1
|
Sept CE, Tak YE, Goel V, Bhakta MS, Cerda-Smith CG, Hutchinson HM, Blanchette M, Eyler CE, Johnstone SE, Joung JK, Hansen AS, Aryee MJ. High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion. Nat Commun 2025; 16:4506. [PMID: 40374602 PMCID: PMC12081859 DOI: 10.1038/s41467-025-57775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/03/2025] [Indexed: 05/17/2025] Open
Abstract
Cohesin-mediated DNA loop extrusion enables gene regulation by distal enhancers through the establishment of chromosome structure and long-range enhancer-promoter interactions. The best characterized cohesin-related structures, such as topologically associating domains (TADs) anchored at convergent CTCF binding sites, represent static conformations. Consequently, loop extrusion dynamics remain poorly understood. To better characterize static and dynamically extruding chromatin loop structures, we use MNase-based 3D genome assays to simultaneously determine CTCF and cohesin localization as well as the 3D contacts they mediate. Here we present CTCF Analyzer (with) Multinomial Estimation (CAMEL), a tool that identifies CTCF footprints at near base-pair resolution in CTCF MNase HiChiP. We also use Region Capture Micro-C to identify a CTCF-adjacent footprint that is attributed to cohesin occupancy. We leverage this substantial advance in resolution to determine that the fully extruded (CTCF-CTCF loop) state is rare genome-wide with locus-specific variation from ~1-10%. We further investigate the impact of chromatin state on loop extrusion dynamics and find that active regulatory elements impede cohesin extrusion. These findings support a model of topological regulation whereby the transient, partially extruded state facilitates enhancer-promoter contacts that can regulate transcription.
Collapse
Affiliation(s)
- Corriene E Sept
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Y Esther Tak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Viraat Goel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Mital S Bhakta
- Dovetail Genomics, Cantata Bio LLC, Scotts Valley, CA, 95066, USA
| | - Christian G Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Haley M Hutchinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Christine E Eyler
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sarah E Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anders S Hansen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Martin J Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Arena Bioworks, Cambridge, MA, 02141, USA.
| |
Collapse
|
2
|
Georgiades E, Harrold C, Roberts N, Kassouf M, Riva SG, Sanders E, Downes D, Francis HS, Blayney J, Oudelaar AM, Milne TA, Higgs D, Hughes JR. Active regulatory elements recruit cohesin to establish cell specific chromatin domains. Sci Rep 2025; 15:11780. [PMID: 40189615 PMCID: PMC11973168 DOI: 10.1038/s41598-025-96248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
As the 3D structure of the genome is analysed at ever increasing resolution it is clear that there is considerable variation in the 3D chromatin architecture across different cell types. It has been proposed that this may, in part, be due to increased recruitment of cohesin to activated cis-elements (enhancers and promoters) leading to cell-type specific loop extrusion underlying the formation of new sub-TADs. Here we show that cohesin correlates well with the presence of active enhancers and that this varies in an allele-specific manner with the presence or absence of polymorphic enhancers which vary from one individual to another. Using the alpha globin cluster as a model, we show that when all enhancers are removed, peaks of cohesin disappear from these regions and the erythroid specific sub-TAD is no longer formed. Re-insertion of the major alpha globin enhancer (R2) is associated with re-establishment of recruitment and increased interactions. In complementary experiments insertion of the R2 enhancer element into a "neutral" region of the genome recruits cohesin, induces transcription and creates a new large (75 kb) erythroid-specific domain. Together these findings support the proposal that active enhancers recruit cohesin, stimulate loop extrusion and promote the formation of cell specific sub-TADs.
Collapse
Affiliation(s)
- Emily Georgiades
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Caroline Harrold
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Mira Kassouf
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Simone G Riva
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Edward Sanders
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Damien Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Helena S Francis
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joseph Blayney
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Douglas Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Aboreden NG, Lam JC, Goel VY, Wang S, Wang X, Midla SC, Quijano A, Keller CA, Giardine BM, Hardison RC, Zhang H, Hansen AS, Blobel GA. LDB1 establishes multi-enhancer networks to regulate gene expression. Mol Cell 2025; 85:376-393.e9. [PMID: 39721581 PMCID: PMC11741933 DOI: 10.1016/j.molcel.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
How specific enhancer-promoter pairing is established remains mostly unclear. Besides the CTCF/cohesin machinery, few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Using a murine erythroid cell model, we show via acute degradation experiments that LDB1 directly and broadly promotes connectivity among regulatory elements. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined using multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1-occupied sites but aids the formation of a subset of LDB1-anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1 phase, we observe that loop formation and de novo LDB1 occupancy correlate and can occur independently of structural loops. Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. These findings establish LDB1 as a driver of spatial connectivity.
Collapse
Affiliation(s)
- Nicholas G Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica C Lam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viraat Y Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Siqing Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaokang Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alma Quijano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Gerd A Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Aboreden NG, Lam JC, Goel VY, Wang S, Wang X, Midla SC, Quijano A, Keller CA, Giardine BM, Hardison RC, Zhang H, Hansen AS, Blobel GA. LDB1 establishes multi-enhancer networks to regulate gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609430. [PMID: 39229045 PMCID: PMC11370584 DOI: 10.1101/2024.08.23.609430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined via the use of multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1 occupied sites but may aid the formation of a subset of LDB1 anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1-phase, we establish a relationship between LDB1-dependent interactions in the context of TAD organization and gene activation. Lastly, Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. This establishes LDB1 as a direct driver of regulatory network inter-connectivity.
Collapse
Affiliation(s)
- Nicholas G. Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica C. Lam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viraat Y. Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Siqing Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaokang Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susannah C. Midla
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alma Quijano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M. Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
6
|
Zhou BR, Feng H, Huang F, Zhu I, Portillo-Ledesma S, Shi D, Zaret KS, Schlick T, Landsman D, Wang Q, Bai Y. Structural insights into the cooperative nucleosome recognition and chromatin opening by FOXA1 and GATA4. Mol Cell 2024; 84:3061-3079.e10. [PMID: 39121853 PMCID: PMC11344660 DOI: 10.1016/j.molcel.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Furong Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA
| | - Dan Shi
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Development Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Wang J, Nakato R. Churros: a Docker-based pipeline for large-scale epigenomic analysis. DNA Res 2024; 31:dsad026. [PMID: 38102723 PMCID: PMC11389749 DOI: 10.1093/dnares/dsad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023] Open
Abstract
The epigenome, which reflects the modifications on chromatin or DNA sequences, provides crucial insight into gene expression regulation and cellular activity. With the continuous accumulation of epigenomic datasets such as chromatin immunoprecipitation followed by sequencing (ChIP-seq) data, there is a great demand for a streamlined pipeline to consistently process them, especially for large-dataset comparisons involving hundreds of samples. Here, we present Churros, an end-to-end epigenomic analysis pipeline that is environmentally independent and optimized for handling large-scale data. We successfully demonstrated the effectiveness of Churros by analyzing large-scale ChIP-seq datasets with the hg38 or Telomere-to-Telomere (T2T) human reference genome. We found that applying T2T to the typical analysis workflow has important impacts on read mapping, quality checks, and peak calling. We also introduced a useful feature to study context-specific epigenomic landscapes. Churros will contribute a comprehensive and unified resource for analyzing large-scale epigenomic data.
Collapse
Affiliation(s)
- Jiankang Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
9
|
van Schie JJM, de Lint K, Molenaar TM, Moronta Gines M, Balk J, Rooimans M, Roohollahi K, Pai G, Borghuis L, Ramadhin A, Corazza F, Dorsman J, Wendt K, Wolthuis RF, de Lange J. CRISPR screens in sister chromatid cohesion defective cells reveal PAXIP1-PAGR1 as regulator of chromatin association of cohesin. Nucleic Acids Res 2023; 51:9594-9609. [PMID: 37702151 PMCID: PMC10570055 DOI: 10.1093/nar/gkad756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, we mapped the genetic dependencies of human cell lines defective of cohesion regulators DDX11 and ESCO2. The obtained synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identify the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravates cohesion defects in ESCO2 mutant cells, leading to mitotic cell death. PAXIP1 promotes global chromatin association of cohesin, independent of DNA replication, a function that cannot be explained by indirect effects of PAXIP1 on transcription or DNA repair. Cohesin regulation by PAXIP1 requires its binding partner PAGR1 and a conserved FDF motif in PAGR1. PAXIP1 co-localizes with cohesin on multiple genomic loci, including active gene promoters and enhancers. Possibly, this newly identified role of PAXIP1-PAGR1 in regulating cohesin occupancy on chromatin is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.
Collapse
Affiliation(s)
- Janne J M van Schie
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Klaas de Lint
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Thom M Molenaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Jesper A Balk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Khashayar Roohollahi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Govind M Pai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Lauri Borghuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anisha R Ramadhin
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Francesco Corazza
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Josephine C Dorsman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kerstin S Wendt
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Job de Lange
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Nakato R, Sakata T, Wang J, Nagai LAE, Nagaoka Y, Oba GM, Bando M, Shirahige K. Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors. Nat Commun 2023; 14:5647. [PMID: 37726281 PMCID: PMC10509244 DOI: 10.1038/s41467-023-41316-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Cohesin regulates gene expression through context-specific chromatin folding mechanisms such as enhancer-promoter looping and topologically associating domain (TAD) formation by cooperating with factors such as cohesin loaders and the insulation factor CTCF. We developed a computational workflow to explore how three-dimensional (3D) structure and gene expression are regulated collectively or individually by cohesin and related factors. The main component is CustardPy, by which multi-omics datasets are compared systematically. To validate our methodology, we generated 3D genome, transcriptome, and epigenome data before and after depletion of cohesin and related factors and compared the effects of depletion. We observed diverse effects on the 3D genome and transcriptome, and gene expression changes were correlated with the splitting of TADs caused by cohesin loss. We also observed variations in long-range interactions across TADs, which correlated with their epigenomic states. These computational tools and datasets will be valuable for 3D genome and epigenome studies.
Collapse
Affiliation(s)
- Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan.
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
- Karolinska Institutet, Department of Biosciences and Nutrition, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden
| | - Jiankang Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Luis Augusto Eijy Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Yuya Nagaoka
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Gina Miku Oba
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Masashige Bando
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-0032, Japan.
- Karolinska Institutet, Department of Biosciences and Nutrition, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden.
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Quarter A6, 171 77, Stockholm, Sweden.
| |
Collapse
|
11
|
Yin Z, Cui S, Xue S, Xie Y, Wang Y, Zhao C, Zhang Z, Wu T, Hou G, Wang W, Xie SQ, Wu Y, Guo Y. Identification of Two Subsets of Subcompartment A1 Associated with High Transcriptional Activity and Frequent Loop Extrusion. BIOLOGY 2023; 12:1058. [PMID: 37626945 PMCID: PMC10451812 DOI: 10.3390/biology12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Three-dimensional genome organization has been increasingly recognized as an important determinant of the precise regulation of gene expression in mammalian cells, yet the relationship between gene transcriptional activity and spatial subcompartment positioning is still not fully comprehended. Here, we first utilized genome-wide Hi-C data to infer eight types of subcompartment (labeled A1, A2, A3, A4, B1, B2, B3, and B4) in mouse embryonic stem cells and four primary differentiated cell types, including thymocytes, macrophages, neural progenitor cells, and cortical neurons. Transitions of subcompartments may confer gene expression changes in different cell types. Intriguingly, we identified two subsets of subcompartments defined by higher gene density and characterized by strongly looped contact domains, named common A1 and variable A1, respectively. We revealed that common A1, which includes highly expressed genes and abundant housekeeping genes, shows a ~2-fold higher gene density than the variable A1, where cell type-specific genes are significantly enriched. Thus, our study supports a model in which both types of genomic loci with constitutive and regulatory high transcriptional activity can drive the subcompartment A1 formation. Special chromatin subcompartment arrangement and intradomain interactions may, in turn, contribute to maintaining proper levels of gene expression, especially for regulatory non-housekeeping genes.
Collapse
Affiliation(s)
- Zihang Yin
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Shuang Cui
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Song Xue
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yufan Xie
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Yefan Wang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Chengling Zhao
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Zhiyu Zhang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Tao Wu
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200001, China;
| | - Wuming Wang
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Sheila Q. Xie
- MRC London Institute of Medical Sciences, London W12 0NN, UK;
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Yue Wu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ya Guo
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Y.); (S.C.); (Y.X.); (Y.W.); (C.Z.); (Z.Z.); (T.W.)
- WLA Laboratories, Shanghai 201203, China
| |
Collapse
|
12
|
Wang J, Nakato R. Comprehensive multiomics analyses reveal pervasive involvement of aberrant cohesin binding in transcriptional and chromosomal disorder of cancer cells. iScience 2023; 26:106908. [PMID: 37283809 PMCID: PMC10239702 DOI: 10.1016/j.isci.2023.106908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Chromatin organization, whose malfunction causes various diseases including cancer, is fundamentally controlled by cohesin. While cancer cells have been found with mutated or misexpressed cohesin genes, there is no comprehensive survey about the presence and role of abnormal cohesin binding in cancer cells. Here, we systematically identified ∼1% of cohesin-binding sites (701-2,633) as cancer-aberrant binding sites of cohesin (CASs). We integrated CASs with large-scale transcriptomics, epigenomics, 3D genomics, and clinical information. CASs represent tissue-specific epigenomic signatures enriched for cancer-dysregulated genes with functional and clinical significance. CASs exhibited alterations in chromatin compartments, loops within topologically associated domains, and cis-regulatory elements, indicating that CASs induce dysregulated genes through misguided chromatin structure. Cohesin depletion data suggested that cohesin binding at CASs actively regulates cancer-dysregulated genes. Overall, our comprehensive investigation suggests that aberrant cohesin binding is an essential epigenomic signature responsible for dysregulated chromatin structure and transcription in cancer cells.
Collapse
Affiliation(s)
- Jiankang Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
14
|
Karpinska MA, Oudelaar AM. The role of loop extrusion in enhancer-mediated gene activation. Curr Opin Genet Dev 2023; 79:102022. [PMID: 36842325 DOI: 10.1016/j.gde.2023.102022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/28/2023]
Abstract
Gene expression patterns in complex multicellular organisms are regulated by enhancers, which communicate with their target gene promoters in three-dimensional (3D) chromatin structures. Despite advances in our understanding of the mechanisms that organize mammalian genomes into compartments and topologically associating domains (TADs), it is not well understood how specific interactions between enhancers and promoters are controlled in this 3D context. In this review, we give an overview of recent evidence that shows that a process of loop extrusion plays an important role in the regulation of enhancer-promoter communication and discuss recent insights into the molecular mechanism by which loop extrusion contributes to enhancer-mediated gene activation.
Collapse
Affiliation(s)
- Magdalena A Karpinska
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. https://twitter.com/@MagdalenaKarp
| | | |
Collapse
|
15
|
Shin H, Kim Y. Regulation of loop extrusion on the interphase genome. Crit Rev Biochem Mol Biol 2023; 58:1-18. [PMID: 36921088 DOI: 10.1080/10409238.2023.2182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.
Collapse
Affiliation(s)
- Hyogyung Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoori Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.,New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
16
|
Singh AK, Chen Q, Nguyen C, Meerzaman D, Singer DS. Cohesin regulates alternative splicing. SCIENCE ADVANCES 2023; 9:eade3876. [PMID: 36857449 PMCID: PMC9977177 DOI: 10.1126/sciadv.ade3876] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cohesin, a trimeric complex that establishes sister chromatid cohesion, has additional roles in chromatin organization and transcription. We report that among those roles is the regulation of alternative splicing through direct interactions and in situ colocalization with splicing factors. Degradation of cohesin results in marked changes in splicing, independent of its effects on transcription. Introduction of a single cohesin point mutation in embryonic stem cells alters splicing patterns, demonstrating causality. In primary human acute myeloid leukemia, mutations in cohesin are highly correlated with distinct patterns of alternative splicing. Cohesin also directly interacts with BRD4, another splicing regulator, to generate a pattern of splicing that is distinct from either factor alone, documenting their functional interaction. These findings identify a role for cohesin in regulating alternative splicing in both normal and leukemic cells and provide insights into the role of cohesin mutations in human disease.
Collapse
Affiliation(s)
- Amit K. Singh
- Experimental Immunology Branch, Center for Cancer Research, Bethesda, MD, USA
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Cu Nguyen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Dinah S. Singer
- Experimental Immunology Branch, Center for Cancer Research, Bethesda, MD, USA
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
17
|
Wang J, Nakato R. CohesinDB: a comprehensive database for decoding cohesin-related epigenomes, 3D genomes and transcriptomes in human cells. Nucleic Acids Res 2022; 51:D70-D79. [PMID: 36162821 PMCID: PMC9825609 DOI: 10.1093/nar/gkac795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 01/29/2023] Open
Abstract
Cohesin is a multifunctional protein responsible for transcriptional regulation and chromatin organization. Cohesin binds to chromatin at tens of thousands of distinct sites in a conserved or tissue-specific manner, whereas the function of cohesin varies greatly depending on the epigenetic properties of specific chromatin loci. Cohesin also extensively mediates cis-regulatory modules (CRMs) and chromatin loops. Even though next-generation sequencing technologies have provided a wealth of information on different aspects of cohesin, the integration and exploration of the resultant massive cohesin datasets are not straightforward. Here, we present CohesinDB (https://cohesindb.iqb.u-tokyo.ac.jp), a comprehensive multiomics cohesin database in human cells. CohesinDB includes 2043 epigenomics, transcriptomics and 3D genomics datasets from 530 studies involving 176 cell types. By integrating these large-scale data, CohesinDB summarizes three types of 'cohesin objects': 751 590 cohesin binding sites, 957 868 cohesin-related chromatin loops and 2 229 500 cohesin-related CRMs. Each cohesin object is annotated with locus, cell type, classification, function, 3D genomics and cis-regulatory information. CohesinDB features a user-friendly interface for browsing, searching, analyzing, visualizing and downloading the desired information. CohesinDB contributes a valuable resource for all researchers studying cohesin, epigenomics, transcriptional regulation and chromatin organization.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Yayoi 1-1-1, Japan,Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Hongo 7-3-1, Japan
| | - Ryuichiro Nakato
- To whom correspondence should be addressed. Tel: +81 3 5841 1471; Fax: +81 3 5841 7308;
| |
Collapse
|
18
|
Wang J, Bando M, Shirahige K, Nakato R. Large-scale multi-omics analysis suggests specific roles for intragenic cohesin in transcriptional regulation. Nat Commun 2022; 13:3218. [PMID: 35680859 PMCID: PMC9184728 DOI: 10.1038/s41467-022-30792-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/14/2022] [Indexed: 12/19/2022] Open
Abstract
Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.
Collapse
Affiliation(s)
- Jiankang Wang
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashige Bando
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
19
|
Bedi YS, Wang H, Thomas KN, Basel A, Prunier J, Robert C, Golding MC. Alcohol induced increases in sperm Histone H3 lysine 4 trimethylation correlate with increased placental CTCF occupancy and altered developmental programming. Sci Rep 2022; 12:8839. [PMID: 35614060 PMCID: PMC9130987 DOI: 10.1038/s41598-022-12188-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Using a mouse model, studies by our group reveal that paternal preconception alcohol intake affects offspring fetal-placental growth, with long-lasting consequences on adult metabolism. Here, we tested the hypothesis that chronic preconception male alcohol exposure impacts histone enrichment in sperm and that these changes are associated with altered developmental programming in the placenta. Using chromatin immunoprecipitation, we find alcohol-induced increases in sperm histone H3 lysine 4 trimethylation (H3K4me3) that map to promoters and presumptive enhancer regions enriched in genes driving neurogenesis and craniofacial development. Given the colocalization of H3K4me3 with the chromatin binding factor CTCF across both sperm and embryos, we next examined CTCF localization in the placenta. We find global changes in CTCF binding within placentae derived from the male offspring of alcohol-exposed sires. Furthermore, altered CTCF localization correlates with dysregulated gene expression across multiple gene clusters; however, these transcriptional changes only occur in male offspring. Finally, we identified a correlation between genomic regions exhibiting alcohol-induced increases in sperm H3K4me3 and increased CTCF binding in male placentae. Collectively, our analysis demonstrates that the chromatin landscape of sperm is sensitive to chronic alcohol exposure and that a subset of these affected regions exhibits increased placental CTCF enrichment.
Collapse
Affiliation(s)
- Yudhishtar S Bedi
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Haiqing Wang
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Kara N Thomas
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Alison Basel
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA
| | - Julien Prunier
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Claude Robert
- Département des Sciences Animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Michael C Golding
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4466 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
20
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Bianco F, Bonora E, Lattanzio G, Clavenzani P, Guarino M, Mazzoni M, Baldassarro VA, Lorenzini L, Caio G, Stanghellini V, Sternini C, Farrugia G, Giardino L, Calzà L, De Giorgio R. Clinical and Pathological Features of Severe Gut Dysmotility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:9-17. [PMID: 36587142 DOI: 10.1007/978-3-031-05843-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Severe gut motility disorders are characterized by ineffective propulsion of intestinal contents. As a result, patients often develop extremely uncomfortable symptoms, ranging from nausea and vomiting along with alterations of bowel habits, up to radiologically confirmed subobstructive episodes. Chronic intestinal pseudo-obstruction (CIPO) is a typical clinical phenotype of severe gut dysmotility due to morphological and functional alterations of the intrinsic (enteric) innervation and extrinsic nerve supply (hence neuropathy), interstitial cells of Cajal (ICCs) (mesenchymopathy), and smooth muscle cells (myopathy). In this chapter, we highlight some molecular mechanisms of CIPO and review the clinical phenotypes and the genetics of the different types of CIPO. Specifically, we will detail the role of some of the most representative genetic mutations involving RAD21, LIG3, and ACTG2 to provide a better understanding of CIPO and related underlying neuropathic or myopathic histopathological abnormalities. This knowledge may unveil targeted strategies to better manage patients with such severe disease.
Collapse
Affiliation(s)
- Francesca Bianco
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Veterinary Sciences University of Bologna, Bologna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Lattanzio
- Department of Veterinary Sciences University of Bologna, Bologna, Italy
| | - Paolo Clavenzani
- Department of Veterinary Sciences University of Bologna, Bologna, Italy
| | - Matteo Guarino
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Sciences University of Bologna, Bologna, Italy
| | | | | | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Catia Sternini
- UCLA/DDRC, Division of Digestive Diseases, Departments Medicine and Neurobiology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA
| | | | | | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Unit of Internal Medicine, St. Anna Hospital, Ferrara, Italy.
| |
Collapse
|
22
|
Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Nat Commun 2021; 12:6350. [PMID: 34732735 PMCID: PMC8566521 DOI: 10.1038/s41467-021-26567-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription modulated by the circadian clock is diverse across cell types, underlying circadian control of peripheral metabolism and its observed perturbation in human diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the genome-wide distribution of core clock component BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. Additionally, the epigenetic state and accessibility of the liver genome dynamically change throughout the day, synchronized with chromatin occupancy of HNF4A and clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our results may provide a general mechanism for establishing circadian rhythm heterogeneity during development and disease progression, governed by chromatin structure.
Collapse
Affiliation(s)
- Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, 92521, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
23
|
Matthews BJ, Melia T, Waxman DJ. Harnessing natural variation to identify cis regulators of sex-biased gene expression in a multi-strain mouse liver model. PLoS Genet 2021; 17:e1009588. [PMID: 34752452 PMCID: PMC8664386 DOI: 10.1371/journal.pgen.1009588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/10/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.
Collapse
Affiliation(s)
- Bryan J. Matthews
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Tisha Melia
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
25
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
26
|
Martínez-García PM, García-Torres M, Divina F, Terrón-Bautista J, Delgado-Sainz I, Gómez-Vela F, Cortés-Ledesma F. Genome-wide prediction of topoisomerase IIβ binding by architectural factors and chromatin accessibility. PLoS Comput Biol 2021; 17:e1007814. [PMID: 33465072 PMCID: PMC7845959 DOI: 10.1371/journal.pcbi.1007814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 01/29/2021] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
DNA topoisomerase II-β (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (PMMG); (FCL)
| | | | - Federico Divina
- Division of Computer Science, Universidad Pablo de Olavide, Seville, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Irene Delgado-Sainz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | | | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
- Topology and DNA breaks Group, Spanish National Cancer Centre (CNIO), Madrid, Spain
- * E-mail: (PMMG); (FCL)
| |
Collapse
|
27
|
Liu NQ, Maresca M, van den Brand T, Braccioli L, Schijns MMGA, Teunissen H, Bruneau BG, Nora EP, de Wit E. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nat Genet 2021; 53:100-109. [PMID: 33318687 PMCID: PMC7610352 DOI: 10.1038/s41588-020-00744-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/27/2020] [Indexed: 01/28/2023]
Abstract
The cohesin complex has an essential role in maintaining genome organization. However, its role in gene regulation remains largely unresolved. Here we report that the cohesin release factor WAPL creates a pool of free cohesin, in a process known as cohesin turnover, which reloads it to cell-type-specific binding sites. Paradoxically, stabilization of cohesin binding, following WAPL ablation, results in depletion of cohesin from these cell-type-specific regions, loss of gene expression and differentiation. Chromosome conformation capture experiments show that cohesin turnover is important for maintaining promoter-enhancer loops. Binding of cohesin to cell-type-specific sites is dependent on the pioneer transcription factors OCT4 (POU5F1) and SOX2, but not NANOG. We show the importance of cohesin turnover in controlling transcription and propose that a cycle of cohesin loading and off-loading, instead of static cohesin binding, mediates promoter and enhancer interactions critical for gene regulation.
Collapse
Affiliation(s)
- Ning Qing Liu
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michela Maresca
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Luca Braccioli
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marijne M G A Schijns
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Elphѐge P Nora
- Gladstone Institutes, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Cheng H, Zhang N, Pati D. Cohesin subunit RAD21: From biology to disease. Gene 2020; 758:144966. [PMID: 32687945 PMCID: PMC7949736 DOI: 10.1016/j.gene.2020.144966] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
RAD21 (also known as KIAA0078, NXP1, HR21, Mcd1, Scc1, and hereafter called RAD21), an essential gene, encodes a DNA double-strand break (DSB) repair protein that is evolutionarily conserved in all eukaryotes from budding yeast to humans. RAD21 protein is a structural component of the highly conserved cohesin complex consisting of RAD21, SMC1a, SMC3, and SCC3 [STAG1 (SA1) and STAG2 (SA2) in metazoans] proteins, involved in sister chromatid cohesion. This function is essential for proper chromosome segregation, post-replicative DNA repair, and prevention of inappropriate recombination between repetitive regions. In interphase, cohesin also functions in the control of gene expression by binding to numerous sites within the genome. In addition to playing roles in the normal cell cycle and DNA DSB repair, RAD21 is also linked to the apoptotic pathways. Germline heterozygous or homozygous missense mutations in RAD21 have been associated with human genetic disorders, including developmental diseases such as Cornelia de Lange syndrome (CdLS) and chronic intestinal pseudo-obstruction (CIPO) called Mungan syndrome, respectively, and collectively termed as cohesinopathies. Somatic mutations and amplification of the RAD21 have also been widely reported in both human solid and hematopoietic tumors. Considering the role of RAD21 in a broad range of cellular processes that are hot spots in neoplasm, it is not surprising that the deregulation of RAD21 has been increasingly evident in human cancers. Herein, we review the biology of RAD21 and the cellular processes that this important protein regulates and discuss the significance of RAD21 deregulation in cancer and cohesinopathies.
Collapse
Affiliation(s)
- Haizi Cheng
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Nenggang Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Debananda Pati
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
29
|
Zhou J, Wang D, Tang D, Huang W. Abnormal Activations of Super-Enhancers Enhance the Carcinogenicity in Lung Adenocarcinoma. Cancer Manag Res 2020; 12:8509-8518. [PMID: 32982443 PMCID: PMC7501973 DOI: 10.2147/cmar.s258497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung tumors and normal lung tissues show large differences in epigenetic modification which can affect the chromosome structure and expression of genes. However, the epigenetic reprogramming in lung adenocarcinoma remains unclear. Methods and Results With the bioinformatics analysis, we found that some activated super-enhancers (SEs) only appear in lung adenocarcinoma cells, and 781 abnormal activated super-enhancers (AASEs) were found. Not only are the traditional oncogenes found to be activated by AASEs, such as MET and SLC2A1, but also some new genes were activated by AASEs, which probably contributes to the carcinogenic process in lung cancer. The enrichment analysis of the genes activated by AASEs shows that the glycolysis process and cell proliferation were enhanced and the apoptotic process was negatively regulated. Two AASEs were separately knockout by CRISPR/Cas9 in A549, PC-9, and H1299 cell lines and the expression of target genes decreased. The motif of CTCF, SMARCA1, SOX4, FOXM1, IRF3, IRF7, and STAT2 was enriched in AASEs, supporting that the chromosome structure changed and these transcription factors would be the master regulators on the formation of AASEs. Conclusion This study provided comprehensive insight into the mechanisms of SEs, as well as a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Jianlong Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,Department of Oncology, The Affiliated Xinhui Hospital, Southern Medical University, Xinhui, People's Republic of China
| | - Dingxue Wang
- Department of Oncology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, People's Republic of China
| | - Dongxin Tang
- Department of Oncology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, People's Republic of China
| | - Wenhua Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Azazi D, Mudge JM, Odom DT, Flicek P. Functional signatures of evolutionarily young CTCF binding sites. BMC Biol 2020; 18:132. [PMID: 32988407 PMCID: PMC7520972 DOI: 10.1186/s12915-020-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
Background The introduction of novel CTCF binding sites in gene regulatory regions in the rodent lineage is partly the effect of transposable element expansion, particularly in the murine lineage. The exact mechanism and functional impact of evolutionarily novel CTCF binding sites are not yet fully understood. We investigated the impact of novel subspecies-specific CTCF binding sites in two Mus genus subspecies, Mus musculus domesticus and Mus musculus castaneus, that diverged 0.5 million years ago. Results CTCF binding site evolution is influenced by the action of the B2-B4 family of transposable elements independently in both lineages, leading to the proliferation of novel CTCF binding sites. A subset of evolutionarily young sites may harbour transcriptional functionality as evidenced by the stability of their binding across multiple tissues in M. musculus domesticus (BL6), while overall the distance of subspecies-specific CTCF binding to the nearest transcription start sites and/or topologically associated domains (TADs) is largely similar to musculus-common CTCF sites. Remarkably, we discovered a recurrent regulatory architecture consisting of a CTCF binding site and an interferon gene that appears to have been tandemly duplicated to create a 15-gene cluster on chromosome 4, thus forming a novel BL6 specific immune locus in which CTCF may play a regulatory role. Conclusions Our results demonstrate that thousands of CTCF binding sites show multiple functional signatures rapidly after incorporation into the genome.
Collapse
Affiliation(s)
- Dhoyazan Azazi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.,German Cancer Research Center (DKFZ), Division Regulatory Genomics and Cancer Evolution, 69120, Heidelberg, Germany
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. .,University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK. .,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
31
|
Lebraud E, Pinna G, Siberchicot C, Depagne J, Busso D, Fantini D, Irbah L, Robeska E, Kratassiouk G, Ravanat JL, Epe B, Radicella JP, Campalans A. Chromatin recruitment of OGG1 requires cohesin and mediator and is essential for efficient 8-oxoG removal. Nucleic Acids Res 2020; 48:9082-9097. [PMID: 32710616 PMCID: PMC7498353 DOI: 10.1093/nar/gkaa611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
One of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1. We show that cohesin and mediator subunits are required for re-localization of OGG1 and other base excision repair factors to chromatin upon oxidative stress. The association of OGG1 with euchromatin is necessary for the removal of 8-oxoG. Mediator subunits CDK8 and MED12 bind to chromatin and interact with OGG1 in response to oxidative stress, suggesting they participate in the recruitment of the DNA glycosylase. The oxidative stress-induced association between the cohesin and mediator complexes and OGG1 reveals an unsuspected function of those complexes in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Emilie Lebraud
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Guillaume Pinna
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| | - Capucine Siberchicot
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Jordane Depagne
- Institute of Cellular and Molecular Radiobiology, U1274 INSERM, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Didier Busso
- Institute of Cellular and Molecular Radiobiology, U1274 INSERM, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Damiano Fantini
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Lamya Irbah
- Institute of Cellular and Molecular Radiobiology, U1274 INSERM, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Elena Robeska
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Gueorgui Kratassiouk
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS IRIG/SyMMES, F-38054 Grenoble, France
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Germany
| | - J Pablo Radicella
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| | - Anna Campalans
- Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
32
|
De Koninck M, Lapi E, Badía-Careaga C, Cossío I, Giménez-Llorente D, Rodríguez-Corsino M, Andrada E, Hidalgo A, Manzanares M, Real FX, Losada A. Essential Roles of Cohesin STAG2 in Mouse Embryonic Development and Adult Tissue Homeostasis. Cell Rep 2020; 32:108014. [PMID: 32783938 DOI: 10.1016/j.celrep.2020.108014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
Cohesin mediates sister chromatid cohesion and 3D genome folding. Two versions of the complex carrying STAG1 or STAG2 coexist in somatic vertebrate cells. STAG2 is commonly mutated in cancer, and germline mutations have been identified in cohesinopathy patients. To better understand the underlying pathogenic mechanisms, we report the consequences of Stag2 ablation in mice. STAG2 is largely dispensable in adults, and its tissue-wide inactivation does not lead to tumors but reduces fitness and affects both hematopoiesis and intestinal homeostasis. STAG2 is also dispensable for murine embryonic fibroblasts in vitro. In contrast, Stag2-null embryos die by mid-gestation and show global developmental delay and defective heart morphogenesis, most prominently in structures derived from secondary heart field progenitors. Both decreased proliferation and altered transcription of tissue-specific genes contribute to these defects. Our results provide compelling evidence on cell- and tissue-specific roles of different cohesin complexes and how their dysfunction contributes to disease.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; CIBERONC, Madrid, Spain
| | | | - Itziar Cossío
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Elena Andrada
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, 28049 Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; CIBERONC, Madrid, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
33
|
Matthews BJ, Waxman DJ. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver. Epigenetics Chromatin 2020; 13:30. [PMID: 32680543 PMCID: PMC7368777 DOI: 10.1186/s13072-020-00350-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
Several thousand sex-differential distal enhancers have been identified in mouse liver; however, their links to sex-biased genes and the impact of any sex-differences in nuclear organization and chromatin interactions are unknown. To address these issues, we first characterized 1847 mouse liver genomic regions showing significant sex differential occupancy by cohesin and CTCF, two key 3D nuclear organizing factors. These sex-differential binding sites were primarily distal to sex-biased genes but rarely generated sex-differential TAD (topologically associating domain) or intra-TAD loop anchors, and were sometimes found in TADs without sex-biased genes. A substantial subset of sex-biased cohesin-non-CTCF binding sites, but not sex-biased cohesin-and-CTCF binding sites, overlapped sex-biased enhancers. Cohesin depletion reduced the expression of male-biased genes with distal, but not proximal, sex-biased enhancers by >10-fold, implicating cohesin in long-range enhancer interactions regulating sex-biased genes. Using circularized chromosome conformation capture-based sequencing (4C-seq), we showed that sex differences in distal sex-biased enhancer-promoter interactions are common. Intra-TAD loops with sex-independent cohesin-and-CTCF anchors conferred sex specificity to chromatin interactions indirectly, by insulating sex-biased enhancer-promoter contacts and by bringing sex-biased genes into closer proximity to sex-biased enhancers. Furthermore, sex-differential chromatin interactions involving sex-biased gene promoters, enhancers, and lncRNAs were associated with sex-biased binding of cohesin and/or CTCF. These studies elucidate how 3D genome organization impacts sex-biased gene expression in a non-reproductive tissue through both direct and indirect effects of cohesin and CTCF looping on distal enhancer interactions with sex-differentially expressed genes.
Collapse
Affiliation(s)
- Bryan J Matthews
- Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
34
|
Cuadrado A, Losada A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr Opin Genet Dev 2020; 61:9-16. [PMID: 32294612 DOI: 10.1016/j.gde.2020.02.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
Cohesin is a complex conserved in evolution that entraps DNA. Originally identified for its role in sister chromatid cohesion, it is currently considered a key player in 3D genome organization. In vertebrates, two paralog genes encode two versions of the SA/STAG subunit of cohesin, STAG1 and STAG2. While the existence of two variant complexes has been largely ignored in many cohesin studies, the high frequency of STAG2 mutations in cancer has stirred up the interest in dissecting the unique properties that the STAG proteins confer on cohesin. In this review, we summarize recent progress in our understanding of the functional specificity of cohesin-STAG1 and cohesin-STAG2 with particular emphasis on their contributions to genome organization and gene regulation.
Collapse
Affiliation(s)
- Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
35
|
Pugacheva EM, Kubo N, Loukinov D, Tajmul M, Kang S, Kovalchuk AL, Strunnikov AV, Zentner GE, Ren B, Lobanenkov VV. CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention. Proc Natl Acad Sci U S A 2020; 117:2020-2031. [PMID: 31937660 PMCID: PMC6995019 DOI: 10.1073/pnas.1911708117] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Naoki Kubo
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sungyun Kang
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Alexander L Kovalchuk
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander V Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Science Park, 510530 Guangzhou, China
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, IN 47405
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University-Purdue University, Indianapolis, IN 46202
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA 92093-0653
- Moores Cancer Center and Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0653
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
36
|
El Beaino M, Liu J, Wasylishen AR, Pourebrahim R, Migut A, Bessellieu BJ, Huang K, Lin PP. Loss of Stag2 cooperates with EWS-FLI1 to transform murine Mesenchymal stem cells. BMC Cancer 2020; 20:3. [PMID: 31898537 PMCID: PMC6941350 DOI: 10.1186/s12885-019-6465-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/15/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Ewing sarcoma is a malignancy of primitive cells, possibly of mesenchymal origin. It is probable that genetic perturbations other than EWS-FLI1 cooperate with it to produce the tumor. Sequencing studies identified STAG2 mutations in approximately 15% of cases in humans. In the present study, we hypothesize that loss of Stag2 cooperates with EWS-FLI1 in generating sarcomas derived from murine mesenchymal stem cells (MSCs). METHODS Mice bearing an inducible EWS-FLI1 transgene were crossed to p53-/- mice in pure C57/Bl6 background. MSCs were derived from the bone marrow of the mice. EWS-FLI1 induction and Stag2 knockdown were achieved in vitro by adenovirus-Cre and shRNA-bearing pGIPZ lentiviral infection, respectively. The cells were then treated with ionizing radiation to 10 Gy. Anchorage independent growth in vitro was assessed by soft agar assays. Cellular migration and invasion were evaluated by transwell assays. Cells were injected with Matrigel intramuscularly into C57/Bl6 mice to test for tumor formation. RESULTS Primary murine MSCs with the genotype EWS-FLI1 p53-/- were resistant to transformation and did not form tumors in syngeneic mice without irradiation. Stag2 inhibition increased the efficiency and speed of sarcoma formation significantly in irradiated EWS-FLI1 p53-/- MSCs. The efficiency of tumor formation was 91% for cells in mice injected with Stag2-repressed cells and 22% for mice receiving cells without Stag2 inhibition (p < .001). Stag2 knockdown reduced survival of mice in Kaplan-Meier analysis (p < .001). It also increased MSC migration and invasion in vitro but did not affect proliferation rate or aneuploidy. CONCLUSION Loss of Stag2 has a synergistic effect with EWS-FLI1 in the production of sarcomas from murine MSCs, but the mechanism may not relate to increased proliferation or chromosomal instability. Primary murine MSCs are resistant to transformation, and the combination of p53 null mutation, EWS-FLI1, and Stag2 inhibition does not confer immediate conversion of MSCs to sarcomas. Irradiation is necessary in this model, suggesting that perturbations of other genes beside Stag2 and p53 are likely to be essential in the development of EWS-FLI1-driven sarcomas from MSCs.
Collapse
Affiliation(s)
- Marc El Beaino
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Jiayong Liu
- Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital & Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing, 100142, China
| | - Amanda R Wasylishen
- Department of Genetics - Unit 1010, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Rasoul Pourebrahim
- Department of Leukemia - Unit 428, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Agata Migut
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Bryan J Bessellieu
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ke Huang
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Patrick P Lin
- Department of Orthopaedic Oncology - Unit 1448, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Cuartero S, Innes AJ, Merkenschlager M. Towards a Better Understanding of Cohesin Mutations in AML. Front Oncol 2019; 9:867. [PMID: 31552185 PMCID: PMC6746210 DOI: 10.3389/fonc.2019.00867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Classical driver mutations in acute myeloid leukemia (AML) typically affect regulators of cell proliferation, differentiation, and survival. The selective advantage of increased proliferation, improved survival, and reduced differentiation on leukemia progression is immediately obvious. Recent large-scale sequencing efforts have uncovered numerous novel AML-associated mutations. Interestingly, a substantial fraction of the most frequently mutated genes encode general regulators of transcription and chromatin state. Understanding the selective advantage conferred by these mutations remains a major challenge. A striking example are mutations in genes of the cohesin complex, a major regulator of three-dimensional genome organization. Several landmark studies have shown that cohesin mutations perturb the balance between self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPC). Emerging data now begin to uncover the molecular mechanisms that underpin this phenotype. Among these mechanisms is a role for cohesin in the control of inflammatory responses in HSPCs and myeloid cells. Inflammatory signals limit HSPC self-renewal and drive HSPC differentiation. Consistent with this, cohesin mutations promote resistance to inflammatory signals, and may provide a selective advantage for AML progression. In this review, we discuss recent progress in understanding cohesin mutations in AML, and speculate whether vulnerabilities associated with these mutations could be exploited therapeutically.
Collapse
Affiliation(s)
- Sergi Cuartero
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Andrew J Innes
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Faculty of Medicine, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Matthias Merkenschlager
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Nacht AS, Ferrari R, Zaurin R, Scabia V, Carbonell-Caballero J, Le Dily F, Quilez J, Leopoldi A, Brisken C, Beato M, Vicent GP. C/EBPα mediates the growth inhibitory effect of progestins on breast cancer cells. EMBO J 2019; 38:e101426. [PMID: 31373033 DOI: 10.15252/embj.2018101426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023] Open
Abstract
Steroid hormones are key gene regulators in breast cancer cells. While estrogens stimulate cell proliferation, progestins activate a single cell cycle followed by proliferation arrest. Here, we use biochemical and genome-wide approaches to show that progestins achieve this effect via a functional crosstalk with C/EBPα. Using ChIP-seq, we identify around 1,000 sites where C/EBPα binding precedes and helps binding of progesterone receptor (PR) in response to hormone. These regions exhibit epigenetic marks of active enhancers, and C/EBPα maintains an open chromatin conformation that facilitates loading of ligand-activated PR. Prior to hormone exposure, C/EBPα favors promoter-enhancer contacts that assure hormonal regulation of key genes involved in cell proliferation by facilitating binding of RAD21, YY1, and the Mediator complex. Knockdown of C/EBPα disrupts enhancer-promoter contacts and decreases the presence of these architectural proteins, highlighting its key role in 3D chromatin looping. Thus, C/EBPα fulfills a previously unknown function as a potential growth modulator in hormone-dependent breast cancer.
Collapse
Affiliation(s)
- A Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Roberto Ferrari
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Roser Zaurin
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Valentina Scabia
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - José Carbonell-Caballero
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Francois Le Dily
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Javier Quilez
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Alexandra Leopoldi
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Miguel Beato
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Center for Genomic Regulation (CRG), Barcelona, Spain.,Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
39
|
Romero-Pérez L, Surdez D, Brunet E, Delattre O, Grünewald TGP. STAG Mutations in Cancer. Trends Cancer 2019; 5:506-520. [PMID: 31421907 DOI: 10.1016/j.trecan.2019.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
Stromal Antigen 1 and 2 (STAG1/2) are key subunits of the cohesin complex that mediate sister chromatid cohesion, DNA repair, transcriptional regulation, and genome topology. Genetic alterations comprising any of the 11 cohesin-associated genes possibly occur in up to 26% of patients included in The Cancer Genome Atlas (TCGA) studies. STAG2 shows the highest number of putative driver truncating mutations. We provide a comprehensive review of the function of STAG1/2 in human physiology and disease and an integrative analysis of available omics data on STAG alterations in a wide array of cancers, comprising 53 691 patients and 1067 cell lines. Lastly, we discuss opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, Munich, Germany
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC "Genetics and Biology of Pediatric Cancers", fhna PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Erika Brunet
- Institut Imagine, INSERM UMR1163, Équipe Labellisé LNCC, Dynamics of the Genome and Immune System Lab, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC "Genetics and Biology of Pediatric Cancers", fhna PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, Munich, Germany; Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
40
|
Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, Zhu H, Zaret KS. Structural Features of Transcription Factors Associating with Nucleosome Binding. Mol Cell 2019; 75:921-932.e6. [PMID: 31303471 DOI: 10.1016/j.molcel.2019.06.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Fate-changing transcription factors (TFs) scan chromatin to initiate new genetic programs during cell differentiation and reprogramming. Yet the protein structure domains that allow TFs to target nucleosomal DNA remain unexplored. We screened diverse TFs for binding to nucleosomes containing motif-enriched sequences targeted by pioneer factors in vivo. FOXA1, OCT4, ASCL1/E12α, PU1, CEBPα, and ZELDA display a range of nucleosome binding affinities that correlate with their cell reprogramming potential. We further screened 593 full-length human TFs on protein microarrays against different nucleosome sequences, followed by confirmation in solution, to distinguish among factors that bound nucleosomes, such as the neuronal AP-2α/β/γ, versus factors that only bound free DNA. Structural comparisons of DNA binding domains revealed that efficient nucleosome binders use short anchoring α helices to bind DNA, whereas weak nucleosome binders use unstructured regions and/or β sheets. Thus, specific modes of DNA interaction allow nucleosome scanning that confers pioneer activity to transcription factors.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Cedric D Moore
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine N Schulz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Oscar Alberto
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Greg Donague
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA.
| |
Collapse
|
41
|
Lodato NJ, Rampersaud A, Waxman DJ. Impact of CAR Agonist Ligand TCPOBOP on Mouse Liver Chromatin Accessibility. Toxicol Sci 2019; 164:115-128. [PMID: 29617930 DOI: 10.1093/toxsci/kfy070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activation of the nuclear receptor and transcription factor CAR (Nr1i3) by its specific agonist ligand TCPOBOP (1, 4-bis[2-(3, 5-dichloropyridyloxy)]benzene) dysregulates hundreds of genes in mouse liver and is linked to male-biased hepatocarcinogenesis. To elucidate the genomic organization of CAR-induced gene responses, we investigated the distribution of TCPOBOP-responsive RefSeq coding and long noncoding RNA (lncRNA) genes across the megabase-scale topologically associating domains (TADs) that segment the genome, and which provide a structural framework that functionally constrains enhancer-promoter interactions. We show that a subset of TCPOBOP-responsive genes cluster within TADs, and that TCPOBOP-induced genes and TCPOBOP-repressed genes are often found in different TADs. Further, using DNase-seq and DNase hypersensitivity site (DHS) analysis, we identified several thousand genomic regions (ΔDHS) where short-term exposure to TCPOBOP induces localized changes (increases or decreases) in mouse liver chromatin accessibility, many of which cluster in TADs together with TCPOBOP-responsive genes. Sites of chromatin opening were highly enriched nearby genes induced by TCPOBOP and chromatin closing was highly enriched nearby genes repressed by TCPOBOP, consistent with TCPOBOP-responsive ΔDHS serving as enhancers and promoters that positively regulate CAR-responsive genes. Gene expression changes lagged behind chromatin opening or closing for a subset of TCPOBOP-responsive ΔDHS. ΔDHS that were specifically responsive to TCPOBOP in male liver were significantly enriched for genomic regions with a basal male bias in chromatin accessibility; however, the male-biased response of hepatocellular carcinoma-related genes to TCPOBOP was not associated with a correspondingly male-biased ΔDHS response. These studies elucidate the genome-wide organization of CAR-responsive genes and of the thousands of associated genomic sites where TCPOBOP exposure induces both rapid and persistent changes in chromatin accessibility.
Collapse
Affiliation(s)
- Nicholas J Lodato
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - Andy Rampersaud
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
42
|
Perez S, Gevor M, Davidovich A, Kaspi A, Yamin K, Domovich T, Meirson T, Matityahu A, Brody Y, Stemmer SM, El-Osta A, Haviv I, Onn I, Gal-Tanamy M. Dysregulation of the cohesin subunit RAD21 by Hepatitis C virus mediates host-virus interactions. Nucleic Acids Res 2019; 47:2455-2471. [PMID: 30698808 PMCID: PMC6412124 DOI: 10.1093/nar/gkz052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/30/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). HCV possesses an RNA genome and its replication is confined to the cytoplasm. Yet, infection with HCV leads to global changes in gene expression, and chromosomal instability (CIN) in the host cell. The mechanisms by which the cytoplasmic virus affects these nuclear processes are elusive. Here, we show that HCV modulates the function of the Structural Maintenance of Chromosome (SMC) protein complex, cohesin, which tethers remote regions of chromatin. We demonstrate that infection of hepatoma cells with HCV leads to up regulation of the expression of the RAD21 cohesin subunit and changes cohesin residency on the chromatin. These changes regulate the expression of genes associated with virus-induced pathways. Furthermore, siRNA downregulation of viral-induced RAD21 reduces HCV infection. During mitosis, HCV infection induces hypercondensation of chromosomes and the appearance of multi-centrosomes. We provide evidence that the underlying mechanism involves the viral NS3/4 protease and the cohesin regulator, WAPL. Altogether, our results provide the first evidence that HCV induces changes in gene expression and chromosome structure of infected cells by modulating cohesin.
Collapse
Affiliation(s)
- Shira Perez
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Gevor
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ateret Davidovich
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Katreena Yamin
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tom Domovich
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yehuda Brody
- The Broad institute of Harvard and MIT, Cambridge, MA, USA
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Beilinson Campus, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Izhak Haviv
- Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
43
|
Beytebiere JR, Trott AJ, Greenwell BJ, Osborne CA, Vitet H, Spence J, Yoo SH, Chen Z, Takahashi JS, Ghaffari N, Menet JS. Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer-enhancer interactions. Genes Dev 2019; 33:294-309. [PMID: 30804225 PMCID: PMC6411008 DOI: 10.1101/gad.322198.118] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022]
Abstract
The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of thousands of genes. Consistent with the various biological functions under clock control, rhythmic gene expression is tissue-specific despite an identical clockwork mechanism in every cell. Here we show that BMAL1 DNA binding is largely tissue-specific, likely because of differences in chromatin accessibility between tissues and cobinding of tissue-specific transcription factors. Our results also indicate that BMAL1 ability to drive tissue-specific rhythmic transcription is associated with not only the activity of BMAL1-bound enhancers but also the activity of neighboring enhancers. Characterization of physical interactions between BMAL1 enhancers and other cis-regulatory regions by RNA polymerase II chromatin interaction analysis by paired-end tag (ChIA-PET) reveals that rhythmic BMAL1 target gene expression correlates with rhythmic chromatin interactions. These data thus support that much of BMAL1 target gene transcription depends on BMAL1 capacity to rhythmically regulate a network of enhancers.
Collapse
Affiliation(s)
- Joshua R Beytebiere
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Alexandra J Trott
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Ben J Greenwell
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Collin A Osborne
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| | - Helene Vitet
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Jessica Spence
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noushin Ghaffari
- Center for Bioinformatics and Genomic Systems Engineering (CBGSE), Texas A&M AgriLife Research, College Station, Texas 77845, USA
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, College Station, Texas 77845, USA
| | - Jerome S Menet
- Department of Biology, Center for Biological Clocks Research, Texas A&M University, College Station, Texas 77843, USA
- Program of Genetics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
44
|
Perez S, Gal-Tanamy M. Studying the Hepatitis C Virus-Induced Epigenetic Signature After Cure with Direct-Acting Antivirals. Methods Mol Biol 2019; 1911:191-207. [PMID: 30593627 DOI: 10.1007/978-1-4939-8976-8_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is the leading cause of hepatocellular carcinoma (HCC). While direct-acting antiviral (DAA) therapy efficiently eradicates HCV infection, epidemiological studies show that sustained virological response (SVR) following anti-HCV treatment reduces, but does not eliminate, the risk for HCC. We have recently demonstrated that HCV infection induces genome-wide epigenetic changes that reprogram host gene expression and persist as "epigenetic signature" following virus eradication by DAAs. We suggest that this epigenetic signature underlie the residual risk for HCC post-SVR. Here, we provide a methodology to study the HCV-induced epigenetic signature. We describe a ChIP-seq protocol to evaluate changes in epigenome profile following HCV infection, its cure with DAA, and after treatment with epigenetic modifier inhibitor. We also describe evaluation of changes in the gene expression profile using RNA-seq. The integration between detected alterations in epigenetic marks and gene expression allows for identification of biological processes that are involved in HCV-driven oncogenesis before and after cure.
Collapse
Affiliation(s)
- Shira Perez
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meital Gal-Tanamy
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
45
|
Zimmerman D, Patel K, Hall M, Elmer J. Enhancement of transgene expression by nuclear transcription factor Y and CCCTC-binding factor. Biotechnol Prog 2018; 34:1581-1588. [PMID: 30294957 DOI: 10.1002/btpr.2712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/23/2022]
Abstract
If a transgene is effectively delivered to a cell, its expression may still be limited by epigenetic mechanisms that silence the transgene. Indeed, once the transgene reaches the nucleus, it may be bound by histone proteins and condensed into heterochromatin or associated with repressor proteins that block transcription. In this study, we sought to enhance transgene expression by adding binding motifs for several different epigenetic enzymes either upstream or downstream of two promoters (CMV and EF1α). Screening these plasmids revealed that luciferase expression was enhanced 10-fold (10.4 ± 5.8) by the addition of a CCAAT box just upstream of the EF1α promoter to recruit nuclear transcription factor Y (NF-Y), while inserting a CCCTC-binding factor (CTCF) motif downstream of the EF1α promoter enhanced expression at least 14-fold (14.03 ± 6.54). ChIP assays confirmed that NF-Y and CTCF bound to the motifs that were added to each plasmid, but the presence of NF-Y and CTCF did not significantly affect the levels of histone acetylation (H3K9ac) or methylation (H3K9me3). Overall, these results show that transgene expression from the EF1α promoter can be significantly increased with motifs that recruit NF-Y or CTCF. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1581-1588, 2018.
Collapse
Affiliation(s)
- Devon Zimmerman
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Krupa Patel
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Matthew Hall
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| | - Jacob Elmer
- Dept. of Chemical Engineering, Villanova University, Villanova, PA, 19085
| |
Collapse
|
46
|
Cuartero S, Weiss FD, Dharmalingam G, Guo Y, Ing-Simmons E, Masella S, Robles-Rebollo I, Xiao X, Wang YF, Barozzi I, Djeghloul D, Amano MT, Niskanen H, Petretto E, Dowell RD, Tachibana K, Kaikkonen MU, Nasmyth KA, Lenhard B, Natoli G, Fisher AG, Merkenschlager M. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat Immunol 2018; 19:932-941. [PMID: 30127433 PMCID: PMC6195188 DOI: 10.1038/s41590-018-0184-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Cohesin is important for 3D genome organization. Nevertheless, even the complete removal of cohesin has surprisingly little impact on steady-state gene transcription and enhancer activity. Here we show that cohesin is required for the core transcriptional response of primary macrophages to microbial signals, and for inducible enhancer activity that underpins inflammatory gene expression. Consistent with a role for inflammatory signals in promoting myeloid differentiation of hematopoietic stem and progenitor cells (HPSCs), cohesin mutations in HSPCs led to reduced inflammatory gene expression and increased resistance to differentiation-inducing inflammatory stimuli. These findings uncover an unexpected dependence of inducible gene expression on cohesin, link cohesin with myeloid differentiation, and may help explain the prevalence of cohesin mutations in human acute myeloid leukemia.
Collapse
Affiliation(s)
- Sergi Cuartero
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Felix D Weiss
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ya Guo
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Elizabeth Ing-Simmons
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Computational Regulatory Genomics Group, Integrative Biology Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Silvia Masella
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Irene Robles-Rebollo
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Xiaolin Xiao
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Surgery and Cancer, Department of Medicine, Imperial College London, London, UK
| | - Dounia Djeghloul
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Mariane T Amano
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enrico Petretto
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Robin D Dowell
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Kikuë Tachibana
- Department of Biochemistry, University of Oxford, Oxford, UK
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, Integrative Biology Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Gioacchino Natoli
- Humanitas Clinical and Research Center, Milan, Italy
- Humanitas University, Milan, Italy
| | - Amanda G Fisher
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
47
|
Bianco F, Eisenman ST, Colmenares Aguilar MG, Bonora E, Clavenzani P, Linden DR, De Giorgio R, Farrugia G, Gibbons SJ. Expression of RAD21 immunoreactivity in myenteric neurons of the human and mouse small intestine. Neurogastroenterol Motil 2018; 30:e13429. [PMID: 30069982 PMCID: PMC6150808 DOI: 10.1111/nmo.13429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND RAD21 is a double-strand-break repair protein and component of the cohesin complex with key roles in cellular functions. A RAD21 loss-of-function mutation was found in cases of chronic intestinal pseudo-obstruction (CIPO) with associated enteric neuronal loss. Analysis of RAD21 expression in the enteric nervous system is lacking, thus we aimed to characterize RAD21 immunoreactivity (IR) in myenteric ganglia. METHODS Double labeling immunofluorescence in mouse and human jejunum was used to determine colocalization of RAD21 with HuC/D, PGP9.5, neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), choline acetyl transferase (ChAT), Kit, platelet-derived growth factor receptor-α (PDGFRα), and glial fibrillary acid protein (GFAP) IRs. RESULTS A subset of PGP9.5- and HuC/D-IR neuronal cell bodies and nerve fibers in the myenteric plexus of human and mouse small intestine also displayed cytoplasmic RAD21-IR Cytoplasmic RAD21-IR was found in 43% of HuC/D-IR neurons in adult and neonatal mice but did not colocalize with nNOS. A subset of ChAT-positive neurons had cytoplasmic RAD21-IR Punctate RAD21-IR was restricted to the nucleus in most cell types consistent with labeling of the cohesin complex. Cytoplasmic RAD21-IR was not detected in interstitial cells of Cajal, fibroblast-like cells or glia. Subsets of neurons in primary culture exhibited cytoplasmic RAD21-IR Suppression of RAD21 expression by shRNA knockdown abolished RAD21-IR in cultured neurons. CONCLUSIONS Our data showing cytoplasmic RAD21 expression in enteric neurons provide a basis toward understanding how mutations of this gene may contribute to altered neuronal function/survival thus leading to gut-motor abnormalities.
Collapse
Affiliation(s)
- F Bianco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - S T Eisenman
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - M G Colmenares Aguilar
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - E Bonora
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - P Clavenzani
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - D R Linden
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - R De Giorgio
- Department of Medical Sciences, Nuovo Arcispedale S.Anna, University of Ferrara, Ferrara, Italy
| | - G Farrugia
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - S J Gibbons
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
48
|
Jefferson WN, Kinyamu HK, Wang T, Miranda AX, Padilla-Banks E, Suen AA, Williams CJ. Widespread enhancer activation via ERα mediates estrogen response in vivo during uterine development. Nucleic Acids Res 2018; 46:5487-5503. [PMID: 29648668 PMCID: PMC6009594 DOI: 10.1093/nar/gky260] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 01/07/2023] Open
Abstract
Little is known regarding how steroid hormone exposures impact the epigenetic landscape in a living organism. Here, we took a global approach to understanding how exposure to the estrogenic chemical, diethylstilbestrol (DES), affects the neonatal mouse uterine epigenome. Integration of RNA- and ChIP-sequencing data demonstrated that ∼80% of DES-altered genes had higher H3K4me1/H3K27ac signal in close proximity. Active enhancers, of which ∼3% were super-enhancers, had a high density of estrogen receptor alpha (ERα) binding sites and were correlated with alterations in nearby gene expression. Conditional uterine deletion of ERα, but not the pioneer transcription factors FOXA2 or FOXO1, prevented the majority of DES-mediated changes in gene expression and H3K27ac signal at target enhancers. An ERα dependent super-enhancer was located at the Padi gene locus and a topological connection to the Padi1 TSS was documented using 3C-PCR. Chromosome looping at this site was independent of ERα and DES exposure, indicating that the interaction is established prior to ligand signaling. However, enrichment of H3K27ac and transcriptional activation at this locus was both DES and ERα-dependent. These data suggest that DES alters uterine development and consequently adult reproductive function by modifying the enhancer landscape at ERα binding sites near estrogen-regulated genes.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - H Karimi Kinyamu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Adam X Miranda
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Alisa A Suen
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Carmen J Williams
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
49
|
Kojic A, Cuadrado A, De Koninck M, Giménez-Llorente D, Rodríguez-Corsino M, Gómez-López G, Le Dily F, Marti-Renom MA, Losada A. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat Struct Mol Biol 2018; 25:496-504. [PMID: 29867216 PMCID: PMC6122591 DOI: 10.1038/s41594-018-0070-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
Two variant cohesin complexes containing SMC1, SMC3, RAD21 and either SA1 (also known as STAG1) or SA2 (also known as STAG2) are present in all cell types. We report here their genomic distribution and specific contributions to genome organization in human cells. Although both variants are found at CCCTC-binding factor (CTCF) sites, a distinct population of the SA2-containing cohesin complexes (hereafter referred to as cohesin-SA2) localize to enhancers lacking CTCF, are linked to tissue-specific transcription and cannot be replaced by the SA1-containing cohesin complex (cohesin-SA1) when SA2 is absent, a condition that has been observed in several tumors. Downregulation of each of these variants has different consequences for gene expression and genome architecture. Our results suggest that cohesin-SA1 preferentially contributes to the stabilization of topologically associating domain boundaries together with CTCF, whereas cohesin-SA2 promotes cell-type-specific contacts between enhancers and promoters independently of CTCF. Loss of cohesin-SA2 rewires local chromatin contacts and alters gene expression. These findings provide insights into how cohesin mediates chromosome folding and establish a novel framework to address the consequences of mutations in cohesin genes in cancer.
Collapse
Affiliation(s)
- Aleksandar Kojic
- Chromosome Dynamics Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - François Le Dily
- Centre de Regulació Genòmica (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Marc A Marti-Renom
- Centre de Regulació Genòmica (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
50
|
Matthews BJ, Waxman DJ. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver. eLife 2018; 7:e34077. [PMID: 29757144 PMCID: PMC5986275 DOI: 10.7554/elife.34077] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/30/2018] [Indexed: 12/18/2022] Open
Abstract
CTCF and cohesin are key drivers of 3D-nuclear organization, anchoring the megabase-scale Topologically Associating Domains (TADs) that segment the genome. Here, we present and validate a computational method to predict cohesin-and-CTCF binding sites that form intra-TAD DNA loops. The intra-TAD loop anchors identified are structurally indistinguishable from TAD anchors regarding binding partners, sequence conservation, and resistance to cohesin knockdown; further, the intra-TAD loops retain key functional features of TADs, including chromatin contact insulation, blockage of repressive histone mark spread, and ubiquity across tissues. We propose that intra-TAD loops form by the same loop extrusion mechanism as the larger TAD loops, and that their shorter length enables finer regulatory control in restricting enhancer-promoter interactions, which enables selective, high-level expression of gene targets of super-enhancers and genes located within repressive nuclear compartments. These findings elucidate the role of intra-TAD cohesin-and-CTCF binding in nuclear organization associated with widespread insulation of distal enhancer activity.
Collapse
Affiliation(s)
- Bryan J Matthews
- Department of Biology and Bioinformatics ProgramBoston UniversityBostonUnited States
| | - David J Waxman
- Department of Biology and Bioinformatics ProgramBoston UniversityBostonUnited States
| |
Collapse
|