1
|
Lv X, Murphy K, Murphy Z, Getman M, Rahman N, Nakamura Y, Blanc L, Gallagher PG, Palis J, Mohandas N, Steiner LA. HEXIM1 is an essential transcription regulator during human erythropoiesis. Blood 2023; 142:2198-2215. [PMID: 37738561 PMCID: PMC10733840 DOI: 10.1182/blood.2022019495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023] Open
Abstract
ABSTRACT Regulation of RNA polymerase II (RNAPII) activity is an essential process that governs gene expression; however, its contribution to the fundamental process of erythropoiesis remains unclear. hexamethylene bis-acetamide inducible 1 (HEXIM1) regulates RNAPII activity by controlling the location and activity of positive transcription factor β. We identified a key role for HEXIM1 in controlling erythroid gene expression and function, with overexpression of HEXIM1 promoting erythroid proliferation and fetal globin expression. HEXIM1 regulated erythroid proliferation by enforcing RNAPII pausing at cell cycle check point genes and increasing RNAPII occupancy at genes that promote cycle progression. Genome-wide profiling of HEXIM1 revealed that it was increased at both repressed and activated genes. Surprisingly, there were also genome-wide changes in the distribution of GATA-binding factor 1 (GATA1) and RNAPII. The most dramatic changes occurred at the β-globin loci, where there was loss of RNAPII and GATA1 at β-globin and gain of these factors at γ-globin. This resulted in increased expression of fetal globin, and BGLT3, a long noncoding RNA in the β-globin locus that regulates fetal globin expression. GATA1 was a key determinant of the ability of HEXIM1 to repress or activate gene expression. Genes that gained both HEXIM1 and GATA1 had increased RNAPII and increased gene expression, whereas genes that gained HEXIM1 but lost GATA1 had an increase in RNAPII pausing and decreased expression. Together, our findings reveal a central role for universal transcription machinery in regulating key aspects of erythropoiesis, including cell cycle progression and fetal gene expression, which could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiurui Lv
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Kristin Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Zachary Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Michael Getman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Nabil Rahman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Yukio Nakamura
- Rikagaku Kenkyūjyo (RIKEN) BioResource Research Center, Tsukuba Campus, Ibaraki, Japan
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | | | - James Palis
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Narla Mohandas
- Red Cell Physiology Laboratory, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Laurie A. Steiner
- Center for Child Health Research, University of Rochester, Rochester, NY
- Center for RNA Biology, University of Rochester, Rochester, NY
| |
Collapse
|
2
|
Pop RT, Pisante A, Nagy D, Martin PCN, Mikheeva L, Hayat A, Ficz G, Zabet NR. Identification of mammalian transcription factors that bind to inaccessible chromatin. Nucleic Acids Res 2023; 51:8480-8495. [PMID: 37486787 PMCID: PMC10484684 DOI: 10.1093/nar/gkad614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Transcription factors (TFs) are proteins that affect gene expression by binding to regulatory regions of DNA in a sequence specific manner. The binding of TFs to DNA is controlled by many factors, including the DNA sequence, concentration of TF, chromatin accessibility and co-factors. Here, we systematically investigated the binding mechanism of hundreds of TFs by analysing ChIP-seq data with our explainable statistical model, ChIPanalyser. This tool uses as inputs the DNA sequence binding motif; the capacity to distinguish between strong and weak binding sites; the concentration of TF; and chromatin accessibility. We found that approximately one third of TFs are predicted to bind the genome in a DNA accessibility independent fashion, which includes TFs that can open the chromatin, their co-factors and TFs with similar motifs. Our model predicted this to be the case when the TF binds to its strongest binding regions in the genome, and only a small number of TFs have the capacity to bind dense chromatin at their weakest binding regions, such as CTCF, USF2 and CEBPB. Our study demonstrated that the binding of hundreds of human and mouse TFs is predicted by ChIPanalyser with high accuracy and showed that many TFs can bind dense chromatin.
Collapse
Affiliation(s)
- Romana T Pop
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Alessandra Pisante
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Dorka Nagy
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | | | - Ateequllah Hayat
- Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, Tooting SW17 0RE, London
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
3
|
Li D, Zhao XY, Zhou S, Hu Q, Wu F, Lee HY. Multidimensional profiling reveals GATA1-modulated stage-specific chromatin states and functional associations during human erythropoiesis. Nucleic Acids Res 2023; 51:6634-6653. [PMID: 37254808 PMCID: PMC10359633 DOI: 10.1093/nar/gkad468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023] Open
Abstract
Mammalian erythroid development can be divided into three stages: hematopoietic stem and progenitor cell (HSPC), erythroid progenitor (Ery-Pro), and erythroid precursor (Ery-Pre). However, the mechanisms by which the 3D genome changes to establish the stage-specific transcription programs that are critical for erythropoiesis remain unclear. Here, we analyze the chromatin landscape at multiple levels in defined populations from primary human erythroid culture. While compartments and topologically associating domains remain largely unchanged, ∼50% of H3K27Ac-marked enhancers are dynamic in HSPC versus Ery-Pre. The enhancer anchors of enhancer-promoter loops are enriched for occupancy of respective stage-specific transcription factors (TFs), indicating these TFs orchestrate the enhancer connectome rewiring. The master TF of erythropoiesis, GATA1, is found to occupy most erythroid gene promoters at the Ery-Pro stage, and mediate conspicuous local rewiring through acquiring binding at the distal regions in Ery-Pre, promoting productive erythroid transcription output. Knocking out GATA1 binding sites precisely abrogates local rewiring and corresponding gene expression. Interestingly, knocking down GATA1 can transiently revert the cell state to an earlier stage and prolong the window of progenitor state. This study reveals mechanistic insights underlying chromatin rearrangements during development by integrating multidimensional chromatin landscape analyses to associate with transcription output and cellular states.
Collapse
Affiliation(s)
- Dong Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin-Ying Zhao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Hu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fan Wu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hsiang-Ying Lee
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100871, China
| |
Collapse
|
4
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Gregoricchio S, Polit L, Esposito M, Berthelet J, Delestré L, Evanno E, Diop M, Gallais I, Aleth H, Poplineau M, Zwart W, Rosenbauer F, Rodrigues-Lima F, Duprez E, Boeva V, Guillouf C. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia. Nucleic Acids Res 2022; 50:7938-7958. [PMID: 35871293 PMCID: PMC9371914 DOI: 10.1093/nar/gkac613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Lélia Polit
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
| | - Michela Esposito
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Laure Delestré
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Emilie Evanno
- Curie Institute , Inserm U830, F- 75005 Paris, France
| | - M’Boyba Diop
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Hanna Aleth
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | - Mathilde Poplineau
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | | | - Estelle Duprez
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Valentina Boeva
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
- Department of Computer Science and Department of Biology , ETH Zurich, 8092 Zurich , Switzerland
| | - Christel Guillouf
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| |
Collapse
|
6
|
Wells M, Steiner L. Epigenetic and Transcriptional Control of Erythropoiesis. Front Genet 2022; 13:805265. [PMID: 35330735 PMCID: PMC8940284 DOI: 10.3389/fgene.2022.805265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Erythropoiesis is a process of enormous magnitude, with the average person generating two to three million red cells every second. Erythroid progenitors start as large cells with large nuclei, and over the course of three to four cell divisions they undergo a dramatic decrease in cell size accompanied by profound nuclear condensation, which culminates in enucleation. As maturing erythroblasts are undergoing these dramatic phenotypic changes, they accumulate hemoglobin and express high levels of other erythroid-specific genes, while silencing much of the non-erythroid transcriptome. These phenotypic and gene expression changes are associated with distinct changes in the chromatin landscape, and require close coordination between transcription factors and epigenetic regulators, as well as precise regulation of RNA polymerase II activity. Disruption of these processes are associated with inherited anemias and myelodysplastic syndromes. Here, we review the epigenetic mechanisms that govern terminal erythroid maturation, and their role in human disease.
Collapse
Affiliation(s)
- Maeve Wells
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
Murphy ZC, Murphy K, Myers J, Getman M, Couch T, Schulz VP, Lezon-Geyda K, Palumbo C, Yan H, Mohandas N, Gallagher PG, Steiner LA. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation. Blood 2021; 138:1740-1756. [PMID: 34075391 PMCID: PMC8569412 DOI: 10.1182/blood.2020009903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
The terminal maturation of human erythroblasts requires significant changes in gene expression in the context of dramatic nuclear condensation. Defects in this process are associated with inherited anemias and myelodysplastic syndromes. The progressively dense appearance of the condensing nucleus in maturing erythroblasts led to the assumption that heterochromatin accumulation underlies this process, but despite extensive study, the precise mechanisms underlying this essential biologic process remain elusive. To delineate the epigenetic changes associated with the terminal maturation of human erythroblasts, we performed mass spectrometry of histone posttranslational modifications combined with chromatin immunoprecipitation coupled with high-throughput sequencing, Assay for Transposase Accessible Chromatin, and RNA sequencing. Our studies revealed that the terminal maturation of human erythroblasts is associated with a dramatic decline in histone marks associated with active transcription elongation, without accumulation of heterochromatin. Chromatin structure and gene expression were instead correlated with dynamic changes in occupancy of elongation competent RNA polymerase II, suggesting that terminal erythroid maturation is controlled largely at the level of transcription. We further demonstrate that RNA polymerase II "pausing" is highly correlated with transcriptional repression, with elongation competent RNA polymerase II becoming a scare resource in late-stage erythroblasts, allocated to erythroid-specific genes. Functional studies confirmed an essential role for maturation stage-specific regulation of RNA polymerase II activity during erythroid maturation and demonstrate a critical role for HEXIM1 in the regulation of gene expression and RNA polymerase II activity in maturing erythroblasts. Taken together, our findings reveal important insights into the mechanisms that regulate terminal erythroid maturation and provide a novel paradigm for understanding normal and perturbed erythropoiesis.
Collapse
Affiliation(s)
| | | | - Jacquelyn Myers
- Department of Pediatrics and
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | | - Cal Palumbo
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | |
Collapse
|
8
|
Liu S, Li D, Lyu C, Gontarz PM, Miao B, Madden PAF, Wang T, Zhang B. AIAP: A Quality Control and Integrative Analysis Package to Improve ATAC-seq Data Analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:641-651. [PMID: 34273560 PMCID: PMC9040017 DOI: 10.1016/j.gpb.2020.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/28/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) is a technique widely used to investigate genome-wide chromatin accessibility. The recently published Omni-ATAC-seq protocol substantially improves the signal/noise ratio and reduces the input cell number. High-quality data are critical to ensure accurate analysis. Several tools have been developed for assessing sequencing quality and insertion size distribution for ATAC-seq data; however, key quality control (QC) metrics have not yet been established to accurately determine the quality of ATAC-seq data. Here, we optimized the analysis strategy for ATAC-seq and defined a series of QC metrics for ATAC-seq data, including reads under peak ratio (RUPr), background (BG), promoter enrichment (ProEn), subsampling enrichment (SubEn), and other measurements. We incorporated these QC tests into our recently developed ATAC-seq Integrative Analysis Package (AIAP) to provide a complete ATAC-seq analysis system, including quality assurance, improved peak calling, and downstream differential analysis. We demonstrated a significant improvement of sensitivity (20%–60%) in both peak calling and differential analysis by processing paired-end ATAC-seq datasets using AIAP. AIAP is compiled into Docker/Singularity, and it can be executed by one command line to generate a comprehensive QC report. We used ENCODE ATAC-seq data to benchmark and generate QC recommendations, and developed qATACViewer for the user-friendly interaction with the QC report. The software, source code, and documentation of AIAP are freely available at https://github.com/Zhang-lab/ATAC-seq_QC_analysis.
Collapse
Affiliation(s)
- Shaopeng Liu
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Daofeng Li
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Cheng Lyu
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Paul M Gontarz
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Ting Wang
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
9
|
Barile M, Imaz-Rosshandler I, Inzani I, Ghazanfar S, Nichols J, Marioni JC, Guibentif C, Göttgens B. Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation. Genome Biol 2021; 22:197. [PMID: 34225769 PMCID: PMC8258993 DOI: 10.1186/s13059-021-02414-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.
Collapse
Affiliation(s)
- Melania Barile
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Isabella Inzani
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Cambridge, CB2 0QQ UK
| | - Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD UK
| | - Carolina Guibentif
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| |
Collapse
|
10
|
Mehta C, Fraga de Andrade I, Matson DR, Dewey CN, Bresnick EH. RNA-regulatory exosome complex confers cellular survival to promote erythropoiesis. Nucleic Acids Res 2021; 49:9007-9025. [PMID: 34059908 PMCID: PMC8450083 DOI: 10.1093/nar/gkab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Cellular differentiation requires vast remodeling of transcriptomes, and therefore machinery mediating remodeling controls differentiation. Relative to transcriptional mechanisms governing differentiation, post-transcriptional processes are less well understood. As an important post-transcriptional determinant of transcriptomes, the RNA exosome complex (EC) mediates processing and/or degradation of select RNAs. During erythropoiesis, the erythroid transcription factor GATA1 represses EC subunit genes. Depleting EC structural subunits prior to GATA1-mediated repression is deleterious to erythroid progenitor cells. To assess the importance of the EC catalytic subunits Dis3 and Exosc10 in this dynamic process, we asked if these subunits function non-redundantly to control erythropoiesis. Dis3 or Exosc10 depletion in primary murine hematopoietic progenitor cells reduced erythroid progenitors and their progeny, while sparing myeloid cells. Dis3 loss severely compromised erythroid progenitor and erythroblast survival, rendered erythroblasts hypersensitive to apoptosis-inducing stimuli and induced γ-H2AX, indicative of DNA double-stranded breaks. Dis3 loss-of-function phenotypes were more severe than those caused by Exosc10 depletion. We innovated a genetic rescue system to compare human Dis3 with multiple myeloma-associated Dis3 mutants S447R and R750K, and only wild type Dis3 was competent to rescue progenitors. Thus, Dis3 establishes a disease mutation-sensitive, cell type-specific survival mechanism to enable a differentiation program.
Collapse
Affiliation(s)
- Charu Mehta
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Isabela Fraga de Andrade
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53705, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
11
|
Xu P, Scott DC, Xu B, Yao Y, Feng R, Cheng L, Mayberry K, Wang YD, Bi W, Palmer LE, King MT, Wang H, Li Y, Fan Y, Alpi AF, Li C, Peng J, Papizan J, Pruett-Miller SM, Spallek R, Bassermann F, Cheng Y, Schulman BA, Weiss MJ. FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis. Blood 2021; 137:155-167. [PMID: 33156908 PMCID: PMC7820877 DOI: 10.1182/blood.2020007809] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors. Erythroblasts lacking FBXO11 are developmentally delayed, with reduced expression of maturation-associated genes, most of which harbor bivalent histone marks at their promoters. In FBXO11-/- erythroblasts, these gene promoters bind BAHD1 and fail to recruit the erythroid transcription factor GATA1. The BAHD1 complex interacts physically with PRC2, and depletion of either component restores FBXO11-deficient erythroid gene expression. Our studies identify BAHD1 as a novel effector of PRC2-mediated repression and reveal how a single E3 ubiquitin ligase eliminates PRC2 repression at many developmentally poised bivalent genes during erythropoiesis.
Collapse
Affiliation(s)
| | | | - Beisi Xu
- Department of Computational Biology
| | | | | | | | | | | | | | | | | | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Junmin Peng
- Department of Structural Biology
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
- Department of Development Neurobiology
| | | | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, and
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Ria Spallek
- Department of Medicine III and
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III and
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Yong Cheng
- Department of Hematology
- Department of Computational Biology
| | - Brenda A Schulman
- Department of Structural Biology
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
12
|
Zwifelhofer NM, Cai X, Liao R, Mao B, Conn DJ, Mehta C, Keles S, Xia Y, Bresnick EH. GATA factor-regulated solute carrier ensemble reveals a nucleoside transporter-dependent differentiation mechanism. PLoS Genet 2020; 16:e1009286. [PMID: 33370779 PMCID: PMC7793295 DOI: 10.1371/journal.pgen.1009286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Developmental-regulatory networks often include large gene families encoding mechanistically-related proteins like G-protein-coupled receptors, zinc finger transcription factors and solute carrier (SLC) transporters. In principle, a common mechanism may confer expression of multiple members integral to a developmental process, or diverse mechanisms may be deployed. Using genetic complementation and enhancer-mutant systems, we analyzed the 456 member SLC family that establishes the small molecule constitution of cells. This analysis identified SLC gene cohorts regulated by GATA1 and/or GATA2 during erythroid differentiation. As >50 SLC genes shared GATA factor regulation, a common mechanism established multiple members of this family. These genes included Slc29a1 encoding an equilibrative nucleoside transporter (Slc29a1/ENT1) that utilizes adenosine as a preferred substrate. Slc29a1 promoted erythroblast survival and differentiation ex vivo. Targeted ablation of murine Slc29a1 in erythroblasts attenuated erythropoiesis and erythrocyte regeneration in response to acute anemia. Our results reveal a GATA factor-regulated SLC ensemble, with a nucleoside transporter component that promotes erythropoiesis and prevents anemia, and establish a mechanistic link between GATA factor and adenosine mechanisms. We propose that integration of the GATA factor-adenosine circuit with other components of the GATA factor-regulated SLC ensemble establishes the small molecule repertoire required for progenitor cells to efficiently generate erythrocytes. GATA transcription factors endow blood stem and progenitor cells with activities to produce progeny that transport oxygen to protect cells and tissues, evade pathogens and control physiological processes. GATA factors regulate hundreds of genes, and the actions of these genes mediate important biological functions. While the genes have been documented, many questions remain regarding how the “network” components mediate biological functions. The networks include members of large gene families, and the relationships between the regulation and function of individual family members is not well understood. Analyzing datasets from genetic complementation and enhancer mutant systems revealed that GATA factors regulate an ensemble of membrane transporters termed solute carrier proteins (SLCs), which dictate the small molecule composition of cells. Genetic analyses with Slc29a1, which transports adenosine, revealed its function to promote erythrocyte development, and Slc29a1 attenuated anemia in a mouse model. This study revealed the importance of SLC transporters in GATA factor networks. We propose that the GATA factor-adenosine circuit integrates with other SLCs to establish/maintain the small molecule constitution of progenitor cells as a new mechanism to control blood cell development.
Collapse
Affiliation(s)
- Nicole M. Zwifelhofer
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bin Mao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Conn
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (YX); (EHB)
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (YX); (EHB)
| |
Collapse
|
13
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
14
|
Sobh A, Loguinov A, Zhou J, Jenkitkasemwong S, Zeidan R, El Ahmadie N, Tagmount A, Knutson M, Fraenkel PG, Vulpe CD. Genetic screens reveal CCDC115 as a modulator of erythroid iron and heme trafficking. Am J Hematol 2020; 95:1085-1098. [PMID: 32510613 DOI: 10.1002/ajh.25899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
Transferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes. Comprehensive elucidation of molecular pathways governing and regulating cellular iron acquisition and heme trafficking is required to better understand physiological and pathological processes affecting erythropoiesis. Here, we report the first genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screens in human erythroid cells to identify determinants of iron and heme uptake, as well as heme-mediated erythroid differentiation. We identified several candidate modulators of TBI acquisition including TfR1, indicating that our approach effectively revealed players mechanistically relevant to the process. Interestingly, components of the endocytic pathway were also revealed as potential determinants of transferrin acquisition. We deciphered a role for the vacuolar-type H+ - ATPase (V- ATPase) assembly factor coiled-coil domain containing 115 (CCDC115) in TBI uptake and validated this role in CCDC115 deficient K562 cells. Our screen in hemin-treated cells revealed perturbations leading to cellular adaptation to heme, including those corresponding to trafficking mechanisms and transcription factors potentiating erythroid differentiation. Pathway analysis indicated that endocytosis and vesicle acidification are key processes for heme trafficking in erythroid precursors. Furthermore, we provided evidence that CCDC115, which we identified as required for TBI uptake, is also involved in cellular heme distribution. This work demonstrates a previously unappreciated common intersection in trafficking of transferrin iron and heme in the endocytic pathway of erythroid cells.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program University of California Berkeley Berkeley California
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Alex Loguinov
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Jie Zhou
- Department of Physiological Sceinces University of Florida Gainesville Florida
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Supak Jenkitkasemwong
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Rola Zeidan
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | - Nader El Ahmadie
- Department of Physiological Sceinces University of Florida Gainesville Florida
| | | | - Mitchell Knutson
- Department of Food Science and Human Nutrition University of Florida Gainesville Florida
| | - Paula G. Fraenkel
- Division of Hematology/Oncology and Cancer Research Institute Beth Israel Deaconess Medical Center Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
- Oncology Research and Development, Sanofi Cambridge Massachusetts
| | | |
Collapse
|
15
|
Leonards K, Almosailleakh M, Tauchmann S, Bagger FO, Thirant C, Juge S, Bock T, Méreau H, Bezerra MF, Tzankov A, Ivanek R, Losson R, Peters AHFM, Mercher T, Schwaller J. Nuclear interacting SET domain protein 1 inactivation impairs GATA1-regulated erythroid differentiation and causes erythroleukemia. Nat Commun 2020; 11:2807. [PMID: 32533074 PMCID: PMC7293310 DOI: 10.1038/s41467-020-16179-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor binding SET domain protein 1 (NSD1) is recurrently mutated in human cancers including acute leukemia. We show that NSD1 knockdown alters erythroid clonogenic growth of human CD34+ hematopoietic cells. Ablation of Nsd1 in the hematopoietic system of mice induces a transplantable erythroleukemia. In vitro differentiation of Nsd1−/− erythroblasts is majorly impaired despite abundant expression of GATA1, the transcriptional master regulator of erythropoiesis, and associated with an impaired activation of GATA1-induced targets. Retroviral expression of wildtype NSD1, but not a catalytically-inactive NSD1N1918Q SET-domain mutant induces terminal maturation of Nsd1−/− erythroblasts. Despite similar GATA1 protein levels, exogenous NSD1 but not NSDN1918Q significantly increases the occupancy of GATA1 at target genes and their expression. Notably, exogenous NSD1 reduces the association of GATA1 with the co-repressor SKI, and knockdown of SKI induces differentiation of Nsd1−/− erythroblasts. Collectively, we identify the NSD1 methyltransferase as a regulator of GATA1-controlled erythroid differentiation and leukemogenesis. Loss of function mutations of NSD1 occur in blood cancers. Here, the authors report that NSD1 loss blocks erythroid differentiation which leads to an erythroleukemia-like disease in mice by impairing GATA1-induced target gene activation.
Collapse
Affiliation(s)
- Katharina Leonards
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marwa Almosailleakh
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Samantha Tauchmann
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Frederik Otzen Bagger
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Swiss Institute of Bioinfomatics, 4031, Basel, Switzerland.,Genomic Medicine, Righospitalet, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cécile Thirant
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, 94800, France
| | - Sabine Juge
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum University of Basel, Basel, Switzerland
| | - Hélène Méreau
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Matheus F Bezerra
- University Children's Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.,Swiss Institute of Bioinfomatics, 4031, Basel, Switzerland
| | - Régine Losson
- Institute de Génétique et de Biologie Moléculaire et Cellulaire (I.G.B.M.C.), CNRS/INSERM Université de Strasbourg, BP10142, 67404, Illkirch Cedex, France
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.,Faculty of Sciences, University of Basel, 4056, Basel, Switzerland
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, Université Paris Diderot, Université Paris-Sud, Villejuif, 94800, France
| | - Juerg Schwaller
- University Children's Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
16
|
Sauta E, Demartini A, Vitali F, Riva A, Bellazzi R. A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks. BMC Bioinformatics 2020; 21:219. [PMID: 32471360 PMCID: PMC7257163 DOI: 10.1186/s12859-020-3510-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Reverse engineering of transcriptional regulatory networks (TRN) from genomics data has always represented a computational challenge in System Biology. The major issue is modeling the complex crosstalk among transcription factors (TFs) and their target genes, with a method able to handle both the high number of interacting variables and the noise in the available heterogeneous experimental sources of information. RESULTS In this work, we propose a data fusion approach that exploits the integration of complementary omics-data as prior knowledge within a Bayesian framework, in order to learn and model large-scale transcriptional networks. We develop a hybrid structure-learning algorithm able to jointly combine TFs ChIP-Sequencing data and gene expression compendia to reconstruct TRNs in a genome-wide perspective. Applying our method to high-throughput data, we verified its ability to deal with the complexity of a genomic TRN, providing a snapshot of the synergistic TFs regulatory activity. Given the noisy nature of data-driven prior knowledge, which potentially contains incorrect information, we also tested the method's robustness to false priors on a benchmark dataset, comparing the proposed approach to other regulatory network reconstruction algorithms. We demonstrated the effectiveness of our framework by evaluating structural commonalities of our learned genomic network with other existing networks inferred by different DNA binding information-based methods. CONCLUSIONS This Bayesian omics-data fusion based methodology allows to gain a genome-wide picture of the transcriptional interplay, helping to unravel key hierarchical transcriptional interactions, which could be subsequently investigated, and it represents a promising learning approach suitable for multi-layered genomic data integration, given its robustness to noisy sources and its tailored framework for handling high dimensional data.
Collapse
Affiliation(s)
- Elisabetta Sauta
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.
| | - Andrea Demartini
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Francesca Vitali
- Center for Biomedical Informatics and Biostatistics, Dept. of Medicine, The University of Arizona Health Sciences, 1230 Cherry Ave, Tucson, AZ, 85719, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| |
Collapse
|
17
|
Kremsky I, Corces VG. Protection from DNA re-methylation by transcription factors in primordial germ cells and pre-implantation embryos can explain trans-generational epigenetic inheritance. Genome Biol 2020; 21:118. [PMID: 32423419 PMCID: PMC7236515 DOI: 10.1186/s13059-020-02036-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Background A growing body of evidence suggests that certain epiphenotypes can be passed across generations via both the male and female germlines of mammals. These observations have been difficult to explain owing to a global loss of the majority of known epigenetic marks present in parental chromosomes during primordial germ cell development and after fertilization. Results By integrating previously published BS-seq, DNase-seq, ATAC-seq, and RNA-seq data collected during multiple stages of primordial germ cell and pre-implantation development, we find that the methylation status of the majority of CpGs genome-wide is restored after global de-methylation, despite the fact that global CpG methylation drops to 10% in primordial germ cells and 20% in the inner cell mass of the blastocyst. We estimate the proportion of such CpGs with preserved methylation status to be 78%. Further, we find that CpGs at sites bound by transcription factors during the global re-methylation phases of germline and embryonic development remain hypomethylated across all developmental stages observed. On the other hand, CpGs at sites not bound by transcription factors during the global re-methylation phase have high methylation levels prior to global de-methylation, become de-methylated during global de-methylation, and then become re-methylated. Conclusions The results suggest that transcription factors can act as carriers of epigenetic information during germ cell and pre-implantation development by ensuring that the methylation status of CpGs is maintained. These findings provide the basis for a mechanistic description of trans-generational inheritance of epigenetic information in mammals.
Collapse
Affiliation(s)
- Isaac Kremsky
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Romano O, Petiti L, Felix T, Meneghini V, Portafax M, Antoniani C, Amendola M, Bicciato S, Peano C, Miccio A. GATA Factor-Mediated Gene Regulation in Human Erythropoiesis. iScience 2020; 23:101018. [PMID: 32283524 PMCID: PMC7155206 DOI: 10.1016/j.isci.2020.101018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/24/2020] [Indexed: 01/31/2023] Open
Abstract
Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors. GATA2/1 binding to regulatory regions and transcriptional changes during erythropoiesis GATA1 sustains KIT expression in human erythroid progenitors
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Michel Portafax
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, CNR, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy.
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
19
|
Xiang G, Keller CA, Heuston E, Giardine BM, An L, Wixom AQ, Miller A, Cockburn A, Sauria MEG, Weaver K, Lichtenberg J, Göttgens B, Li Q, Bodine D, Mahony S, Taylor J, Blobel GA, Weiss MJ, Cheng Y, Yue F, Hughes J, Higgs DR, Zhang Y, Hardison RC. An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis. Genome Res 2020; 30:472-484. [PMID: 32132109 PMCID: PMC7111515 DOI: 10.1101/gr.255760.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/21/2020] [Indexed: 01/29/2023]
Abstract
Thousands of epigenomic data sets have been generated in the past decade, but it is difficult for researchers to effectively use all the data relevant to their projects. Systematic integrative analysis can help meet this need, and the VISION project was established for validated systematic integration of epigenomic data in hematopoiesis. Here, we systematically integrated extensive data recording epigenetic features and transcriptomes from many sources, including individual laboratories and consortia, to produce a comprehensive view of the regulatory landscape of differentiating hematopoietic cell types in mouse. By using IDEAS as our integrative and discriminative epigenome annotation system, we identified and assigned epigenetic states simultaneously along chromosomes and across cell types, precisely and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of more than 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and promoters. The transitions in epigenetic states of these cCREs across cell types provided insights into mechanisms of regulation, including decreases in numbers of active cCREs during differentiation of most lineages, transitions from poised to active or inactive states, and shifts in nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at cCREs and gene expression produced a versatile resource to improve selection of cCREs potentially regulating target genes. These resources are available from our VISION website to aid research in genomics and hematopoiesis.
Collapse
Affiliation(s)
- Guanjue Xiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elisabeth Heuston
- NHGRI Hematopoiesis Section, Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lin An
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alexander Q Wixom
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Amber Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - April Cockburn
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael E G Sauria
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, Maryland 20218, USA
| | - Kathryn Weaver
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, Maryland 20218, USA
| | - Jens Lichtenberg
- NHGRI Hematopoiesis Section, Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Berthold Göttgens
- Welcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Qunhua Li
- Department of Statistics, Program in Bioinformatics and Genomics, Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David Bodine
- NHGRI Hematopoiesis Section, Genetics and Molecular Biology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - James Taylor
- Departments of Biology and Computer Science, Johns Hopkins University, Baltimore, Maryland 20218, USA
| | - Gerd A Blobel
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Jim Hughes
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Yu Zhang
- Department of Statistics, Program in Bioinformatics and Genomics, Center for Computational Biology and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Chromatin occupancy and epigenetic analysis reveal new insights into the function of the GATA1 N terminus in erythropoiesis. Blood 2020; 134:1619-1631. [PMID: 31409672 DOI: 10.1182/blood.2019001234] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in GATA1, which lead to expression of the GATA1s isoform that lacks the GATA1 N terminus, are seen in patients with Diamond-Blackfan anemia (DBA). In our efforts to better understand the connection between GATA1s and DBA, we comprehensively studied erythropoiesis in Gata1s mice. Defects in yolks sac and fetal liver hematopoiesis included impaired terminal maturation and reduced numbers of erythroid progenitors. RNA-sequencing revealed that both erythroid and megakaryocytic gene expression patterns were altered by the loss of the N terminus, including aberrant upregulation of Gata2 and Runx1. Dysregulation of global H3K27 methylation was found in the erythroid progenitors upon loss of N terminus of GATA1. Chromatin-binding assays revealed that, despite similar occupancy of GATA1 and GATA1s, there was a striking reduction of H3K27me3 at regulatory elements of the Gata2 and Runx1 genes. Consistent with the observation that overexpression of GATA2 has been reported to impair erythropoiesis, we found that haploinsufficiency of Gata2 rescued the erythroid defects of Gata1s fetuses. Together, our integrated genomic analysis of transcriptomic and epigenetic signatures reveals that, Gata1 mice provide novel insights into the role of the N terminus of GATA1 in transcriptional regulation and red blood cell maturation which may potentially be useful for DBA patients.
Collapse
|
21
|
Hardison RC, Zhang Y, Keller CA, Xiang G, Heuston EF, An L, Lichtenberg J, Giardine BM, Bodine D, Mahony S, Li Q, Yue F, Weiss MJ, Blobel GA, Taylor J, Hughes J, Higgs DR, Göttgens B. Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells. IUBMB Life 2020; 72:27-38. [PMID: 31769130 PMCID: PMC6972633 DOI: 10.1002/iub.2195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/17/2019] [Indexed: 01/15/2023]
Abstract
Members of the GATA family of transcription factors play key roles in the differentiation of specific cell lineages by regulating the expression of target genes. Three GATA factors play distinct roles in hematopoietic differentiation. In order to better understand how these GATA factors function to regulate genes throughout the genome, we are studying the epigenomic and transcriptional landscapes of hematopoietic cells in a model-driven, integrative fashion. We have formed the collaborative multi-lab VISION project to conduct ValIdated Systematic IntegratiON of epigenomic data in mouse and human hematopoiesis. The epigenomic data included nuclease accessibility in chromatin, CTCF occupancy, and histone H3 modifications for 20 cell types covering hematopoietic stem cells, multilineage progenitor cells, and mature cells across the blood cell lineages of mouse. The analysis used the Integrative and Discriminative Epigenome Annotation System (IDEAS), which learns all common combinations of features (epigenetic states) simultaneously in two dimensions-along chromosomes and across cell types. The result is a segmentation that effectively paints the regulatory landscape in readily interpretable views, revealing constitutively active or silent loci as well as the loci specifically induced or repressed in each stage and lineage. Nuclease accessible DNA segments in active chromatin states were designated candidate cis-regulatory elements in each cell type, providing one of the most comprehensive registries of candidate hematopoietic regulatory elements to date. Applications of VISION resources are illustrated for the regulation of genes encoding GATA1, GATA2, GATA3, and Ikaros. VISION resources are freely available from our website http://usevision.org.
Collapse
Affiliation(s)
- Ross C. Hardison
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - Yu Zhang
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - Cheryl A. Keller
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - Guanjue Xiang
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - Elisabeth F. Heuston
- Genetics and Molecular Biology Branch, Hematopoiesis SectionNational Institutes of Health, NHGRIBethesdaMD
| | - Lin An
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - Jens Lichtenberg
- Genetics and Molecular Biology Branch, Hematopoiesis SectionNational Institutes of Health, NHGRIBethesdaMD
| | - Belinda M. Giardine
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - David Bodine
- Genetics and Molecular Biology Branch, Hematopoiesis SectionNational Institutes of Health, NHGRIBethesdaMD
| | - Shaun Mahony
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - Qunhua Li
- Departments of Biochemistry and Molecular Biology and of StatisticsThe Pennsylvania State University, University ParkPA
| | - Feng Yue
- Department of Biochemistry and Molecular BiologyThe Pennsylvania State University College of MedicineHershey, PA
| | - Mitchell J. Weiss
- Hematology DepartmentSt. Jude Children's Research HospitalMemphis, TN
| | | | - James Taylor
- Departments of Biology and of Computer ScienceJohns Hopkins UniversityBaltimore, MD
| | - Jim Hughes
- Laboratory of Gene RegulationWeatherall Institute of Molecular Medicine, Oxford UniversityOxfordUK
| | - Douglas R. Higgs
- Laboratory of Gene RegulationWeatherall Institute of Molecular Medicine, Oxford UniversityOxfordUK
| | - Berthold Göttgens
- Department of Hematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
22
|
Fawal MA, Jungas T, Kischel A, Audouard C, Iacovoni JS, Davy A. Cross Talk between One-Carbon Metabolism, Eph Signaling, and Histone Methylation Promotes Neural Stem Cell Differentiation. Cell Rep 2019; 23:2864-2873.e7. [PMID: 29874574 DOI: 10.1016/j.celrep.2018.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic pathways, once seen as a mere consequence of cell states, have emerged as active players in dictating different cellular events such as proliferation, self-renewal, and differentiation. Several studies have reported a role for folate-dependent one-carbon (1C) metabolism in stem cells; however, its exact mode of action and how it interacts with other cues are largely unknown. Here, we report a link between the Eph:ephrin cell-cell communication pathway and 1C metabolism in controlling neural stem cell differentiation. Transcriptional and functional analyses following ephrin stimulation revealed alterations in folate metabolism-related genes and enzymatic activity. In vitro and in vivo data indicate that Eph-B forward signaling alters the methylation state of H3K4 by regulating 1C metabolism and locks neural stem cell in a differentiation-ready state. Our study highlights a functional link between cell-cell communication, metabolism, and epigenomic remodeling in the control of stem cell self-renewal.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Anthony Kischel
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Christophe Audouard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jason S Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, 31432 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
23
|
Romano O, Miccio A. GATA factor transcriptional activity: Insights from genome-wide binding profiles. IUBMB Life 2019; 72:10-26. [PMID: 31574210 DOI: 10.1002/iub.2169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
The members of the GATA family of transcription factors have homologous zinc fingers and bind to similar sequence motifs. Recent advances in genome-wide technologies and the integration of bioinformatics data have led to a better understanding of how GATA factors regulate gene expression; GATA-factor-induced transcriptional and epigenetic changes have now been analyzed at unprecedented levels of detail. Here, we review the results of genome-wide studies of GATA factor occupancy in human and murine cell lines and primary cells (as determined by chromatin immunoprecipitation sequencing), and then discuss the molecular mechanisms underlying the mediation of transcriptional and epigenetic regulation by GATA factors.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, Imagine Institute, INSERM UMR, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
24
|
Long noncoding RNA PCED1B-AS1 promotes erythroid differentiation coordinating with GATA1 and chromatin remodeling. BLOOD SCIENCE 2019; 1:161-167. [PMID: 35402806 PMCID: PMC8975080 DOI: 10.1097/bs9.0000000000000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022] Open
Abstract
Erythropoiesis is a complex and sophisticated multi-stage process regulated by a variety of factors, including the transcription factor GATA1 and non-coding RNA. GATA1 is regarded as an essential transcriptional regulator promoting transcription of erythroid-specific genes—such as long non-coding RNAs (lncRNA). Here, we comprehensively screened lncRNAs that were potentially regulated by GATA1 in erythroid cells. We identified a novel lncRNA—PCED1B-AS1—and verified its role in promoting erythroid differentiation of K562 erythroid cells. We also predicted a model in which PCED1B-AS1 participates in erythroid differentiation via dynamic chromatin remodeling involving GATA1. The relationship between lncRNA and chromatin in the process of erythroid differentiation remains to be revealed, and in our study we have carried out preliminary explorations.
Collapse
|
25
|
Lu J, Cao X, Zhong S. EpiAlignment: alignment with both DNA sequence and epigenomic data. Nucleic Acids Res 2019; 47:W11-W19. [PMID: 31114924 PMCID: PMC6602515 DOI: 10.1093/nar/gkz426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022] Open
Abstract
Comparative epigenomics, which subjects both epigenome and genome to interspecies comparison, has become a powerful approach to reveal regulatory features of the genome. Thus elucidated regulatory features surpass the information derived from comparison of genomic sequences alone. Here, we present EpiAlignment, a web-based tool to align genomic regions with both DNA sequence and epigenomic data. EpiAlignment takes DNA sequence and epigenomic profiles derived by ChIP-seq from two species as input data, and outputs the best semi-global alignments. These alignments are based on EpiAlignment scores, computed by a dynamic programming algorithm that accounts for both sequence alignment and epigenome similarity. For timely response, the EpiAlignment web server automatically initiates up to 140 computing threads depending on the size of user input data. For users’ convenience, we have pre-compiled the comparable human and mouse epigenome datasets in matched cell types and tissues from the Roadmap Epigenomics and ENCODE consortia. Users can either upload their own data or select pre-compiled datasets as inputs for EpiAlignment analyses. Results are presented in graphical and tabular formats where the entries can be interactively expanded to visualize additional features of these aligned regions. EpiAlignment is available at https://epialign.ucsd.edu/.
Collapse
Affiliation(s)
- Jia Lu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- To whom correspondence should be addressed. Tel: +1 858 246 1118; Fax: +1 858 244 4543;
| |
Collapse
|
26
|
Behera V, Stonestrom AJ, Hamagami N, Hsiung CC, Keller CA, Giardine B, Sidoli S, Yuan ZF, Bhanu NV, Werner MT, Wang H, Garcia BA, Hardison RC, Blobel GA. Interrogating Histone Acetylation and BRD4 as Mitotic Bookmarks of Transcription. Cell Rep 2019; 27:400-415.e5. [PMID: 30970245 PMCID: PMC6664437 DOI: 10.1016/j.celrep.2019.03.057] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Global changes in chromatin organization and the cessation of transcription during mitosis are thought to challenge the resumption of appropriate transcription patterns after mitosis. The acetyl-lysine binding protein BRD4 has been previously suggested to function as a transcriptional "bookmark" on mitotic chromatin. Here, genome-wide location analysis of BRD4 in erythroid cells, combined with data normalization and peak characterization approaches, reveals that BRD4 widely occupies mitotic chromatin. However, removal of BRD4 from mitotic chromatin does not impair post-mitotic activation of transcription. Additionally, histone mass spectrometry reveals global preservation of most posttranslational modifications (PTMs) during mitosis. In particular, H3K14ac, H3K27ac, H3K122ac, and H4K16ac widely mark mitotic chromatin, especially at lineage-specific genes, and predict BRD4 mitotic binding genome wide. Therefore, BRD4 is likely not a mitotic bookmark but only a "passenger." Instead, mitotic histone acetylation patterns may constitute the actual bookmarks that restore lineage-specific transcription patterns after mitosis.
Collapse
Affiliation(s)
- Vivek Behera
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Hamagami
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chris C Hsiung
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zuo-Fei Yuan
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongxin Wang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Zhang Z, Parker MP, Graw S, Novikova LV, Fedosyuk H, Fontes JD, Koestler DC, Peterson KR, Slawson C. O-GlcNAc homeostasis contributes to cell fate decisions during hematopoiesis. J Biol Chem 2019; 294:1363-1379. [PMID: 30523150 PMCID: PMC6349094 DOI: 10.1074/jbc.ra118.005993] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The addition of a single β-d-GlcNAc sugar (O-GlcNAc) by O-GlcNAc-transferase (OGT) and O-GlcNAc removal by O-GlcNAcase (OGA) maintain homeostatic O-GlcNAc levels on cellular proteins. Changes in protein O-GlcNAcylation regulate cellular differentiation and cell fate decisions, but how these changes affect erythropoiesis, an essential process in blood cell formation, remains unclear. Here, we investigated the role of O-GlcNAcylation in erythropoiesis by using G1E-ER4 cells, which carry the erythroid-specific transcription factor GATA-binding protein 1 (GATA-1) fused to the estrogen receptor (GATA-1-ER) and therefore undergo erythropoiesis after β-estradiol (E2) addition. We observed that during G1E-ER4 differentiation, overall O-GlcNAc levels decrease, and physical interactions of GATA-1 with both OGT and OGA increase. RNA-Seq-based transcriptome analysis of G1E-ER4 cells differentiated in the presence of the OGA inhibitor Thiamet-G (TMG) revealed changes in expression of 433 GATA-1 target genes. ChIP results indicated that the TMG treatment decreases the occupancy of GATA-1, OGT, and OGA at the GATA-binding site of the lysosomal protein transmembrane 5 (Laptm5) gene promoter. TMG also reduced the expression of genes involved in differentiation of NB4 and HL60 human myeloid leukemia cells, suggesting that O-GlcNAcylation is involved in the regulation of hematopoietic differentiation. Sustained treatment of G1E-ER4 cells with TMG before differentiation reduced hemoglobin-positive cells and increased stem/progenitor cell surface markers. Our results show that alterations in O-GlcNAcylation disrupt transcriptional programs controlling erythropoietic lineage commitment, suggesting a role for O-GlcNAcylation in regulating hematopoietic cell fate.
Collapse
Affiliation(s)
- Zhen Zhang
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Matthew P Parker
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | | | - Lesya V Novikova
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Halyna Fedosyuk
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160
| | - Joseph D Fontes
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Devin C Koestler
- Biostatistics, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Kenneth R Peterson
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160; Anatomy and Cell Biology, Kansas City, Kansas 66160.
| | - Chad Slawson
- Departments of Biochemistry and Molecular Biology, Kansas City, Kansas 66160; Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160.
| |
Collapse
|
28
|
Integrative view on how erythropoietin signaling controls transcription patterns in erythroid cells. Curr Opin Hematol 2019; 25:189-195. [PMID: 29389768 DOI: 10.1097/moh.0000000000000415] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Erythropoietin (EPO) is necessary and sufficient to trigger dynamic transcriptional patterns that drive the differentiation of erythroid precursor cells into mature, enucleated red cells. Because the molecular cloning and Food and Drug Administration approval for the therapeutic use of EPO over 30 years ago, a detailed understanding of how EPO works has advanced substantially. Yet, the precise epigenetic and transcriptional mechanisms by which EPO signaling controls erythroid expression patterns remains poorly understood. This review focuses on the current state of erythroid biology in regards to EPO signaling from human genetics and functional genomics perspectives. RECENT FINDINGS The goal of this review is to provide an integrative view of the gene regulatory underpinnings for erythroid expression patterns that are dynamically shaped during erythroid differentiation. Here, we highlight vignettes connecting recent insights into a genome-wide association study linking an EPO mutation to anemia, a study linking EPO-signaling to signal transducer and activator of transcription 5 (STAT5) chromatin occupancy and enhancers, and studies that examine the molecular mechanisms driving topological chromatin organization in erythroid cells. SUMMARY The genetic, epigenetic, and gene regulatory mechanisms underlying how hormone signal transduction influences erythroid gene expression remains only partly understood. A detailed understanding of these molecular pathways and how they intersect with one another will provide the basis for novel strategies to treat anemia and potentially other hematological diseases. As new regulators and signal transducers of EPO-signaling continue to emerge, new clinically relevant targets may be identified that improve the specificity and effectiveness of EPO therapy.
Collapse
|
29
|
Philipsen S, Hardison RC. Evolution of hemoglobin loci and their regulatory elements. Blood Cells Mol Dis 2018; 70:2-12. [PMID: 28811072 PMCID: PMC5807248 DOI: 10.1016/j.bcmd.2017.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
Abstract
Across the expanse of vertebrate evolution, each species produces multiple forms of hemoglobin in erythroid cells at appropriate times and in the proper amounts. The multiple hemoglobins are encoded in two globin gene clusters in almost all species. One globin gene cluster, linked to the gene NPRL3, is preserved in all vertebrates, including a gene cluster encoding the highly divergent globins from jawless vertebrates. This preservation of synteny may reflect the presence of a powerful enhancer of globin gene expression in the NPRL3 gene. Despite substantial divergence in noncoding DNA sequences among mammals, several epigenetic features of the globin gene regulatory regions are preserved across vertebrates. The preserved features include multiple DNase hypersensitive sites, at least one of which is an enhancer, and binding by key lineage-restricted transcription factors such as GATA1 and TAL1, which in turn recruit coactivators such as P300 that catalyze acetylation of histones. The maps of epigenetic features are strongly correlated with activity in gene regulation, and resources for accessing and visualizing such maps are readily available to the community of researchers and students.
Collapse
Affiliation(s)
- Sjaak Philipsen
- Department of Cell Biology Ee1071b, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institute for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
30
|
Lu X, Zhao ZA, Wang X, Zhang X, Zhai Y, Deng W, Yi Z, Li L. Whole-transcriptome splicing profiling of E7.5 mouse primary germ layers reveals frequent alternative promoter usage during mouse early embryogenesis. Biol Open 2018; 7:7/3/bio032508. [PMID: 29592913 PMCID: PMC5898269 DOI: 10.1242/bio.032508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Alternative splicing (AS) and alternative promoter (AP) usage expand the repertories of mammalian transcriptome profiles and thus diversify gene functions. However, our knowledge about the extent and functions of AS and AP usage in mouse early embryogenesis remains elusive. Here, by performing whole-transcriptome splicing profiling with high-throughput next generation sequencing, we report that AS extensively occurs in embryonic day (E) 7.5 mouse primary germ layers, and may be involved in multiple developmental processes. In addition, numerous RNA splicing factors are differentially expressed and alternatively spliced across the three germ layers, implying the potential importance of AS machinery in shaping early embryogenesis. Notably, AP usage is remarkably frequent at this stage, accounting for more than one quarter (430/1,648) of the total significantly different AS events. Genes generating the 430 AP events participate in numerous biological processes, and include important regulators essential for mouse early embryogenesis, suggesting that AP usage is widely used and might be relevant to mouse germ layer specification. Our data underline the potential significance of AP usage in mouse gastrulation, providing a rich data source and opening another dimension for understanding the regulatory mechanisms of mammalian early development. Summary: This study seeks to capture the alternative splicing landscape during mouse gastrulation, underlining the potential importance of alternative promoter usage in mammalian early embryogenesis.
Collapse
Affiliation(s)
- Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Deng
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical, Cincinnati, OH 45229, USA
| | - Zhaohong Yi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Figueroa AA, Fasano JD, Martinez-Morilla S, Venkatesan S, Kupfer G, Hattangadi SM. miR-181a regulates erythroid enucleation via the regulation of Xpo7 expression. Haematologica 2018; 103:e341-e344. [PMID: 29567782 DOI: 10.3324/haematol.2017.171785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Amalia Avila Figueroa
- Pediatric Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - James D Fasano
- Pediatric Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Srividhya Venkatesan
- Pediatric Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Gary Kupfer
- Pediatric Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Shilpa M Hattangadi
- Pediatric Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Behera V, Evans P, Face CJ, Hamagami N, Sankaranarayanan L, Keller CA, Giardine B, Tan K, Hardison RC, Shi J, Blobel GA. Exploiting genetic variation to uncover rules of transcription factor binding and chromatin accessibility. Nat Commun 2018; 9:782. [PMID: 29472540 PMCID: PMC5823854 DOI: 10.1038/s41467-018-03082-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022] Open
Abstract
Single-nucleotide variants that underlie phenotypic variation can affect chromatin occupancy of transcription factors (TFs). To delineate determinants of in vivo TF binding and chromatin accessibility, we introduce an approach that compares ChIP-seq and DNase-seq data sets from genetically divergent murine erythroid cell lines. The impact of discriminatory single-nucleotide variants on TF ChIP signal enables definition at single base resolution of in vivo binding characteristics of nuclear factors GATA1, TAL1, and CTCF. We further develop a facile complementary approach to more deeply test the requirements of critical nucleotide positions for TF binding by combining CRISPR-Cas9-mediated mutagenesis with ChIP and targeted deep sequencing. Finally, we extend our analytical pipeline to identify nearby contextual DNA elements that modulate chromatin binding by these three TFs, and to define sequences that impact kb-scale chromatin accessibility. Combined, our approaches reveal insights into the genetic basis of TF occupancy and their interplay with chromatin features.
Collapse
Affiliation(s)
- Vivek Behera
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Perry Evans
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Carolyne J Face
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicole Hamagami
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | | | - Kai Tan
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | - Junwei Shi
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gerd A Blobel
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
|
34
|
Gillinder KR, Tuckey H, Bell CC, Magor GW, Huang S, Ilsley MD, Perkins AC. Direct targets of pSTAT5 signalling in erythropoiesis. PLoS One 2017; 12:e0180922. [PMID: 28732065 PMCID: PMC5521770 DOI: 10.1371/journal.pone.0180922] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
Erythropoietin (EPO) acts through the dimeric erythropoietin receptor to stimulate proliferation, survival, differentiation and enucleation of erythroid progenitor cells. We undertook two complimentary approaches to find EPO-dependent pSTAT5 target genes in murine erythroid cells: RNA-seq of newly transcribed (4sU-labelled) RNA, and ChIP-seq for pSTAT5 30 minutes after EPO stimulation. We found 302 pSTAT5-occupied sites: ~15% of these reside in promoters while the rest reside within intronic enhancers or intergenic regions, some >100kb from the nearest TSS. The majority of pSTAT5 peaks contain a central palindromic GAS element, TTCYXRGAA. There was significant enrichment for GATA motifs and CACCC-box motifs within the neighbourhood of pSTAT5-bound peaks, and GATA1 and/or KLF1 co-occupancy at many sites. Using 4sU-RNA-seq we determined the EPO-induced transcriptome and validated differentially expressed genes using dynamic CAGE data and qRT-PCR. We identified known direct pSTAT5 target genes such as Bcl2l1, Pim1 and Cish, and many new targets likely to be involved in driving erythroid cell differentiation including those involved in mRNA splicing (Rbm25), epigenetic regulation (Suv420h2), and EpoR turnover (Clint1/EpsinR). Some of these new EpoR-JAK2-pSTAT5 target genes could be used as biomarkers for monitoring disease activity in polycythaemia vera, and for monitoring responses to JAK inhibitors.
Collapse
Affiliation(s)
- Kevin R. Gillinder
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Hugh Tuckey
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Charles C. Bell
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Graham W. Magor
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
| | - Stephen Huang
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Melissa D. Ilsley
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Andrew C. Perkins
- Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia
- Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
35
|
Hsiung CCS, Bartman CR, Huang P, Ginart P, Stonestrom AJ, Keller CA, Face C, Jahn KS, Evans P, Sankaranarayanan L, Giardine B, Hardison RC, Raj A, Blobel GA. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. Genes Dev 2017; 30:1423-39. [PMID: 27340175 PMCID: PMC4926865 DOI: 10.1101/gad.280859.116] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/23/2016] [Indexed: 01/07/2023]
Abstract
Hsiung et al. tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. During the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis–G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer–promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis–G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis–G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis–G1 transition might predispose cells to diverge in gene expression states.
Collapse
Affiliation(s)
- Chris C-S Hsiung
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caroline R Bartman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Paul Ginart
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA, Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aaron J Stonestrom
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Carolyne Face
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Kristen S Jahn
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Perry Evans
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Laavanya Sankaranarayanan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arjun Raj
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
36
|
Perreault AA, Benton ML, Koury MJ, Brandt SJ, Venters BJ. Epo reprograms the epigenome of erythroid cells. Exp Hematol 2017; 51:47-62. [PMID: 28410882 DOI: 10.1016/j.exphem.2017.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Abstract
The hormone erythropoietin (Epo) is required for erythropoiesis, yet its molecular mechanism of action remains poorly understood, particularly with respect to chromatin dynamics. To investigate how Epo modulates the erythroid epigenome, we performed epigenetic profiling using an ex vivo murine cell system that undergoes synchronous erythroid maturation in response to Epo stimulation. Our findings define the repertoire of Epo-modulated enhancers, illuminating a new facet of Epo signaling. First, a large number of enhancers rapidly responded to Epo stimulation, revealing a cis-regulatory network of Epo-responsive enhancers. In contrast, most of the other identified enhancers remained in an active acetylated state during Epo signaling, suggesting that most erythroid enhancers are established at an earlier precursor stage. Second, we identified several hundred super-enhancers that were linked to key erythroid genes, such as Tal1, Bcl11a, and Mir144/451. Third, experimental and computational validation revealed that many predicted enhancer regions were occupied by TAL1 and enriched with DNA-binding motifs for GATA1, KLF1, TAL1/E-box, and STAT5. Additionally, many of these cis-regulatory regions were conserved evolutionarily and displayed correlated enhancer:promoter acetylation. Together, these findings define a cis-regulatory enhancer network for Epo signaling during erythropoiesis, and provide the framework for future studies involving the interplay of epigenetics and Epo signaling.
Collapse
Affiliation(s)
- Andrea A Perreault
- Department of Molecular Physiology and Biophysics, Chemical and Physical Biology Program, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN
| | - Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN
| | - Mark J Koury
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Stephen J Brandt
- Department of Cancer Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Bryan J Venters
- Department of Molecular Physiology and Biophysics, Chemical and Physical Biology Program, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN.
| |
Collapse
|
37
|
King HW, Klose RJ. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife 2017; 6:22631. [PMID: 28287392 PMCID: PMC5400504 DOI: 10.7554/elife.22631] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
Pioneer transcription factors recognise and bind their target sequences in inaccessible chromatin to establish new transcriptional networks throughout development and cellular reprogramming. During this process, pioneer factors establish an accessible chromatin state to facilitate additional transcription factor binding, yet it remains unclear how different pioneer factors achieve this. Here, we discover that the pluripotency-associated pioneer factor OCT4 binds chromatin to shape accessibility, transcription factor co-binding, and regulatory element function in mouse embryonic stem cells. Chromatin accessibility at OCT4-bound sites requires the chromatin remodeller BRG1, which is recruited to these sites by OCT4 to support additional transcription factor binding and expression of the pluripotency-associated transcriptome. Furthermore, the requirement for BRG1 in shaping OCT4 binding reflects how these target sites are used during cellular reprogramming and early mouse development. Together this reveals a distinct requirement for a chromatin remodeller in promoting the activity of the pioneer factor OCT4 and regulating the pluripotency network. DOI:http://dx.doi.org/10.7554/eLife.22631.001 All cells in your body contain the same genetic information in the form of genes encoded within DNA. Yet, cells use this information in different ways so that the activities of individual genes within that DNA can vary from cell to cell. This allows identical cells to become different to each other and to adapt to changing circumstances. A group of proteins called transcription factors control the activity of certain genes by binding to specific sites on DNA. However, this isn’t a straightforward process because DNA in human and other animal cells is usually associated with structures called nucleosomes that can block access to the DNA. Pioneer transcription factors, such as OCT4, are a specific group of transcription factors that can attach to DNA in spite of the nucleosomes, but it’s not clear how this is possible. Once pioneer transcription factors attach to DNA they can help other transcription factors to bind alongside them. King et al. studied OCT4 in stem cells from mouse embryos to investigate how it is able to act as a pioneer transcription factor and control gene activity. The experiments show that several other transcription factors lose the ability to bind to DNA when OCT4 is absent. This leads to widespread changes in gene activity in the cells, which seems to be due to other transcription factors being unable to get past the nucleosomes to attach to the DNA. Further experiments showed that OCT4 needs a protein called BRG1 in order to act as a pioneer transcription factor. BRG1 is an enzyme that is able to move and remove (remodel) nucleosomes attached to DNA, suggesting that normal transcription factor binding requires this activity. The next challenge is to investigate whether BRG1, or similar enzymes, are also needed by other pioneer transcription factors that are required for normal gene activity and cell identity. This will be important because many enzymes that remodel nucleosomes are disrupted in human diseases like cancer where cells lose their normal identity. DOI:http://dx.doi.org/10.7554/eLife.22631.002
Collapse
Affiliation(s)
- Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Identification of recurrent combinatorial patterns of chromatin modifications at promoters across various tissue types. BMC Bioinformatics 2016; 17:534. [PMID: 28155643 PMCID: PMC5259941 DOI: 10.1186/s12859-016-1346-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Identification and analysis of recurrent combinatorial patterns of multiple chromatin modifications provide invaluable information for understanding epigenetic regulations. Furthermore, as more data becomes available, it is computationally expensive and unnecessary to study combinatorial patterns of all modifications. Methods A novel framework is proposed to investigate recurrent combinatorial patterns of a subset of quantitatively selected chromatin modifications. The framework is based on heirarchical clustering and selects subsets of chromatin modifications that form distinct recurrent patterns at regulatory regions. The identified recurrent combinatorial patterns can be further utilized to discover novel regulatory regions. Data is in the form of genome wide maps of histone acetylations, methylations, and histone variant of human skeletal muscular and B-lymphocyte cells both derived from the ENCODE project. Results A case study conducted at promoter regions is presented: four out of twelve chromatin modifications were selected, eight different promoter states were identified and the identified patterns of active promoters were further utilized to discover novel promoter regions. Several previously un-annotated promoters were discovered, further investigations confirm their promoter functions. Conclusions This framework is approproiately general and could lead to better understanding of epigenetic regulations by discovering previously unknown regulatory regions. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1346-5) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Widespread and dynamic translational control of red blood cell development. Blood 2016; 129:619-629. [PMID: 27899360 DOI: 10.1182/blood-2016-09-741835] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/19/2016] [Indexed: 11/20/2022] Open
Abstract
Cell development requires tight yet dynamic control of protein production. Here, we use parallel RNA and ribosome profiling to study translational regulatory dynamics during murine terminal erythropoiesis. Our results uncover pervasive translational control of protein synthesis, with widespread alternative translation initiation and termination, robust discrimination of long noncoding from micropeptide-encoding RNAs, and dynamic use of upstream open reading frames. Further, we identify hundreds of messenger RNAs (mRNAs) whose translation efficiency is dynamically controlled during erythropoiesis and that enrich for target sites of RNA-binding proteins that are specific to hematopoietic cells, thus unraveling potential regulators of erythroid translational programs. A major such program involves enhanced decoding of specific mRNAs that are depleted in terminally differentiating/enucleating cells with decreasing transcriptional capacity. We find that RBM38, an erythroid-specific RNA-binding protein previously implicated in splicing, interacts with the general translation initiation factor eIF4G and promotes translation of a subset of these irreplaceable mRNAs. Inhibition of RBM38 compromises translation in erythroblasts and impairs their maturation, highlighting a key function for this protein during erythropoiesis. These findings thus reveal critical roles for dynamic translational control in supporting specialized mammalian cell formation.
Collapse
|
40
|
Merryweather-Clarke AT, Tipping AJ, Lamikanra AA, Fa R, Abu-Jamous B, Tsang HP, Carpenter L, Robson KJH, Nandi AK, Roberts DJ. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors. BMC Genomics 2016; 17:817. [PMID: 27769165 PMCID: PMC5073849 DOI: 10.1186/s12864-016-3134-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 09/27/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human-induced pluripotent stem cells (hiPSCs) are a potentially invaluable resource for regenerative medicine, including the in vitro manufacture of blood products. HiPSC-derived red blood cells are an attractive therapeutic option in hematology, yet exhibit unexplained proliferation and enucleation defects that presently preclude such applications. We hypothesised that substantial differential regulation of gene expression during erythroid development accounts for these important differences between hiPSC-derived cells and those from adult or cord-blood progenitors. We thus cultured erythroblasts from each source for transcriptomic analysis to investigate differential gene expression underlying these functional defects. RESULTS Our high resolution transcriptional view of definitive erythropoiesis captures the regulation of genes relevant to cell-cycle control and confers statistical power to deploy novel bioinformatics methods. Whilst the dynamics of erythroid program elaboration from adult and cord blood progenitors were very similar, the emerging erythroid transcriptome in hiPSCs revealed radically different program elaboration compared to adult and cord blood cells. We explored the function of differentially expressed genes in hiPSC-specific clusters defined by our novel tunable clustering algorithms (SMART and Bi-CoPaM). HiPSCs show reduced expression of c-KIT and key erythroid transcription factors SOX6, MYB and BCL11A, strong HBZ-induction, and aberrant expression of genes involved in protein degradation, lysosomal clearance and cell-cycle regulation. CONCLUSIONS Together, these data suggest that hiPSC-derived cells may be specified to a primitive erythroid fate, and implies that definitive specification may more accurately reflect adult development. We have therefore identified, for the first time, distinct gene expression dynamics during erythroblast differentiation from hiPSCs which may cause reduced proliferation and enucleation of hiPSC-derived erythroid cells. The data suggest several mechanistic defects which may partially explain the observed aberrant erythroid differentiation from hiPSCs.
Collapse
Affiliation(s)
- Alison T Merryweather-Clarke
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Alex J Tipping
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Abigail A Lamikanra
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK. .,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK.
| | - Rui Fa
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK
| | - Basel Abu-Jamous
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK
| | - Hoi Pat Tsang
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Lee Carpenter
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK.,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK
| | - Kathryn J H Robson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headington, OX3 9DU, Oxford, UK
| | - Asoke K Nandi
- Department of Electronic and Computer Engineering, Brunel University London, Middlesex, UB8 3PH, UK.,Distinguished Visiting Professor, The Key Laboratory of Embedded Systems and Service Computing, College of Electronic and Information Engineering, Tongji University, Shanghai, People's Republic of China
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DU, UK. .,National Health Service Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, OX3 9BQ, UK.
| |
Collapse
|
41
|
Zhao H, Zhang G, Pang L, Lan Y, Wang L, Yu F, Hu J, Li F, Zhao T, Xiao Y, Li X. ‘Traffic light rules’: Chromatin states direct miRNA-mediated network motifs running by integrating epigenome and regulatome. Biochim Biophys Acta Gen Subj 2016; 1860:1475-88. [DOI: 10.1016/j.bbagen.2016.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 03/11/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
|
42
|
Hagey DW, Zaouter C, Combeau G, Lendahl MA, Andersson O, Huss M, Muhr J. Distinct transcription factor complexes act on a permissive chromatin landscape to establish regionalized gene expression in CNS stem cells. Genome Res 2016; 26:908-17. [PMID: 27197220 PMCID: PMC4937566 DOI: 10.1101/gr.203513.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/29/2016] [Indexed: 02/07/2023]
Abstract
Spatially distinct gene expression profiles in neural stem cells (NSCs) are a prerequisite to the formation of neuronal diversity, but how these arise from the regulatory interactions between chromatin accessibility and transcription factor activity has remained unclear. Here, we demonstrate that, despite their distinct gene expression profiles, NSCs of the mouse cortex and spinal cord share the majority of their DNase I hypersensitive sites (DHSs). Regardless of this similarity, domain-specific gene expression is highly correlated with the relative accessibility of associated DHSs, as determined by sequence read density. Notably, the binding pattern of the general NSC transcription factor SOX2 is also largely cell type specific and coincides with an enrichment of LHX2 motifs in the cortex and HOXA9 motifs in the spinal cord. Interestingly, in a zebrafish reporter gene system, these motifs were critical determinants of patterned gene expression along the rostral-caudal axis. Our findings establish a predictive model for patterned NSC gene expression, whereby domain-specific expression of LHX2 and HOX proteins act on their target motifs within commonly accessible cis-regulatory regions to specify SOX2 binding. In turn, this binding correlates strongly with these DHSs relative accessibility—a robust predictor of neighboring gene expression.
Collapse
Affiliation(s)
- Daniel W Hagey
- Ludwig Institute for Cancer Research, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Cécile Zaouter
- Ludwig Institute for Cancer Research, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gaëlle Combeau
- Ludwig Institute for Cancer Research, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Mikael Huss
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-17121, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
43
|
Paralkar VR, Taborda CC, Huang P, Yao Y, Kossenkov AV, Prasad R, Luan J, Davies JOJ, Hughes JR, Hardison RC, Blobel GA, Weiss MJ. Unlinking an lncRNA from Its Associated cis Element. Mol Cell 2016; 62:104-10. [PMID: 27041223 PMCID: PMC4877494 DOI: 10.1016/j.molcel.2016.02.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/01/2016] [Accepted: 02/24/2016] [Indexed: 01/24/2023]
Abstract
Long non-coding (lnc) RNAs can regulate gene expression and protein functions. However, the proportion of lncRNAs with biological activities among the thousands expressed in mammalian cells is controversial. We studied Lockd (lncRNA downstream of Cdkn1b), a 434-nt polyadenylated lncRNA originating 4 kb 3' to the Cdkn1b gene. Deletion of the 25-kb Lockd locus reduced Cdkn1b transcription by approximately 70% in an erythroid cell line. In contrast, homozygous insertion of a polyadenylation cassette 80 bp downstream of the Lockd transcription start site reduced the entire lncRNA transcript level by >90% with no effect on Cdkn1b transcription. The Lockd promoter contains a DNase-hypersensitive site, binds numerous transcription factors, and physically associates with the Cdkn1b promoter in chromosomal conformation capture studies. Therefore, the Lockd gene positively regulates Cdkn1b transcription through an enhancer-like cis element, whereas the lncRNA itself is dispensable, which may be the case for other lncRNAs.
Collapse
Affiliation(s)
- Vikram R Paralkar
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cristian C Taborda
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Rishi Prasad
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jing Luan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James O J Davies
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Jim R Hughes
- Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, PA 16801, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16801, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
44
|
Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders. Proc Natl Acad Sci U S A 2016; 113:4434-9. [PMID: 27044088 DOI: 10.1073/pnas.1521754113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders.
Collapse
|
45
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
46
|
Genome-Wide Organization of GATA1 and TAL1 Determined at High Resolution. Mol Cell Biol 2015; 36:157-72. [PMID: 26503782 PMCID: PMC4702602 DOI: 10.1128/mcb.00806-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Erythroid development and differentiation from multiprogenitor cells into red blood cells requires precise transcriptional regulation. Key erythroid transcription factors, GATA1 and TAL1, cooperate, along with other proteins, to regulate many aspects of this process. How GATA1 and TAL1 are juxtaposed along the DNA and their cognate DNA binding site across the mouse genome remains unclear. We applied high-resolution ChIP-exo (chromatin immunoprecipitation followed by 5′-to-3′ exonuclease treatment and then massively parallel DNA sequencing) to GATA1 and TAL1 to study their positional organization across the mouse genome during GATA1-dependent maturation. Two complementary methods, MultiGPS and peak pairing, were used to determine high-confidence binding locations by ChIP-exo. We identified ∼10,000 GATA1 and ∼15,000 TAL1 locations, which were essentially confirmed by ChIP-seq (chromatin immunoprecipitation followed by massively parallel DNA sequencing). Of these, ∼4,000 locations were bound by both GATA1 and TAL1. About three-quarters of them were tightly linked to a partial E-box located 7 or 8 bp upstream of a WGATAA motif. Both TAL1 and GATA1 generated distinct characteristic ChIP-exo peaks around WGATAA motifs that reflect their positional arrangement within a complex. We show that TAL1 and GATA1 form a precisely organized complex at a compound motif consisting of a TG 7 or 8 bp upstream of a WGATAA motif across thousands of genomic locations.
Collapse
|
47
|
Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk K. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int 2015; 88:734-44. [PMID: 26061546 PMCID: PMC4589440 DOI: 10.1038/ki.2015.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022]
Abstract
Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). As epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study 20 key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1, and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS), and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, and also had major ischemia/reperfusion versus endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| | - Sina A. Gharib
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | - Richard A. Zager
- the Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Ali Johnson
- the Fred Hutchinson Cancer Research Center Seattle, WA 98109, USA
| | - Oleg Denisenko
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| | - Karol Bomsztyk
- UW Medicine Lake Union, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
48
|
Hewitt KJ, Kim DH, Devadas P, Prathibha R, Zuo C, Sanalkumar R, Johnson KD, Kang YA, Kim JS, Dewey CN, Keles S, Bresnick EH. Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome. Mol Cell 2015; 59:62-74. [PMID: 26073540 DOI: 10.1016/j.molcel.2015.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 11/17/2022]
Abstract
Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology.
Collapse
Affiliation(s)
- Kyle J Hewitt
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Duk Hyoung Kim
- Institute for Basic Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea; Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
| | - Prithvia Devadas
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Rajalekshmi Prathibha
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Chandler Zuo
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Rajendran Sanalkumar
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA
| | - Jin-Soo Kim
- Institute for Basic Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea; Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW-Madison Blood Research Program, Madison, WI 53706, USA.
| |
Collapse
|
49
|
Jain D, Mishra T, Giardine BM, Keller CA, Morrissey CS, Magargee S, Dorman CM, Long M, Weiss MJ, Hardison RC. Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system. GENOMICS DATA 2015; 4:1-7. [PMID: 25729644 PMCID: PMC4338950 DOI: 10.1016/j.gdata.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During the maturation phase of mammalian erythroid differentiation, highly proliferative cells committed to the erythroid lineage undergo dramatic changes in morphology and function to produce circulating, enucleated erythrocytes. These changes are caused by equally dramatic alterations in gene expression, which in turn are driven by changes in the abundance and binding patterns of transcription factors such as GATA1. We have studied the dynamics of GATA1 binding by ChIP-seq and the global expression responses by RNA-seq in a GATA1-dependent mouse cell line model for erythroid maturation, in both cases examining seven progressive stages during differentiation. Analyses of these data should provide insights both into mechanisms of regulation (early versus late targets) and the consequences in cell physiology (e.g., distinctive categories of genes regulated at progressive stages of differentiation). The data are deposited in the Gene Expression Omnibus, series GSE36029, GSE40522, GSE49847, and GSE51338.
Collapse
Affiliation(s)
- Deepti Jain
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Belinda M Giardine
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christapher S Morrissey
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Susan Magargee
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine M Dorman
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Maria Long
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Mitchell J Weiss
- Dept of Hematology, St Jude Children's Research Hospital, Memphis TN 38105, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania 16802, USA ; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
50
|
Abstract
In immune cells, as in all mammalian cells, nuclear DNA is wrapped around histones to form nucleosomes. The positioning and modifications of nucleosomes throughout the genome defines the chromatin state of the cell and has a large impact on gene regulation. Chromatin state is dynamic throughout immune cell development and activation. High-throughput open chromatin assays, such as DNase-seq, can be used to find regulatory element across the genome and, when combined with histone modifications, can specify their function. During hematopoiesis, distal regulatory elements, known as enhancers, are established by pioneer factors that alter chromatin state. Some of these enhancers are lost, some are gained, and some are maintained as a memory of the cell's developmental origin. The enhancer landscape is unique to the cell lineage-with different enhancers regulating the same promoter-and determines the mechanism of cell type-specific activation after exposure to stimuli. Histone modification and promoter architecture govern the diverse responses to stimulation. Furthermore, chromatin dynamics may explain the high plasticity of certain tissue-resident immune cell types. Future epigenomic research will depend on the development of more efficient experiments and better methods to associate enhancers with genes. The ultimate goal of mapping genome-wide chromatin state throughout the hematopoietic tree will help illuminate the mechanisms behind immune cell development and function.
Collapse
Affiliation(s)
- Deborah R Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|