1
|
Effects of combinations of gapmer antisense oligonucleotides on the target reduction. Mol Biol Rep 2023; 50:3539-3546. [PMID: 36787053 PMCID: PMC9925919 DOI: 10.1007/s11033-022-08224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND The co-administration of several therapeutic oligonucleotides targeting the same transcript is a beneficial approach. It broadens the target sites for diseases associated with various mutations or splice variants. However, little is known how a combination of antisense oligonucleotides (ASOs), which is one of the major modalities of therapeutic oligonucleotides, affects the potency. In this study, we aimed to elucidate the combination-effects of ASOs and the relationship between the target sites and potency of different combinations. METHOD AND RESULTS We designed 113 ASOs targeting human superoxide dismutase 1 pre-mRNA and found 13 ASOs that had comparable silencing activity in vitro. An analysis of combination-effects on the silencing potency of 37 pairs of two ASOs on HeLa cells revealed that 29 pairs had comparable potency to that of two ASOs; on the other hand, eight pairs had reduced potency, indicating a negative impact on the activity. A reduced potency was seen in pairs targeting the same intron, exon-intron combination, or two different introns. The sequence distance of target sites was not the major determinant factor of combination-effects. In addition, a combination of three ASOs preserving the potency could be designed by avoiding two-ASO pairs, which had a reduced potency. CONCLUSIONS This study revealed that more than half of the combinations retain their potency by paring two ASOs; in contrast, some pairs had a reduced potency. This could not be predicted only by the distance between the target sites.
Collapse
|
2
|
Sam MR, Zomorodipour A, Haddad-Mashadrizeh A, Ghorbani M, Kardar GA, Sam S. Functions of the Heterologous Intron-Derived Fragments Intra and Extra Factor IX-cDNA Coding Region on the Human Factor IX Expression in HepG2 and Hek-293T Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1753. [PMID: 30805387 PMCID: PMC6371630 DOI: 10.21859/ijb.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 11/27/2022]
Abstract
Background Human FIX (hFIX) gene transfer into hepatocytes has provided a novel approach for treatment of hemophilia B. To obtain an improved expression of hFIX, the functional hFIX-expressing plasmids with appropriate intron-derived fragments which facilitate transcription and promote an efficient 3′-end formation of mRNAs are required. Objectives We aim to evaluate the functions of the heterologous intron-derived fragments intra and extra hFIX-cDNA coding region with respect to the hFIX expression in the hepatocytes and kidney cells. Materials and Methods HepG2 cells as differentiated hepatocytes and Hek-293T cells as embryonic kidney cells were transfected with the different hFIX-expressing plasmids containing various combinations of the two human beta-globin (hBG) introns within the hFIX-cDNA and Kozak sequence. In the next stage, as a hepatocyte-specific sequence, the rat aldolase B intronic enhancer sequence (rABE), was isolated from the first intron of the rat aldoase B gene and inserted within the upstream CMV promoter (CMVp) and efficacies of the engineered vectors were investigated in the stably-transfected HepG2 cells. Results Our data indicate that the intron-less construct and hBG intron-I containing construct are more effective with regard to hFIX expression compared to other constructs in Hek-293 cells. In HepG2 cells, the rABE in combination with CMVp in context of intron-less plasmid induced an increase in total expression of hFIX protein dramatically; ranging from 2.3 to 40 folds increase compared to other constructs. The rABE in combination with CMVp in the hBG intron-I, hBG intron-II, and hBG intron-I,II containing plasmids induced 3.7, 2, and 1.6-fold increase in the total expression of hFIX protein, respectively. The presence of both hBG intronic sequences within the hFIX-cDNA induced a higher secretion level of hFIX than either intron-I or II alone and provided correctly spliced hFIX transcripts in HepG2 and kidney cell lines. The intron-less construct with or without rABE induced the highest hFIX mRNA levels in HepG2 and Hek-293T cells respectively compared to other constructs. Conclusions The embryonic kidney cells in addition to the differentiated hepatic cell lines could be successfully targeted by plasmid vectors. The intron-less and hBG intron-I containing plasmids represent a particular interest in producing recombinant hFIX in Hek-293T cells. The synergistic function on the hFIX expression that was achieved by combining the CMVp with the liver-specific rABE would be a useful approach for future designing of the expression cassettes for hepatocyte-mediated gene expression in hemophilia B.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Alireza Zomorodipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Mahdi Ghorbani
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sohrab Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Malone CD, Mestdagh C, Akhtar J, Kreim N, Deinhard P, Sachidanandam R, Treisman J, Roignant JY. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript. Genes Dev 2014; 28:1786-99. [PMID: 25104425 PMCID: PMC4197963 DOI: 10.1101/gad.245829.114] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. Malone et al. describe a novel function for the EJC and its splicing subunit, RnpS1, in controlling piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. RnpS1-dependent removal of this intron requires splicing of the flanking introns. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing.
Collapse
Affiliation(s)
- Colin D Malone
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA; Howard Hughes Medical Institute
| | | | - Junaid Akhtar
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nastasja Kreim
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Pia Deinhard
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jessica Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
4
|
Haddad-Mashadrizeh A, Zomorodipour A, Izadpanah M, Sam MR, Ataei F, Sabouni F, Hosseini SJ. A systematic study of the function of the human beta-globin introns on the expression of the human coagulation factor IX in cultured Chinese hamster ovary cells. J Gene Med 2009; 11:941-50. [PMID: 19565465 DOI: 10.1002/jgm.1367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Intronic sequences have the potential to improve gene expression in eukaryotes by a variety of mechanisms. In this context, human beta-globin (hBG) introns were inserted into the human factor IX (hFIX) cDNA in cytomegalovirus (CMV)-regulated plasmids. The resulting construct was then used for further expression analysis in vitro. METHODS Seven hFIX-expressing plasmids with different combinations of the two hBG introns and the Kozak element were constructed and used for a systematic expression analysis in cultured Chinese hamster ovary (CHO) cells. In parallel, the hBG intronic sequences were analysed for the presence of possible regulatory elements. RESULTS All the constructed plasmids resulted in transient expression of the hFIX. However, the coagulation activities varied according to the particular constructs used. Based on the hFIX antigenic assay, a wide range of variation was observed during persistent expression. The second hBG intron appears to be more effective than the first one. The expression level was further increased upon the inclusion of the Kozak element. Sequence analysis has detected several transcription factor binding (TFB) motifs in both of the introns, but with a higher frequency in the second one. CONCLUSIONS Potentials of hBG introns as enhancer-like elements for the expression of the hFIX in cultured CHO cells and a higher activity with respect to the second hBG intron compared to the first one were demonstrated. The larger number of TFBs in the second hBG intron reflects its stronger effect. The results obtained suggest possible synergistic functions of the hBG introns and Kozak on the expression level of hFIX in vitro.
Collapse
|
5
|
Pandya-Jones A, Black DL. Co-transcriptional splicing of constitutive and alternative exons. RNA (NEW YORK, N.Y.) 2009; 15:1896-908. [PMID: 19656867 PMCID: PMC2743041 DOI: 10.1261/rna.1714509] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/25/2009] [Indexed: 05/17/2023]
Abstract
In metazoan organisms, pre-mRNA splicing is thought to occur during transcription, and it is postulated that these two processes are functionally coupled via still-unknown mechanisms. Current evidence supports co-transcriptional spliceosomal assembly, but there is little quantitative information on how much splicing is completed during RNA synthesis. Here we isolate nascent chromatin-associated RNA from free, nucleoplasmic RNA already released from the DNA template. Using a quantitative RT-PCR assay, we show that the majority of introns separating constitutive exons are already excised from the human c-Src and fibronectin pre-mRNAs that are still in the process of synthesis, and that these introns are removed in a general 5'-to-3' order. Introns flanking alternative exons in these transcripts are also removed during synthesis, but show differences in excision efficiency between cell lines with different regulatory conditions. Our data suggest that skipping of an exon can induce a lag in splicing compared to intron removal under conditions of exon inclusion. Nevertheless, excision of the long intron encompassing the skipped exon is still completed prior to transcript release into the nucleoplasm. Thus, we demonstrate that the decision to include or skip an alternative exon is made during transcription and not post-transcriptionally.
Collapse
Affiliation(s)
- Amy Pandya-Jones
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
6
|
Cinquin O. Repressor dimerization in the zebrafish somitogenesis clock. PLoS Comput Biol 2007; 3:e32. [PMID: 17305423 PMCID: PMC1797823 DOI: 10.1371/journal.pcbi.0030032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 01/02/2007] [Indexed: 11/18/2022] Open
Abstract
The oscillations of the somitogenesis clock are linked to the fundamental process of vertebrate embryo segmentation, yet little is known about their generation. In zebrafish, it has been proposed that Her proteins repress the transcription of their own mRNA. However, in its simplest form, this model is incompatible with the fact that morpholino knockdown of Her proteins can impair expression of their mRNA. Simple self-repression models also do not account for the spatiotemporal pattern of gene expression, with waves of gene expression shrinking as they propagate. Here we study computationally the networks generated by the wealth of dimerization possibilities amongst transcriptional repressors in the zebrafish somitogenesis clock. These networks can reproduce knockdown phenotypes, and strongly suggest the existence of a Her1–Her7 heterodimer, so far untested experimentally. The networks are the first reported to reproduce the spatiotemporal pattern of the zebrafish somitogenesis clock; they shed new light on the role of Her13.2, the only known link between the somitogenesis clock and positional information in the paraxial mesoderm. The networks can also account for perturbations of the clock by manipulation of FGF signaling. Achieving an understanding of the interplay between clock oscillations and positional information is a crucial first step in the investigation of the segmentation mechanism. Vertebrate embryos acquire a segmented structure along the anteroposterior axis. Segmentation is critical for patterning of other structures (such as nerves, vertebrae, muscles, and blood vessels) and occurs by the rhythmic separation of balls of cells, called somites, from the anterior end of their precursor tissue, called the presomitic mesoderm. These rhythmic events are associated with oscillatory gene expression in the presomitic mesoderm: waves of gene expression originate at the posterior end and spread anteriorly. When a wave reaches the anterior end, a pair of new somites detaches. The set of genes whose expression oscillates is termed the “somitogenesis clock.” Even though the zebrafish somitogenesis clock has been the subject of intensive study, it is not clear how its oscillations are generated. It has been proposed that the mechanism involves a simple negative feedback loop, with proteins of the Her family periodically repressing their own expression. However, this is incompatible with some experimental results and does not explain how the spatiotemporal pattern of gene expression is generated. Here I propose a model—based on physical interactions between Her proteins—that is compatible with experimental results, and that explains how positional information is used to generate the spatiotemporal pattern of gene expression.
Collapse
Affiliation(s)
- Olivier Cinquin
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Duong V, Boulle N, Daujat S, Chauvet J, Bonnet S, Neel H, Cavaillès V. Differential Regulation of Estrogen Receptor α Turnover and Transactivation by Mdm2 and Stress-Inducing Agents. Cancer Res 2007; 67:5513-21. [PMID: 17545634 DOI: 10.1158/0008-5472.can-07-0967] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In mammalian cells, the level of estrogen receptor alpha (ERalpha) is rapidly decreased upon estrogen treatment, and this regulation involves proteasome degradation. Using different approaches, we showed that the Mdm2 oncogenic ubiquitin-ligase directly interacts with ERalpha in a ternary complex with p53 and is involved in the regulation of ERalpha turnover (both in the absence or presence of estrogens). Several lines of evidence indicated that this effect of Mdm2 required its ubiquitin-ligase activity and involved the ubiquitin/proteasome pathway. Moreover, in MCF-7 human breast cancer cells, various p53-inducing agents (such as UV irradiation) or treatment with RITA (which inhibits the interaction of p53 with Mdm2) stabilized ERalpha and abolished its 17beta-estradiol-dependent turnover. Interestingly, our data indicated that ligand-dependent receptor turnover was not required for efficient transactivation. Altogether, our results indicate that the Mdm2 oncoprotein and stress-inducing agents complexly and differentially regulate ERalpha stability and transcriptional activity in human cancer cells.
Collapse
Affiliation(s)
- Vanessa Duong
- Institut National de la Santé et de la Recherche Médicale U540, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Montreau N, Vaur S, Dautry F, Andéol Y. Coupled amplification and degradation of exogenous RNA injected in amphibian oocytes. Nucleic Acids Res 2004; 32:2957-65. [PMID: 15161959 PMCID: PMC419618 DOI: 10.1093/nar/gkh620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The early development of amphibians takes place in the absence of significant transcription and is controlled at the post-transcriptional level. We have reported that in vitro synthesized transcripts injected into axolotl fertilized eggs or oocytes were not continuously degraded as their abundance apparently fluctuated over time, with detected amounts sometimes higher than initial injected amounts. To further characterize this phenomenon, we have co-injected RNA chain terminators to prevent RNA synthesis. This led to the suppression of fluctuations and to a regular decrease in the amount of transcripts that appeared to be more stable in the presence of inhibitors. These observations indicate a coupling between RNA synthesis and an accelerated degradation. Throughout the time course, cRNA molecules could be detected, and their abundance increased in the early phase of the kinetics, supporting the implication of an RNA-dependent RNA polymerase in an asymmetric amplification process. Finally, when the fate of the injected transcripts was investigated in individual oocytes, we observed an absolute increase in abundance in some but not all oocytes, supporting the existence of a limiting step in the initiation of the RNA amplification stochastic process.
Collapse
MESH Headings
- Ambystoma mexicanum/metabolism
- Animals
- Deoxyadenosines/pharmacology
- Deoxyuracil Nucleotides/pharmacology
- Female
- Genes, myc/genetics
- Kinetics
- Oocytes/drug effects
- Oocytes/metabolism
- Proto-Oncogene Proteins/genetics
- RNA Stability/drug effects
- RNA, Complementary/biosynthesis
- RNA, Complementary/genetics
- RNA, Complementary/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/pharmacology
- RNA-Dependent RNA Polymerase/metabolism
- Stochastic Processes
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Wnt Proteins
- Xenopus/genetics
- Zebrafish Proteins
Collapse
Affiliation(s)
- Nicole Montreau
- Laboratoire de Biologie du Développement, Université P. et M. Curie, CNRS, UMR 7622, 9 Quai St Bernard, 75251 Paris Cedex 05 France
| | | | | | | |
Collapse
|
9
|
Audibert A, Weil D, Dautry F. In vivo kinetics of mRNA splicing and transport in mammalian cells. Mol Cell Biol 2002; 22:6706-18. [PMID: 12215528 PMCID: PMC134034 DOI: 10.1128/mcb.22.19.6706-6718.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Revised: 05/14/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
The kinetics of pre-mRNA processing in living cells is poorly known, preventing a detailed analysis of the regulation of these reactions. Using tetracycline-regulated promoters we performed, during a transcriptional induction, a complete analysis of the maturation of two cellular mRNAs, those for LT-alpha and beta-globin. In both cases, splicing was appropriately described by first-order reactions with corresponding half-lives ranging between 0.4 and 7.5 min, depending on the intron. Transport also behaved as a first-order reaction during the early phase of beta-globin expression, with a nuclear dwelling time of 4 min. At a later time, analysis was prevented by the progressive accumulation within the nucleus of mature mRNA not directly involved in export. Our results further establish for these genes that (i) splicing components are never limiting, even when expression is induced in naive cells, (ii) there is no significant RNA degradation during splicing and transport, and (iii) precursor-to-product ratios at steady state can be used for the determination of splicing rates. Finally, the comparison between the kinetics of splicing during transcriptional induction and during transcriptional shutoff reveals a novel coupling between transcription and splicing.
Collapse
Affiliation(s)
- A Audibert
- CNRS-UPR 1983, Institut André Lwoff, 94801 Villejuif Cedex, France
| | | | | |
Collapse
|
10
|
Abstract
The kinetics of pre-mRNA processing in living cells is poorly known, preventing a detailed analysis of the regulation of these reactions. Using tetracycline-regulated promoters we performed, during a transcriptional induction, a complete analysis of the maturation of two cellular mRNAs, those for LT-alpha and beta-globin. In both cases, splicing was appropriately described by first-order reactions with corresponding half-lives ranging between 0.4 and 7.5 min, depending on the intron. Transport also behaved as a first-order reaction during the early phase of beta-globin expression, with a nuclear dwelling time of 4 min. At a later time, analysis was prevented by the progressive accumulation within the nucleus of mature mRNA not directly involved in export. Our results further establish for these genes that (i) splicing components are never limiting, even when expression is induced in naive cells, (ii) there is no significant RNA degradation during splicing and transport, and (iii) precursor-to-product ratios at steady state can be used for the determination of splicing rates. Finally, the comparison between the kinetics of splicing during transcriptional induction and during transcriptional shutoff reveals a novel coupling between transcription and splicing.
Collapse
|
11
|
Pozzoli U, Sironi M, Cagliani R, Comi GP, Bardoni A, Bresolin N. Comparative analysis of the human dystrophin and utrophin gene structures. Genetics 2002; 160:793-8. [PMID: 11861579 PMCID: PMC1461978 DOI: 10.1093/genetics/160.2.793] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present analysis of intronic sequences in the human DMD and UTRN genes. In both genes accumulation of repeated elements could account for intron expansion. Out-of-frame rod-domain exons have stronger splice sites and are separated by significantly longer introns as compared to in-frame exons. These features are unique for the two homologs and not shared by other spectrin superfamily genes.
Collapse
Affiliation(s)
- Uberto Pozzoli
- IRCCS E. Medea, Associazione La Nostra Famiglia, 23842 Bosisio Parini, LC, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Wetterberg I, Zhao J, Masich S, Wieslander L, Skoglund U. In situ transcription and splicing in the Balbiani ring 3 gene. EMBO J 2001; 20:2564-74. [PMID: 11350946 PMCID: PMC125468 DOI: 10.1093/emboj/20.10.2564] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2001] [Revised: 03/26/2001] [Accepted: 03/27/2001] [Indexed: 11/13/2022] Open
Abstract
The Balbiani ring 3 (BR3) gene contains 38 introns, and more than half of them are co-transcriptionally excised. We have determined the in situ structure of the active BR3 gene by electron tomography. Each of the 20-25 nascent transcripts on the gene is present together with splicing factors and the RNA polymerase II in a nascent transcript and splicing complex, here called the NTS complex. The results indicate that extensive changes in overall shape, substructure and molecular mass take place repeatedly within an NTS complex as it moves along the gene. The volume and calculated mass of the NTS complexes show that, maximally, one complete spliceosome is assembled on the multi-intron transcript at any given time point. The structural data show that the spliceosome is not a structurally well-defined unit in situ and that the C-terminal domain of the elongating RNA polymerase II cannot carry spliceosomal components for all introns in the BR3 transcript. Our data indicate that spliceosomal factors are continuously added to and released from the NTS complexes during transcription elongation.
Collapse
Affiliation(s)
- Ingela Wetterberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm and Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden Corresponding author e-mail:
| | - Jian Zhao
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm and Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden Corresponding author e-mail:
| | - Sergej Masich
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm and Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden Corresponding author e-mail:
| | - Lars Wieslander
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm and Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden Corresponding author e-mail:
| | - Ulf Skoglund
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm and Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden Corresponding author e-mail:
| |
Collapse
|
13
|
Lacy-Hulbert A, Thomas R, Li XP, Lilley CE, Coffin RS, Roes J. Interruption of coding sequences by heterologous introns can enhance the functional expression of recombinant genes. Gene Ther 2001; 8:649-53. [PMID: 11320412 DOI: 10.1038/sj.gt.3301440] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Accepted: 01/30/2001] [Indexed: 11/09/2022]
Abstract
Sustained expression of recombinant proteins is a critical factor for the effectiveness of numerous applications in the biomedical sciences including the treatment of human disease by gene therapy, the large scale production of therapeutic proteins, as well as the investigation of gene function by transgenesis or cell type specific mutagenesis. Although much attention has been paid to the optimisation of regulatory sequences such as promoters, untranslated regions and polyadenylation signals, effective and sustained expression of recombinant genes in vivo is often difficult to achieve. Here we report that the creation of artificial exons, by insertion of two short heterologous introns into open reading frames, is not only compatible with functional expression, but also leads to a 30-fold enhancement of mRNA production for both green fluorescent protein and the bacteriophage P1-derived Cre recombinase. The levels of green fluorescence were increased five-fold in cell lines and sustained long-term expression at increased levels was observed in rat brain after transduction with a herpes simplex virus-based vector. The data presented identify a means by which the expression of recombinant genes can be enhanced considerably, in addition to and independently from the surrounding regulatory sequences. The method should help obtain sustained and effective expression of recombinant proteins in vivo.
Collapse
Affiliation(s)
- A Lacy-Hulbert
- Department of Medicine, Windeyer Institute of Medical Science, University College London, UK
| | | | | | | | | | | |
Collapse
|
14
|
Ismail SI, Kingsman SM, Kingsman AJ, Uden M. Split-intron retroviral vectors: enhanced expression with improved safety. J Virol 2000; 74:2365-71. [PMID: 10666267 PMCID: PMC111718 DOI: 10.1128/jvi.74.5.2365-2371.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inclusion of retrovirus-derived introns within retrovirus-based expression vectors leads to a fraction of the resulting transcripts being spliced. Such splicing has been shown to markedly improve expression (W. J. Krall et al., Gene Ther. 3:37-48, 1996). One way to improve upon this still further might involve the use of more efficient introns instead of those from the provirus. Currently, however, incorporation of such introns remains self-defeating since they are removed in the nucleus of the producer cell. In the past, elaborate ways to overcome this problem have included the use of alphaviruses to make the vector transcripts within the cytoplasm, thus avoiding the nuclear splicing machinery during vector production (K. J. Li and H. Garoff, Proc. Natl. Acad. Sci. USA 95:3650-3654, 1998). We now present a novel design for the inclusion of introns within a retroviral vector. In essence, this is achieved by exploiting the retroviral replication process to copy not only the U3 promoter but also a synthetic splice donor to the 5'-long-terminal-repeat position during reverse transcription. Once copied, synthesized transcripts then contain a splice donor at their 5' end capable of interacting with a consensus splice acceptor engineered downstream of the packaging signal. Upon transduction, we demonstrate these vectors to produce enhanced expression from near fully spliced (and thus packaging signal minus) transcripts. The unique design of these high titer and high-expression retroviral vectors may be of use in a number of gene therapy applications.
Collapse
Affiliation(s)
- S I Ismail
- Retrovirus Molecular Biology Group, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
15
|
Stark JM, Cooper TA, Roth MB. The relative strengths of SR protein-mediated associations of alternative and constitutive exons can influence alternative splicing. J Biol Chem 1999; 274:29838-42. [PMID: 10514463 DOI: 10.1074/jbc.274.42.29838] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the functional role of SR protein-mediated exon/exon associations in the alternative splicing of exon 5 of chicken cardiac troponin T (cTnT). We have previously shown that SR proteins can promote the association of the alternative exon 5 with the flanking constitutive exon 6 of this pre-mRNA. In this study, we have shown that when exons 2, 3, and 4 of the cTnT pre-mRNA are spliced together, the composite exon 2/3/4 contains an additional SR protein binding site. Furthermore, we have found that SR proteins can also promote interactions between the pairs of exons 2/3/4-5 and 2/3/4-6. We then asked whether the SR protein binding sites in these exons play a role in cTnT alternative splicing in vivo. We found that the SR protein binding sites in exons 2/3/4 and 6 promote exon 5 skipping, and it has previously been shown that the SR protein binding site in exon 5 promotes exon 5 inclusion. Consistent with these results, we find that the SR protein-mediated association of exon 2/3/4 with 6 is preferred over associations involving exon 5, in that exons 2/3/4 and 6 are more efficient than exon 5 in competing an SR protein-mediated exon/exon association. We suggest that the relative strengths of SR protein-mediated associations of alternative and constitutive exons play a role in determining alternative splicing patterns.
Collapse
Affiliation(s)
- J M Stark
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
16
|
Gondran P, Amiot F, Weil D, Dautry F. Accumulation of mature mRNA in the nuclear fraction of mammalian cells. FEBS Lett 1999; 458:324-8. [PMID: 10570933 DOI: 10.1016/s0014-5793(99)01175-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Little is known about the nuclear mRNA content of mammalian cells. In this study, we analyzed by Northern blotting with a panel of probes the nuclear and cytoplasmic fractions derived from several rodent cell lines. For most of the genes under study, mature mRNAs could easily be detected in the nuclear fraction and accumulated to higher levels than the corresponding precursors. In addition, significant differences in the nucleo-cytoplasmic partition of mature mRNAs were observed between genes as well as between cell types (NIH 3T3, CTLL-2, D3-ES, PC-12), indicating that this nuclear accumulation of mRNA is regulated. Thus, while it is usually considered that splicing is the limiting step of pre-mRNA processing, these results point towards transport or nuclear retention of mRNA as a key determinant of nuclear mRNA metabolism.
Collapse
Affiliation(s)
- P Gondran
- CNRS UPR 1983, Génétique Moléculaire et Intégration des Fonctions Cellulaires, Institut de Recherches sur le Cancer, Villejuif, France
| | | | | | | |
Collapse
|
17
|
Gondran P, Dautry F. Regulation of mRNA splicing and transport by the tyrosine kinase activity of src. Oncogene 1999; 18:2547-55. [PMID: 10353598 DOI: 10.1038/sj.onc.1202598] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The regulation of transcription by signal transduction pathways is well documented. In addition, we have previously shown that src can regulate pre-mRNA processing. To investigate which functional domains of src are involved in the regulation of splicing and transport of Lymphotoxin alpha (LTalpha) transcripts, we have used src mutants in the catalytic, SH2 and SH3 domains in association with the Y527F or the E378G activating mutation. Our results establish that the regulation of pre-mRNA processing and transcription can occur independently of each other. The splicing and transport phenotypes require an intact tyrosine kinase domain and both are insensitive to the deletion of the SH3 domain. Therefore these phenotypes do not depend upon the recruitment through the SH3 domain of src of RNA binding proteins (Sam 68, hnRNP K). By contrast, deletions in the SH2 domain have no effect on splicing but either abolish or exacerbate the transport phenotype depending upon the activating mutation (Y527F or E378G). These divergent responses are associated with specific changes in the pattern of tyrosine phosphorylated proteins. Thus, the regulation of transcription, splicing and mRNA transport implicate different effector pathways of src. Furthermore, analysis of the transport phenotype reveals the interplay between the SH2 and catalytic domain of the protein.
Collapse
Affiliation(s)
- P Gondran
- Institut de Recherches sur le Cancer, CNRS UPR 9044 Génétique Moléculaire et Intégration des Fonctions Cellulaires, Villejuif, France
| | | |
Collapse
|
18
|
Audibert A, Simonelig M. Autoregulation at the level of mRNA 3' end formation of the suppressor of forked gene of Drosophila melanogaster is conserved in Drosophila virilis. Proc Natl Acad Sci U S A 1998; 95:14302-7. [PMID: 9826695 PMCID: PMC24368 DOI: 10.1073/pnas.95.24.14302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila melanogaster Suppressor of forked [Su(f)] protein shares homology with the yeast RNA14 protein and the 77-kDa subunit of human cleavage stimulation factor, which are proteins involved in mRNA 3' end formation. This suggests a role for Su(f) in mRNA 3' end formation in Drosophila. The su(f) gene produces three transcripts; two of them are polyadenylated at the end of the transcription unit, and one is a truncated transcript, polyadenylated in intron 4. Using temperature-sensitive su(f) mutants, we show that accumulation of the truncated transcript requires wild-type Su(f) protein. This suggests that the Su(f) protein autoregulates negatively its accumulation by stimulating 3' end formation of the truncated su(f) RNA. Cloning of su(f) from Drosophila virilis and analysis of its RNA profile suggest that su(f) autoregulation is conserved in this species. Sequence comparison between su(f) from both species allows us to point out three conserved regions in intron 4 downstream of the truncated RNA poly(A) site. These conserved regions include the GU-rich downstream sequence involved in poly(A) site definition. Using transgenes truncated within intron 4, we show that sequence up to the conserved GU-rich domain is sufficient for production of the truncated RNA and for regulation of this production by su(f). Our results indicate a role of su(f) in the regulation of poly(A) site utilization and an important role of the GU-rich sequence for this regulation to occur.
Collapse
Affiliation(s)
- A Audibert
- Dynamique du Génome et Evolution, Institut Jacques Monod, Université Denis Diderot, 2, place Jussieu, 75005 Paris, France
| | | |
Collapse
|
19
|
Abstract
The purpose of this review is to highlight the unique and common features of splice site selection in plants compared with the better understood yeast and vertebrate systems. A key question in plant splicing is the role of AU sequences and how and at what stage they are involved in spliceosome assembly. Clearly, intronic U- or AU-rich and exonic GC- and AG-rich elements can influence splice site selection and splicing efficiency and are likely to bind proteins. It is becoming clear that splicing of a particular intron depends on a fine balance in the "strength" of the multiple intron signals involved in splice site selection. Individual introns contain varying strengths of signals and what is critical to splicing of one intron may be of less importance to the splicing of another. Thus, small changes to signals may severely disrupt splicing or have little or no effect depending on the overall sequence context of a specific intron/exon organization.
Collapse
Affiliation(s)
- J. W. S. Brown
- Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, United Kingdom; e-mail: ;
| | | |
Collapse
|
20
|
Breault DT, Lichtler AC, Rowe DW. COL1A1 transgene expression in stably transfected osteoblastic cells. Relative contributions of first intron, 3'-flanking sequences, and sequences derived from the body of the human COL1A1 minigene. J Biol Chem 1997; 272:31241-50. [PMID: 9395449 DOI: 10.1074/jbc.272.50.31241] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.
Collapse
Affiliation(s)
- D T Breault
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut 06030-1515, USA
| | | | | |
Collapse
|
21
|
Simpson GG, Filipowicz W. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. PLANT MOLECULAR BIOLOGY 1996; 32:1-41. [PMID: 8980472 DOI: 10.1007/bf00039375] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The removal of introns from pre-mRNA transcripts and the concomitant ligation of exons is known as pre-mRNA splicing. It is a fundamental aspect of constitutive eukaryotic gene expression and an important level at which gene expression is regulated. The process is governed by multiple cis-acting elements of limited sequence content and particular spatial constraints, and is executed by a dynamic ribonucleoprotein complex termed the spliceosome. The mechanism and regulation of pre-mRNA splicing, and the sub-nuclear organisation of the spliceosomal machinery in higher plants is reviewed here. Heterologous introns are often not processed in higher plants indicating that, although highly conserved, the process of pre-mRNA splicing in plants exhibits significant differences that distinguish it from splicing in yeast and mammals. A fundamental distinguishing feature is the presence of and requirement for AU or U-rich intron sequence in higher-plant pre-mRNA splicing. In this review we document the properties of higher-plant introns and trans-acting spliceosomal components and discuss the means by which these elements combine to determine the accuracy and efficiency of pre-mRNA processing. We also detail examples of how introns can effect regulated gene expression by affecting the nature and abundance of mRNA in plants and list the effects of environmental stresses on splicing. Spliceosomal components exhibit a distinct pattern of organisation in higher-plant nuclei. Effective probes that reveal this pattern have only recently become available, but the domains in which spliceosomal components concentrate were identified in plant nuclei as enigmatic structures some sixty years ago. The organisation of spliceosomal components in plant nuclei is reviewed and these recent observations are unified with previous cytochemical and ultrastructural studies of plant ribonuleoprotein domains.
Collapse
Affiliation(s)
- G G Simpson
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
22
|
Donofrio G, Bignetti E, Clark AJ, Whitelaw CB. Comparable processing of beta-lactoglobulin pre-mRNA in cell culture and transgenic mouse models. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:465-9. [PMID: 8879248 DOI: 10.1007/bf02173012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic pre-mRNAs undergo a variety of post-transcriptional modifications, including the removal of intronic sequences by splicing, leading to creation of a functional mRNA. We have compared the processing of transcripts generated from ovine beta-lactoglobulin gene constructs in stably transfected cells and in transgenic mice. In both the in vitro and in vivo model systems the removal of the middle two introns resulted in the inefficient splicing of the downstream, terminal intron. This intron-containing transcript was detected in the cytoplasmic RNA fraction. Thus, the initial in vitro analysis in cell lines of minigene constructs destined for expression in transgenic animals may provide a rapid and reliable indicator of the processing efficiency of the pre-mRNA produced by the construct in vivo. This is in contrast to the apparent limitations of in vitro systems in the analysis of transcription regulatory elements required for transgene expression.
Collapse
Affiliation(s)
- G Donofrio
- Division of Molecular Biology, Roslin Institute (Edinburgh), Scotland, UK
| | | | | | | |
Collapse
|
23
|
McKenzie RW, Brennan MD. The two small introns of the Drosophila affinidisjuncta Adh gene are required for normal transcription. Nucleic Acids Res 1996; 24:3635-42. [PMID: 8836194 PMCID: PMC146134 DOI: 10.1093/nar/24.18.3635] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All Drosophila alcohol dehydrogenase (Adh) genes sequenced to date contain two small introns within the coding region. These are conserved in location and, to some extent, in sequence between the various species analyzed. To determine if these introns play a role in Adh gene expression, derivatives of the Drosophila affinidisjuncta Adh gene lacking one or both introns were constructed and analyzed by germline and transient transformation of Drosophila melanogaster. Removal of both introns lowered expression, whether measured by enzyme activity or by RNA levels. The decrease was seen in both germline transformed and transiently transformed larvae, with the effect being larger for germline transformants. Similar decreases (averaging 5-fold) were also seen at the embryonic and adult stages for germline transformants. Nuclear run-off transcription with nuclei from germline transformed embryos indicated that the reduction in RNA levels is due to decreased transcription. However, LacZ fusion constructs designed to test for the presence of a classical enhancer in the introns provided no evidence for such a mechanism. Removal of each intron individually resulted in more complex phenotypes. The introns have smaller, additive effects on expression in adults. In larvae, removal of the upstream intron significantly increases RNA levels but modestly decreases enzyme activity. Removal of the downstream intron lowers expression in both germline and transiently transformed larvae, but also increases position effects in germline transformants. Therefore, the small introns are clearly needed for optimal transcription of this Adh gene, but multiple mechanisms are involved.
Collapse
Affiliation(s)
- R W McKenzie
- Department of Biochemistry, School of Medicine, University of Louisville, KY 40292, USA
| | | |
Collapse
|
24
|
Gaudet J, VanderElst I, Spence AM. Post-transcriptional regulation of sex determination in Caenorhabditis elegans: widespread expression of the sex-determining gene fem-1 in both sexes. Mol Biol Cell 1996; 7:1107-21. [PMID: 8862524 PMCID: PMC275962 DOI: 10.1091/mbc.7.7.1107] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The fem-1 gene of C. elegans is one of three genes required for all aspects of male development in the nematode. Current models of sex determination propose that the products of the fem genes act in a novel signal-transduction pathway and that their activity is regulated primarily at the post-translational level in somatic tissues. We analyzed the expression of fem-1 to determine whether it revealed any additional levels of regulation. Both XX hermaphrodites and XO males express fem-1 at approximately constant levels throughout development. Somatic tissues in hermaphrodites adopt female fates, but they nonetheless express fem-1 mRNA and FEM-1 protein, suggesting that the regulation of fem-1 activity is post-transcriptional and probably post-translational. A compact promoter directs functional expression of fem-1 transgenes, as assayed by their masculinizing activity in fem-1 mutants. Activity also requires any two or more introns, suggesting that splicing may enhance fem-1 expression. The minimal noncoding sequences required for activity of fem-1 transgenes suffice to direct expression of a fem-1::lacZ reporter gene in all somatic tissues in both sexes. Many fem-1 transgenes, including those that rescue male somatic development in fem-1 mutants, paradoxically feminize the germline. We suggest that they do so by interfering with the germline expression of the endogenous fem-1 gene.
Collapse
Affiliation(s)
- J Gaudet
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
25
|
Jarrous N, Osman F, Kaempfer R. 2-Aminopurine selectively inhibits splicing of tumor necrosis factor alpha mRNA. Mol Cell Biol 1996; 16:2814-22. [PMID: 8649390 PMCID: PMC231273 DOI: 10.1128/mcb.16.6.2814] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
2-Aminopurine (2-AP) inhibits specific kinases that phosphorylate the alpha subunit of eukaryotic translation initiation factor 2. One of these, PKR, is also involved in signal transduction. We show here that 2-AP selectively inhibits expression of tumor necrosis factor alpha (TNF-alpha) mRNA in primary human lymphoid cells. 2-AP does not inhibit transcription of the human TNF-alpha gene, nor does it affect mRNA stability. Instead, the flow of short-lived precursor transcripts into mature TNF-alpha mRNA is blocked. When 2-AP is present during induction, unspliced TNF-alpha precursor transcripts accumulate at the expense of mRNA. Using RNase protection analysis with genomic probes for different exon-intron junctions, we show that 2-AP blocks splicing of TNF-alpha mRNA. Neither the TNF-beta nor the interleukin-1 beta gene shows such regulation. 2-AP also inhibits splicing of precursor RNA transcribed from an exogenous human TNF-alpha gene. Sequences within this gene thus confer sensitivity to 2-AP. Yet, control is not exerted at a specific splice site. Our results reveal the involvement of a 2-AP-sensitive component, expressed in functional form before induction, in the splicing of TNF-alpha mRNA.
Collapse
Affiliation(s)
- N Jarrous
- Department of Molecular Virology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
26
|
Rushforth AM, Anderson P. Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs. Mol Cell Biol 1996; 16:422-9. [PMID: 8524324 PMCID: PMC231018 DOI: 10.1128/mcb.16.1.422] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transposable element Tc1 is responsible for most spontaneous mutations that occur in many Caenorhabditis elegans strains. We analyzed the abundance and sequence of mRNAs expressed from five different Tc1 insertions within either hlh-1 (a MyoD homolog) or unc-54 (a myosin heavy chain gene). Each of the mutants expresses substantial quantities of mature mRNA in which most or all of Tc1 has been removed by splicing. Such mRNAs contain small insertions of Tc1 sequences and/or deletions of target gene sequences at the resulting spliced junctions. Most of these mutant mRNAs do not contain premature stop codons, and many are translated in frame to produce proteins that are functional in vivo. The number and variety of splice sites used to remove Tc1 from these mutant pre-mRNAs are remarkable. Two-thirds of the Tc1-containing introns removed from hlh-1 and unc-54 lack either the 5'-GU or AG-3' dinucleotides typically found at the termini of eukaryotic introns. We conclude that splicing to remove Tc1 from mutant pre-mRNAs allows many Tc1 insertions to be phenotypically silent. Such mRNA processing may help Tc1 escape negative selection.
Collapse
Affiliation(s)
- A M Rushforth
- Department of Genetics, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
27
|
Abstract
BACKGROUND Changes in gene expression in response to external signals provide a key mechanisms for the regulation of higher eukaryotic cell functions. The importance of transcriptional control in the response of cells to growth factors and cytokines has been extensively documented, but gene expression has also been shown to be controlled at other levels, such as the stability of mRNA in the cytoplasm, its localization and translation. By contrast to transcriptional control, little is known of the contribution of pre-mRNA nuclear processing to the regulation of gene expression, as most of our knowledge of pre-mRNA processing in vivo is indirect, being inferred from comparisons of transcription rates and levels of mRNA accumulation. RESULTS In this study, we have used as a model the well-characterized maturation pathway of transcripts of the cytokine, tumour necrosis factor beta (TNF beta). We have used the murine TNF beta gene as a reporter for pre-mRNA processing, using a co-transfection approach to investigate whether overproduction of proteins involved in signal transduction influences the processing of TNF beta transcripts. Although transfection of both activated ras and src genes led to an increase in RNA accumulation in the nuclear and cytoplasmic compartments, as expected from their transactivation of the TNF beta expression vector, only src induced a modification of RNA processing. Comparison of several modes of src activation indicated that two distinct effects of src on pre-mRNA processing can be coupled: one involves slowing down splicing and the other allows the export of partially spliced transcripts. These effects can be observed not only on the three introns of TNF beta but also on transcripts from a beta globin expression vector. DISCUSSION We have characterized how the processing of transcripts of TNF beta and beta globin is regulated by the signal transduction pathway that includes the Src protein, establishing that external signals have the capacity to regulate gene expression at a post-transcriptional level within the nucleus. Src seems to act on a general mechanism of splicing and/or mRNA transport, but its biologically relevant targets are likely to be restricted to genes for which either alternative processing pathways are in competition, or the kinetics of splicing is critical. This regulation could reflect a modulation by Src of the activity of components of the splicing and transport machineries, but could also involve RNA-binding proteins, which have been shown to interact with Src.
Collapse
Affiliation(s)
- H Neel
- Laboratoire de Génétique Oncologique, CNRS URA 1967, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
28
|
Dirksen WP, Sun Q, Rottman FM. Multiple splicing signals control alternative intron retention of bovine growth hormone pre-mRNA. J Biol Chem 1995; 270:5346-52. [PMID: 7890647 DOI: 10.1074/jbc.270.10.5346] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A fraction of bovine growth hormone (bGH) pre-mRNA undergoes alternative splicing in which the last intron is retained and transported to the cytoplasm. Our goal was to characterize the cis-acting signals in bGH pre-mRNA that collectively determine the distribution between intron splicing and intron retention. We now demonstrate that the balance between splicing and intron retention in cytoplasmic mRNA is primarily determined by the interaction of three splicing signals and the degree to which these signals deviate from consensus splicing signals. Intron retention requires the presence of both suboptimal 5'- and 3'-splice sites. Mutation of either splice site toward consensus leads to complete splicing of the intron. In the presence of both wild-type, suboptimal splice sites, efficient splicing of this intron is ensured by the presence of a third splicing element, a purine-rich exonic splicing enhancer (ESE). Although strong ESEs can be contained within very small sequences, the bGH ESE activity appears to be composed of multiple sequences spread throughout a 115-nucleotide region of exon 5. Consequently, the final ratio of splicing to intron retention depends on the balance between the relative strengths of each of these three splicing signals, which still allow intron-containing coding sequences to be transported to the cytoplasm.
Collapse
Affiliation(s)
- W P Dirksen
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960
| | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Jacquemin-Sablon H, Triqueneaux G, Deschamps S, le Maire M, Doniger J, Dautry F. Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Nucleic Acids Res 1994; 22:2643-50. [PMID: 7518919 PMCID: PMC308222 DOI: 10.1093/nar/22.13.2643] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The unr gene was identified as a transcription unit located immediately upstream of N-ras in the genome of several mammalian species. While this genetic organization could be important for the transcriptional regulation of unr and N-ras, the function of the protein product of unr is unknown. unr is ubiquitously expressed and codes for an 85 kDa protein which is not closely related to previously characterized proteins. Nevertheless, a search for protein motifs has indicated the presence of five 'cold shock domains' within unr, a motif present in procaryotic cold shock proteins and in the vertebrate Y box factors. As these proteins have been reported to interact with nucleic acids, we investigated whether unr could bind to some classes of nucleic acids. We report here that unr has a high affinity for single-stranded DNA or RNA and a low affinity for double-stranded nucleic acids. Its low affinity for double-stranded DNA clearly distinguishes unr from the Y box factors. The binding of unr to RNA does not appear to depend upon extended sequence motifs but requires some level of sequence complexity as unr has only a low affinity for most simple polymers including polyA stretches. unr is also characterized by its low affinity for double-stranded and structured RNAs. We further determined that unr is mostly localized in the cytoplasm, and is in part associated with the endoplasmic reticulum. These studies indicate that unr is a novel single-stranded nucleic acid binding protein which is likely to be associated with cytoplasmic mRNA in vivo.
Collapse
Affiliation(s)
- H Jacquemin-Sablon
- Laboratoire d'Oncologie Moléculaire, CNRS URA 1158, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | |
Collapse
|
32
|
Nesic D, Maquat LE. Upstream introns influence the efficiency of final intron removal and RNA 3'-end formation. Genes Dev 1994; 8:363-75. [PMID: 7906237 DOI: 10.1101/gad.8.3.363] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For all intron-containing pre-mRNAs of higher eukaryotes that have been examined using either living cells or cell-free extracts, a functional 3' splice site within the 3'-terminal intron is required for efficient RNA 3'-end formation. The mechanism by which intron sequences facilitate RNA 3'-end formation, which is achieved by endonucleolytic cleavage and polyadenylation, is not understood. We report here that in intact cells the efficiency of RNA 3'-end formation correlates with the efficiency of final intron removal, even when the intron is normally a 5'-terminal or internal intron. Therefore, the influence of the 3'-terminal intron on 3'-end formation is likely to be attributable to the determinants of splicing efficiency, which include but are not limited to the 3' splice site. Quantitative RNase mapping and methods that couple reverse transcription and the polymerase chain reaction were used to assess the consequence to RNA 3'-end formation of intron deletions within the human gene for triosephosphate isomerase (TPI). Results indicate that the formation of TPI RNA 3' ends requires TPI gene introns in addition to the last intron, intron 6, to proceed efficiently. These additional TPI gene introns are also required for the efficient removal of intron 6. When introns 1 and 5 were engineered to be the final intron, they were found, as was intron 6, to function in RNA 3'-end formation with an efficiency that correlated with their efficiency of removal. The simultaneous deletion of the 5' and 3' splice sites of intron 6 reduced the efficiencies of both RNA 3'-end formation and the removal of intron 5, which constituted the 3'-most functional intron. Deletion of only the 3' splice site of intron 6 precluded RNA 3'-end formation but had no effect on the efficiency of intron 5 removal. Deletion of only the 5' splice site of intron 6, which resulted in exon 6 skipping (i.e., the removal of intron 5, exon 6, and intron 6 as a single unit), had no effect on the efficiencies of either RNA 3'-end formation or the removal of intron 5-exon 6-intron 6. These results indicate that sequences within the 3'-terminal intron are functionally coupled to both RNA 3'-end formation and removal of the penultimate intron via a network of interactions that form across the last two exons and, most likely, between RNA processing factors.
Collapse
Affiliation(s)
- D Nesic
- Roswell Park Cancer Institute, Buffalo, New York 14263
| | | |
Collapse
|