1
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Parallel and Population-specific Gene Regulatory Evolution in Cold-Adapted Fly Populations. Genetics 2021; 218:6275754. [PMID: 33989401 PMCID: PMC8864734 DOI: 10.1093/genetics/iyab077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
2
|
Abstract
There are thousands of known associations between genetic variants and complex human phenotypes, and the rate of novel discoveries is rapidly increasing. Translating those associations into knowledge of disease mechanisms remains a fundamental challenge because the associated variants are overwhelmingly in noncoding regions of the genome where we have few guiding principles to predict their function. Intersecting the compendium of identified genetic associations with maps of regulatory activity across the human genome has revealed that phenotype-associated variants are highly enriched in candidate regulatory elements. Allele-specific analyses of gene regulation can further prioritize variants that likely have a functional effect on disease mechanisms; and emerging high-throughput assays to quantify the activity of candidate regulatory elements are a promising next step in that direction. Together, these technologies have created the ability to systematically and empirically test hypotheses about the function of noncoding variants and haplotypes at the scale needed for comprehensive and systematic follow-up of genetic association studies. Major coordinated efforts to quantify regulatory mechanisms across genetically diverse populations in increasingly realistic cell models would be highly beneficial to realize that potential.
Collapse
Affiliation(s)
- William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Timothy E Reddy
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University Medical School, Durham, North Carolina 27708, USA
| |
Collapse
|
3
|
Ho TH, Dang KX, Lintula S, Hotakainen K, Feng L, Olkkonen VM, Verschuren EW, Tenkanen T, Haglund C, Kolho KL, Stenman UH, Stenman J. Extendable blocking probe in reverse transcription for analysis of RNA variants with superior selectivity. Nucleic Acids Res 2015; 43:e4. [PMID: 25378315 PMCID: PMC4288146 DOI: 10.1093/nar/gku1048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
Here we provide the first strategy to use a competitive Extendable Blocking Probe (ExBP) for allele-specific priming with superior selectivity at the stage of reverse transcription. In order to analyze highly similar RNA variants, a reverse-transcriptase primer whose sequence matches a specific variant selectively primes only that variant, whereas mismatch priming to the alternative variant is suppressed by virtue of hybridization and subsequent extension of the perfectly matched ExBP on that alternative variant template to form a cDNA-RNA hybrid. This hybrid will render the alternative RNA template unavailable for mismatch priming initiated by the specific primer in a hot-start protocol of reverse transcription when the temperature decreases to a level where such mismatch priming could occur. The ExBP-based reverse transcription assay detected BRAF and KRAS mutations in at least 1000-fold excess of wild-type RNA and detection was linear over a 4-log dynamic range. This novel strategy not only reveals the presence or absence of rare mutations with an exceptionally high selectivity, but also provides a convenient tool for accurate determination of RNA variants in different settings, such as quantification of allele-specific expression.
Collapse
Affiliation(s)
- Tho H Ho
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Kien X Dang
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Susanna Lintula
- Haartman Institute, Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Kristina Hotakainen
- Haartman Institute, Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland Helsinki University Central Hospital, HUSLAB, Helsinki, 00029 HUS, Finland
| | - Lin Feng
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, FI-00014, Finland
| | | | - Caj Haglund
- Department of Surgery, Helsinki University Central Hospital, Helsinki, 00029 HUS, Finland Research Program Unit, Translational Cancer Biology, University of Helsinki, Helsinki, FI-00014, Finland Haartman Institute, Department of Pathology, University of Helsinki, Helsinki, FI-00014, Finland
| | - Kaija-Leena Kolho
- Children's Hospital, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ulf-Hakan Stenman
- Haartman Institute, Department of Clinical Chemistry, Biomedicum Helsinki, University of Helsinki and Helsinki University Central Hospital, Helsinki, FI-00029 HUS, Finland
| | - Jakob Stenman
- Minerva Foundation Institute for Medical Research, Helsinki, 00290, Finland Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, FI-00014, Finland Department of Women's and Children's Health, Karolinska Institutet, Stockholm, SE-17176, Sweden
| |
Collapse
|
4
|
High histone variant H3.3 content in mouse prospermatogonia suggests a role in epigenetic reformatting. Chromosoma 2014; 123:587-95. [PMID: 25007861 DOI: 10.1007/s00412-014-0475-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/02/2014] [Accepted: 06/23/2014] [Indexed: 01/28/2023]
Abstract
Histone variants can incorporate into the nucleosome outside of S-phase. Some are known to play important roles in mammalian germ cell development, this cell lineage being characterized by long phases of quiescence, a protracted meiotic phase, and genome-wide epigenetic reformatting events. The best known example of such an event is the global-scale erasure of DNA methylation in sexually indifferent primordial germ cells, then its re-establishment in fetal prospermatogonia and growing oocytes. Histone H3 and its post-translationally modified forms provide important waypoints in the establishment of epigenetic states. Using mass spectrometry and immunoblotting, we show that the H3.3 replacement variant is present at an unusually high amount in mouse prospermatogonia at the peak stage of global DNA methylation re-establishment. We speculate that H3.3 facilitates this process through achieving a greater level of accessibility of chromatin modifiers to DNA.
Collapse
|
5
|
de Waal E, Yamazaki Y, Ingale P, Bartolomei MS, Yanagimachi R, McCarrey JR. Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum Mol Genet 2012; 21:4460-72. [PMID: 22802074 DOI: 10.1093/hmg/dds287] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that intracytoplasmic sperm injection (ICSI), a type of assisted reproductive technology (ART), can induce epimutations and/or epimutant phenotypes in somatic tissues of adult mice produced by this method. In the present study, we compared the occurrence of epimutations in mice produced by natural conception, ICSI and somatic cell nuclear transfer. Surprisingly, we observed the highest frequency of epimutations in somatic tissues from ICSI-derived mice. We also observed a delay in reprogramming of the maternal allele of the imprinted H19 gene in spermatogonia from juvenile ICSI-derived male mice. These observations led us to hypothesize that the exposure of the maternal gametic genome to exogenous gonadotropins during the endocrine stimulation of folliculogenesis (superovulation) may contribute to the disruption of the normal epigenetic programming of imprinted loci in somatic tissues and/or epigenetic reprogramming in the germ line of ensuing offspring. To test this hypothesis, we uncoupled superovulation from ICSI by subjecting female mice to gonadotropin stimulation and then allowing them to produce offspring by natural mating. We found that mice produced in this way also exhibited epimutations and/or epimutant phenotypes in somatic tissues and delayed epigenetic reprogramming in spermatogenic cells, providing evidence that gonadotropin stimulation contributes to the induction of epimutations during ART procedures. Our results suggest that gonadotropin stimulation protocols used in conjunction with ART procedures should be optimized to minimize the occurrence of epimutations in offspring produced by these methods.
Collapse
Affiliation(s)
- Eric de Waal
- Department of Biology, University of Texas, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
6
|
Primary epimutations introduced during intracytoplasmic sperm injection (ICSI) are corrected by germline-specific epigenetic reprogramming. Proc Natl Acad Sci U S A 2012; 109:4163-8. [PMID: 22371603 DOI: 10.1073/pnas.1201990109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The use of assisted reproductive technologies (ART) has become increasingly common worldwide and is now responsible for 2-3% of children born in developed countries. Multiple reports have suggested that ART-conceived children are more likely to develop rare epigenetic disorders such as Beckwith-Wiedemann Syndrome or Angelman Syndrome, both of which involve dysregulation of imprinted genes. Anecdotal reports suggest that animals produced with ART that manifest apparent epigenetic defects typically do not transmit these epimutations to subsequent generations when allowed to breed naturally, but this hypothesis has not been directly studied. We analyzed allele-specific DNA methylation and expression at three imprinted genes, H19, Snrpn, and Peg3, in somatic cells from adult mice generated with the use of intracytoplasmic sperm injection (ICSI), a type of ART. Epimutations were detected in most of the ICSI-derived mice, but not in somatic cells of their offspring produced by natural mating. We examined germ cells from the ICSI mice that exhibited epimutations in their somatic cells and confirmed normal epigenetic reprogramming of the three imprinted genes analyzed. Collectively, these results confirm that ART procedures can lead to the formation of primary epimutations, but while such epimutations are likely to be maintained indefinitely in somatic cells of the ART-derived individuals, they are normally corrected in the germ line by epigenetic reprogramming and thus, not propagated to subsequent generations.
Collapse
|
7
|
Paracchini S, Monaco AP, Knight JC. An allele-specific gene expression assay to test the functional basis of genetic associations. J Vis Exp 2010:2279. [PMID: 21085102 PMCID: PMC3157858 DOI: 10.3791/2279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The number of significant genetic associations with common complex traits is constantly increasing. However, most of these associations have not been understood at molecular level. One of the mechanisms mediating the effect of DNA variants on phenotypes is gene expression, which has been shown to be particularly relevant for complex traits1. This method tests in a cellular context the effect of specific DNA sequences on gene expression. The principle is to measure the relative abundance of transcripts arising from the two alleles of a gene, analysing cells which carry one copy of the DNA sequences associated with disease (the risk variants)2,3. Therefore, the cells used for this method should meet two fundamental genotypic requirements: they have to be heterozygous both for DNA risk variants and for DNA markers, typically coding polymorphisms, which can distinguish transcripts based on their chromosomal origin (Figure 1). DNA risk variants and DNA markers do not need to have the same allele frequency but the phase (haplotypic) relationship of the genetic markers needs to be understood. It is also important to choose cell types which express the gene of interest. This protocol refers specifically to the procedure adopted to extract nucleic acids from fibroblasts but the method is equally applicable to other cells types including primary cells. DNA and RNA are extracted from the selected cell lines and cDNA is generated. DNA and cDNA are analysed with a primer extension assay, designed to target the coding DNA markers4. The primer extension assay is carried out using the MassARRAY (Sequenom)5 platform according to the manufacturer's specifications. Primer extension products are then analysed by matrix-assisted laser desorption/ionization time of-flight mass spectrometry (MALDI-TOF/MS). Because the selected markers are heterozygous they will generate two peaks on the MS profiles. The area of each peak is proportional to the transcript abundance and can be measured with a function of the MassARRAY Typer software to generate an allelic ratio (allele 1: allele 2) calculation. The allelic ratio obtained for cDNA is normalized using that measured from genomic DNA, where the allelic ratio is expected to be 1:1 to correct for technical artifacts. Markers with a normalised allelic ratio significantly different to 1 indicate that the amount of transcript generated from the two chromosomes in the same cell is different, suggesting that the DNA variants associated with the phenotype have an effect on gene expression. Experimental controls should be used to confirm the results.
Collapse
|
8
|
Abstract
BACKGROUND The Thr allele at the non-synonymous single-nucleotide polymorphism (nsSNP) Thr946Ala in the IFIH1 gene confers risk for Type 1 diabetes (T1D). The SNP is embedded in a 236 kb linkage disequilibrium (LD) block that includes four genes: IFIH1, GCA, FAP and KCNH7. The absence of common nsSNPs in the other genes makes the IFIH1 SNP the strongest functional candidate, but it could be merely a marker of association, due to LD with a variant regulating expression levels of IFIH1 or neighboring genes. METHODOLOGY/PRINCIPAL FINDINGS We investigated the effect of the T1D-associated variation on mRNA transcript expression of these genes. Heterozygous mRNA from lymphoblastoid cell lines (LCLs), pancreas and thymus was examined by allelic expression imbalance, to detect effects in cis on mRNA expression. Using single-nucleotide primer extension, we found no difference between mRNA transcripts in 9 LCLs, 6 pancreas and 13 thymus samples, suggesting that GCA and FAP are not involved. On the other hand, KCNH7 was not expressed at a detectable level in all tissues examined. Moreover, the association of the Thr946Ala SNP with T1D is not due to modulation of IFIH1 expression in organs involved in the disease, pointing to the IFIH1 nsSNP as the causal variant. CONCLUSIONS/SIGNIFICANCE The mechanism of the association of the nsSNP with T1D remains to be determined, but does not involve mRNA modulation. It becomes necessary to study differential function of the IFIH1 protein alleles at Thr946Ala to confirm that it is responsible for the disease association.
Collapse
|
9
|
X-inactivation analysis of embryonic lethality in Ocrl wt/-; Inpp5b-/- mice. Mamm Genome 2010; 21:186-94. [PMID: 20195868 PMCID: PMC2844970 DOI: 10.1007/s00335-010-9255-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/04/2010] [Indexed: 10/25/2022]
Abstract
Mutations in the human OCRL gene, which encodes a phosphatidylinositol(4,5)bisphosphate 5-phosphatase, result in the X-linked oculocerebrorenal syndrome of Lowe. Mice with a targeted disruption of Ocrl have no phenotypic abnormalities. Targeted disruption of its closest paralog, Inpp5b, causes male infertility in the 129S6 background. Mice with disruptions of both genes are lost in utero prior to 9.5-10.5 dpc, indicating that there is a functional overlap between the two paralogs early in development. We analyzed the pattern of X-inactivation in four tissues of distinct embryonic origin from Ocrl (wt/-);Inpp5b (-/-) females to explore the timing and tissue distribution of the functional overlap. X-inactivation was strongly skewed against the disrupted Ocrl (-) allele being on the active X chromosome in all four tissues tested, indicating that there is early selection against cell lineages lacking both Ocrl and Inpp5b. Extraembryonic tissue was also involved in the lethality because there were never any live-born Ocrl (wt/-);Inpp5b (-/-) females when the functional Ocrl (wt ) allele was on the paternal X chromosome, which is preferentially inactivated in trophoblast-derived extraembryonic tissues. Live-born Ocrl (wt/-);Inpp5b (-/-) females were found when the functional Ocrl (wt) allele was maternal, although in fewer numbers than expected. The importance of the extraembryonic tissues in the early embryonic lethality of embryos lacking both Ocrl and Inpp5b is reinforced by the successful isolation of a viable 40,XX Ocrl (-/-);Inpp5b (-/-) embryonic stem cell from the inner cell mass of a 3.5-dpc blastocyst prior to implantation. These results indicate a functional overlap of Ocrl and Inpp5b in most cell lineages, especially in extraembryonic tissues.
Collapse
|
10
|
Hoque MO. DNA methylation changes in prostate cancer: current developments and future clinical implementation. Expert Rev Mol Diagn 2009; 9:243-57. [PMID: 19379083 DOI: 10.1586/erm.09.10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Promoter hypermethylation is associated with the loss of expression of tumor-suppressor genes in cancer. Currently, several genome-wide technologies are available and have been utilized to examine the extent of DNA methylation in discovery-based studies involving several physiological and disease states. Although early in the process, aberrant DNA methylation is gaining strength in the fields of cancer risk assessment, diagnosis and therapy monitoring in different cancer types. There is a need to improve existing methods for early diagnosis of prostate cancer and to identify men at risk for developing aggressive disease. Because of the ubiquity of DNA methylation changes and the ability to detect methylated DNA in several body fluids (e.g., blood and urine), this specifically altered DNA may serve, on one hand, as a possible new screening marker for prostate cancer and, on the other hand, as a tool for therapy monitoring in patients having had neoplastic disease of the prostate. Since many prostate cancer patients present with advanced disease and some present with nonspecific elevation of prostate-specific antigen without prostate cancer, early detection with high specificity and sensitivity is considered to be one of the most important approaches to reduce mortality and unwanted tension of the men with high prostate-specific antigen. Therefore, an effective screening test would have substantial clinical benefits. Furthermore, methylation markers of risk of progression of disease in patients having prostate cancer permits immediate commencement of specific treatment regimens and probably longer survival and better quality of life. This review illustrates the current benefits and limitations of potentially useful prostate cancer methylation markers that have considerable existing data and touches upon other future markers as well as the field of methylation in prostate cancer.
Collapse
Affiliation(s)
- Mohammad Obaidul Hoque
- Department of Otolaryngology and Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M.07, Baltimore, MD 21231, USA.
| |
Collapse
|
11
|
The single-nucleotide primer extension (SNuPE) method for the multiplex detection of various DNA sequences: from detection of point mutations to microbial ecology. Biochem Soc Trans 2009; 37:454-9. [PMID: 19290881 DOI: 10.1042/bst0370454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methods based on SNuPE (single-nucleotide primer extension) have become invaluable tools for the rapid and highly specific detection of point mutations and single-nucleotide polymorphisms in the field of human genetics. In the primer extension reaction, a DNA polymerase is used to label a specific primer hybridized to the target sequence by incorporating a single labelled ddNTP (dideoxynucleotide). This labelling provides not only information about the complementary nucleotide of interest in the opposite strand but also a semiquantitative analysis of the sequence targeted by the primer. Since several subdisciplines of microbiology increasingly require cultivation-independent molecular screening tools for elucidating differences between either strains or community structures based on sequence variations of marker genes, SNuPE offers a promising alternative to the existing tool box. The present review describes the method in detail and reports the state-of-the-art applications of this technique both in the field of nucleic acid detections in human genetics and in microbiology.
Collapse
|
12
|
Sutherland AM, Walley KR. Bench-to-bedside review: Association of genetic variation with sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:210. [PMID: 19439056 PMCID: PMC2689454 DOI: 10.1186/cc7702] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Susceptibility and response to infectious disease is, in part, heritable. Initial attempts to identify the causal genetic polymorphisms have not been entirely successful because of the complexity of the genetic, epigenetic, and environmental factors that influence susceptibility and response to infectious disease and because of flaws in study design. Potential associations between clinical outcome from sepsis and many inflammatory cytokine gene polymorphisms, innate immunity pathway gene polymorphisms, and coagulation cascade polymorphisms have been observed. Confirmation in large, well conducted, multicenter studies is required to confirm current findings and to make them clinically applicable. Unbiased investigation of all genes in the human genome is an emerging approach. New, economical, high-throughput technologies may make this possible. It is now feasible to genotype thousands of tag single nucleotide polymorphisms across the genome in thousands of patients, thus addressing the issues of small sample size and bias in selecting candidate polymorphisms and genes for genetic association studies. By performing genome-wide association studies, genome-wide scans of nonsynonymous single nucleotide polymorphisms, and testing for differential allelic expression and copy number polymorphisms, we may yet be able to tease out the complex influence of genetic variation on susceptibility and response to infectious disease.
Collapse
|
13
|
Williams RBH, Chan EKF, Cowley MJ, Little PFR. The influence of genetic variation on gene expression. Genome Res 2008; 17:1707-16. [PMID: 18063559 DOI: 10.1101/gr.6981507] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The view that changes to the control of gene expression rather than alterations to protein sequence are central to the evolution of organisms has become something of a truism in molecular biology. In reality, the direct evidence for this is limited, and only recently have we had the ability to look more globally at how genetic variation influences gene expression, focusing upon inter-individual variation in gene expression and using microarrays to test for differences in mRNA levels. Here, we review the scope of these experimental analyses, what they are designed to tell us about genetic variation, and what are their limitations from both a technical and a conceptual viewpoint. We conclude that while we are starting to understand the impact of this class of genetic variation upon steady-state mRNA levels, we are still far from identifying the potential phenotypic and evolutionary outcomes.
Collapse
Affiliation(s)
- Rohan B H Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, NSW 2052, Australia
| | | | | | | |
Collapse
|
14
|
Gonzalgo ML, Liang G. Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nat Protoc 2007; 2:1931-6. [PMID: 17703204 DOI: 10.1038/nprot.2007.271] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) is a technique that can be used for rapid quantitation of methylation at individual CpG sites. Treatment of genomic DNA with sodium bisulfite is used to convert unmethylated Cytosine to Uracil while leaving 5-methylcytosine unaltered. Strand-specific PCR is performed to generate a DNA template for quantitative methylation analysis using Ms-SNuPE. SNuPE is then performed with oligonucleotide(s) designed to hybridize immediately upstream of the CpG site(s) being interrogated. Reaction products are electrophoresed on polyacrylamide gels for visualization and quantitation by phosphorimage analysis. The Ms-SNuPE technique is similar to other quantitative assays that use bisulfite treatment of genomic DNA to discriminate unmethylated from methylated Cytosines (i.e., COBRA, pyrosequencing). Ms-SNuPE can be used for high-throughput methylation analysis and rapid quantitation of Cytosine methylation suitable for a wide range of biological investigations, such as checking aberrant methylation changes during tumorigenesis, monitoring methylation changes induced by DNA methylation inhibitors or for measuring hemimethylation. Approximately two to four CpG sites can be interrogated in up to 40 samples by Ms-SNuPE in less than 5 h, after PCR amplification of the desired target sequence and preparation of PCR amplicons.
Collapse
Affiliation(s)
- Mark L Gonzalgo
- Department of Urology, James Buchanan Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
15
|
Hornecker JL, Samollow PB, Robinson ES, VandeBerg JL, McCarrey JR. Meiotic sex chromosome inactivation in the marsupialMonodelphis domestica. Genesis 2007; 45:696-708. [DOI: 10.1002/dvg.20345] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Lose F, Lovelock P, Chenevix-Trench G, Mann GJ, Pupo GM, Spurdle AB. Variation in the RAD51 gene and familial breast cancer. Breast Cancer Res 2006; 8:R26. [PMID: 16762046 PMCID: PMC1557738 DOI: 10.1186/bcr1415] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 04/28/2006] [Accepted: 05/17/2006] [Indexed: 01/08/2023] Open
Abstract
Introduction Human RAD51 is a homologue of the Escherichia coli RecA protein and is known to function in recombinational repair of double-stranded DNA breaks. Mutations in the lower eukaryotic homologues of RAD51 result in a deficiency in the repair of double-stranded DNA breaks. Loss of RAD51 function would therefore be expected to result in an elevated mutation rate, leading to accumulation of DNA damage and, hence, to increased cancer risk. RAD51 interacts directly or indirectly with a number of proteins implicated in breast cancer, such as BRCA1 and BRCA2. Similar to BRCA1 mice, RAD51-/- mice are embryonic lethal. The RAD51 gene region has been shown to exhibit loss of heterozygosity in breast tumours, and deregulated RAD51 expression in breast cancer patients has also been reported. Few studies have investigated the role of coding region variation in the RAD51 gene in familial breast cancer, with only one coding region variant – exon 6 c.449G>A (p.R150Q) – reported to date. Methods All nine coding exons of the RAD51 gene were analysed for variation in 46 well-characterised, BRCA1/2-negative breast cancer families using denaturing high-performance liquid chromatography. Genotyping of the exon 6 p.R150Q variant was performed in an additional 66 families. Additionally, lymphoblastoid cell lines from breast cancer patients were subjected to single nucleotide primer extension analysis to assess RAD51 expression. Results No coding region variation was found, and all intronic variation detected was either found in unaffected controls or was unlikely to have functional consequences. Single nucleotide primer extension analysis did not reveal any allele-specific changes in RAD51 expression in all lymphoblastoid cell lines tested. Conclusion Our study indicates that RAD51 is not a major familial breast cancer predisposition gene.
Collapse
Affiliation(s)
- Felicity Lose
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Medicine, Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - Paul Lovelock
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Georgia Chenevix-Trench
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Graham J Mann
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gulietta M Pupo
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales, Australia
| | - Amanda B Spurdle
- Cancer and Cell Biology Division, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Brena RM, Huang THM, Plass C. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med (Berl) 2006; 84:365-77. [PMID: 16416310 DOI: 10.1007/s00109-005-0034-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/29/2005] [Indexed: 12/31/2022]
Abstract
Deregulation of the epigenome is now recognized as a major mechanism involved in the development and progression of human diseases such as cancer. As opposed to the irreversible nature of genetic events, which introduce changes in the primary DNA sequence, epigenetic modifications are reversible and leave the original DNA sequence intact. There is now evidence that the epigenetic landscape in humans undergoes modifications as the result of normal aging, with older individuals exhibiting higher levels of promoter hypermethylation compared to younger ones. Thus, it has been proposed that the higher incidence of certain disease in older individuals might be, in part, a consequence of an inherent change in the control and regulation of the epigenome. These observations are of remarkable clinical significance since the aberrant epigenetic changes characteristic of disease provide a unique platform for the development of new therapeutic approaches. In this review, we address the significance of DNA methylation changes that result or lead to disease, occur with aging, or may be the result of environmental exposure. We provide a detailed description of quantitative techniques currently available for the detection and analysis of DNA methylation and provide a comprehensive framework that may allow for the incorporation of protocols which include DNA methylation as a tool for disease diagnosis and classification, which could lead to the tailoring of therapeutic approaches designed to individual patient needs.
Collapse
Affiliation(s)
- Romulo Martin Brena
- Division of Human Cancer Genetics, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
18
|
Buckland PR. The importance and identification of regulatory polymorphisms and their mechanisms of action. Biochim Biophys Acta Mol Basis Dis 2005; 1762:17-28. [PMID: 16297602 DOI: 10.1016/j.bbadis.2005.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/11/2005] [Accepted: 10/11/2005] [Indexed: 01/16/2023]
Abstract
The search for the genetic variations underlying all human phenotypes is in its infancy but must be one of the long term goals of the scientific community. There is evidence that most, if not all human phenotypes, including illnesses are influenced by the genetic makeup of the individual. There are an estimated 11 million human genetic polymorphisms with a minor allele frequency >1% and possibly many times that number of rare sequence variants. The proportion of these sequence variants which have any functional effect is unknown but it is likely that the majority of those which influence illness lie outside of the amino acid coding regions of genes, and affect the regulation of gene expression--these are called rSNPs. Recent research suggests that about 50% of genes have one or more common rSNPs associated with them and probably most if not all genes have an rSNP within the human population. In the long term, determining which polymorphisms are potentially functional must be done bio-informatically using algorithms based upon experimental data. However, at the current time, the limited data that has been obtained does not allow the creation of such an algorithm. In vitro studies suggest that a large proportion of rSNPs lie within the core and proximal promoter regions of genes but it is not clear how the majority of these influence transcription, as they do not appear to be within any known transcription factor binding sites. However, promoter regions possess a number of sequence-dependent characteristics which make them distinct from the rest of the genome, namely stability, curvature and flexibility. Subtle changes to these features may underlie the mechanisms by which many polymorphisms exert their function.
Collapse
Affiliation(s)
- Paul R Buckland
- Department of Psychological Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
19
|
Lovelock PK, Healey S, Au W, Sum EYM, Tesoriero A, Wong EM, Hinson S, Brinkworth R, Bekessy A, Diez O, Izatt L, Solomon E, Jenkins M, Renard H, Hopper J, Waring P, Tavtigian SV, Goldgar D, Lindeman GJ, Visvader JE, Couch FJ, Henderson BR, Southey M, Chenevix-Trench G, Spurdle AB, Brown MA. Genetic, functional, and histopathological evaluation of two C-terminal BRCA1 missense variants. J Med Genet 2005; 43:74-83. [PMID: 15923272 PMCID: PMC2564506 DOI: 10.1136/jmg.2005.033258] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The vast majority of BRCA1 missense sequence variants remain uncharacterized for their possible effect on protein expression and function, and therefore are unclassified in terms of their pathogenicity. BRCA1 plays diverse cellular roles and it is unlikely that any single functional assay will accurately reflect the total cellular implications of missense mutations in this gene. OBJECTIVE To elucidate the effect of two BRCA1 variants, 5236G>C (G1706A) and 5242C>A (A1708E) on BRCA1 function, and to survey the relative usefulness of several assays to direct the characterisation of other unclassified variants in BRCA genes. METHODS AND RESULTS Data from a range of bioinformatic, genetic, and histopathological analyses, and in vitro functional assays indicated that the 1708E variant was associated with the disruption of different cellular functions of BRCA1. In transient transfection experiments in T47D and 293T cells, the 1708E product was mislocalised to the cytoplasm and induced centrosome amplification in 293T cells. The 1708E variant also failed to transactivate transcription of reporter constructs in mammalian transcriptional transactivation assays. In contrast, the 1706A variant displayed a phenotype comparable to wildtype BRCA1 in these assays. Consistent with functional data, tumours from 1708E carriers showed typical BRCA1 pathology, while tumour material from 1706A carriers displayed few histopathological features associated with BRCA1 related tumours. CONCLUSIONS A comprehensive range of genetic, bioinformatic, and functional analyses have been combined for the characterisation of BRCA1 unclassified sequence variants. Consistent with the functional analyses, the combined odds of causality calculated for the 1706A variant after multifactorial likelihood analysis (1:142) indicates a definitive classification of this variant as "benign". In contrast, functional assays of the 1708E variant indicate that it is pathogenic, possibly through subcellular mislocalisation. However, the combined odds of 262:1 in favour of causality of this variant does not meet the minimal ratio of 1000:1 for classification as pathogenic, and A1708E remains formally designated as unclassified. Our findings highlight the importance of comprehensive genetic information, together with detailed functional analysis for the definitive categorisation of unclassified sequence variants. This combination of analyses may have direct application to the characterisation of other unclassified variants in BRCA1 and BRCA2.
Collapse
|
20
|
Abstract
The systematic screening of the human genome for genetic variants that affect gene regulation should advance our fundamental understanding of phenotypic diversity and lead to the identification of alleles that modify disease risk. There are several challenges in localizing regulatory polymorphisms, including the wide spectrum of cis-acting regulatory mechanisms, the inconsistent effects of regulatory variants in different tissues, and the difficulty in isolating the causal variants that are in linkage disequilibrium with many other variants. We discuss the current state of knowledge and technologies used for mapping and characterizing genetic variation controlling human gene expression.
Collapse
Affiliation(s)
- Tomi Pastinen
- McGill University and Genome Quebec Innovation Centre, 740 Drive Penfield Avenue, Montreal, Quebec H3A 1A4, Canada
| | | |
Collapse
|
21
|
Detecting imbalanced expression of SNP alleles by minisequencing on microarrays. BMC Biotechnol 2004; 4:24. [PMID: 15500681 PMCID: PMC529269 DOI: 10.1186/1472-6750-4-24] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 10/22/2004] [Indexed: 11/25/2022] Open
Abstract
Background Each of the human genes or transcriptional units is likely to contain single nucleotide polymorphisms that may give rise to sequence variation between individuals and tissues on the level of RNA. Based on recent studies, differential expression of the two alleles of heterozygous coding single nucleotide polymorphisms (SNPs) may be frequent for human genes. Methods with high accuracy to be used in a high throughput setting are needed for systematic surveys of expressed sequence variation. In this study we evaluated two formats of multiplexed, microarray based minisequencing for quantitative detection of imbalanced expression of SNP alleles. We used a panel of ten SNPs located in five genes known to be expressed in two endothelial cell lines as our model system. Results The accuracy and sensitivity of quantitative detection of allelic imbalance was assessed for each SNP by constructing regression lines using a dilution series of mixed samples from individuals of different genotype. Accurate quantification of SNP alleles by both assay formats was evidenced for by R2 values > 0.95 for the majority of the regression lines. According to a two sample t-test, we were able to distinguish 1–9% of a minority SNP allele from a homozygous genotype, with larger variation between SNPs than between assay formats. Six of the SNPs, heterozygous in either of the two cell lines, were genotyped in RNA extracted from the endothelial cells. The coefficient of variation between the fluorescent signals from five parallel reactions was similar for cDNA and genomic DNA. The fluorescence signal intensity ratios measured in the cDNA samples were compared to those in genomic DNA to determine the relative expression levels of the two alleles of each SNP. Four of the six SNPs tested displayed a higher than 1.4-fold difference in allelic ratios between cDNA and genomic DNA. The results were verified by allele-specific oligonucleotide hybridisation and minisequencing in a microtiter plate format. Conclusions We conclude that microarray based minisequencing is an accurate and accessible tool for multiplexed screening for imbalanced allelic expression in multiple samples and tissues in parallel.
Collapse
|
22
|
Gómez M, Brockdorff N. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage. Proc Natl Acad Sci U S A 2004; 101:6923-8. [PMID: 15105447 PMCID: PMC406443 DOI: 10.1073/pnas.0401854101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA replication origins (ORIs) map close to promoter regions in many organisms, including mammals. However, the relationship between initiation of replication and transcription is not well understood. To address this issue, we have analyzed replication timing and activity of several CpG island-associated ORIs on the transcriptionally active and silent X chromosomes. We find equivalent ORI usage and efficiency of both alleles at sites that are replicated late on the inactive X chromosome. Thus, in contrast to its repressive effect on transcription, heterochromatin does not influence ORI activity. These findings suggest that the relationship between sites of transcription and replication initiation at CpG island regions is restricted to early development, and that subsequent gene silencing and heterochromatin formation influence only the timing of ORI activation.
Collapse
Affiliation(s)
- María Gómez
- X Inactivation Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College for Science, Technology, and Medicine, Hammersmith Hospital, DuCane Road, London W12 0NN, United Kingdom
| | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Genetic variants determine phenotypic variability. Many genetic studies suggest that protein structural variations predispose the population to more than 1000 different hereditary diseases. Unfortunately, despite the study of genetic polymorphisms for many decades, the milder phenotypic variations believed to account for most human physical and behavioral differences and underlying the most common human genetic diseases (including cancers) cannot be accounted for easily by these variations in the protein coding sequences. Thus, it has been hypothesized that the study of natural differential expression presenting within and among populations may enhance understanding of human phenotypic variation. RECENT FINDINGS During the last year, reports identifying variations in gene expression in different organisms and finding subtle changes of gene expression associated with common genetic disease have pointed to variations in gene expression as playing a central role in molecular evolution and human disease. Advances in the functional analysis of gene regulatory networks-in particular, new methods for distinguishing cis-acting components from trans-acting factors-have provided the impetus for these discoveries. SUMMARY This review represents current knowledge about allelic variation in gene expression and its increasingly important role in understanding the genotype-phenotype relation. Characterization of these allelic variations may open largely uncharted territory in genomics for biomedical researchers and may eventually lead to the discovery of the causative genes of common hereditary diseases and their mechanism of action.
Collapse
Affiliation(s)
- Hai Yan
- Duke University Medical Center, Department of Pathology, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
24
|
Bennett-Baker PE, Wilkowski J, Burke DT. Age-Associated Activation of Epigenetically Repressed Genes in the Mouse. Genetics 2003; 165:2055-62. [PMID: 14704185 PMCID: PMC1462878 DOI: 10.1093/genetics/165.4.2055] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Epigenetic control of gene expression is a consistent feature of differentiated mammalian cell types. Epigenetic expression patterns are mitotically heritable and are stably maintained in adult cells. However, unlike somatic DNA mutation, little is known about the occurrence of epigenetic change, or epimutation, during normal adult life. We have monitored the age-associated maintenance of two epigenetic systems—X inactivation and genomic imprinting—using the genes Atp7a and Igf2, respectively. Quantitative measurements of RNA transcripts from the inactive and active alleles were performed in mice from 2 to 24 months of age. For both genes, older animal cohorts showed reproducible increases in transcripts expressed from the silenced alleles. Loss of X chromosome silencing showed cohort mean increases of up to 2.2%, while imprinted-gene activation increased up to 6.7%. The results support the hypothesis that epigenetic loss of gene repression occurs in normal tissues and may be a contributing factor in progressive physiological dysfunction seen during mammalian aging. Quantitatively, the loss of epigenetic control may be one to two orders of magnitude greater than previously determined somatic DNA mutation.
Collapse
Affiliation(s)
- Pamela E Bennett-Baker
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan 48109-0618, USA
| | | | | |
Collapse
|
25
|
Nesterova TB, Johnston CM, Appanah R, Newall AET, Godwin J, Alexiou M, Brockdorff N. Skewing X chromosome choice by modulating sense transcription across the Xist locus. Genes Dev 2003; 17:2177-90. [PMID: 12952890 PMCID: PMC196458 DOI: 10.1101/gad.271203] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The X-inactive-specific transcript (Xist) locus is a cis-acting switch that regulates X chromosome inactivation in mammals. Over recent years an important goal has been to understand how Xist is regulated at the initiation of X inactivation. Here we report the analysis of a series of targeted mutations at the 5' end of the Xist locus. A number of these mutations were found to cause preferential inactivation, to varying degrees, of the X chromosome bearing the targeted allele in XX heterozygotes. This phenotype is similar to that seen with mutations that ablate Tsix, an antisense RNA initiated 3' of Xist. Interestingly, each of the 5' mutations causing nonrandom X inactivation was found to exhibit ectopic sense transcription in embryonic stem (ES) cells. The level of ectopic transcription was seen to correlate with the degree of X inactivation skewing. Conversely, targeted mutations which did not affect randomness of X inactivation also did not exhibit ectopic sense transcription. These results indicate that X chromosome choice is determined by the balance of Xist sense and antisense transcription prior to the onset of random X inactivation.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- X Inactivation Group, MRC Clinical Sciences Centre, Faculty of Medicine ICSTM, Hammersmith Hospital, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Johnston CM, Newall AET, Brockdorff N, Nesterova TB. Enox, a novel gene that maps 10 kb upstream of Xist and partially escapes X inactivation. Genomics 2002; 80:236-44. [PMID: 12160738 DOI: 10.1006/geno.2002.6819] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dosage compensation in mammals is accomplished by the transcriptional silencing of a single X chromosome in female cells, a process termed X inactivation. A cytogenetically defined region of the X chromosome, the X-inactivation center (Xic), is necessary in cis for this process. Although the precise nature of the Xic remains unknown, a key component, the Xist gene, has been shown to be essential for X inactivation. In XX somatic cells, Xist RNA is specifically transcribed from the inactive X chromosome, which is otherwise essentially heterochromatic. Previous studies aimed at defining the proximal limit of the Xic have indicated that it lies within 30 kb upstream of the Xist promoter. Here we describe a novel gene, Enox (expressed neighbor of Xist), that maps to an unmethylated CpG island 10 kb upstream of Xist. Enox transcripts are antisense relative to Xist, highly heterogeneous, and apparently noncoding. In female somatic tissue Enox partially escapes from X inactivation. We discuss the implications of these findings in relation to our understanding of the Xic.
Collapse
Affiliation(s)
- Colette M Johnston
- X Inactivation Group, MRC Clinical Sciences Centre, Faculty of Medicine ICSTM, Hammersmith Hospital, Du Cane Road, London, UK
| | | | | | | |
Collapse
|
27
|
de La Casa-Esperón E, Loredo-Osti JC, Pardo-Manuel de Villena F, Briscoe TL, Malette JM, Vaughan JE, Morgan K, Sapienza C. X chromosome effect on maternal recombination and meiotic drive in the mouse. Genetics 2002; 161:1651-9. [PMID: 12196408 PMCID: PMC1462220 DOI: 10.1093/genetics/161.4.1651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We observed that maternal meiotic drive favoring the inheritance of DDK alleles at the Om locus on mouse chromosome 11 was correlated with the X chromosome inactivation phenotype of (C57BL/6-Pgk1(a) x DDK)F(1) mothers. The basis for this unexpected observation appears to lie in the well-documented effect of recombination on meiotic drive that results from nonrandom segregation of chromosomes. Our analysis of genome-wide levels of meiotic recombination in females that vary in their X-inactivation phenotype indicates that an allelic difference at an X-linked locus is responsible for modulating levels of recombination in oocytes.
Collapse
Affiliation(s)
- Elena de La Casa-Esperón
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chong S, Kontaraki J, Bonifer C, Riggs AD. A Functional chromatin domain does not resist X chromosome inactivation: silencing of cLys correlates with methylation of a dual promoter-replication origin. Mol Cell Biol 2002; 22:4667-76. [PMID: 12052875 PMCID: PMC133922 DOI: 10.1128/mcb.22.13.4667-4676.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the molecular mechanism(s) involved in the propagation and maintenance of X chromosome inactivation (XCI), the 21.4-kb chicken lysozyme (cLys) chromatin domain was inserted into the Hprt locus on the mouse X chromosome. The inserted fragment includes flanking matrix attachment regions (MARs), an origin of bidirectional replication (OBR), and all the cis-regulatory elements required for correct tissue-specific expression of cLys. It also contains a recently identified and widely expressed second gene, cGas41. The cLys domain is known to function as an autonomous unit resistant to chromosomal position effects, as evidenced by numerous transgenic mouse lines showing copy-number-dependent and development-specific expression of cLys in the myeloid lineage. We asked the questions whether this functional chromatin domain was resistant to XCI and whether the X inactivation signal could spread across an extended region of avian DNA. A generally useful method was devised to generate pure populations of macrophages with the transgene either on the active (Xa) or the inactive (Xi) chromosome. We found that (i) cLys and cGas41 are expressed normally from the Xa; (ii) the cLys chromatin domain, even when bracketed by MARs, is not resistant to XCI; (iii) transcription factors are excluded from lysozyme enhancers on the Xi; and (iv) inactivation correlates with methylation of a CpG island that is both an OBR and a promoter of the cGas41 gene.
Collapse
Affiliation(s)
- Suyinn Chong
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
29
|
Gonzalgo ML, Jones PA. Quantitative methylation analysis using methylation-sensitive single-nucleotide primer extension (Ms-SNuPE). Methods 2002; 27:128-33. [PMID: 12095270 DOI: 10.1016/s1046-2023(02)00064-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) is a technique that allows for rapid and simultaneous quantitation of the degree of methylation at several CpG sites. Treatment of genomic DNA with sodium bisulfite is used to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. A strand-specific polymerase chain reaction product is then generated to provide a suitable DNA template for quantitative methylation analysis using Ms-SNuPE. Single-nucleotide primer extension is performed with oligonucleotide(s) designed to hybridize immediately upstream of the CpG site(s) being analyzed. The Ms-SNuPE technique can be adapted for high-throughput methylation analysis and therefore represents a novel approach for rapid quantitation of cytosine methylation suitable for a wide range of biological investigations.
Collapse
Affiliation(s)
- Mark L Gonzalgo
- Department of Biochemistry and Molecular Biology, Urologic Cancer Research Laboratory, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA 90089-9181, USA
| | | |
Collapse
|
30
|
Sim EUH, Smith A, Szilagi E, Rae F, Ioannou P, Lindsay MH, Little MH. Wnt-4 regulation by the Wilms' tumour suppressor gene, WT1. Oncogene 2002; 21:2948-60. [PMID: 12082525 DOI: 10.1038/sj.onc.1205373] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Revised: 01/31/2002] [Accepted: 01/31/2002] [Indexed: 11/08/2022]
Abstract
The Wilms' tumour suppressor gene, WT1, encodes multiple nuclear protein isoforms, all containing four C-terminal zinc finger motifs. WT1 proteins can both activate and repress putative target genes in vitro, although the in vivo relevance of these putative target genes is often unverified. WT1 mutations can result in Wilms' tumour and the Denys-Drash Syndrome (DDS) of infantile nephropathy, XY pseudohermaphroditism and predisposition to Wilms' tumour. We have established stable transfectants of the mouse mesonephric cell line, M15, which express WT1 harbouring a common DDS point mutation (R394W). A comparison of the expression profiles of M15 and transfectant C2A was performed using Nylon-based arrays. Very few genes showed differential expression. However Wnt-4, a member of the Wnt gene family of secreted glycoproteins, was downregulated in C2A and other similar clones. Doxycycline induction of WT1-A or WT1-D expression in HEK293 stable transfectants also elicited an elevation in Wnt4 expression. Wnt4 is critical for the mesenchyme-to-epithelial transition during kidney development, making it an attractive putative WT1 target. We have mapped human Wnt-4 gene to chromosome 1p35-36, a region of frequent LOH in WT, have characterized the genomic structure of the human Wnt-4 gene and isolated 9 kb of immediate promoter. While several potential WT1 binding sites exist within this promoter, reporter analysis does not strongly support the direct regulation of Wnt4 by WT1. We propose that Wnt-4 regulation by WT1 occurs at a more distant promoter or enhancer site, or is indirect.
Collapse
Affiliation(s)
- Edmund U-H Sim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Mátyás G, Giunta C, Steinmann B, Hossle JP, Hellwig R. Quantification of single nucleotide polymorphisms: a novel method that combines primer extension assay and capillary electrophoresis. Hum Mutat 2002; 19:58-68. [PMID: 11754104 DOI: 10.1002/humu.10013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a novel method for accurate quantification of single nucleotide polymorphism (SNP) variants in transcripts and pooled DNAs in a one-tube reaction. Our approach is based on single- nucleotide primer extension (SNuPE) and laser-induced fluorescence capillary electrophoresis (LIF-CE), and takes advantage of distinct mobilities of SNuPE products with different nucleotides incorporated at their 3' ends. The method, called SNuPE-ONCE, was tested on two polymorphisms and five mutations that comprised the three most frequent ( approximately 70%) nucleotide changes in the human genome (C/T, A/G, and A/T). The usefulness of the method was demonstrated by analyzing nonsense-mediated mRNA instability in fibroblasts. Our data show 1) that the method provides highly reproducible relative allele frequencies (SD<0.017) with a good accuracy (e.g. for heterozygotes 0.500 +/- 0.036, P = 0.01), depending on the sequence and the proportion of the SNP variants in the sample, and 2) that relative allele frequencies as low as 1% can be detected quantitatively and unambiguously. Our assay relies on a CE instrument available in many laboratories and offers a useful method for quantitative SNP genotyping as well as for a variety of expression studies.
Collapse
Affiliation(s)
- Gábor Mátyás
- University Children's Hospital, Division of Metabolism and Molecular Pediatrics, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Reed MR, Huang CF, Riggs AD, Mann JR. A complex duplication created by gene targeting at the imprinted H19 locus results in two classes of methylation and correlated Igf2 expression phenotypes. Genomics 2001; 74:186-96. [PMID: 11386755 DOI: 10.1006/geno.2001.6520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Imprinting of the mouse H19 and Igf2 genes is dependent on the presence of an intervening imprinting control region (ICR) situated 2 kb upstream of H19 and approximately 70 kb downstream of Igf2. Several recent studies have provided substantial evidence that the unmethylated maternal ICR acts as an insulator that prevents activation of Igf2 by a suite of enhancers downstream of the H19 gene. The methylated paternal ICR and H19 promoter have no activity, allowing sole activation of Igf2 expression. We have produced mice in which a duplication of the H19/Igf2 ICR produces, in each generation, two classes of methylation levels that correlated with two Igf2 imprinting phenotypes. One hypermethylated class also shows activation of the normally silent Igf2 gene, whereas the other hypomethylated class shows only slight activation of Igf2, in agreement with methylation's role in ICR function. This study describes a rare, possibly unique type of mutation that induces two distinct phenotypes in each generation.
Collapse
Affiliation(s)
- M R Reed
- Division of Biology, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010-3011, USA
| | | | | | | |
Collapse
|
33
|
Kosaki K, Yoshihashi H, Ohashi Y, Kosaki R, Suzuki T, Matsuo N. Fluorescence-based DHPLC for allelic quantification by single-nucleotide primer extension. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 47:111-9. [PMID: 11179767 DOI: 10.1016/s0165-022x(00)00157-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the possibility of determining quantitatively the alleles of binary DNA polymorphisms by single-nucleotide primer extension (SNuPE) and fluorescence-based DHPLC. Using a polymorphism of interest to our group, ROX-labeled dideoxy CTP (ROX-ddCTP) was incorporated at the 3' end of the primer annealed to the template adjacent to the polymorphic site. The primer extension product was then resolved from the unincorporated dye terminator by ion-pair reversed-phase liquid chromatography. The signal intensity of incorporated ROX-ddCTP correlated well over one order of magnitude with the relative amount of the C-allele present in the genomic DNA template. We conclude that SNuPE, when combined with fluorescence-based DHPLC, can accurately determine the relative molar proportion of one allele in total DNA.
Collapse
Affiliation(s)
- K Kosaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
In the minisequencing primer extension reaction, a DNA polymerase is used specifically to extend a primer that anneals immediately adjacent to the nucleotide position to be analyzed with a single labeled nucleoside triphospate complementary to the nucleotide at the variant site. The reaction allows highly specific detection of point mutations and single nucleotide polymorphisms (SNPs). Because all SNPs can be analyzed with high specificity at the same reaction conditions, minisequencing is a promising reaction principle for multiplex high-throughput genotyping assays. It is also a useful tool for accurate quantitative PCR-based analysis. This review discusses the different approaches, ranging from traditional gel-based formats to multiplex detection on microarrays that have been developed and applied to minisequencing assays.
Collapse
Affiliation(s)
- A C Syvänen
- Department of Medical Sciences, Molecular Medicine, Uppsala University Hospital, Sweden.
| |
Collapse
|
35
|
Buettner VL, LeBon JM, Gao C, Riggs AD, Singer-Sam J. Use of terminal transferase-dependent antisense RNA amplification to determine the transcription start site of the Snrpn gene in individual neurons. Nucleic Acids Res 2000; 28:E25. [PMID: 10710442 PMCID: PMC102808 DOI: 10.1093/nar/28.7.e25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/1999] [Revised: 01/04/2000] [Accepted: 01/20/2000] [Indexed: 11/14/2022] Open
Abstract
We describe here a very sensitive technique for RNA structure analysis and the determination of transcription start sites and demonstrate its use for mapping the start site of the imprinted Snrpn gene in individual hippocampal neurons. The method is adapted from reverse transcription-terminal transferase-dependent PCR (RT-TDPCR) to include amplification of the antisense sequence by in vitro transcription just prior to the final PCR step. The method should be useful for analysis of all genes for which variation in promoter usage and/or differences in RNA secondary structure may be specific to a given cell type or developmental stage.
Collapse
Affiliation(s)
- V L Buettner
- Mammalian Genetics and Molecular Biology Sections, Biology Department, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
36
|
Wang W, Kitamoto T, Salvaterra PM. Drosophila choline acetyltransferase temperature-sensitive mutants. Neurochem Res 1999; 24:1081-7. [PMID: 10478949 DOI: 10.1023/a:1021021213625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used the reverse transcription-polymerase chain reaction (RT-PCR) to amplify choline acetyltransferase (ChAT) mRNA fragments from two temperature-sensitive alleles of Drosophila melanogaster, Cha(ts1) and Cha(ts2). Single base substitutions in the mutants (T1614A in Cha(ts1) and G1596A in Cha(ts2)) would result in amino acid changes for ChAT protein (Met403Lys in Ch(ts1) and Arg397His in Cha(ts2)). These base substitutions were confirmed in mRNA extracted from homozygous mutants using a Single Nucleotide Primer Extension assay (SNuPE) and are sufficient to produce thermolabile enzyme. Our results indicate that these temperature-sensitive mutants are point mutations in the structural gene for ChAT. Using a quantitative SNuPE assay we also show that similar levels of Cha(ts) and wild type transcripts are present in heterozygous flies (Cha(ts1)/+ and Cha(Ts2)/+) at both restrictive and permissive temperatures. This contrasts with RNase protection assays of ChAT mRNA in homozygous mutant animals where the levels of mutant mRNA decrease at restrictive temperature.
Collapse
Affiliation(s)
- W Wang
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
37
|
McCabe V, Formstone EJ, O'Neill LP, Turner BM, Brockdorff N. Chromatin structure analysis of the mouse Xist locus. Proc Natl Acad Sci U S A 1999; 96:7155-60. [PMID: 10377384 PMCID: PMC22037 DOI: 10.1073/pnas.96.13.7155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Xist gene is expressed exclusively from the inactive X chromosome and plays a central role in regulating X chromosome inactivation. Here we describe experiments aimed at defining the extent of the active chromatin domain of the expressed Xist allele. By using an allele-specific general DNaseI sensitivity assay we show that there is preferential digestion of the expressed allele at sites within the transcribed locus but not in flanking sites located up to 70 kb 5'. A putative proximal boundary for the Xist domain is located within 10 kb upstream of promoter P1. Chromatin in the expressed domain was found to be acetylated at H4 in XX somatic cells but also in XY cells, where Xist is never expressed. A single clear exception to this was the Xist promoter, which is acetylated only in XX cells. These observations concur with the view that H4 acetylation may not be a general marker of active chromatin domains and further support data implicating local promoter acetylation as being of primary functional significance in vivo.
Collapse
Affiliation(s)
- V McCabe
- X Inactivation Group, Medical Research Council Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, DuCane Road, London W12 ONN, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Wu L, Exley GE, Warner CM. Differential expression of Ped gene candidates in preimplantation mouse embryos. Biol Reprod 1998; 59:941-52. [PMID: 9746747 DOI: 10.1095/biolreprod59.4.941] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Ped (preimplantation embryonic development) gene influences the rate of mouse preimplantation embryonic development and subsequent survival. Four similar tandem genes in the Q region of the major histocompatibility complex-Q6, Q7, Q8, and Q9-were identified as Ped gene candidates. In this study, expression of these genes during preimplantation development was examined and quantitated by reverse transcription-polymerase chain reaction and single nucleotide primer extension assays in order to investigate their contribution to the Ped gene phenotype. The Q7/Q9 gene pair was found to be transcribed in preimplantation mouse embryos, whereas transcription of the Q6/Q8 gene pair was undetectable. Both Q7 and Q9 are expressed in embryos from one Ped fast strain, C57BL/6, while only the Q9 gene is expressed in another Ped fast strain, B6.K2. These results suggest that both the Q7 and Q9 genes can function as the Ped gene in the mouse. Interestingly, the expression pattern of the Q7 and Q9 genes in preimplantation embryos is the same as in splenic lymphocytes. However, the Q6 and Q8 genes are expressed in splenic lymphocytes but not in preimplantation embryos. Treatment of mouse preimplantation embryos with interferon gamma (gamma-IFN) did not induce expression of the Q6/Q8 genes but enhanced expression of the Q7/Q9 genes. The mechanism of this differential transcription pattern is currently under investigation.
Collapse
Affiliation(s)
- L Wu
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
39
|
Frodl R, Gierschik P, Moepps B. Genomic organization and expression of the CXCR4 gene in mouse and man: absence of a splice variant corresponding to mouse CXCR4-B in human tissues. J Recept Signal Transduct Res 1998; 18:321-44. [PMID: 9879064 DOI: 10.3109/10799899809047750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human CXC chemokine receptor CXCR4 is activated by stromal cell-derived factor 1. The receptor is present in many cell types and regulates a variety of cellular functions, including chemotaxis, adhesion, hematopoiesis, and organogenesis. Human CXCR4 also serves as a cofactor for cell entry by certain strains of HIV-1 and HIV-2. In the mouse, alternative RNA splicing produces two transcripts encoding two CXCR4 isoforms, mCXCR4-A and mCXCR4-B, differing by the presence of two amino acids in the amino terminal portion of the longer protein, mCXCR4-B. Only one CXCR4 transcript, encoding the human counterpart of mCXCR4-A, is known in man. The involvement of the aminoterminal-most portion of CXCR4 in both ligand and HIV envelope protein recognition led us to determine whether a CXCR4 variant corresponding to mCXCR4-B is present in human tissues. To this end, the genomic organization and expression of the human CXCR4 gene was examined. Both the human and the mouse CXCR4 gene consist of two exons separated by an approximately 2.1 kbp intron between codons five and six and carry splice donor sites at the 5' end of their introns. These similarities notwithstanding, single nucleotide primer extension, reverse transcriptase PCR amplification, and sequencing of CXCR4 cDNA clones show that a splice variant of CXCR4 corresponding to mCXCR4-B is absent in man.
Collapse
Affiliation(s)
- R Frodl
- Department of Pharmacology and Toxicology, University of Ulm, Germany
| | | | | |
Collapse
|
40
|
Abstract
In recent years the growing interest in quantitative applications of the polymerase chain reaction (PCR) has favoured the development of a large number of assay procedures suitable for this purpose. In this paper we review some basic principles of quantitative PCR and in particular the role of reference materials and calibrators and the different strategies adopted for nucleic acid quantification. We focus on two methodological approaches for quantitative PCR in this review: competitive PCR and real-time quantitative PCR based on the use of fluorogenic probes. The first is one of the most common methods of quantitative PCR and we discuss the structure of the competitors and the various assay procedures. The second section is dedicated to a recent promising technology for quantitative PCR in which the use of fluorogenic probes and dedicated instrumentation allows the development of homogeneous methods. Assay performance of these methods in terms of practicability and reliability indicates that these kinds of technologies will have a widespread use in the clinical laboratory in the near future.
Collapse
Affiliation(s)
- C Orlando
- Department of Clinical Pathophysiology, University of Florence, Italy
| | | | | |
Collapse
|
41
|
Xie H, Hirsh D. In vivo function of mutated spliced leader RNAs in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998; 95:4235-40. [PMID: 9539720 PMCID: PMC22472 DOI: 10.1073/pnas.95.8.4235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of spliced leader RNA (SL RNA) in trans-splicing in Caenorhabditis elegans has been studied through a combination of in vitro mutagenesis and in vivo complementation of rrs-1 mutant nematodes, which lack endogenous SL1 RNA. Three classes of mutant SL1 RNAs have been found-those that rescue the lethal phenotype at low concentration of transforming DNA, those that rescue at high but not low concentration, and those that do not rescue at all. These studies showed that some mutations in the otherwise highly conserved 22-nt spliced leader are tolerated for splicing and post-splicing events. A longer spliced leader also can be tolerated but only when present in high copy number. Changes in the first 16 nucleotides result in the appearance of no SL RNA, consistent with the in vitro studies by others showing that the SL1 RNA promoter partly resides within the spliced leader sequence.
Collapse
Affiliation(s)
- H Xie
- Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
42
|
Shen SI, Gao C, Singer-Sam J. Use of a reverse transcriptase-polymerase chain reaction assay to analyze allele-specific expression in individual hippocampal neurons. Mol Genet Metab 1998; 63:96-102. [PMID: 9562962 DOI: 10.1006/mgme.1997.2668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here a single-cell RT-PCR assay for allele-specific gene expression that can be used to probe for somatic variability within the CNS. Such variability, arising from epigenetic (nonmutational) events or somatic mutation early in development, may give clues as to clonal origin and may also affect the inheritance pattern of some CNS disorders. As a model system, we used reciprocal F1 hybrids of the cross Mus musculus C57BL/6J x Mus musculus castaneus. RNA was isolated from individual dissociated pyramidal neurons from hippocampi of F1 pups. For each gene of interest, single base polymorphisms were identified between the two parental strains by automated sequencing of RT-PCR products. Allele-specific expression was then analyzed by means of the previously described quantitative RT-PCR single nucleotide primer extension (SNuPE) assay (Singer-Sam et al., PCR Methods Appl. 1:160-163, 1992). Individual neurons showed monoallelic expression of the two control genes, X-linked Rps4, and the imprinted gene Snrpn; in contrast expression of Ncam and F3cam, coding for neural cell adhesion molecules, was found to be biallelic.
Collapse
Affiliation(s)
- S I Shen
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | |
Collapse
|
43
|
Abstract
Genomic imprinting in mammals results in the unequal expression of the two parental alleles of specific genes. The existence of imprinting in the mouse emerged from nuclear transplantation studies and from the abnormal phenotypes associated with uniparental inheritance of particular chromosome segments. Over the past 5 years, 20 or so imprinted genes have been identified. This has emphasized the important roles played by some imprinted genes in development, permitted a description of the epigenetic properties associated with imprinting, and provided the first insights into the regulation of imprinting. In this article, we discuss the generation of experimental material in which imprinting effects can be analyzed, review the properties of imprinted genes, and discuss how to examine them using state-of-the-art techniques. Finally, we consider the means by which new imprinted genes can be identified.
Collapse
Affiliation(s)
- G Kelsey
- Laboratory of Developmental Genetics and Imprinting, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
44
|
Xiong Z, Tsark W, Singer-Sam J, Riggs AD. Differential replication timing of X-linked genes measured by a novel method using single-nucleotide primer extension. Nucleic Acids Res 1998; 26:684-6. [PMID: 9421536 PMCID: PMC147294 DOI: 10.1093/nar/26.2.684] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ratio of two differentially replicating alleles is not constant during S phase. Using this fact, we have developed a method for determining allele-specific replication timing for alleles differing by at least a single base pair. Unsynchronized cells in tissue culture are first sorted into fractions based on DNA content as a measure of position in S phase. DNA is purified from each fraction and used for PCR with primers that bracket the allelic difference, amplifying both alleles. The ratio of alleles in the amplified product is then determined by a single nucleotide primer extension (SNuPE) assay, modified as described [Singer-Sam,J. and Riggs,A.D. (1993) Methods Enzymol., 225, 344-351]. We report here use of this SNuPE-based method to analyze replication timing of two X-linked genes, Pgk-1 and Xist, as well as the autosomal gene Gabra-6. We have found that the two alleles of the Gabra-6 gene replicate synchronously, as expected; similarly, the active allele of the Pgk-1 gene on the active X chromosome (Xa) replicates early relative to the silent allele on the inactive X chromosome (Xi). In contrast, the expressed allele of the Xist gene, which is on the Xi, replicates late relative to the silent allele on the Xa.
Collapse
Affiliation(s)
- Z Xiong
- Molecular Biology Section and Mammalian Genetics Section, Biology Department, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
45
|
Greenwood AD, Southard-Smith EM, Galecki AT, Burke DT. Coordinate control and variation in X-linked gene expression among female mice. Mamm Genome 1997; 8:818-22. [PMID: 9337393 DOI: 10.1007/s003359900585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In normal female mammals, one of the two X Chromosome (Chr) homologs per cell is silenced coordinately during early embryogenesis. The genes located on the inactivated X homolog are predicted to be influenced by the same underlying repression mechanism. To test the uniformity of cis-acting gene repression, 32 genetically identical F1 female mice were analyzed for differential expression of homologous alleles at three X-linked genes-Otc, Atp7a (= Mottled), and Hprt. Gene expression was assayed by the single-nucleotide primer extension (SNuPE) method, thereby allowing the three genes to be quantitated from the same RNA sample. Although variable between individual animals, the relative expression of the two alleles (allelic expression ratio) of the genes is significantly correlated within each steady-state RNA pool. When examined by animal age (3 months to 12 months), no statistically significant differences were observed in the mean or variance of allelic expression ratio. Together, the results confirm that X inactivation is coordinately controlled and is stable across the early- to mid-adult life span.
Collapse
Affiliation(s)
- A D Greenwood
- Department of Human Genetics, University of Michigan, Ann Arbor 48109-0618, USA
| | | | | | | |
Collapse
|
46
|
Piggee CA, Muth J, Carrilho E, Karger BL. Capillary electrophoresis for the detection of known point mutations by single-nucleotide primer extension and laser-induced fluorescence detection. J Chromatogr A 1997; 781:367-75. [PMID: 9368396 DOI: 10.1016/s0021-9673(97)00637-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Capillary electrophoresis (CE) with laser-induced fluorescence (LIF) was used to detect known point mutations using the method of single-nucleotide primer extension (SNuPE). Three different point mutations in human mitochondrial DNA associated with Leber's hereditary optic neuropathy (LHON) were detected by annealing a primer immediately 5' to the mutation on the template and extending the primer by one fluorescently labeled dideoxy terminator complementary to the mutation. By using two or more differently labeled terminators, both the mutant and wild type could be simultaneously detected. The advantages of using CE-LIF for detecting SNuPE reactions include speed and ease of analysis, absence of radioactivity, and potential for automation.
Collapse
Affiliation(s)
- C A Piggee
- Barnett Institute, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
47
|
Adler DA, Rugarli EI, Lingenfelter PA, Tsuchiya K, Poslinski D, Liggitt HD, Chapman VM, Elliott RW, Ballabio A, Disteche CM. Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc Natl Acad Sci U S A 1997; 94:9244-8. [PMID: 9256467 PMCID: PMC23138 DOI: 10.1073/pnas.94.17.9244] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1997] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that the chloride channel gene Clc4 is X-linked and subject to X inactivation in Mus spretus, but that the same gene is autosomal in laboratory strains of mice. This exception to the conservation of linkage of the X chromosome in one of two interfertile mouse species was exploited to compare expression of Clc4 from the X chromosome to that from the autosome. Clc4 was found to be highly expressed in brain tissues of both mouse species. Quantitative analyses of species-specific expression of Clc4 in brain tissues from mice resulting from M. spretus x laboratory strain crosses, demonstrate that each autosomal locus has half the level of Clc4 expression as compared with the single active X-linked locus. In contrast expression of another chloride channel gene, Clc3, which is autosomal in both mouse species is equal between alleles in F1 animals. There is no evidence of imprinting of the Clc4 autosomal locus. These results are consistent with Ohno's hypothesis of an evolutionary requirement for a higher expression of genes on the single active X chromosome to maintain balance with autosomal gene expression [Ohno, S. (1967) Sex Chromosomes and Sex-Linked Genes (Springer, Berlin)].
Collapse
Affiliation(s)
- D A Adler
- Department of Pathology, Box 357470, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res 1997; 25:2529-31. [PMID: 9171109 PMCID: PMC146734 DOI: 10.1093/nar/25.12.2529] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have developed a rapid quantitative method (Ms-SNuPE) for assessing methylation differences at specific CpG sites based on bisulfite treatment of DNA followed by single nucleotide primer extension. Genomic DNA was first reacted with sodium bisulfite to convert unmethylated cytosine to uracil while leaving 5-methylcytosine unchanged. Amplification of the desired target sequence was then performed using PCR primers specific for bisulfite-converted DNA and the resulting product isolated and used as a template for methylation analysis at the CpG site(s) of interest. This methylation-sensitive technique has several advantages over existing methods used for detection of methylation changes because small amounts of DNA can be analyzed including microdissected pathology sections and it avoids utilization of restriction enzymes for determining the methylation status at CpG sites.
Collapse
Affiliation(s)
- M L Gonzalgo
- Department of Biochemistry and Molecular Biology, Urologic Cancer Research Laboratory USC/Norris Comprehensive Cancer Center, University of Southern California, School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
49
|
Lombardo AJ, Brown GB. A quantitative and specific method for measuring transcript levels of highly homologous genes. Nucleic Acids Res 1996; 24:4812-6. [PMID: 8972870 PMCID: PMC146290 DOI: 10.1093/nar/24.23.4812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because of their high nucleotide sequence homology, the specific detection of mRNA transcripts of individual members of a gene family presents certain problems. Here we apply and defend the single nucleotide primer extension (SNuPE) as a simple, specific, and highly quantitative assay for this purpose. The method distinguishes regions of the brain sodium channel gene family that vary by as little as a single nucleotide. The technique has been modified to include an intersample normalizer, and adaptation of the SNuPE assay to other gene families of interest to neuroscientists should be easy to achieve.
Collapse
Affiliation(s)
- A J Lombardo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
50
|
Belladonna ML, Fioretti MC, Bianchi R, Puccetti P, Grohmann U. A retroviral peptide encoded by mutated env p15E gene is recognized by specific CD8+ T lymphocytes on drug-treated murine mastocytoma P815. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1996; 18:563-76. [PMID: 9080250 DOI: 10.1016/s0192-0561(96)00065-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Highly immunogenic ("xenogenized") tumour variants appear after treatment of murine mastocytoma P815 with the triazene derivative DTIC, a phenomenon associated with the appearance of structurally abnormal p15E env proteins in the variant cells. In the present study, we have isolated and sequenced several p15E cDNA gene fragments amplified by means of polymerase chain reaction (PCR) from parental (P815) and xenogenized (P815/DTIC) tumour cells. Compared to known p15E sequences in parental cells, one p15E sequence from xenogenized cells presented three distinct nucleotide changes, one of which was apparently unique to P815/DTIC DNA and cDNA upon single-nucleotide primer extension assay. One major histocompatibility complex (MHC) class I-binding peptide, corresponding to a putative mutation in the p15E sequence, was tested in parallel with the parental peptide for recognition by P815/DTIC-specific cytotoxic T cells in vitro. The results suggested that the amino acid substitution at the relevant position of the p15E protein may produce an antigenic T cell epitope. By skin test assay of mice primed with either the synthetic peptide or P815/DTIC cells, evidence was obtained that the mutated peptide is immunogenic in vivo, and that the neoepitope is expressed by P815/DTIC cells. In accordance with previous data in the L5178Y/DTIC tumour model system, these findings reinforce the notion that xenogenization of tumour cells may result in the expression of class I-binding mutated peptides of retroviral origin.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/metabolism
- Antigens, Viral/metabolism
- Antineoplastic Agents/pharmacology
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cloning, Molecular
- DNA, Viral/genetics
- Dacarbazine/pharmacology
- Female
- Genes, env
- Histocompatibility Antigens Class I/metabolism
- Hypersensitivity, Delayed/chemically induced
- Hypersensitivity, Delayed/immunology
- Male
- Mast-Cell Sarcoma/drug therapy
- Mast-Cell Sarcoma/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Molecular Sequence Data
- Neoplasm Proteins
- Point Mutation
- Polymerase Chain Reaction
- Retroviridae Proteins/genetics
- Retroviridae Proteins/immunology
- Retroviridae Proteins/metabolism
- Sensitivity and Specificity
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- T-Lymphocytes, Cytotoxic/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- M L Belladonna
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | | | | | | |
Collapse
|