus via direct interaction with the fourth and fifth armadillo repeats. The lysine residues within this region are required for the methylation of non-phosphorylated β-catenin, which is demethylated by Kdm2a/b and subsequently ubiquitylated. During Xenopus embryogenesis, kdm2a/b genes are transcribed during early embryogenesis and are required for the specification of the body axis. Kdm2a/b knockdown in Xenopus embryos leads to increases in non-phosphorylated and methylated β-catenin, concurrent with the upregulation of β-catenin target genes. This mechanism is required for controlling the output of the Wnt/β-catenin signaling pathway to maintain normal cellular functions.
Collapse
Affiliation(s)
- Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Qing Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Jianghuan Zou
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing 210061, China.
| |
Collapse
|
44
|
Kai M, Ueno N, Kinoshita N. Phosphorylation-dependent ubiquitination of paraxial protocadherin (PAPC) controls gastrulation cell movements. PLoS One 2015; 10:e0115111. [PMID: 25580871 PMCID: PMC4291225 DOI: 10.1371/journal.pone.0115111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/17/2014] [Indexed: 01/31/2023] Open
Abstract
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Masatake Kai
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Noriyuki Kinoshita
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- * E-mail:
| |
Collapse
|
45
|
Filopodia-based Wnt transport during vertebrate tissue patterning. Nat Commun 2015; 6:5846. [PMID: 25556612 DOI: 10.1038/ncomms6846] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Paracrine Wnt/β-catenin signalling is important during developmental processes, tissue regeneration and stem cell regulation. Wnt proteins are morphogens, which form concentration gradients across responsive tissues. Little is known about the transport mechanism for these lipid-modified signalling proteins in vertebrates. Here we show that Wnt8a is transported on actin-based filopodia to contact responding cells and activate signalling during neural plate formation in zebrafish. Cdc42/N-Wasp regulates the formation of these Wnt-positive filopodia. Enhanced formation of filopodia increases the effective signalling range of Wnt by facilitating spreading. Consistently, reduction in filopodia leads to a restricted distribution of the ligand and a limited signalling range. Using a simulation, we provide evidence that such a short-range transport system for Wnt has a long-range signalling function. Indeed, we show that a filopodia-based transport system for Wnt8a controls anteroposterior patterning of the neural plate during vertebrate gastrulation.
Collapse
|
46
|
Motomura E, Narita T, Nasu Y, Kato H, Sedohara A, Nishimatsu SI, Sakai M. Cell-autonomous signal transduction in the Xenopus egg Wnt/β-catenin pathway. Dev Growth Differ 2014; 56:640-52. [PMID: 25330272 PMCID: PMC4298249 DOI: 10.1111/dgd.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022]
Abstract
Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β-catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage-stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA-injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8-KDEL) could dorsalize Xenopus embryos. Finally, Wnt8-induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization.
Collapse
Affiliation(s)
- Eriko Motomura
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| | - Tomohiro Narita
- Department of Molecular Biology, Kawasaki Medical SchoolKurashiki, Japan
| | - Yuya Nasu
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| | - Hirotaka Kato
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| | - Ayako Sedohara
- Central Institute for Experimental AnimalsKawasaki-ku, Kawasaki, Japan
| | | | - Masao Sakai
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| |
Collapse
|
47
|
Kizil C, Küchler B, Yan JJ, Özhan G, Moro E, Argenton F, Brand M, Weidinger G, Antos CL. Simplet/Fam53b is required for Wnt signal transduction by regulating β-catenin nuclear localization. Development 2014; 141:3529-39. [DOI: 10.1242/dev.108415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Canonical β-catenin-dependent Wnt signal transduction is important for several biological phenomena, such as cell fate determination, cell proliferation, stem cell maintenance and anterior-posterior axis formation. The hallmark of canonical Wnt signaling is the translocation of β-catenin into the nucleus where it activates gene transcription. However, the mechanisms regulating β-catenin nuclear localization are poorly understood. We show that Simplet/Fam53B (Smp) is required for Wnt signaling by positively regulating β-catenin nuclear localization. In the zebrafish embryo, the loss of smp blocks the activity of two β-catenin-dependent reporters and the expression of Wnt target genes, and prevents nuclear accumulation of β-catenin. Conversely, overexpression of smp increases β-catenin nuclear localization and transcriptional activity in vitro and in vivo. Expression of mutant Smp proteins lacking either the nuclear localization signal or the β-catenin interaction domain reveal that the translocation of Smp into the nucleus is essential for β-catenin nuclear localization and Wnt signaling in vivo. We also provide evidence that mammalian Smp is involved in regulating β-catenin nuclear localization: the protein colocalizes with β-catenin-dependent gene expression in mouse intestinal crypts; siRNA knockdown of Smp reduces β-catenin nuclear localization and transcriptional activity; human SMP mediates β-catenin transcriptional activity in a dose-dependent manner; and the human SMP protein interacts with human β-catenin primarily in the nucleus. Thus, our findings identify the evolutionary conserved SMP protein as a regulator of β-catenin-dependent Wnt signal transduction.
Collapse
Affiliation(s)
- Caghan Kizil
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Beate Küchler
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Jia-Jiun Yan
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Günes Özhan
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Enrico Moro
- Department of Molecular Medicine, University of Padua, Via U. Bassi 58/B, Padua 25131, Italy
| | - Francesco Argenton
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padua 35131, Italy
| | - Michael Brand
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, Dresden 01307, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm 89081, Germany
| | - Christopher L. Antos
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| |
Collapse
|
48
|
Rong X, Chen C, Zhou P, Zhou Y, Li Y, Lu L, Liu Y, Zhou J, Duan C. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos. PLoS One 2014; 9:e99514. [PMID: 24918770 PMCID: PMC4053527 DOI: 10.1371/journal.pone.0099514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.
Collapse
Affiliation(s)
- Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Chen Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Pin Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yumei Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- * E-mail: (CD); (JZ)
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (CD); (JZ)
| |
Collapse
|
49
|
Mwafi N, Beretta CA, Paolini A, Carl M. Divergent Wnt8a gene expression in teleosts. PLoS One 2014; 9:e85303. [PMID: 24465531 PMCID: PMC3896364 DOI: 10.1371/journal.pone.0085303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/26/2013] [Indexed: 12/02/2022] Open
Abstract
The analysis of genes in evolutionarily distant but morphologically similar species is of major importance to unravel the changes in genomes over millions of years, which led to gene silencing and functional diversification. We report the analysis of Wnt8a gene expression in the medakafish and provide a detailed comparison to other vertebrates. In all teleosts analyzed there are two paralogous Wnt8a copies. These show largely overlapping expression in the early developing zebrafish embryo, an evolutionarily distant relative of medaka. In contrast to zebrafish, we find that both maternal and zygotic expression of particularly one Wnt8a paralog has diverged in medaka. While Wnt8a1 expression is mostly conserved at early embryonic stages, the expression of Wnt8a2 differs markedly. In addition, both genes are distinctly expressed during organogenesis unlike the zebrafish homologs, which may hint at the emergence of functional diversification of Wnt8a ligands during evolution.
Collapse
Affiliation(s)
- Nesrin Mwafi
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
| | - Carlo A. Beretta
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
| | - Alessio Paolini
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
| | - Matthias Carl
- Heidelberg University, Medical Faculty Mannheim, Department of Cell and Molecular Biology, Mannheim, Germany
- * E-mail:
| |
Collapse
|
50
|
Wylie AD, Fleming JAGW, Whitener AE, Lekven AC. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Dev Biol 2013; 386:53-63. [PMID: 24333179 DOI: 10.1016/j.ydbio.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022]
Abstract
wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.
Collapse
Affiliation(s)
- Annika D Wylie
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Jo-Ann G W Fleming
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Amy E Whitener
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, United States.
| |
Collapse
|