1
|
Abstract
The anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ATP-binding cassette (ABC) transporter. CFTR plays a pivotal role in transepithelial ion transport as its dysfunction in the genetic disease cystic fibrosis (CF) dramatically demonstrates. Phylogenetic analysis suggests that CFTR first appeared in aquatic vertebrates fulfilling important roles in osmosensing and organ development. Here, we review selectively, knowledge of CFTR structure, function and pharmacology, gleaned from cross-species comparative studies of recombinant CFTR proteins, including CFTR chimeras. The data argue that subtle changes in CFTR structure can affect strongly channel function and the action of CF mutations.
Collapse
|
2
|
Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of juvenile Dicentrarchus labrax exposed to seawater and freshwater. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:345-51. [DOI: 10.1016/j.cbpa.2009.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 01/08/2023]
|
3
|
Singer T, Keir K, Hinton M, Scott G, McKinley R, Schulte P. Structure and regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in killifish: A comparative genomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:172-85. [DOI: 10.1016/j.cbd.2008.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 01/11/2023]
|
4
|
Transcription-dependent spatial arrangements of CFTR and conserved adjacent loci are not conserved in human and murine nuclei. Chromosoma 2008; 117:381-97. [PMID: 18408947 DOI: 10.1007/s00412-008-0157-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
The human genes CFTR, ASZ1/GASZ, and CTTNBP2/CORTBP2 map to adjacent loci on chromosome 7q31 and display characteristic patterns of nuclear positioning, which strictly correlate with the state of activity. To address the evolutionary conservation of gene positioning, we investigated transcriptional activity and nuclear positioning of the highly conserved murine orthologs and of additional murine genes mapping to the region of conserved synteny on mouse chromosome 6. The results showed that all murine loci investigated constitutively localized in the nuclear interior irrespective of their functional state. Silenced loci did not display preferential association with the nuclear periphery or with chromocenters, respectively, and no differential positioning with respect to the chromosome 6 territory could be observed. This positional behavior of the murine loci was in striking contrast to the positioning of the human orthologs, and the results show that the transcription-dependent positioning of CFTR and adjacent loci has not been conserved. The findings reveal that the nuclear organization of conserved chromosomal regions can change rapidly during evolution and is not always as highly conserved as other features of chromosome organization. Furthermore, the results suggest that the way how nuclear positioning contributes to the regulation of conserved loci can be different in different vertebrate species.
Collapse
|
5
|
Boeva V, Regnier M, Papatsenko D, Makeev V. Short fuzzy tandem repeats in genomic sequences, identification, and possible role in regulation of gene expression. Bioinformatics 2006; 22:676-84. [PMID: 16403795 DOI: 10.1093/bioinformatics/btk032] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MOTIVATION Genomic sequences are highly redundant and contain many types of repetitive DNA. Fuzzy tandem repeats (FTRs) are of particular interest. They are found in regulatory regions of eukaryotic genes and are reported to interact with transcription factors. However, accurate assessment of FTR occurrences in different genome segments requires specific algorithm for efficient FTR identification and classification. RESULTS We have obtained formulas for P-values of FTR occurrence and developed an FTR identification algorithm implemented in TandemSWAN software. Using TandemSWAN we compared the structure and the occurrence of FTRs with short period length (up to 24 bp) in coding and non-coding regions including UTRs, heterochromatic, intergenic and enhancer sequences of Drosophila melanogaster and Drosophila pseudoobscura. Tandems with period three and its multiples were found in coding segments, whereas FTRs with periods multiple of six are overrepresented in all non-coding segment. Periods equal to 5-7 and 11-14 were characteristic of the enhancer regions and other non-coding regions close to genes. AVAILABILITY TandemSWAN web page, stand-alone version and documentation can be found at http://bioinform.genetika.ru/projects/swan/www/ SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Valentina Boeva
- Department of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia.
| | | | | | | |
Collapse
|
6
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1665] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
7
|
Blader P, Lam CS, Rastegar S, Scardigli R, Nicod JC, Simplicio N, Plessy C, Fischer N, Schuurmans C, Guillemot F, Strähle U. Conserved and acquired features of neurogenin1 regulation. Development 2004; 131:5627-37. [PMID: 15496438 DOI: 10.1242/dev.01455] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The telencephalon shows vast morphological variations among different vertebrate groups. The transcription factor neurogenin1(ngn1) controls neurogenesis in the mouse pallium and is also expressed in the dorsal telencephalon of the evolutionary distant zebrafish. The upstream regions of the zebrafish and mammalian ngn1 loci harbour several stretches of conserved sequences. Here, we show that the upstream region of zebrafish ngn1 is capable of faithfully recapitulating endogenous expression in the zebrafish and mouse telencephalon. A single conserved regulatory region is essential for dorsal telencephalic expression in the zebrafish, and for expression in the dorsal pallium of the mouse. However, a second conserved region that is inactive in the fish telencephalon is necessary for expression in the lateral pallium of mouse embryos. This regulatory region, which drives expression in the zebrafish diencephalon and hindbrain, is dependent on Pax6 activity and binds recombinant Pax6 in vitro. Thus, the regulatory elements of ngn1 appear to be conserved among vertebrates, with certain differences being incorporated in the utilisation of these enhancers, for the acquisition of more advanced features in amniotes. Our data provide evidence for the co-option of regulatory regions as a mechanism of evolutionary diversification of expression patterns, and suggest that an alteration in Pax6expression was crucial in neocortex evolution.
Collapse
Affiliation(s)
- Patrick Blader
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Edwards YJK, Carver TJ, Vavouri T, Frith M, Bishop MJ, Elgar G. Theatre: A software tool for detailed comparative analysis and visualization of genomic sequence. Nucleic Acids Res 2003; 31:3510-7. [PMID: 12824356 PMCID: PMC168908 DOI: 10.1093/nar/gkg501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 01/17/2003] [Accepted: 01/27/2003] [Indexed: 01/12/2023] Open
Abstract
Theatre is a web-based computing system designed for the comparative analysis of genomic sequences, especially with respect to motifs likely to be involved in the regulation of gene expression. Theatre is an interface to commonly used sequence analysis tools and biological sequence databases to determine or predict the positions of coding regions, repetitive sequences and transcription factor binding sites in families of DNA sequences. The information is displayed in a manner that can be easily understood and can reveal patterns that might not otherwise have been noticed. In addition to web-based output, Theatre can produce publication quality colour hardcopies showing predicted features in aligned genomic sequences. A case study using the p53 promoter region of four mammalian species and two fish species is described. Unlike the mammalian sequences the promoter regions in fish have not been previously predicted or characterized and we report the differences in the p53 promoter region of four mammals and that predicted for two fish species. Theatre can be accessed at http://www.hgmp.mrc.ac.uk/Registered/Webapp/theatre/.
Collapse
Affiliation(s)
- Yvonne J K Edwards
- Comparative Genomics Group, Research Division, MRC UK Human Genome Mapping Project Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Williams SH, Mouchel N, Harris A. A comparative genomic analysis of the cow, pig, and human CFTR genes identifies potential intronic regulatory elements. Genomics 2003; 81:628-39. [PMID: 12782133 DOI: 10.1016/s0888-7543(03)00089-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The identification of sequences within noncoding regions of genes that are conserved between several species may indicate potential regulatory elements. This is important for genes with complex control mechanisms such as the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR demonstrates similar patterns of temporal and spatial expression in human and sheep, but these differ significantly in mouse cftr. The complete sheep CFTR sequence is unavailable so we annotated BAC clones encompassing the CFTR gene from two other artiodactyl species (cow and pig) for comparative sequence analysis. Regions of introns 2, 3, 10, 17a, 18, and 21 and 3' flanking sequence corresponding to human CFTR DNase I hypersensitive sites (DHS) showed high homology in the cow and pig. Cross-species sequence conservation also enabled finer mapping of other human DHS, including those in introns 1, 16, and 20. Additional potential regulatory elements not associated with human DHS were also identified.
Collapse
Affiliation(s)
- Sarah H Williams
- Paediatric Molecular Genetics, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
10
|
Taylor MS, Devon RS, Millar JK, Porteous DJ. Evolutionary constraints on the Disrupted in Schizophrenia locus. Genomics 2003; 81:67-77. [PMID: 12573262 DOI: 10.1016/s0888-7543(02)00026-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Disrupted in Schizophrenia (DISC) locus on human chromosome 1q42 has been strongly implicated by genetic studies as a susceptibility locus for major mental illnesses. In humans the locus is transcriptionally complex, with multiple alternate splicing events, antisense transcription, and intergenic splicing all evident. We have compared the genomic sequence and transcription maps of this locus between human, mouse, pufferfish (Fugu rubripes), and, in part, zebrafish (Danio rerio). The order and orientation of EGLN1, TSNAX, and DISC1 genes are conserved between mammals and F. rubripes. Intergenic splicing and short intergenic transcripts are not found to be conserved features. DISC2, a putative noncoding transcript partially antisense to DISC1, is not conserved in mouse or F. rubripes. Alternate splice forms of the protein-coding DISC1 gene are conserved even though the genomic structure is not. The amino acid sequence of DISC1 is diverging rapidly, although a putative nuclear localization signal and discrete blocks of coiled coil are specifically conserved features.
Collapse
Affiliation(s)
- Martin S Taylor
- Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | |
Collapse
|
11
|
Cnaani A, Ron M, Hulata G, Seroussi E. Fishing in silico : searching for tilapia genes using sequences of microsatellite DNA markers. Anim Genet 2002; 33:474-6. [PMID: 12464031 DOI: 10.1046/j.1365-2052.2002.00938_7.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A Cnaani
- Institute of Animal Science, Agricultural Research Organization, PO Box 6, Bet-Dagan 50250, Israel
| | | | | | | |
Collapse
|
12
|
Marshall WS, Singer TD. Cystic fibrosis transmembrane conductance regulator in teleost fish. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:16-27. [PMID: 12421534 DOI: 10.1016/s0005-2736(02)00584-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gills and intestinal epithelia of teleost fish express cystic fibrosis transmembrane conductance regulator (CFTR), and utilize this low conductance anion channel in the apical membrane for ion secretion in seawater gill and in the basolateral membrane for ion absorption in freshwater gill. Similarly, in the intestine CFTR is present in the basolateral membrane for intestinal absorption and also in the apical membrane of secreting intestine. The expression of CFTR and the directed trafficking of the protein to the apical or basolateral membrane is salinity-dependent. The CFTR gene has been cloned and sequenced from several teleost species and although all the major elements in the human gene are present, including two nucleotide binding domains that are common to all ATP binding cassette (ABC) transporters, the sequences are divergent compared to shark or human. In euryhaline fish adapting to seawater, CFTR, localized immunocytochemically, redistributes slowly from a basolateral location to the apical membrane while ion secretory capacity increases. The facility with which teleosts regulate CFTR expression and activation during salinity adaptation make this system an appealing model for the expression and trafficking operation of this labile gene product.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St. Francis Xavier University, Nova Scotia, Antigonish, Canada.
| | | |
Collapse
|
13
|
Marshall WS. Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:264-83. [PMID: 12115901 DOI: 10.1002/jez.10127] [Citation(s) in RCA: 329] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The secondary active Cl(-) secretion in seawater (SW) teleost fish gills and elasmobranch rectal gland involves basolateral Na(+),K(+)-ATPase and NKCC, apical membrane CFTR anion channels, and a paracellular Na(+)-selective conductance. In freshwater (FW) teleost gill, the mechanism of NaCl uptake is more controversial and involves apical V-type H(+)-ATPase linked to an apical Na(+) channel, apical Cl(-)-HCO-3 exchange and basolateral Na(+),K(+)-ATPase. Ca(2+) uptake (in FW and SW) is via Ca(2+) channels in the apical membrane and Ca(2+)-ATPase in the basolateral membrane. Mainly this transport occurs in mitochondria rich (MR) chloride cells, but there is a role for the pavement cells also. Future research will likely expand in two major directions, molded by methodology: first in physiological genomics of all the transporters, including their expression, trafficking, operation, and regulation at the molecular level, and second in biotelemetry to examine multivariable components in behavioral physiological ecology, thus widening the integration of physiology from the molecular to the environmental levels while deepening understanding at all levels.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, B2G 2W5
| |
Collapse
|
14
|
Zhang X, Yang H, Yu J, Chen C, Zhang G, Bao J, Du Y, Kibukawa M, Li Z, Wang J, Hu S, Dong W, Wang J, Gregersen N, Niebuhr E, Bolund L. Genomic organization, transcript variants and comparative analysis of the human nucleoporin 155 (NUP155) gene. Gene 2002; 288:9-18. [PMID: 12034489 DOI: 10.1016/s0378-1119(02)00470-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nucleoporin 155 (Nup155) is a major component of the nuclear pore complex (NPC) involved in cellular nucleo-cytoplasmic transport. We have acquired the complete sequence and interpreted the genomic organization of the Nup155 orthologos from human (Homo sapiens) and pufferfish (Fugu rubripes), which are approximately 80 and 8 kb in length, respectively. The human gene is ubiquitously expressed in many tissues analyzed and has two major transcript variants, resulted from an alternative usage of the 5' cryptic or consensus splice donor in intron 1 and two polyadenylation signals. We have also cloned DNA complementary to RNAs of the Nup155 orthologs from Fugu and mouse. Comparative analysis of the Nup155 orthologs in many species, including H. sapiens, Mus musculus, Rattus norvegicus, F. rubripes, Arabidopsis thaliana, Drosophila melanogaster, and Saccharomyces cerevisiae, has revealed two paralogs in S. cerevisiae but only a single gene with increasing number of introns in more complex organisms. The amino acid sequences of the Nup155 orthologos are highly conserved in the evolution of eukaryotes. Different gene orders in the human and Fugu genomic regions harboring the Nup155 orthologs advocate cautious interpretation of synteny in comparative genomic analysis even within the vertebrate lineage.
Collapse
Affiliation(s)
- Xiuqing Zhang
- Human Genome Center, Institute of Genetics, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The human genome sequence provides a reference point from which we can compare ourselves with other organisms. Interspecies comparison is a powerful tool for inferring function from genomic sequence and could ultimately lead to the discovery of what makes humans unique. To date, most comparative sequencing has focused on pair-wise comparisons between human and a limited number of other vertebrates, such as mouse. Targeted approaches now exist for mapping and sequencing vertebrate bacterial artificial chromosomes (BACs) from numerous species, allowing rapid and detailed molecular and phylogenetic investigation of multi-megabase loci. Such targeted sequencing is complementary to current whole-genome sequencing projects, and would benefit greatly from the creation of BAC libraries from a diverse range of vertebrates.
Collapse
Affiliation(s)
- James W Thomas
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
16
|
Koch MA, Weisshaar B, Kroymann J, Haubold B, Mitchell-Olds T. Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Mol Biol Evol 2001; 18:1882-91. [PMID: 11557794 DOI: 10.1093/oxfordjournals.molbev.a003729] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA sequence variations of chalcone synthase (Chs) and Apetala3 gene promoters from 22 cruciferous plant species were analyzed to identify putative conserved regulatory elements. Our comparative approach confirmed the existence of numerous conserved sequences which may act as regulatory elements in both investigated promoters. To confirm the correct identification of a well-conserved UV-light-responsive promoter region, a subset of Chs promoter fragments were tested in Arabidopsis thaliana protoplasts. All promoters displayed similar light responsivenesses, indicating the general functional relevance of the conserved regulatory element. In addition to known regulatory elements, other highly conserved regions were detected which are likely to be of functional importance. Phylogenetic trees based on DNA sequences from both promoters (gene trees) were compared with the hypothesized phylogenetic relationships (species trees) of these taxa. The data derived from both promoter sequences were congruent with the phylogenies obtained from coding regions of other nuclear genes and from chloroplast DNA sequences. This indicates that promoter sequence evolution generally is reflective of species phylogeny. Our study also demonstrates the great value of comparative genomics and phylogenetics as a basis for functional analysis of promoter action and gene regulation.
Collapse
Affiliation(s)
- M A Koch
- Department of Botany, University of Agricultural Science, Vienna, Austria.
| | | | | | | | | |
Collapse
|
17
|
Brunner B, Hornung U, Shan Z, Nanda I, Kondo M, Zend-Ajusch E, Haaf T, Ropers HH, Shima A, Schmid M, Kalscheuer VM, Schartl M. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics 2001; 77:8-17. [PMID: 11543627 DOI: 10.1006/geno.2001.6615] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 9/genetics
- Conserved Sequence
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins
- Exons
- Female
- Fishes/embryology
- Fishes/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Introns
- Male
- Molecular Sequence Data
- Multigene Family/genetics
- Oryzias/embryology
- Oryzias/genetics
- Protein Isoforms/genetics
- RNA/genetics
- RNA/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Tissue Distribution
- Transcription Factors/genetics
- Zebrafish Proteins
Collapse
Affiliation(s)
- B Brunner
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen JM, Cutler C, Jacques C, Boeuf G, Denamur E, Lecointre G, Mercier B, Cramb G, Férec C. A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models. Mol Biol Evol 2001; 18:1771-88. [PMID: 11504857 DOI: 10.1093/oxfordjournals.molbev.a003965] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, nearly 1,000 variants have been identified in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in classic and atypical cystic fibrosis (CF) patients worldwide, and an enormous wealth of information concerning the structure and function of the protein has also been accumulated. These data, if evaluated together in a sequence comparison of all currently available CFTR homologs, are likely to refine the global structure-function relationship of the protein, which will, in turn, facilitate interpretation of the identified mutations in the gene. Based on such a combined analysis, we had recently defined a "functional R domain" of the CFTR protein. First, presenting two full-length cDNA sequences (termed sCFTR-I and sCFTR-II) from the Atlantic salmon (Salmo salar) and an additional partial coding sequence from the eastern gray kangaroo (Macropus giganteus), this study went further to refine the boundaries of the two nucleotide-binding domains (NBDs) and the COOH-terminal tail (C-tail), wherein NBD1 was defined as going from P439 to G646, NBD2 as going from A1225 to E1417, and the C-tail as going from E1418 to L1480. This approach also provided further insights into the differential roles of the two halves of CFTR and highlighted several well-conserved motifs that may be involved in inter- or intramolecular interactions. Moreover, a serious concern that a certain fraction of missense mutations identified in the CFTR gene may not have functional consequences was raised. Finally, phylogenetic analysis of all the full-length CFTR amino acid sequences and an extended set of exon 13--coding nucleotide sequences reinforced the idea that the rabbit may represent a better CF model than the mouse and strengthened the assertion that a long-branch attraction artifact separates the murine rodents from the rabbit and the guinea pig, the other Glires.
Collapse
Affiliation(s)
- J M Chen
- Institut National de la Santé et de la Recherche Médicale EMI 01 15, Etablissement Français du Sang-Bretagne, Universite de Bretagne Occidentale, and Centre Hospitalier Universitaire, Brest, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mouchel N, Tebbutt SJ, Broackes-Carter FC, Sahota V, Summerfield T, Gregory DJ, Harris A. The sheep genome contributes to localization of control elements in a human gene with complex regulatory mechanisms. Genomics 2001; 76:9-13. [PMID: 11549312 DOI: 10.1006/geno.2001.6603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genes that show complex tissue-specific and temporal control by regulatory elements located outside their promoters present a considerable challenge to identify the sequences involved. The rapid accumulation of genomic sequence information for a number of species has enabled a comparative phylogenetic approach to find important regulatory elements. For some genes, which show a similar pattern of expression in humans and rodents, genomic sequence information for these two species may be sufficient. Others, such as the cystic fibrosis transmembrane conductance regulator (CFTR) gene, show significant divergence in expression patterns between mouse and human, necessitating phylogenetic approaches involving additional species. The ovine CFTR gene has a temporal and spatial expression pattern that is very similar to that of human CFTR. Comparative genomic sequence analysis of ovine and human CFTR identified high levels of homology between the core elements in several potential regulatory elements defined as DNase I hypersensitive sites in human CFTR. These data provide a case for the power of an artiodactyl genome to contribute to the understanding of human genetic disease.
Collapse
Affiliation(s)
- N Mouchel
- Paediatric Molecular Genetics, Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford, 0X3 9DS, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Touchman JW, Dehejia A, Chiba-Falek O, Cabin DE, Schwartz JR, Orrison BM, Polymeropoulos MH, Nussbaum RL. Human and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res 2001; 11:78-86. [PMID: 11156617 PMCID: PMC311023 DOI: 10.1101/gr.165801] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human alpha-synuclein gene (SNCA) encodes a presynaptic nerve terminal protein that was originally identified as a precursor of the non-beta-amyloid component of Alzheimer's disease plaques. More recently, mutations in SNCA have been identified in some cases of familial Parkinson's disease, presenting numerous new areas of investigation for this important disease. Molecular studies would benefit from detailed information about the long-range sequence context of SNCA. To that end, we have established the complete genomic sequence of the chromosomal regions containing the human and mouse alpha-synuclein genes, with the objective of using the resulting sequence information to identify conserved regions of biological importance through comparative sequence analysis. These efforts have yielded approximately 146 and approximately 119 kb of high-accuracy human and mouse genomic sequence, respectively, revealing the precise genetic architecture of the alpha-synuclein gene in both species. A simple repeat element upstream of SNCA/Snca has been identified and shown to be necessary for normal expression in transient transfection assays using a luciferase reporter construct. Together, these studies provide valuable data that should facilitate more detailed analysis of this medically important gene.
Collapse
Affiliation(s)
- J W Touchman
- NIH Intramural Sequencing Center, National Institutes of Health, Gaithersburg, Maryland 20877, USA
| | | | | | | | | | | | | | | |
Collapse
|