1
|
Hornung E, Achanta S, Moss A, Schwaber JS, Vadigepalli R. Multi-organ gene expression analysis and network modeling reveal regulatory control cascades during the development of hypertension in female spontaneously hypertensive rat. PLoS One 2024; 19:e0313252. [PMID: 39514592 PMCID: PMC11548744 DOI: 10.1371/journal.pone.0313252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension is a multifactorial disease with stage-specific gene expression changes occurring in multiple organs over time. The temporal sequence and the extent of gene regulatory network changes occurring across organs during the development of hypertension remain unresolved. In this study, female spontaneously hypertensive (SHR) and normotensive Wistar Kyoto (WKY) rats were used to analyze expression patterns of 96 genes spanning inflammatory, metabolic, sympathetic, fibrotic, and renin-angiotensin (RAS) pathways in five organs, at five time points from the onset to established hypertension. We analyzed this multi-dimensional dataset containing ~15,000 data points and developed a data-driven dynamic network model that accounts for gene regulatory influences within and across visceral organs and multiple brainstem autonomic control regions. We integrated the data from female SHR and WKY with published multiorgan gene expression data from male SHR and WKY. In female SHR, catecholaminergic processes in the adrenal gland showed the earliest gene expression changes prior to inflammation-related gene expression changes in the kidney and liver. Hypertension pathogenesis in male SHR instead manifested early as catecholaminergic gene expression changes in brainstem and kidney, followed by an upregulation of inflammation-related genes in liver. RAS-related gene expression from the kidney-liver-lung axis was downregulated and intra-adrenal RAS was upregulated in female SHR, whereas the opposite pattern of gene regulation was observed in male SHR. We identified disease-specific and sex-specific differences in regulatory interactions within and across organs. The inferred multi-organ network model suggests a diminished influence of central autonomic neural circuits over multi-organ gene expression changes in female SHR. Our results point to the gene regulatory influence of the adrenal gland on spleen in female SHR, as compared to brainstem influence on kidney in male SHR. Our integrated molecular profiling and network modeling identified a stage-specific, sex-dependent, multi-organ cascade of gene regulation during the development of hypertension.
Collapse
Affiliation(s)
- Eden Hornung
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sirisha Achanta
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alison Moss
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - James S. Schwaber
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Khatoon H, Raza RZ, Saleem S, Batool F, Arshad S, Abrar M, Ali S, Hussain I, Shubin NH, Abbasi AA. Evolutionary relevance of single nucleotide variants within the forebrain exclusive human accelerated enhancer regions. BMC Mol Cell Biol 2023; 24:13. [PMID: 36991330 PMCID: PMC10053400 DOI: 10.1186/s12860-023-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation.
Results
To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele.
Conclusion
These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might.
have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution.
Methods
The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.
Collapse
|
4
|
Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. PLoS Genet 2022; 18:e1010234. [PMID: 35639796 PMCID: PMC9187121 DOI: 10.1371/journal.pgen.1010234] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/10/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
Sprague Dawley (SD) rats are among the most widely used outbred laboratory rat populations. Despite this, the genetic characteristics of SD rats have not been clearly described, and SD rats are rarely used for experiments aimed at exploring genotype-phenotype relationships. In order to use SD rats to perform a genome-wide association study (GWAS), we collected behavioral data from 4,625 SD rats that were predominantly obtained from two commercial vendors, Charles River Laboratories and Harlan Sprague Dawley Inc. Using double-digest genotyping-by-sequencing (ddGBS), we obtained dense, high-quality genotypes at 291,438 SNPs across 4,061 rats. This genetic data allowed us to characterize the variation present in Charles River vs. Harlan SD rats. We found that the two populations are highly diverged (FST > 0.4). Furthermore, even for rats obtained from the same vendor, there was strong population structure across breeding facilities and even between rooms at the same facility. We performed multiple separate GWAS by fitting a linear mixed model that accounted for population structure and using meta-analysis to jointly analyze all cohorts. Our study examined Pavlovian conditioned approach (PavCA) behavior, which assesses the propensity for rats to attribute incentive salience to reward-associated cues. We identified 46 significant associations for the various metrics used to define PavCA. The surprising degree of population structure among SD rats from different sources has important implications for their use in both genetic and non-genetic studies. Outbred Sprague Dawley rats are among the most commonly used rats for neuroscience, physiology and pharmacological research; in the year 2020, 4,188 publications contained the keyword “Sprague Dawley”. Rats identified as “Sprague Dawley” are sold by several commercial vendors, including Charles River Laboratories and Harlan Sprague Dawley Inc. (now Envigo). Despite their widespread use, little is known about the genetic diversity of SD. We genotyped more than 4,000 SD rats, which we used for a genome-wide association study (GWAS) and to characterize genetic differences between SD rats from Charles River Laboratories and Harlan. Our analysis revealed extensive population structure both between and within vendors. The GWAS for Pavlovian conditioned approach (PavCA) identified a number of genome-wide significant loci for that complex behavioral trait. Our results demonstrate that, despite sharing an identical name, SD rats that are obtained from different vendors are very different. Future studies should carefully define the exact source of SD rats being used and may exploit their genetic diversity for genetic studies of complex traits.
Collapse
|
5
|
Senko AN, Overall RW, Silhavy J, Mlejnek P, Malínská H, Hüttl M, Marková I, Fabel KS, Lu L, Stuchlik A, Williams RW, Pravenec M, Kempermann G. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet 2022; 18:e1009638. [PMID: 35377872 PMCID: PMC9060359 DOI: 10.1371/journal.pgen.1009638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/02/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.
Collapse
Affiliation(s)
- Anna N. Senko
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Rupert W. Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Klaus S. Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| |
Collapse
|
6
|
Dahale S, Ruiz-Orera J, Silhavy J, Hübner N, van Heesch S, Pravenec M, Atanur SS. Cap analysis of gene expression reveals alternative promoter usage in a rat model of hypertension. Life Sci Alliance 2022; 5:5/4/e202101234. [PMID: 34996843 PMCID: PMC8742872 DOI: 10.26508/lsa.202101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022] Open
Abstract
The role of alternative promoter usage in tissue-specific gene expression has been well established; however, its role in complex diseases is poorly understood. We performed cap analysis of gene expression (CAGE) sequencing from the left ventricle of a rat model of hypertension, the spontaneously hypertensive rat (SHR), and a normotensive strain, Brown Norway to understand the role of alternative promoter usage in complex disease. We identified 26,560 CAGE-defined transcription start sites in the rat left ventricle, including 1,970 novel cardiac transcription start sites. We identified 28 genes with alternative promoter usage between SHR and Brown Norway, which could lead to protein isoforms differing at the amino terminus between two strains and 475 promoter switching events altering the length of the 5' UTR. We found that the shift in Insr promoter usage was significantly associated with insulin levels and blood pressure within a panel of HXB/BXH recombinant inbred rat strains, suggesting that hyperinsulinemia due to insulin resistance might lead to hypertension in SHR. Our study provides a preliminary evidence of alternative promoter usage in complex diseases.
Collapse
Affiliation(s)
- Sonal Dahale
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, UK.,Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité -Universitätsmedizin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | | | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Santosh S Atanur
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, UK .,The National Institute for Health Research, Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College London, London, UK
| |
Collapse
|
7
|
Mihola O, Landa V, Pratto F, Brick K, Kobets T, Kusari F, Gasic S, Smagulova F, Grey C, Flachs P, Gergelits V, Tresnak K, Silhavy J, Mlejnek P, Camerini-Otero RD, Pravenec M, Petukhova GV, Trachtulec Z. Rat PRDM9 shapes recombination landscapes, duration of meiosis, gametogenesis, and age of fertility. BMC Biol 2021; 19:86. [PMID: 33910563 PMCID: PMC8082845 DOI: 10.1186/s12915-021-01017-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
Collapse
Affiliation(s)
- Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vladimir Landa
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Florencia Pratto
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatyana Kobets
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fitore Kusari
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Srdjan Gasic
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Fatima Smagulova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
- Present address: Inserm U1085 IRSET, 35042, Rennes, France
| | - Corinne Grey
- Institut de Génétique Humaine, CNRS UMR 9002, 34396, Montpellier, France
| | - Petr Flachs
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
- Present address: Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Vaclav Gergelits
- Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Karel Tresnak
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic
| | - Jan Silhavy
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michal Pravenec
- Laboratory of Genetics of Model Diseases, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Galina V Petukhova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD, 20814, USA
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic.
| |
Collapse
|
8
|
Zinski AL, Carrion S, Michal JJ, Gartstein MA, Quock RM, Davis JF, Jiang Z. Genome-to-phenome research in rats: progress and perspectives. Int J Biol Sci 2021; 17:119-133. [PMID: 33390838 PMCID: PMC7757052 DOI: 10.7150/ijbs.51628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023] Open
Abstract
Because of their relatively short lifespan (<4 years), rats have become the second most used model organism to study health and diseases in humans who may live for up to 120 years. First-, second- and third-generation sequencing technologies and platforms have produced increasingly greater sequencing depth and accurate reads, leading to significant advancements in the rat genome assembly during the last 20 years. In fact, whole genome sequencing (WGS) of 47 strains have been completed. This has led to the discovery of genome variants in rats, which have been widely used to detect quantitative trait loci underlying complex phenotypes based on gene, haplotype, and sweep association analyses. DNA variants can also reveal strain, chromosome and gene functional evolutions. In parallel, phenome programs have advanced significantly in rats during the last 15 years and more than 10 databases host genome and/or phenome information. In order to discover the bridges between genome and phenome, systems genetics and integrative genomics approaches have been developed. On the other hand, multiple level information transfers from genome to phenome are executed by differential usage of alternative transcriptional start (ATS) and polyadenylation (APA) sites per gene. We used our own experiments to demonstrate how alternative transcriptome analysis can lead to enrichment of phenome-related causal pathways in rats. Development of advanced genome-to-phenome assays will certainly enhance rats as models for human biomedical research.
Collapse
Affiliation(s)
- Amy L. Zinski
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Shane Carrion
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Raymond M. Quock
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| |
Collapse
|
9
|
Walas D, Nowicki-Osuch K, Alibhai D, von Linstow Roloff E, Coghill J, Waterfall C, Paton JF. Inflammatory pathways are central to posterior cerebrovascular artery remodelling prior to the onset of congenital hypertension. J Cereb Blood Flow Metab 2019; 39:1803-1817. [PMID: 29651914 PMCID: PMC6724458 DOI: 10.1177/0271678x18769180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral artery hypoperfusion may provide the basis for linking ischemic stroke with hypertension. Brain hypoperfusion may induce hypertension that may serve as an auto-protective mechanism to prevent ischemic stroke. We hypothesised that hypertension is caused by remodelling of the cerebral arteries, which is triggered by inflammation. We used a congenital rat model of hypertension and examined age-related changes in gene expression of the cerebral arteries using RNA sequencing. Prior to hypertension, we found changes in signalling pathways associated with the immune system and fibrosis. Validation studies using second harmonics generation microscopy revealed upregulation of collagen type I and IV in both tunica externa and media. These changes in the extracellular matrix of cerebral arteries pre-empted hypertension accounting for their increased stiffness and resistance, both potentially conducive to stroke. These data indicate that inflammatory driven cerebral artery remodelling occurs prior to the onset of hypertension and may be a trigger elevating systemic blood pressure in genetically programmed hypertension.
Collapse
Affiliation(s)
- Dawid Walas
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | | | - Dominic Alibhai
- 3 Wolfson Bioimaging Facility, School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Eva von Linstow Roloff
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Jane Coghill
- 4 Genomics Facility, School of Biological Sciences, Bristol, UK
| | | | - Julian Fr Paton
- 1 School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,5 Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
10
|
Fedoseeva LA, Klimov LO, Ershov NI, Efimov VM, Markel AL, Orlov YL, Redina OE. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics 2019; 20:297. [PMID: 32039698 PMCID: PMC7226933 DOI: 10.1186/s12864-019-5540-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of essential hypertension is associated with a wide range of mechanisms. The brain stem neurons are essential for the homeostatic regulation of arterial pressure as they control baroreflex and sympathetic nerve activity. The ISIAH (Inherited Stress Induced Arterial Hypertension) rats reproduce the human stress-sensitive hypertensive disease with predominant activation of the neuroendocrine hypothalamic-pituitary-adrenal and sympathetic adrenal axes. RNA-Seq analysis of the brain stems from the hypertensive ISIAH and normotensive control WAG (Wistar Albino Glaxo) rats was performed to identify the differentially expressed genes (DEGs) and the main central mechanisms (biological processes and metabolic pathways) contributing to the hypertensive state in the ISIAH rats. RESULTS The study revealed 224 DEGs. Their annotation in databases showed that 22 of them were associated with hypertension and blood pressure (BP) regulation, and 61 DEGs were associated with central nervous system diseases. In accordance with the functional annotation of DEGs, the key role of hormonal metabolic processes and, in particular, the enhanced biosynthesis of aldosterone in the brain stem of ISIAH rats was proposed. Multiple DEGs associated with several Gene Ontology (GO) terms essentially related to modulation of BP were identified. Abundant groups of DEGs were related to GO terms associated with responses to different stimuli including response to organic (hormonal) substance, to external stimulus, and to stress. Several DEGs making the most contribution to the inter-strain differences were detected including the Ephx2, which was earlier defined as a major candidate gene in the studies of transcriptional profiles in different tissues/organs (hypothalamus, adrenal gland and kidney) of ISIAH rats. CONCLUSIONS The results of the study showed that inter-strain differences in ISIAH and WAG brain stem functioning might be a result of the imbalance in processes leading to the pathology development and those, exerting the compensatory effects. The data obtained in this study are useful for a better understanding of the genetic mechanisms underlying the complexity of the brain stem processes in ISIAH rats, which are a model of stress-sensitive form of hypertension.
Collapse
Affiliation(s)
- Larisa A. Fedoseeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Leonid O. Klimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nikita I. Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Vadim M. Efimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Arcady L. Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Yuriy L. Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Olga E. Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
11
|
Ramdas S, Ozel AB, Treutelaar MK, Holl K, Mandel M, Woods LCS, Li JZ. Extended regions of suspected mis-assembly in the rat reference genome. Sci Data 2019; 6:39. [PMID: 31015470 PMCID: PMC6478900 DOI: 10.1038/s41597-019-0041-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
We performed whole-genome sequencing for eight inbred rat strains commonly used in genetic mapping studies. They are the founders of the NIH heterogeneous stock (HS) outbred colony. We provide their sequences and variant calls to the rat genomics community. When analyzing the variant calls we identified regions with unusually high levels of heterozygosity. These regions are consistent across the eight inbred strains, including Brown Norway, which is the basis of the rat reference genome. These regions show higher read depths than other regions in the genome and contain higher rates of apparent tri-allelic variant sites. The evidence suggests that these regions may correspond to duplicated segments that were incorrectly overlaid as a single segment in the reference genome. We provide masks for these regions of suspected mis-assembly as a resource for the community to flag potentially false interpretations of mapping or functional results.
Collapse
Affiliation(s)
- Shweta Ramdas
- Program in Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary K Treutelaar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katie Holl
- Department of Pediatrics, Human and Molecular Genetics Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Myrna Mandel
- National Institutes of Health, Bethesda, Maryland, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Abstract
The first and only published version of the rat reference genome sequence was RGSC3.1, accomplished by the Rat Genome Sequencing Project Consortium. Here we present the history of the community effort in the correction of sequence errors and filling missing gaps in the process of refining and providing researchers with a high-quality rat reference sequence. The genome assembly improvements, addition of different evidence resources over time, such as RNA-Seq data, and software development methodologies had a positive impact on the gene model annotations. Over the years we observed a great increase in the numbers of genes, protein coding sequences, predicted transcripts and transcript features. Before the sequencing of the rat genome was possible, first biochemical and next genomic markers like RAPD, AFLP, RFLP, and SSLP were fundamental in research studies involving cross-breeding between different rat strains, in finding the level of polymorphism, linkage mapping, and phylogeny. Linkage maps provide information on recombination rates, give insight into intra- and interspecies gene rearrangements, and help to identify Mendelian loci and Quantitative Trait Loci (QTL). In the 1990s many reports were published on the construction of rat linkage maps that incorporated increasing numbers of markers and facilitated the localization of disease loci. Current genetic monitoring and linkage mapping relies on single nucleotide polymorphisms (SNPs). The Rat Genome Database collects information on genetic variation from the worldwide community of rat researchers and provides tools for searching and retrieving these data. As of today we show details about almost 605 million variants coming from many studies in our Variant Visualizer tool.
Collapse
|
13
|
Adriaens ME, Lodder EM, Moreno‐Moral A, Šilhavý J, Heinig M, Glinge C, Belterman C, Wolswinkel R, Petretto E, Pravenec M, Remme CA, Bezzina CR. Systems Genetics Approaches in Rat Identify Novel Genes and Gene Networks Associated With Cardiac Conduction. J Am Heart Assoc 2018; 7:e009243. [PMID: 30608189 PMCID: PMC6404199 DOI: 10.1161/jaha.118.009243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 01/20/2023]
Abstract
Background Electrocardiographic ( ECG ) parameters are regarded as intermediate phenotypes of cardiac arrhythmias. Insight into the genetic underpinnings of these parameters is expected to contribute to the understanding of cardiac arrhythmia mechanisms. Here we used HXB / BXH recombinant inbred rat strains to uncover genetic loci and candidate genes modulating ECG parameters. Methods and Results RR interval, PR interval, QRS duration, and QT c interval were measured from ECG s obtained in 6 male rats from each of the 29 available HXB / BXH recombinant inbred strains. Genes at loci displaying significant quantitative trait loci (QTL) effects were prioritized by assessing the presence of protein-altering variants, and by assessment of cis expression QTL ( eQTL ) effects and correlation of transcript abundance to the respective trait in the heart. Cardiac RNA -seq data were additionally used to generate gene co-expression networks. QTL analysis of ECG parameters identified 2 QTL for PR interval, respectively, on chromosomes 10 and 17. At the chromosome 10 QTL , cis- eQTL effects were identified for Acbd4, Cd300lg, Fam171a2, and Arhgap27; the transcript abundance in the heart of these 4 genes was correlated with PR interval. At the chromosome 17 QTL , a cis- eQTL was uncovered for Nhlrc1 candidate gene; the transcript abundance of this gene was also correlated with PR interval. Co-expression analysis furthermore identified 50 gene networks, 6 of which were correlated with PR interval or QRS duration, both parameters of cardiac conduction. Conclusions These newly identified genetic loci and gene networks associated with the ECG parameters of cardiac conduction provide a starting point for future studies with the potential of identifying novel mechanisms underlying cardiac electrical function.
Collapse
Affiliation(s)
- Michiel E. Adriaens
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
- Maastricht Centre for Systems BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - Elisabeth M. Lodder
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | | | - Jan Šilhavý
- Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
| | - Matthias Heinig
- Institute of Computational BiologyHelmholtz Zentrum MünchenMünchenGermany
| | - Charlotte Glinge
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Charly Belterman
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Rianne Wolswinkel
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Enrico Petretto
- The MRC London Institute of Medical SciencesImperial College LondonLondonUnited Kingdom
- Duke‐NUS Medical SchoolSingapore
| | - Michal Pravenec
- Institute of PhysiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
| | - Carol Ann Remme
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| | - Connie R. Bezzina
- Department of Experimental CardiologyHeart CentreAcademic Medical Center AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
14
|
Prokop JW, May T, Strong K, Bilinovich SM, Bupp C, Rajasekaran S, Worthey EA, Lazar J. Genome sequencing in the clinic: the past, present, and future of genomic medicine. Physiol Genomics 2018; 50:563-579. [PMID: 29727589 PMCID: PMC6139636 DOI: 10.1152/physiolgenomics.00046.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genomic sequencing has undergone massive expansion in the past 10 yr, from a rarely used research tool into an approach that has broad applications in a clinical setting. From rare disease to cancer, genomics is transforming our knowledge of biology. The transition from targeted gene sequencing, to whole exome sequencing, to whole genome sequencing has only been made possible due to rapid advancements in technologies and informatics that have plummeted the cost per base of DNA sequencing and analysis. The tools of genomics have resolved the etiology of disease for previously undiagnosable conditions, identified cancer driver gene variants, and have impacted the understanding of pathophysiology for many diseases. However, this expansion of use has also highlighted research's current voids in knowledge. The lack of precise animal models for gene-to-function association, lack of tools for analysis of genomic structural changes, skew in populations used for genetic studies, publication biases, and the "Unknown Proteome" all contribute to voids needing filled for genomics to work in a fast-paced clinical setting. The future will hold the tools to fill in these voids, with new data sets and the continual development of new technologies allowing for expansion of genomic medicine, ushering in the days to come for precision medicine. In this review we highlight these and other points in hopes of advancing and guiding precision medicine into the future for optimal success.
Collapse
Affiliation(s)
- Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Thomas May
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
- Institute for Health and Aging, University of California San Francisco , San Francisco, California
- Elson S. Floyd College of Medicine, Washington State University , Spokane, Washington
| | - Kim Strong
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
| | - Stephanie M Bilinovich
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
| | - Caleb Bupp
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
- Department of Genetics, Helen DeVos Children's Hospital, Spectrum Health, Grand Rapids, Michigan
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
- Department of Pediatric Critical Care Medicine, Helen DeVos Children's Hospital, Spectrum Health, Grand Rapids, Michigan
| | | | - Jozef Lazar
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
| |
Collapse
|
15
|
Delles C, Carrick E, Graham D, Nicklin SA. Utilizing proteomics to understand and define hypertension: where are we and where do we go? Expert Rev Proteomics 2018; 15:581-592. [PMID: 29999442 PMCID: PMC6092739 DOI: 10.1080/14789450.2018.1493927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Hypertension is a complex and multifactorial cardiovascular disorder. With different mechanisms contributing to a different extent to an individual's blood pressure, the discovery of novel pathogenetic principles of hypertension is challenging. However, there is an urgent and unmet clinical need to improve prevention, detection, and therapy of hypertension in order to reduce the global burden associated with hypertension-related cardiovascular diseases. Areas covered: Proteomic techniques have been applied in reductionist experimental models including angiotensin II infusion models in rodents and the spontaneously hypertensive rat in order to unravel mechanisms involved in blood pressure control and end organ damage. In humans proteomic studies mainly focus on prediction and detection of organ damage, particularly of heart failure and renal disease. While there are only few proteomic studies specifically addressing human primary hypertension, there are more data available in hypertensive disorders in pregnancy, such as preeclampsia. We will review these studies and discuss implications of proteomics on precision medicine approaches. Expert commentary: Despite the potential of proteomic studies in hypertension there has been moderate progress in this area of research. Standardized large-scale studies are required in order to make best use of the potential that proteomics offers in hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Emma Carrick
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A. Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits. Biophys Rev 2018; 10:1053-1060. [PMID: 29934864 PMCID: PMC6082306 DOI: 10.1007/s12551-018-0435-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.
Collapse
|
17
|
Saba L, Hoffman P, Tabakoff B. Using Baseline Transcriptional Connectomes in Rat to Identify Genetic Pathways Associated with Predisposition to Complex Traits. Methods Mol Biol 2018; 1488:299-317. [PMID: 27933531 DOI: 10.1007/978-1-4939-6427-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although rat is a critical model organism in preclinical medications development, its use in systems genetics studies remains sparse. The PhenoGen database and website contain detailed information on the qualitative and quantitative aspects of the rat brain, liver, heart, and brown adipose transcriptome. This database has been generated using the HXB/BXH recombinant inbred panel and is being expanded to a hybrid rat diversity panel that includes many common inbred strains as well. By using such a panel, the PhenoGen project has created a renewable and cumulative resource for the rat genomics community. The database has been used to reconstruct the brain transcriptome identifying both annotated and unannotated transcribed elements that range in size from 20 nucleotides to over 30,000 nucleotides and elements that have a wide variety of roles in the cell including generation of proteins and regulation of the transcription and translation processes. In all 4 tissues, baseline transcriptional connectomes have been generated to model the relationships among transcripts. These connectomes can be used to identify genetic pathways associated with complex traits and to gain insight into biological function of individual transcripts. The PhenoGen website contains tools that allow the user to explore qualitative features of individual genes and to see how the gene relates to other genes within a tissue. The PhenoGen database and website continue to grow and to make use of the latest statistical methods for systems genetics creating a national resource for the rat genomics community.
Collapse
Affiliation(s)
- Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| | - Paula Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, USA
| |
Collapse
|
18
|
Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech 2017; 9:1419-1433. [PMID: 27935823 PMCID: PMC5200898 DOI: 10.1242/dmm.027276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance. Summary: This Review highlights the key role that the rat continues to play in improving our understanding of the etiologies of renal pathologies, and how these insights have opened up new therapeutic avenues.
Collapse
Affiliation(s)
- Linda J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryan R Conway
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert I Menzies
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
19
|
Doris PA. Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol Genomics 2017; 49:601-617. [PMID: 28916635 DOI: 10.1152/physiolgenomics.00065.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The application of gene mapping methods to uncover the genetic basis of hypertension in the inbred spontaneously hypertensive rat (SHR) began over 25 yr ago. This animal provides a useful model of genetic high blood pressure, and some of its features are described. In particular, it appears to be a polygenic model of disease, and polygenes participate in human hypertension genetic risk. The SHR hypertension alleles were fixed rapidly by selective breeding in just a few generations and so are presumably common genetic variants present in the outbred Wistar strain from which SHR was created. This review provides a background to the origins and genesis of this rat line. It considers its usefulness as a model organism for a common cardiovascular disease. The progress and obstacles facing mapping are considered in depth, as are the emergence and application of other genome-wide genetic discovery approaches that have been applied to investigate this model. Candidate genes, their identification, and the evidence to support their potential role in blood pressure elevation are considered. The review assesses the progress that has arisen from this work has been limited. Consideration is given to some of the factors that have impeded progress, and prospects for advancing understanding of the genetic basis of hypertension in this model are discussed.
Collapse
Affiliation(s)
- Peter A Doris
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
20
|
Casillas-Espinosa PM, Powell KL, Zhu M, Campbell CR, Maia JM, Ren Z, Jones NC, O’Brien TJ, Petrovski S. Evaluating whole genome sequence data from the Genetic Absence Epilepsy Rat from Strasbourg and its related non-epileptic strain. PLoS One 2017; 12:e0179924. [PMID: 28708842 PMCID: PMC5510834 DOI: 10.1371/journal.pone.0179924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are an inbreed Wistar rat strain widely used as a model of genetic generalised epilepsy with absence seizures. As in humans, the genetic architecture that results in genetic generalized epilepsy in GAERS is poorly understood. Here we present the strain-specific variants found among the epileptic GAERS and their related Non-Epileptic Control (NEC) strain. The GAERS and NEC represent a powerful opportunity to identify neurobiological factors that are associated with the genetic generalised epilepsy phenotype. METHODS We performed whole genome sequencing on adult epileptic GAERS and adult NEC rats, a strain derived from the same original Wistar colony. We also generated whole genome sequencing on four double-crossed (GAERS with NEC) F2 selected for high-seizing (n = 2) and non-seizing (n = 2) phenotypes. RESULTS Specific to the GAERS genome, we identified 1.12 million single nucleotide variants, 296.5K short insertion-deletions, and 354 putative copy number variants that result in complete or partial loss/duplication of 41 genes. Of the GAERS-specific variants that met high quality criteria, 25 are annotated as stop codon gain/loss, 56 as putative essential splice sites, and 56 indels are predicted to result in a frameshift. Subsequent screening against the two F2 progeny sequenced for having the highest and two F2 progeny for having the lowest seizure burden identified only the selected Cacna1h GAERS-private protein-coding variant as exclusively co-segregating with the two high-seizing F2 rats. SIGNIFICANCE This study highlights an approach for using whole genome sequencing to narrow down to a manageable candidate list of genetic variants in a complex genetic epilepsy animal model, and suggests utility of this sequencing design to investigate other spontaneously occurring animal models of human disease.
Collapse
Affiliation(s)
- Pablo M. Casillas-Espinosa
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Kim L. Powell
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Mingfu Zhu
- Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - C. Ryan Campbell
- Duke University School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Jessica M. Maia
- BD Technologies, Research Triangle Park, Durham, North Carolina, United States of America
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, Columbia University, New York, New York, United States of America
| | - Nigel C. Jones
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Terence J. O’Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Slavé Petrovski
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
- Institute for Genomic Medicine, Columbia University Medical Center, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ershov NI, Markel AL, Redina OE. Strain-Specific Single-Nucleotide Polymorphisms in Hypertensive ISIAH Rats. BIOCHEMISTRY (MOSCOW) 2017; 82:224-235. [PMID: 28320306 DOI: 10.1134/s0006297917020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) in the coding and regulatory regions of genes can affect transcription rate and translation efficiency, modify protein function, and, in some cases, cause the development of diseases. In the current study, the RNA-Seq approach has been used to discover strain-specific SNPs in ISIAH (inherited stress-induced arterial hypertension) rats, which are known as a model of stress-induced arterial hypertension. The comparison of the ISIAH SNPs with genome sequencing data available for another 42 rat strains and substrains, 11 of them known as hypertensive, showed a considerable genetic distance between the genotypes of ISIAH and all other rat strains and substrains. The study revealed 1849 novel SNPs specific for ISIAH rats and 158 SNPs present only in the genotypes of hypertensive rats. Amino acid substitutions with possible deleterious effect on protein function were detected. Several of them were found in the genes associated with hypertension. These SNPs may be considered as novel molecular targets for further studies aimed at assessing their potential in the therapy of stress-induced hypertension.
Collapse
Affiliation(s)
- N I Ershov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | |
Collapse
|
22
|
van der Weide RH, Simonis M, Hermsen R, Toonen P, Cuppen E, de Ligt J. The Genomic Scrapheap Challenge; Extracting Relevant Data from Unmapped Whole Genome Sequencing Reads, Including Strain Specific Genomic Segments, in Rats. PLoS One 2016; 11:e0160036. [PMID: 27501045 PMCID: PMC4976967 DOI: 10.1371/journal.pone.0160036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/12/2016] [Indexed: 01/17/2023] Open
Abstract
Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts.
Collapse
Affiliation(s)
- Robin H. van der Weide
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marieke Simonis
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Roel Hermsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Pim Toonen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joep de Ligt
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Abstract
Coronary flow (CF) measured ex vivo is largely determined by capillary density that reflects angiogenic vessel formation in the heart in vivo. Here we exploit this relationship and show that CF in the rat is influenced by a locus on rat chromosome 2 that is also associated with cardiac capillary density. Mitochondrial tryptophanyl-tRNA synthetase (Wars2), encoding an L53F protein variant within the ATP-binding motif, is prioritized as the candidate at the locus by integrating genomic data sets. WARS2(L53F) has low enzyme activity and inhibition of WARS2 in endothelial cells reduces angiogenesis. In the zebrafish, inhibition of wars2 results in trunk vessel deficiencies, disordered endocardial-myocardial contact and impaired heart function. Inhibition of Wars2 in the rat causes cardiac angiogenesis defects and diminished cardiac capillary density. Our data demonstrate a pro-angiogenic function for Wars2 both within and outside the heart that may have translational relevance given the association of WARS2 with common human diseases. Blood supply to the heart is crucial for cardiac function. Here, the authors show that the mitochondrial tryptophanyl-tRNA synthetase, WARS2, drives blood vessel generation in zebrafish and rats and that inhibition of Wars2 diminishes blood vessel growth both within and outside in the heart, suggesting a new target for manipulating angiogenesis.
Collapse
|
24
|
Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis. PLoS One 2016; 11:e0155832. [PMID: 27224245 PMCID: PMC4880288 DOI: 10.1371/journal.pone.0155832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/04/2016] [Indexed: 01/24/2023] Open
Abstract
Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89-174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.
Collapse
|
25
|
Tripartite motif-containing 55 identified as functional candidate for spontaneous cardiac hypertrophy in the rat locus cardiac mass 22. J Hypertens 2016; 34:950-8. [DOI: 10.1097/hjh.0000000000000875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Pravenec M, Kožich V, Krijt J, Sokolová J, Zídek V, Landa V, Mlejnek P, Šilhavý J, Šimáková M, Škop V, Trnovská J, Kazdová L, Kajiya T, Wang J, Kurtz TW. Genetic Variation in Renal Expression ofFolate Receptor 1(Folr1) Gene Predisposes Spontaneously Hypertensive Rats to Metabolic Syndrome. Hypertension 2016; 67:335-41. [DOI: 10.1161/hypertensionaha.115.06158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/18/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Michal Pravenec
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Viktor Kožich
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jakub Krijt
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jitka Sokolová
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Václav Zídek
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Vladimír Landa
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Petr Mlejnek
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jan Šilhavý
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Miroslava Šimáková
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Vojtěch Škop
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jaroslava Trnovská
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Ludmila Kazdová
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Takashi Kajiya
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Jiaming Wang
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| | - Theodore W. Kurtz
- From the Department of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P., V.Z., V.L., P.M., J.Š., M.Š.); Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic (V.K., J.K., J.Š.); Center of Experimental Medicine, Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic (V.Š., J.T., L.K.); and
| |
Collapse
|
27
|
Bischoff R, Permentier H, Guryev V, Horvatovich P. Genomic variability and protein species — Improving sequence coverage for proteogenomics. J Proteomics 2016; 134:25-36. [DOI: 10.1016/j.jprot.2015.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
|
28
|
Garcia Diaz AI, Moyon B, Coan PM, Alfazema N, Venda L, Woollard K, Aitman T. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein. Dis Model Mech 2016; 9:463-71. [PMID: 26769799 PMCID: PMC4852507 DOI: 10.1242/dmm.024208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/13/2016] [Indexed: 11/20/2022] Open
Abstract
The Wistar Kyoto (WKY) rat and the spontaneously hypertensive (SHR) rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN) and metabolic syndrome, respectively. Novel transgenic (Tg) strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP) under the rat elongation factor 1 alpha (EF1a) promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminaryin vitroandin vivoimaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.
Collapse
Affiliation(s)
- Ana Isabel Garcia Diaz
- Division of Immunology and Inflammation, Imperial College London, London W2 1PG, UK MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Ben Moyon
- Embryonic Stem Cell and Transgenics Facility, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Philip M Coan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neza Alfazema
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lara Venda
- MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Kevin Woollard
- Division of Immunology and Inflammation, Imperial College London, London W2 1PG, UK
| | - Tim Aitman
- MRC Clinical Sciences Centre and Department of Medicine, Imperial College London, London W12 0NN, UK Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
29
|
Abstract
The SIFT (sorting intolerant from tolerant) algorithm helps bridge the gap between mutations and phenotypic variations by predicting whether an amino acid substitution is deleterious. SIFT has been used in disease, mutation and genetic studies, and a protocol for its use has been previously published with Nature Protocols. This updated protocol describes SIFT 4G (SIFT for genomes), which is a faster version of SIFT that enables practical computations on reference genomes. Users can get predictions for single-nucleotide variants from their organism of interest using the SIFT 4G annotator with SIFT 4G's precomputed databases. The scope of genomic predictions is expanded, with predictions available for more than 200 organisms. Users can also run the SIFT 4G algorithm themselves. SIFT predictions can be retrieved for 6.7 million variants in 4 min once the database has been downloaded. If precomputed predictions are not available, the SIFT 4G algorithm can compute predictions at a rate of 2.6 s per protein sequence. SIFT 4G is available from http://sift-dna.org/sift4g.
Collapse
|
30
|
Comparative Genome of GK and Wistar Rats Reveals Genetic Basis of Type 2 Diabetes. PLoS One 2015; 10:e0141859. [PMID: 26529237 PMCID: PMC4631338 DOI: 10.1371/journal.pone.0141859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022] Open
Abstract
The Goto-Kakizaki (GK) rat, which has been developed by repeated inbreeding of glucose-intolerant Wistar rats, is the most widely studied rat model for Type 2 diabetes (T2D). However, the detailed genetic background of T2D phenotype in GK rats is still largely unknown. We report a survey of T2D susceptible variations based on high-quality whole genome sequencing of GK and Wistar rats, which have generated a list of GK-specific variations (228 structural variations, 2660 CNV amplification and 2834 CNV deletion, 1796 protein affecting SNVs or indels) by comparative genome analysis and identified 192 potential T2D-associated genes. The genes with variants are further refined with prior knowledge and public resource including variant polymorphism of rat strains, protein-protein interactions and differential gene expression. Finally we have identified 15 genetic mutant genes which include seven known T2D related genes (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4, Icam1, and Pkd2l1) and eight high-confidence new candidate genes (Ldlr, Ccl2, Erbb3, Akr1b1, Pik3c2a, Cd5, Eef2k, and Cpd). Our result reveals that the T2D phenotype may be caused by the accumulation of multiple variations in GK rat, and that the mutated genes may affect biological functions including adipocytokine signaling, glycerolipid metabolism, PPAR signaling, T cell receptor signaling and insulin signaling pathways. We present the genomic difference between two closely related rat strains (GK and Wistar) and narrow down the scope of susceptible loci. It also requires further experimental study to understand and validate the relationship between our candidate variants and T2D phenotype. Our findings highlight the importance of sequenced-based comparative genomics for investigating disease susceptibility loci in inbreeding animal models.
Collapse
|
31
|
Lewin A, Saadi H, Peters JE, Moreno-Moral A, Lee JC, Smith KGC, Petretto E, Bottolo L, Richardson S. MT-HESS: an efficient Bayesian approach for simultaneous association detection in OMICS datasets, with application to eQTL mapping in multiple tissues. Bioinformatics 2015; 32:523-32. [PMID: 26504141 PMCID: PMC4743623 DOI: 10.1093/bioinformatics/btv568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/03/2015] [Indexed: 01/22/2023] Open
Abstract
MOTIVATION Analysing the joint association between a large set of responses and predictors is a fundamental statistical task in integrative genomics, exemplified by numerous expression Quantitative Trait Loci (eQTL) studies. Of particular interest are the so-called ': hotspots ': , important genetic variants that regulate the expression of many genes. Recently, attention has focussed on whether eQTLs are common to several tissues, cell-types or, more generally, conditions or whether they are specific to a particular condition. RESULTS We have implemented MT-HESS, a Bayesian hierarchical model that analyses the association between a large set of predictors, e.g. SNPs, and many responses, e.g. gene expression, in multiple tissues, cells or conditions. Our Bayesian sparse regression algorithm goes beyond ': one-at-a-time ': association tests between SNPs and responses and uses a fully multivariate model search across all linear combinations of SNPs, coupled with a model of the correlation between condition/tissue-specific responses. In addition, we use a hierarchical structure to leverage shared information across different genes, thus improving the detection of hotspots. We show the increase of power resulting from our new approach in an extensive simulation study. Our analysis of two case studies highlights new hotspots that would remain undetected by standard approaches and shows how greater prediction power can be achieved when several tissues are jointly considered. AVAILABILITY AND IMPLEMENTATION C[Formula: see text] source code and documentation including compilation instructions are available under GNU licence at http://www.mrc-bsu.cam.ac.uk/software/.
Collapse
Affiliation(s)
- Alex Lewin
- Department of Mathematics, Brunel University London
| | - Habib Saadi
- Department of Epidemiology and Biostatistics, Imperial College London, London
| | - James E Peters
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge
| | | | - James C Lee
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge
| | - Kenneth G C Smith
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Imperial College London, London, UK, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Leonardo Bottolo
- Department of Mathematics, Imperial College London, London, UK and Department of Medical Genetics, University of Cambridge
| | - Sylvia Richardson
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge
| |
Collapse
|
32
|
Comparative Transcriptomes and EVO-DEVO Studies Depending on Next Generation Sequencing. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:896176. [PMID: 26543497 PMCID: PMC4620428 DOI: 10.1155/2015/896176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Abstract
High throughput technology has prompted the progressive omics studies, including genomics and transcriptomics. We have reviewed the improvement of comparative omic studies, which are attributed to the high throughput measurement of next generation sequencing technology. Comparative genomics have been successfully applied to evolution analysis while comparative transcriptomics are adopted in comparison of expression profile from two subjects by differential expression or differential coexpression, which enables their application in evolutionary developmental biology (EVO-DEVO) studies. EVO-DEVO studies focus on the evolutionary pressure affecting the morphogenesis of development and previous works have been conducted to illustrate the most conserved stages during embryonic development. Old measurements of these studies are based on the morphological similarity from macro view and new technology enables the micro detection of similarity in molecular mechanism. Evolutionary model of embryo development, which includes the "funnel-like" model and the "hourglass" model, has been evaluated by combination of these new comparative transcriptomic methods with prior comparative genomic information. Although the technology has promoted the EVO-DEVO studies into a new era, technological and material limitation still exist and further investigations require more subtle study design and procedure.
Collapse
|
33
|
DeCicco D, Zhu H, Brureau A, Schwaber JS, Vadigepalli R. MicroRNA network changes in the brain stem underlie the development of hypertension. Physiol Genomics 2015; 47:388-99. [PMID: 26126791 DOI: 10.1152/physiolgenomics.00047.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/29/2015] [Indexed: 01/12/2023] Open
Abstract
Hypertension is a major chronic disease whose molecular mechanisms remain poorly understood. We compared neuroanatomical patterns of microRNAs in the brain stem of the spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY, control). We quantified 419 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral medulla (RVLM), from SHR and WKY rats, during three main stages of hypertension development. Changes in microRNA expression were stage- and region-dependent, with a majority of SHR vs. WKY differential expression occurring at the hypertension onset stage in NTS versus at the prehypertension stage in RVLM. Our analysis identified 24 microRNAs showing time-dependent differential expression in SHR compared with WKY in at least one brain region. We predicted potential gene regulatory targets corresponding to catecholaminergic processes, neuroinflammation, and neuromodulation using the miRWALK and RNA22 databases, and we tested those bioinformatics predictions using high-throughput quantitative PCR to evaluate correlations of differential expression between the microRNAs and their predicted gene targets. We found a novel regulatory network motif consisting of microRNAs likely downregulating a negative regulator of prohypertensive processes such as angiotensin II signaling and leukotriene-based inflammation. Our results provide new evidence on the dynamics of microRNA expression in the development of hypertension and predictions of microRNA-mediated regulatory networks playing a region-dependent role in potentially altering brain-stem cardiovascular control circuit function leading to the development of hypertension.
Collapse
Affiliation(s)
- Danielle DeCicco
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Haisun Zhu
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anthony Brureau
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Gómez AV, Córdova G, Munita R, Parada GE, Barrios ÁP, Cancino GI, Álvarez AR, Andrés ME. Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response. PLoS One 2015; 10:e0129329. [PMID: 26053851 PMCID: PMC4459960 DOI: 10.1371/journal.pone.0129329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/08/2015] [Indexed: 11/21/2022] Open
Abstract
Causes of lower induction of Hsp70 in neurons during heat shock are still a matter of debate. To further inquire into the mechanisms regulating Hsp70 expression in neurons, we studied the activity of Heat Shock Factor 1 (HSF1) and histone posttranslational modifications (PTMs) at the hsp70 promoter in rat cortical neurons. Heat shock induced a transient and efficient translocation of HSF1 to neuronal nuclei. However, no binding of HSF1 at the hsp70 promoter was detected while it bound to the hsp25 promoter in cortical neurons during heat shock. Histone PTMs analysis showed that the hsp70 promoter harbors lower levels of histone H3 and H4 acetylation in cortical neurons compared to PC12 cells under basal conditions. Transcriptomic profiling data analysis showed a predominant usage of cryptic transcriptional start sites at hsp70 gene in the rat cerebral cortex, compared with the whole brain. These data support a weaker activation of hsp70 canonical promoter. Heat shock increased H3Ac at the hsp70 promoter in PC12 cells, which correlated with increased Hsp70 expression while no modifications occurred at the hsp70 promoter in cortical neurons. Increased histone H3 acetylation by Trichostatin A led to hsp70 mRNA and protein induction in cortical neurons. In conclusion, we found that two independent mechanisms maintain a lower induction of Hsp70 in cortical neurons. First, HSF1 fails to bind specifically to the hsp70 promoter in cortical neurons during heat shock and, second, the hsp70 promoter is less accessible in neurons compared to non-neuronal cells due to histone deacetylases repression.
Collapse
Affiliation(s)
- Andrea V. Gómez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
- * E-mail: (AVG); (MEA)
| | - Gonzalo Córdova
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Roberto Munita
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Guillermo E. Parada
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Álvaro P. Barrios
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Gonzalo I. Cancino
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - Alejandra R. Álvarez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
| | - María E. Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
- * E-mail: (AVG); (MEA)
| |
Collapse
|
35
|
Flister MJ, Prokop JW, Lazar J, Shimoyama M, Dwinell M, Geurts A. 2015 Guidelines for Establishing Genetically Modified Rat Models for Cardiovascular Research. J Cardiovasc Transl Res 2015; 8:269-77. [PMID: 25920443 PMCID: PMC4475456 DOI: 10.1007/s12265-015-9626-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/15/2015] [Indexed: 12/24/2022]
Abstract
The rat has long been a key physiological model for cardiovascular research, most of the inbred strains having been previously selected for susceptibility or resistance to various cardiovascular diseases (CVD). These CVD rat models offer a physiologically relevant background on which candidates of human CVD can be tested in a more clinically translatable experimental setting. However, a diverse toolbox for genetically modifying the rat genome to test molecular mechanisms has only recently become available. Here, we provide a high-level description of several strategies for developing genetically modified rat models of CVD.
Collapse
Affiliation(s)
- Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, 53226, WI, USA,
| | | | | | | | | | | |
Collapse
|
36
|
Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat Commun 2015; 6:7200. [PMID: 26007203 PMCID: PMC4455061 DOI: 10.1038/ncomms8200] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/17/2015] [Indexed: 01/05/2023] Open
Abstract
The extent of translational control of gene expression in mammalian tissues remains largely unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart and liver tissues to investigate strain-specific translational regulation in the spontaneously hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at the translational level and there is limited evidence of translational buffering. Remarkably, we observe hundreds of strain-specific differences in translation, almost doubling the number of differentially expressed genes. The integration of genetic, transcriptional and translational data sets reveals distinct signatures in 3'UTR variation, RNA-binding protein motifs and miRNA expression associated with translational regulation of gene expression. We show that a large number of genes associated with heart and liver traits in human genome-wide association studies are primarily translationally regulated. Capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease phenotypes.
Collapse
|
37
|
Genomic landscape of rat strain and substrain variation. BMC Genomics 2015; 16:357. [PMID: 25943489 PMCID: PMC4422378 DOI: 10.1186/s12864-015-1594-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/28/2015] [Indexed: 01/08/2023] Open
Abstract
Background Since the completion of the rat reference genome in 2003, whole-genome sequencing data from more than 40 rat strains have become available. These data represent the broad range of strains that are used in rat research including commonly used substrains. Currently, this wealth of information cannot be used to its full extent, because the variety of different variant calling algorithms employed by different groups impairs comparison between strains. In addition, all rat whole genome sequencing studies to date used an outdated reference genome for analysis (RGSC3.4 released in 2004). Results Here we present a comprehensive, multi-sample and uniformly called set of genetic variants in 40 rat strains, including 19 substrains. We reanalyzed all primary data using a recent version of the rat reference assembly (RGSC5.0 released in 2012) and identified over 12 million genomic variants (SNVs, indels and structural variants) among the 40 strains. 28,318 SNVs are specific to individual substrains, which may be explained by introgression from other unsequenced strains and ongoing evolution by genetic drift. Substrain SNVs may have a larger predicted functional impact compared to older shared SNVs. Conclusions In summary we present a comprehensive catalog of uniformly analyzed genetic variants among 40 widely used rat inbred strains based on the RGSC5.0 assembly. This represents a valuable resource, which will facilitate rat functional genomic research. In line with previous observations, our genome-wide analyses do not show evidence for contribution of multiple ancestral founder rat subspecies to the currently used rat inbred strains, as is the case for mouse. In addition, we find that the degree of substrain variation is highly variable between strains, which is of importance for the correct interpretation of experimental data from different labs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1594-1) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, Haribabu B, Vijay-Kumar M, Pennathur S, Joe B. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 2015; 47:187-97. [PMID: 25829393 DOI: 10.1152/physiolgenomics.00136.2014] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota plays a critical role in maintaining physiological homeostasis. This study was designed to evaluate whether gut microbial composition affects hypertension. 16S rRNA genes obtained from cecal samples of Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats were sequenced. Bacteria of the phylum Bacteroidetes were higher in the S rats compared with the R rats. Furthermore, the family S24-7 of the phylum Bacteroidetes and the family Veillonellaceae of the phylum Firmicutes were higher in the S rats compared with the R rats. Analyses of the various phylogenetic groups of cecal microbiota revealed significant differences between S and R rats. Both strains were maintained on a high-salt diet, administered antibiotics for ablation of microbiota, transplanted with S or R rat cecal contents, and monitored for blood pressure (BP). Systolic BP of the R rats remained unaltered irrespective of S or R rat cecal transplantation. Surprisingly, compared with the S rats given S rat cecal content, systolic BP of the S rats given a single bolus of cecal content from R rats was consistently and significantly elevated during the rest of their life, and they had a shorter lifespan. A lower level of fecal bacteria of the family Veillonellaceae and increased plasma acetate and heptanoate were features associated with the increased BP observed in the S rats given R rat microbiota compared with the S rats given S rat microbiota. These data demonstrate a link between microbial content and BP regulation and, because the S and R rats differ in their genomic composition, provide the necessary basis to further examine the relationship between the host genome and microbiome in the context of BP regulation in the Dahl rats.
Collapse
Affiliation(s)
- Blair Mell
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Venkatakrishna R Jala
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Anna V Mathew
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Youjie Zhang
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences and Medicine, The Pennsylvania State University, University Park, Pennsylvania
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, Michigan; and
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio;
| |
Collapse
|
39
|
Heinig M, Colomé-Tatché M, Taudt A, Rintisch C, Schafer S, Pravenec M, Hubner N, Vingron M, Johannes F. histoneHMM: Differential analysis of histone modifications with broad genomic footprints. BMC Bioinformatics 2015; 16:60. [PMID: 25884684 PMCID: PMC4347972 DOI: 10.1186/s12859-015-0491-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/06/2015] [Indexed: 11/25/2022] Open
Abstract
Background ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. Results To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. Conclusion histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0491-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Heinig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnesstrasse 63-73, Berlin, 14195, Germany.
| | - Maria Colomé-Tatché
- Quantitative Epigenetics, European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, AV, Groningen, 9713, The Netherlands.
| | - Aaron Taudt
- Quantitative Epigenetics, European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, AV, Groningen, 9713, The Netherlands.
| | - Carola Rintisch
- Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany.
| | - Sebastian Schafer
- Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany.
| | - Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czeck Republic, Videnska 1083, Prague, 14220, Czech Republic.
| | - Norbert Hubner
- Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany.
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnesstrasse 63-73, Berlin, 14195, Germany.
| | - Frank Johannes
- Groningen Bioinformatics Center, University of Groningen, Nijenborgh 7, AG, Groningen, 9747, The Netherlands.
| |
Collapse
|
40
|
Johnson MD, Mueller M, Adamowicz-Brice M, Collins MJ, Gellert P, Maratou K, Srivastava PK, Rotival M, Butt S, Game L, Atanur SS, Silver N, Norsworthy PJ, Langley SR, Petretto E, Pravenec M, Aitman TJ. Genetic analysis of the cardiac methylome at single nucleotide resolution in a model of human cardiovascular disease. PLoS Genet 2014; 10:e1004813. [PMID: 25474312 PMCID: PMC4256262 DOI: 10.1371/journal.pgen.1004813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 10/09/2014] [Indexed: 12/03/2022] Open
Abstract
Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes. Epigenetic marks provide information that is not encoded in the primary DNA sequence itself but in modifications of genomic DNA and of the associated proteins. Methylation of genomic DNA at cytosine residues is an important epigenetic modification that is associated with developmental processes, carcinogenesis and other diseases. Genome-wide extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. To address these questions we have determined and compared the genome-wide methylation patterns in heart tissue of two inbred rat strains, the spontaneously hypertensive rat, an animal model of human disease and a control rat strain. Comparison of methylation differences between genetically identical animals from the same strain and differences between animals from different strains allowed us to quantify association of epigenetic and genetic differences. We show that differences in an individual's germline DNA sequence are important determinants of the variability in methylation between individuals. Comparison with previous reports implicates common mechanisms for regulation of cytosine methylation that are highly conserved across species. Finally, we find correlation between a proposed blood biomarker for heart failure and variation in DNA methylation, suggesting a link between germline DNA sequence variation, methylation and a disease-related phenotype.
Collapse
Affiliation(s)
- Michelle D. Johnson
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Michael Mueller
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Martyna Adamowicz-Brice
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Melissa J. Collins
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Pascal Gellert
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- Institute of Clinical Sciences, Imperial College, London, United Kingdom
| | - Klio Maratou
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- Institute of Clinical Sciences, Imperial College, London, United Kingdom
| | - Prashant K. Srivastava
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
| | - Maxime Rotival
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
| | - Shahena Butt
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
| | - Laurence Game
- Genomics Core Laboratory, MRC Clinical Sciences Centre, London, United Kingdom
| | - Santosh S. Atanur
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Nicholas Silver
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Penny J. Norsworthy
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
| | - Sarah R. Langley
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
| | - Enrico Petretto
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
| | - Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Timothy J. Aitman
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, London, United Kingdom
- Institute of Clinical Sciences, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Redina OE, Smolenskaya SE, Abramova TO, Ivanova LN, Markel AL. Differential transcriptional activity of kidney genes in hypertensive ISIAH and normotensive WAG rats. Clin Exp Hypertens 2014; 37:249-59. [PMID: 25285356 DOI: 10.3109/10641963.2014.954711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transcriptional activity of the kidney genes was compared in hypertensive ISIAH and normotensive WAG rats using the oligonucleotide microarray technique. Most of differentially expressed genes were downregulated in ISIAH kidney both in renal cortex and medulla. According to functional annotation the kidney function in ISIAH rats is based on altered expression of many genes working in stress-related mode. The alterations in gene expression are likely related to both pathophysiological and compensatory mechanisms. The further studies of genes differentially expressed in ISIAH and WAG kidney will help to reveal new hypertensive genes and mechanisms specific for stress-induced arterial hypertension.
Collapse
Affiliation(s)
- Olga Evgenievna Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences , Novosibirsk , Russian Federation
| | | | | | | | | |
Collapse
|
42
|
Gonzalez-Garay ML, Cranford SM, Braun MC, Doris PA. Diversity in the preimmune immunoglobulin repertoire of SHR lines susceptible and resistant to end-organ injury. Genes Immun 2014; 15:528-33. [PMID: 25056448 PMCID: PMC4257902 DOI: 10.1038/gene.2014.40] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/24/2014] [Accepted: 05/23/2014] [Indexed: 01/03/2023]
Abstract
We used next-generation sequencing to identify IGH genetic variation in two closely related hypertensive rat lines that differ in susceptibility to end-organ disease (SHR-A3 and SHR-B2). The two SHR lines differ extensively at the IGH locus from the rat reference genome sequence (RRGS) and from each other, creating 306 sequence unique IGH genes. Compared to IGH genes mapped in the RRGS, 98 are null gene alleles (31 are null in both SHR lines, 45 are null in SHR-A3 only, and 23 are null in SHR-B2 only). Of the 306 divergent gene sequences, 126 result in amino acid substitution and, among these, SHR-A3 and SHR-B2 differ from one another at the amino acid level in 96 segments. Twelve pseudogenes in the RRGS had changes displacing the stop codon and creating probable functional genes in either or both SHR-A3 and SHR-B2. A further 5 alleles that encoded functional RRGS genes or open reading frames were converted to pseudogenes in either or both SHR-A3 and SHR-B2. These studies reveal that the pre-immune immunoglobulin repertoire is highly divergent among SHR lines differing in end organ injury susceptibility and this may modify immune mechanisms in hypertensive renal injury.
Collapse
Affiliation(s)
- M L Gonzalez-Garay
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - S M Cranford
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M C Braun
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - P A Doris
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
43
|
Marques FZ, Prestes PR, Pinheiro LB, Scurrah K, Emslie KR, Tomaszewski M, Harrap SB, Charchar FJ. Measurement of absolute copy number variation reveals association with essential hypertension. BMC Med Genomics 2014; 7:44. [PMID: 25027169 PMCID: PMC4107748 DOI: 10.1186/1755-8794-7-44] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/09/2014] [Indexed: 01/19/2023] Open
Abstract
Background The role of copy number variation (CNV) has been poorly explored in essential hypertension in part due to technical difficulties in accurately assessing absolute numbers of DNA copies. Droplet digital PCR (ddPCR) provides a powerful new approach to CNV quantitation. The aim of our study was to investigate whether CNVs located in regions previously associated with blood pressure (BP) variation in genome-wide association studies (GWAS) were associated with essential hypertension by the use of ddPCR. Methods Using a “power of extreme” approach, we quantified nucleic acids using ddPCR in white subjects from the Victorian Family Heart Study with extremely high (n = 96) and low (n = 92) SBP, providing power equivalent to 1714 subjects selected at random. Results A deletion of the CNVs esv27061 and esv2757747 on chromosome 1p13.2 was significantly more prevalent in extreme high BP subjects after adjustment for age, body mass index and sex (12.6% vs. 2.2%; P = 0.013). Conclusions Our data suggests that CNVs within regions identified in previous GWAS may play a role in human essential hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fadi J Charchar
- Faculty of Science, Federation University Australia, Y Building, University Drive, Mt Helen, 3350, Ballarat, VIC, Australia.
| |
Collapse
|
44
|
Bäckdahl L, Ekman D, Jagodic M, Olsson T, Holmdahl R. Identification of candidate risk gene variations by whole-genome sequence analysis of four rat strains commonly used in inflammation research. BMC Genomics 2014; 15:391. [PMID: 24885425 PMCID: PMC4041999 DOI: 10.1186/1471-2164-15-391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/24/2014] [Indexed: 01/07/2023] Open
Abstract
Background The DA rat strain is particularly susceptible to the induction of a number of chronic inflammatory diseases, such as models for rheumatoid arthritis and multiple sclerosis. Here we sequenced the genomes of two DA sub-strains and two disease resistant strains, E3 and PVG, previously used together with DA strains in genetically segregating crosses. Results The data uncovers genomic variations, such as single nucleotide variations (SNVs) and copy number variations that underlie phenotypic differences between the strains. Comparisons of regional differences between the two DA sub-strains identified 8 genomic regions that discriminate between the strains that together cover 38 Mbp and harbor 302 genes. We analyzed 10 fine-mapped quantitative trait loci and our data implicate strong candidates for genetic variations that mediate their effects. For example we could identify a single SNV candidate in a regulatory region of the gene Il21r, which has been associated to differential expression in both rats and human MS patients. In the APLEC complex we identified two SNVs in a highly conserved region, which could affect the regulation of all APLEC encoded genes and explain the polygenic differential expression seen in the complex. Furthermore, the non-synonymous SNV modifying aa153 of the Ncf1 protein was confirmed as the sole causative factor. Conclusion This complete map of genetic differences between the most commonly used rat strains in inflammation research constitutes an important reference in understanding how genetic variations contribute to the traits of importance for inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-391) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Rintisch C, Heinig M, Bauerfeind A, Schafer S, Mieth C, Patone G, Hummel O, Chen W, Cook S, Cuppen E, Colomé-Tatché M, Johannes F, Jansen RC, Neil H, Werner M, Pravenec M, Vingron M, Hubner N. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res 2014; 24:942-53. [PMID: 24793478 PMCID: PMC4032858 DOI: 10.1101/gr.169029.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Histone modifications are epigenetic marks that play fundamental roles in many biological processes including the control of chromatin-mediated regulation of gene expression. Little is known about interindividual variability of histone modification levels across the genome and to what extent they are influenced by genetic variation. We annotated the rat genome with histone modification maps, identified differences in histone trimethyl-lysine levels among strains, and described their underlying genetic basis at the genome-wide scale using ChIP-seq in heart and liver tissues in a panel of rat recombinant inbred and their progenitor strains. We identified extensive variation of histone methylation levels among individuals and mapped hundreds of underlying cis- and trans-acting loci throughout the genome that regulate histone methylation levels in an allele-specific manner. Interestingly, most histone methylation level variation was trans-linked and the most prominent QTL identified influenced H3K4me3 levels at 899 putative promoters throughout the genome in the heart. Cis- acting variation was enriched in binding sites of distinct transcription factors in heart and liver. The integrated analysis of DNA variation together with histone methylation and gene expression levels showed that histoneQTLs are an important predictor of gene expression and that a joint analysis significantly enhanced the prediction of gene expression traits (eQTLs). Our data suggest that genetic variation has a widespread impact on histone trimethylation marks that may help to uncover novel genotype-phenotype relationships.
Collapse
Affiliation(s)
- Carola Rintisch
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Matthias Heinig
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany; Department of Computational Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Anja Bauerfeind
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Sebastian Schafer
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Christin Mieth
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Giannino Patone
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Oliver Hummel
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Wei Chen
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
| | - Stuart Cook
- National Heart and Lung Institute, Cardiovascular Genetics and Genomics, London, SW3 6NP, United Kingdom; Duke-NUS Graduate Medical School, 169857 Singapore; National Heart Center Singapore, 169609 Singapore
| | - Edwin Cuppen
- Center for Molecular Medicine, University Medical Center Utrecht, Hubrecht Institute KNAW, 3584 CT Utrecht, The Netherlands
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, NL-9713 AV Groningen, The Netherlands
| | - Frank Johannes
- Groningen Bioinformatics Centre (GBIC), Groningen Biomolecular Sciences and Biotechnology Institute (GBB), 9747AG Groningen, The Netherlands
| | - Ritsert C Jansen
- Groningen Bioinformatics Centre (GBIC), Groningen Biomolecular Sciences and Biotechnology Institute (GBB), 9747AG Groningen, The Netherlands
| | - Helen Neil
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), iBiTec-S, Université Paris-Sud, CNRS FRE3377, F-91191 Gif-sur-Yvette cedex, France
| | - Michel Werner
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), iBiTec-S, Université Paris-Sud, CNRS FRE3377, F-91191 Gif-sur-Yvette cedex, France
| | - Michal Pravenec
- Institut of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic
| | - Martin Vingron
- Department of Computational Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Norbert Hubner
- Max-Delbrück-Center for Molecular Medicine (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
| |
Collapse
|
46
|
Ma MCJ, Atanur SS, Aitman TJ, Kwitek AE. Genomic structure of nucleotide diversity among Lyon rat models of metabolic syndrome. BMC Genomics 2014; 15:197. [PMID: 24628878 PMCID: PMC4003853 DOI: 10.1186/1471-2164-15-197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/01/2014] [Indexed: 12/29/2022] Open
Abstract
Background The metabolic syndrome (MetS), a complex disorder involving hypertension, obesity, dyslipidemia and insulin resistance, is a major risk factor for heart disease, stroke, and diabetes. The Lyon Hypertensive (LH), Lyon Normotensive (LN) and Lyon Low-pressure (LL) rats are inbred strains simultaneously derived from a common outbred Sprague Dawley colony by selection for high, normal, and low blood pressure, respectively. Further studies found that LH is a MetS susceptible strain, while LN is resistant and LL has an intermediate phenotype. Whole genome sequencing determined that, while the strains are phenotypically divergent, they are nearly 98% similar at the nucleotide level. Using the sequence of the three strains, we applied an approach that harnesses the distribution of Observed Strain Differences (OSD), or nucleotide diversity, to distinguish genomic regions of identity-by-descent (IBD) from those with divergent ancestry between the three strains. This information was then used to fine-map QTL identified in a cross between LH and LN rats in order to identify candidate genes causing the phenotypes. Results We identified haplotypes that, in total, contain at least 95% of the identifiable polymorphisms between the Lyon strains that are likely of differing ancestral origin. By intersecting the identified haplotype blocks with Quantitative Trait Loci (QTL) previously identified in a cross between LH and LN strains, the candidate QTL regions have been narrowed by 78%. Because the genome sequence has been determined, we were further able to identify putative functional variants in genes that are candidates for causing the QTL. Conclusions Whole genome sequence analysis between the LH, LN, and LL strains identified the haplotype structure of these three strains and identified candidate genes with sequence variants predicted to affect gene function. This approach, merged with additional integrative genetics approaches, will likely lead to novel mechanisms underlying complex disease and provide new drug targets and therapies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-197) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Anne E Kwitek
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
47
|
Tuncel J, Haag S, Yau ACY, Norin U, Baud A, Lönnblom E, Maratou K, Ytterberg AJ, Ekman D, Thordardottir S, Johannesson M, Gillett A, Stridh P, Jagodic M, Olsson T, Fernández-Teruel A, Zubarev RA, Mott R, Aitman TJ, Flint J, Holmdahl R. Natural polymorphisms in Tap2 influence negative selection and CD4∶CD8 lineage commitment in the rat. PLoS Genet 2014; 10:e1004151. [PMID: 24586191 PMCID: PMC3930506 DOI: 10.1371/journal.pgen.1004151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022] Open
Abstract
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells. Peptides from degraded cytoplasmic proteins are transported via TAP into the endoplasmic reticulum for loading onto MHC class I molecules. TAP is encoded by Tap1 and Tap2, which in rodents are located close to the MHC class I genes. In the rat, genetic variation in Tap2 gives rise to two different transporters: a promiscuous A variant (TAP-A) and a more restrictive B variant (TAP-B). It has been proposed that the class I molecule in the DA rat (RT1-Aa) has co-evolved with TAP-A and it has been shown that RT1-Aa antigenicity is changed when co-expressed with TAP-B. To study the contribution of different allelic combinations of RT1-A and Tap2 to the variation in MHC expression and T cell selection, we generated DA rats with either congenic or background alleles in the RT1-A and Tap2 loci. We found increased numbers of mature CD8SP cells in the thymus of rats which co-expressed RT1-Aa and TAP-B. This increase of CD8 cells could be explained by reduced negative selection, but did not correlate with RT1-Aa expression levels on thymic antigen presenting cells. Thus, our results identify a crucial role of the TAP and the quality of the MHC class I repertoire in regulating T cell selection.
Collapse
Affiliation(s)
- Jonatan Tuncel
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (JT); (RH)
| | - Sabrina Haag
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anthony C. Y. Yau
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Norin
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amelie Baud
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Erik Lönnblom
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Klio Maratou
- Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - A. Jimmy Ytterberg
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
- Medical Proteomics, Department of Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Diana Ekman
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Soley Thordardottir
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martina Johannesson
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alan Gillett
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Roman A. Zubarev
- Medical Proteomics, Department of Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Timothy J. Aitman
- Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (JT); (RH)
| |
Collapse
|
48
|
PRAVENEC M, KŘEN V, LANDA V, MLEJNEK P, MUSILOVÁ A, ŠILHAVÝ J, ŠIMÁKOVÁ M, ZÍDEK V. Recent Progress in the Genetics of Spontaneously Hypertensive Rats. Physiol Res 2014; 63:S1-8. [DOI: 10.33549/physiolres.932622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and accompanying metabolic disturbances. Recent advances in sequencing of genomes of BN-Lx and SHR progenitors of the BXH/HXB recombinant inbred (RI) strains as well as accumulation of multiple data sets of intermediary phenotypes in the RI strains, including mRNA and microRNA abundance, quantitative metabolomics, proteomics, methylomics or histone modifications, will make it possible to systematically search for genetic variants involved in regulation of gene expression and in the etiology of complex pathophysiological traits. New advances in manipulation of the rat genome, including efficient transgenesis and gene targeting, will enable in vivo functional analyses of selected candidate genes to identify QTL at the molecular level or to provide insight into mechanisms whereby targeted genes affect pathophysiological traits in the SHR.
Collapse
Affiliation(s)
- M. PRAVENEC
- Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen H, Luo R, Gong S, Matta SG, Sharp BM. Protection genes in nucleus accumbens shell affect vulnerability to nicotine self-administration across isogenic strains of adolescent rat. PLoS One 2014; 9:e86214. [PMID: 24465966 PMCID: PMC3899218 DOI: 10.1371/journal.pone.0086214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/06/2013] [Indexed: 01/20/2023] Open
Abstract
Classical genetic studies show the heritability of cigarette smoking is 0.4–0.6, and that multiple genes confer susceptibility and resistance to smoking. Despite recent advances in identifying genes associated with smoking behaviors, the major source of this heritability and its impact on susceptibility and resistance are largely unknown. Operant self-administration (SA) of intravenous nicotine is an established model for smoking behavior. We recently confirmed that genetic factors exert strong control over nicotine intake in isogenic rat strains. Because the processing of afferent dopaminergic signals by nucleus accumbens shell (AcbS) is critical for acquisition and maintenance of motivated behaviors reinforced by nicotine, we hypothesized that differential basal gene expression in AcbS accounts for much of the strain-to-strain variation in nicotine SA. We therefore sequenced the transcriptome of AcbS samples obtained by laser capture microdissection from 10 isogenic adolescent rat strains and compared all RNA transcript levels with behavior. Weighted gene co-expression network analysis, a systems biology method, found 12 modules (i.e., unique sets of genes that covary across all samples) that correlated (p<0.05) with amount of self-administered nicotine; 9 of 12 correlated negatively, implying a protective role. PCR confirmed selected genes from these modules. Chilibot, a literature mining tool, identified 15 genes within 1 module that were nominally associated with cigarette smoking, thereby providing strong support for the analytical approach. This is the first report demonstrating that nicotine intake by adolescent rodents is associated with the expression of specific genes in AcbS of the mesolimbic system, which controls motivated behaviors. These findings provide new insights into genetic mechanisms that predispose or protect against tobacco addiction.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (HC); (BS)
| | - Rui Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Suzhen Gong
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Shannon G. Matta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Burt M. Sharp
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (HC); (BS)
| |
Collapse
|
50
|
Low TY, van Heesch S, van den Toorn H, Giansanti P, Cristobal A, Toonen P, Schafer S, Hübner N, van Breukelen B, Mohammed S, Cuppen E, Heck AJR, Guryev V. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep 2013; 5:1469-78. [PMID: 24290761 DOI: 10.1016/j.celrep.2013.10.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/28/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023] Open
Abstract
Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.
Collapse
Affiliation(s)
- Teck Yew Low
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Sebastiaan van Heesch
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Alba Cristobal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Pim Toonen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sebastian Schafer
- Max-Delbruck-Center for Molecular Medicine (MDC), Robert-Rossle-Strasse 10, 13125 Berlin, Germany
| | - Norbert Hübner
- Max-Delbruck-Center for Molecular Medicine (MDC), Robert-Rossle-Strasse 10, 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Bas van Breukelen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Victor Guryev
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|