1
|
Perez S, Lavi-Itzkovitz A, Gidoni M, Domovitz T, Dabour R, Khurana I, Davidovich A, Tobar A, Livoff A, Solomonov E, Maman Y, El-Osta A, Tsai Y, Yu ML, Stemmer SM, Haviv I, Yaari G, Gal-Tanamy M. High-Resolution Genomic Profiling of Liver Cancer Links Etiology With Mutation and Epigenetic Signatures. Cell Mol Gastroenterol Hepatol 2023; 16:63-81. [PMID: 36965814 PMCID: PMC10212990 DOI: 10.1016/j.jcmgh.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a model of a diverse spectrum of cancers because it is induced by well-known etiologies, mainly hepatitis C virus (HCV) and hepatitis B virus. Here, we aimed to identify HCV-specific mutational signatures and explored the link between the HCV-related regional variation in mutations rates and HCV-induced alterations in genome-wide chromatin organization. METHODS To identify an HCV-specific mutational signature in HCC, we performed high-resolution targeted sequencing to detect passenger mutations on 64 HCC samples from 3 etiology groups: hepatitis B virus, HCV, or other. To explore the link between the genomic signature and genome-wide chromatin organization we performed chromatin immunoprecipitation sequencing for the transcriptionally permissive H3K4Me3, H3K9Ac, and suppressive H3K9Me3 modifications after HCV infection. RESULTS Regional variation in mutation rate analysis showed significant etiology-dependent regional mutation rates in 12 genes: LRP2, KRT84, TMEM132B, DOCK2, DMD, INADL, JAK2, DNAH6, MTMR9, ATM, SLX4, and ARSD. We found an enrichment of C->T transversion mutations in the HCV-associated HCC cases. Furthermore, these cases showed regional variation in mutation rates associated with genomic intervals in which HCV infection dictated epigenetic alterations. This signature may be related to the HCV-induced decreased expression of genes encoding key enzymes in the base excision repair pathway. CONCLUSIONS We identified novel distinct HCV etiology-dependent mutation signatures in HCC associated with HCV-induced alterations in histone modification. This study presents a link between cancer-causing mutagenesis and the increased predisposition to liver cancer in chronic HCV-infected individuals, and unveils novel etiology-specific mechanisms leading to HCC and cancer in general.
Collapse
Affiliation(s)
- Shira Perez
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Cancer Personalized Medicine, Diagnostic Genomics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Anat Lavi-Itzkovitz
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Moriah Gidoni
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Tom Domovitz
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Roba Dabour
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Ateret Davidovich
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ana Tobar
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Department of Pathology, Barzilay Medical Center, Faculty of Medicine, Ben Gurion University, Beer Sheva, Israel
| | | | - Yaakov Maman
- The Laboratory of Genomic Instability and Cancer, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia; Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yishan Tsai
- Hepatobiliary Division, Department of Internal Medicine, Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Izhak Haviv
- Cancer Personalized Medicine, Diagnostic Genomics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; AID Genomics, Ltd, Rehovot, Israel.
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel; Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel.
| | - Meital Gal-Tanamy
- Molecular Virology Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
2
|
Jia Y, Reboulet J, Gillet B, Hughes S, Forcet C, Tribollet V, Hajj Sleiman N, Kundlacz C, Vanacker JM, Bleicher F, Merabet S. A Live Cell Protein Complementation Assay for ORFeome-Wide Probing of Human HOX Interactomes. Cells 2023; 12:cells12010200. [PMID: 36611993 PMCID: PMC9818449 DOI: 10.3390/cells12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Biological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein-protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method. The specificity and sensitivity of the Cell-PCA was established by using a wild-type and a single-amino-acid-mutated HOXA9 protein, and the approach was subsequently applied to seven additional human HOX proteins. These proof-of-concept experiments revealed novel molecular properties of HOX interactomes and led to the identification of a novel cofactor of HOXB13 that promoted its proliferative activity in a cancer cell context. Taken together, our work demonstrated that the Cell-PCA was pertinent for revealing and, importantly, comparing the interactomes of different or highly related bait proteins in the same cell context.
Collapse
Affiliation(s)
- Yunlong Jia
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Jonathan Reboulet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- LiPiCs, 46 Allée d’Italie, 69007 Lyon, France
| | - Benjamin Gillet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Sandrine Hughes
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Christelle Forcet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Violaine Tribollet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Nawal Hajj Sleiman
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Cindy Kundlacz
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Jean-Marc Vanacker
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Françoise Bleicher
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| | - Samir Merabet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| |
Collapse
|
3
|
Studying the ubiquitin code through biotin-based labelling methods. Semin Cell Dev Biol 2022; 132:109-119. [PMID: 35181195 DOI: 10.1016/j.semcdb.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications of cellular substrates by members of the ubiquitin (Ub) and ubiquitin-like (UbL) family are crucial for regulating protein homeostasis in organisms. The term "ubiquitin code" encapsulates how this diverse family of modifications, via adding single UbLs or different types of UbL chains, leads to specific fates for substrates. Cancer, neurodegeneration and other conditions are sometimes linked to underlying errors in this code. Studying these modifications in cells is particularly challenging since they are usually transient, scarce, and compartment-specific. Advances in the use of biotin-based methods to label modified proteins, as well as their proximally-located interactors, facilitate isolation and identification of substrates, modification sites, and the enzymes responsible for writing and erasing these modifications, as well as factors recruited as a consequence of the substrate being modified. In this review, we discuss site-specific and proximity biotinylation approaches being currently applied for studying modifications by UbLs, highlighting the pros and cons, with mention of complementary methods when possible. Future improvements may come from bioengineering and chemical biology but even now, biotin-based technology is uncovering new substrates and regulators, expanding potential therapeutic targets to manipulate the Ub code.
Collapse
|
4
|
Shang L, Zhang Y, Liu Y, Jin C, Yuan Y, Tian C, Ni M, Bo X, Zhang L, Li D, He F, Wang J. A Yeast BiFC-seq Method for Genome-wide Interactome Mapping. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:795-807. [PMID: 34314873 PMCID: PMC9880813 DOI: 10.1016/j.gpb.2021.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 01/31/2023]
Abstract
Genome-wide physical protein-protein interaction (PPI) mapping remains a major challenge for current technologies. Here, we reported a high-efficiency BiFC-seq method, yeast-enhanced green fluorescent protein-based bimolecular fluorescence complementation (yEGFP-BiFC) coupled with next-generation DNA sequencing, for interactome mapping. We first applied yEGFP-BiFC method to systematically investigate an intraviral network of the Ebola virus. Two-thirds (9/14) of known interactions of EBOV were recaptured, and five novel interactions were discovered. Next, we used the BiFC-seq method to map the interactome of the tumor protein p53. We identified 97 interactors of p53, more than three-quarters of which were novel. Furthermore, in a more complex background, we screened potential interactors by pooling two BiFC libraries together and revealed a network of 229 interactions among 205 proteins. These results show that BiFC-seq is a highly sensitive, rapid, and economical method for genome-wide interactome mapping.
Collapse
Affiliation(s)
- Limin Shang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuehui Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yanzhi Yuan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ming Ni
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Nan Lou; Key Laboratory of Wound Repair and Regeneration of PLA, College of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Barroso-Gomila O, Trulsson F, Muratore V, Canosa I, Merino-Cacho L, Cortazar AR, Pérez C, Azkargorta M, Iloro I, Carracedo A, Aransay AM, Elortza F, Mayor U, Vertegaal ACO, Barrio R, Sutherland JD. Identification of proximal SUMO-dependent interactors using SUMO-ID. Nat Commun 2021; 12:6671. [PMID: 34795231 PMCID: PMC8602451 DOI: 10.1038/s41467-021-26807-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The fast dynamics and reversibility of posttranslational modifications by the ubiquitin family pose significant challenges for research. Here we present SUMO-ID, a technology that merges proximity biotinylation by TurboID and protein-fragment complementation to find SUMO-dependent interactors of proteins of interest. We develop an optimized split-TurboID version and show SUMO interaction-dependent labelling of proteins proximal to PML and RANGAP1. SUMO-dependent interactors of PML are involved in transcription, DNA damage, stress response and SUMO modification and are highly enriched in SUMO Interacting Motifs, but may only represent a subset of the total PML proximal proteome. Likewise, SUMO-ID also allow us to identify interactors of SUMOylated SALL1, a less characterized SUMO substrate. Furthermore, using TP53 as a substrate, we identify SUMO1, SUMO2 and Ubiquitin preferential interactors. Thus, SUMO-ID is a powerful tool that allows to study the consequences of SUMO-dependent interactions, and may further unravel the complexity of the ubiquitin code.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Fredrik Trulsson
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Veronica Muratore
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Iñigo Canosa
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Laura Merino-Cacho
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Ana Rosa Cortazar
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Coralia Pérez
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| | - Mikel Azkargorta
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ibon Iloro
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERONC, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Ana M. Aransay
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Felix Elortza
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain ,grid.413448.e0000 0000 9314 1427CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain ,grid.413448.e0000 0000 9314 1427ProteoRed-ISCIII, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Ugo Mayor
- grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain ,grid.11480.3c0000000121671098Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain
| | - Alfred C. O. Vertegaal
- grid.10419.3d0000000089452978Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160, Derio, Spain.
| | - James D. Sutherland
- grid.420175.50000 0004 0639 2420Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801 A, 48160 Derio, Spain
| |
Collapse
|
6
|
Denney AS, Weems AD, McMurray MA. Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast. G3-GENES GENOMES GENETICS 2021; 11:6318398. [PMID: 34544131 PMCID: PMC8496213 DOI: 10.1093/g3journal/jkab230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here, we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.
Collapse
Affiliation(s)
- Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Blaszczak E, Lazarewicz N, Sudevan A, Wysocki R, Rabut G. Protein-fragment complementation assays for large-scale analysis of protein-protein interactions. Biochem Soc Trans 2021; 49:1337-1348. [PMID: 34156434 PMCID: PMC8286835 DOI: 10.1042/bst20201058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Protein-protein interactions (PPIs) orchestrate nearly all biological processes. They are also considered attractive drug targets for treating many human diseases, including cancers and neurodegenerative disorders. Protein-fragment complementation assays (PCAs) provide a direct and straightforward way to study PPIs in living cells or multicellular organisms. Importantly, PCAs can be used to detect the interaction of proteins expressed at endogenous levels in their native cellular environment. In this review, we present the principle of PCAs and discuss some of their advantages and limitations. We describe their application in large-scale experiments to investigate PPI networks and to screen or profile PPI targeting compounds.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aswani Sudevan
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Gwenaël Rabut
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
8
|
Ramesh R, Dautel M, Lee Y, Kim Y, Storey K, Gottfried S, Goss Kinzy T, Huh WK, Sattlegger E. Asp56 in actin is critical for the full activity of the amino acid starvation-responsive kinase Gcn2. FEBS Lett 2021; 595:1886-1901. [PMID: 34096057 DOI: 10.1002/1873-3468.14137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/09/2022]
Abstract
Eukaryotes harbour a conserved signalling pathway, called General Amino Acid Control (GAAC) in Saccharomyces cerevisiae, for overcoming amino acid starvation. Upon starvation, the protein kinase Gcn2, which phosphorylates the eukaryotic translation initiation factor eIF2α, becomes stimulated to trigger the GAAC response. Genetic studies suggest that Yih1, which is the yeast homolog of mammalian IMPACT and which binds monomeric actin, inhibits Gcn2 when released from actin. Here, we found that D56A substitution in actin (the act1-9 allele) leads to reduced eIF2α phosphorylation, suggesting that the Asp56 residue is required for full Gcn2 activation. In the act1-9 mutant, Yih1 overexpression further enhanced the sensitivity to amino acid starvation-inducing drugs and further impaired eIF2α phosphorylation, suggesting that Gcn2 inhibition was mediated via Yih1. The D56A substitution may impair the actin-Yih1 interaction, directly or indirectly, thereby increasing the amount of Yih1 available to inhibit Gcn2.
Collapse
Affiliation(s)
- Rashmi Ramesh
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Martina Dautel
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Yongook Lee
- School of Biological Sciences, Seoul National University, Korea
| | - Yeonsoo Kim
- School of Biological Sciences, Seoul National University, Korea
| | - Kirsty Storey
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Susanne Gottfried
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Terri Goss Kinzy
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Korea
| | - Evelyn Sattlegger
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.,Wilkins Centre for Molecular BioDiscovery, Massey University, Palmerston North, New Zealand.,School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Chang Y, Lim G, Huh WK. Analysis of the TORC1 interactome reveals a spatially distinct function of TORC1 in mRNP complexes. J Cell Biol 2021; 220:211781. [PMID: 33566094 PMCID: PMC7879482 DOI: 10.1083/jcb.201912060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 11/15/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is mainly localized to the vacuolar membrane and regulates eukaryotic cell growth in response to nutrient availability. To obtain deeper insights into the functional roles of TORC1, we performed a genome-wide analysis of the TORC1 interactome in yeast using the bimolecular fluorescence complementation (BiFC) assay. We found that while most of the BiFC signals are observed at the vacuolar membrane, a fraction of them are detected at cytoplasmic messenger ribonucleoprotein (mRNP) granules. Moreover, mRNA-binding proteins are enriched in the TORC1 interactome, suggesting a functional relationship between TORC1 and mRNA metabolism. We show that a portion of TORC1 is consistently associated with mRNP complexes and interacts with a specific subset of mRNAs. We also demonstrate that TORC1 directly targets a translational repressor Scd6 and that the activity of Scd6 is inhibited by TORC1-dependent phosphorylation. Collectively, our data suggest that TORC1 plays a novel role in posttranscriptional regulation by controlling the activity of Scd6.
Collapse
Affiliation(s)
- Yeonji Chang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Gyubum Lim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Le Boulch M, Brossard A, Le Dez G, Léon S, Rabut G. Correction: Sensitive detection of protein ubiquitylation using a protein fragment complementation assay. J Cell Sci 2020; 133:133/15/jcs251389. [PMID: 32788228 DOI: 10.1242/jcs.251389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Du Y, Hultquist JF, Zhou Q, Olson A, Tseng Y, Zhang TH, Hong M, Tang K, Chen L, Meng X, McGregor MJ, Dai L, Gong D, Martin-Sancho L, Chanda S, Li X, Bensenger S, Krogan NJ, Sun R. mRNA display with library of even-distribution reveals cellular interactors of influenza virus NS1. Nat Commun 2020; 11:2449. [PMID: 32415096 PMCID: PMC7229031 DOI: 10.1038/s41467-020-16140-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
A comprehensive examination of protein-protein interactions (PPIs) is fundamental for the understanding of cellular machineries. However, limitations in current methodologies often prevent the detection of PPIs with low abundance proteins. To overcome this challenge, we develop a mRNA display with library of even-distribution (md-LED) method that facilitates the detection of low abundance binders with high specificity and sensitivity. As a proof-of-principle, we apply md-LED to IAV NS1 protein. Complementary to AP-MS, md-LED enables us to validate previously described PPIs as well as to identify novel NS1 interactors. We show that interacting with FASN allows NS1 to directly regulate the synthesis of cellular fatty acids. We also use md-LED to identify a mutant of NS1, D92Y, results in a loss of interaction with CPSF1. The use of high-throughput sequencing as the readout for md-LED enables sensitive quantification of interactions, ultimately enabling massively parallel experimentation for the investigation of PPIs.
Collapse
Affiliation(s)
- Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Quan Zhou
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Anders Olson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yenwen Tseng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Mengying Hong
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Kejun Tang
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Liubo Chen
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiangzhi Meng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Michael J McGregor
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Lei Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Laura Martin-Sancho
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sumit Chanda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Xinming Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, L, Los Angeles, CA, 90095, USA
| | - Steve Bensenger
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
- California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Chen J, Yu Z, Unruh JR, Slaughter BD, Jaspersen SL. Super-resolution Microscopy-based Bimolecular Fluorescence Complementation to Study Protein Complex Assembly and Co-localization. Bio Protoc 2020; 10:e3524. [PMID: 33654748 DOI: 10.21769/bioprotoc.3524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 11/02/2022] Open
Abstract
Numerous experimental approaches exist to study interactions between two subunits of a large macromolecular complex. However, most methods do not provide spatial and temporal information about binding, which are critical for dissecting the mechanism of assembly of nanosized complexes in vivo. While recent advances in super-resolution microscopy techniques have provided insights into biological structures beyond the diffraction limit, most require extensive expertise and/or special sample preparation, and it is a challenge to extend beyond binary, two color experiments. Using HyVolution, a super-resolution technique that combines confocal microscopy at sub-airy unit pinhole sizes with computational deconvolution, we achieved 140 nm resolution in both live and fixed samples with three colors, including two fluorescent proteins (mTurquoise2 and GFP) with significant spectral overlap that were distinguished by means of shifting the excitation wavelength away from common wavelengths. By combining HyVolution super-resolution fluorescence microscopy with bimolecular fluorescence complementation (SRM-BiFC), we describe a new assay capable of visualizing protein-protein interactions in vivo at sub-diffraction resolution. This method was used to improve our understanding of the ordered assembly of the Saccharomyces cerevisiae spindle pole body (SPB), a ~1 giga-Dalton heteromeric protein complex formed from 18 structural components present in multiple copies. We propose that SRM-BiFC is a powerful tool for examination of direct interactions between protein complex subunits at sub-diffraction resolution in live cells.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
13
|
Weill U, Cohen N, Fadel A, Ben-Dor S, Schuldiner M. Protein Topology Prediction Algorithms Systematically Investigated in the Yeast Saccharomyces cerevisiae. Bioessays 2019; 41:e1800252. [PMID: 31297843 DOI: 10.1002/bies.201800252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/05/2019] [Indexed: 11/09/2022]
Abstract
Membrane proteins perform a variety of functions, all crucially dependent on their orientation in the membrane. However, neither the exact number of transmembrane domains (TMDs) nor the topology of most proteins have been experimentally determined. Due to this, most scientists rely primarily on prediction algorithms to determine topology and TMD assignments. Since these can give contradictory results, single-algorithm-based predictions are unreliable. To map the extent of potential misanalysis, the predictions of nine algorithms on the yeast proteome are compared and it is found that they have little agreement when predicting TMD number and termini orientation. To view all predictions in parallel, a webpage called TopologYeast: http://www.weizmann.ac.il/molgen/TopologYeast was created. Each algorithm is compared with experimental data and a poor agreement is found. The analysis suggests that more systematic data on protein topology are required to increase the training sets for prediction algorithms and to have accurate knowledge of membrane protein topology.
Collapse
Affiliation(s)
- Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
14
|
O’Meara TR, O’Meara MJ, Polvi EJ, Pourhaghighi MR, Liston SD, Lin ZY, Veri AO, Emili A, Gingras AC, Cowen LE. Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biol 2019; 17:e3000358. [PMID: 31283755 PMCID: PMC6638986 DOI: 10.1371/journal.pbio.3000358] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/18/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
Hsp90 is a conserved molecular chaperone that assists in the folding and function of diverse cellular regulators, with a profound impact on biology, disease, and evolution. As a central hub of protein interaction networks, Hsp90 engages with hundreds of protein-protein interactions within eukaryotic cells. These interactions include client proteins, which physically interact with Hsp90 and depend on the chaperone for stability or function, as well as co-chaperones and partner proteins that modulate chaperone function. Currently, there are no methods to accurately predict Hsp90 interactors and there has been considerable network rewiring over evolutionary time, necessitating experimental approaches to define the Hsp90 network in the species of interest. This is a pressing challenge for fungal pathogens, for which Hsp90 is a key regulator of stress tolerance, drug resistance, and virulence traits. To address this challenge, we applied a novel biochemical fractionation and quantitative proteomic approach to examine alterations to the proteome upon perturbation of Hsp90 in a leading human fungal pathogen, Candida albicans. In parallel, we performed affinity purification coupled to mass spectrometry to define physical interacting partners for Hsp90 and the Hsp90 co-chaperones and identified 164 Hsp90-interacting proteins, including 111 that are specific to the pathogen. We performed the first analysis of the Hsp90 interactome upon antifungal drug stress and demonstrated that Hsp90 stabilizes processing body (P-body) and stress granule proteins that contribute to drug tolerance. We also describe novel roles for Hsp90 in regulating posttranslational modification of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex and the formation of protein aggregates in response to thermal stress. This study provides a global view of the Hsp90 interactome in a fungal pathogen, demonstrates the dynamic role of Hsp90 in response to environmental perturbations, and highlights a novel connection between Hsp90 and the regulation of mRNA-associated protein granules.
Collapse
Affiliation(s)
- Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Matthew J. O’Meara
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - M. Reza Pourhaghighi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Sean D. Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
15
|
Li P, Wang L, Di LJ. Applications of Protein Fragment Complementation Assays for Analyzing Biomolecular Interactions and Biochemical Networks in Living Cells. J Proteome Res 2019; 18:2987-2998. [PMID: 31274323 DOI: 10.1021/acs.jproteome.9b00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are indispensable for the dynamic assembly of multiprotein complexes that are central players of nearly all of the intracellular biological processes, such as signaling pathways, metabolic pathways, formation of intracellular organelles, establishment of cytoplasmic skeletons, etc. Numerous approaches have been invented to study PPIs both in vivo and in vitro, including the protein-fragment complementation assay (PCA), which is a widely applied technology to study PPIs and biomolecular interactions. PCA is a technology based on the expression of the bait and prey proteins in fusion with two complementary reporter protein fragments, respectively, that will reassemble when in close proximity. The reporter protein can be the enzymes or fluorescent proteins. Recovery of the enzymatic activity or fluorescent signal can be the indicator of PPI between the bait and prey proteins. Significant effort has been invested in developing many derivatives of PCA, along with various applications, in order to address specific questions. Therefore, a prompt review of these applications is important. In this review, we will categorize these applications according to the scenarios that the PCAs were applied and expect to provide a reference guideline for the future selection of PCA methods in solving a specific problem.
Collapse
Affiliation(s)
- Peipei Li
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China.,Metabolomics Core, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| |
Collapse
|
16
|
Singh K, Lee ME, Entezari M, Jung CH, Kim Y, Park Y, Fioretti JD, Huh WK, Park HO, Kang PJ. Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast. G3 (BETHESDA, MD.) 2019; 9:921-931. [PMID: 30670610 PMCID: PMC6404601 DOI: 10.1534/g3.118.200887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022]
Abstract
Rho GTPases play critical roles in cell proliferation and cell death in many species. As in animal cells, cells of the budding yeast Saccharomyces cerevisiae undergo regulated cell death under various physiological conditions and upon exposure to external stress. The Rho5 GTPase is necessary for oxidant-induced cell death, and cells expressing a constitutively active GTP-locked Rho5 are hypersensitive to oxidants. Yet how Rho5 regulates yeast cell death has been poorly understood. To identify genes that are involved in the Rho5-mediated cell death program, we performed two complementary genome-wide screens: one screen for oxidant-resistant deletion mutants and another screen for Rho5-associated proteins. Functional enrichment and interaction network analysis revealed enrichment for genes in pathways related to metabolism, transport, and plasma membrane organization. In particular, we find that ATG21, which is known to be involved in the CVT (Cytoplasm-to-Vacuole Targeting) pathway and mitophagy, is necessary for cell death induced by oxidants. Cells lacking Atg21 exhibit little cell death upon exposure to oxidants even when the GTP-locked Rho5 is expressed. Moreover, Atg21 interacts with Rho5 preferentially in its GTP-bound state, suggesting that Atg21 is a downstream target of Rho5 in oxidant-induced cell death. Given the high degree of conservation of Rho GTPases and autophagy from yeast to human, this study may provide insight into regulated cell death in eukaryotes in general.
Collapse
Affiliation(s)
- Komudi Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Mid Eum Lee
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Maryam Entezari
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Hun Jung
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yeonsoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngmin Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jack D Fioretti
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
17
|
Kim Y, Jung JP, Pack CG, Huh WK. Global analysis of protein homomerization in Saccharomyces cerevisiae. Genome Res 2018; 29:135-145. [PMID: 30567710 PMCID: PMC6314163 DOI: 10.1101/gr.231860.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/26/2018] [Indexed: 11/24/2022]
Abstract
In vivo analyses of the occurrence, subcellular localization, and dynamics of protein–protein interactions (PPIs) are important issues in functional proteomic studies. The bimolecular fluorescence complementation (BiFC) assay has many advantages in that it provides a reliable way to detect PPIs in living cells with minimal perturbation of the structure and function of the target proteins. Previously, to facilitate the application of the BiFC assay to genome-wide analysis of PPIs, we generated a collection of yeast strains expressing full-length proteins tagged with the N-terminal fragment of Venus (VN), a yellow fluorescent protein variant, from their own native promoters. In the present study, we constructed a VC (the C-terminal fragment of Venus) fusion library consisting of 5671 MATα strains expressing C-terminally VC-tagged proteins (representing ∼91% of the yeast proteome). For genome-wide analysis of protein homomer formation, we mated each strain in the VC fusion library with its cognate strain in the VN fusion library and performed the BiFC assay. From this analysis, we identified 186 homomer candidates. We further investigated the functional relevance of the homomerization of Pln1, a yeast perilipin. Our data set provides a useful resource for understanding the physiological roles of protein homomerization. Furthermore, the VC fusion library together with the VN fusion library will provide a valuable platform to systematically analyze PPIs in the natural cellular context.
Collapse
Affiliation(s)
- Yeonsoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Pil Jung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chan-Gi Pack
- ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Bischof J, Duffraisse M, Furger E, Ajuria L, Giraud G, Vanderperre S, Paul R, Björklund M, Ahr D, Ahmed AW, Spinelli L, Brun C, Basler K, Merabet S. Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila. eLife 2018; 7:38853. [PMID: 30247122 PMCID: PMC6177257 DOI: 10.7554/elife.38853] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods. We present a set of fly lines, called ‘multicolor BiFC library’, which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.
Collapse
Affiliation(s)
- Johannes Bischof
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Edy Furger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | | | | | | | - Christine Brun
- INSERM, Aix-Marseille Université, Marseille, France.,TAGC, Centre National de la Recherche Scientifique, Marseille, France
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
19
|
Greenlee M, Alonso A, Rahman M, Meednu N, Davis K, Tabb V, Cook R, Miller RK. The TOG protein Stu2/XMAP215 interacts covalently and noncovalently with SUMO. Cytoskeleton (Hoboken) 2018; 75:290-306. [PMID: 29729126 PMCID: PMC6712953 DOI: 10.1002/cm.21449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
Abstract
Stu2p is the yeast member of the XMAP215/Dis1/ch‐TOG family of microtubule‐associated proteins that promote microtubule polymerization. However, the factors that regulate its activity are not clearly understood. Here we report that Stu2p in the budding yeast Saccharomyces cerevisiae interacts with SUMO by covalent and noncovalent mechanisms. Stu2p interacted by two‐hybrid analysis with the yeast SUMO Smt3p, its E2 Ubc9p, and the E3 Nfi1p. A region of Stu2p containing the dimerization domain was both necessary and sufficient for interaction with SUMO and Ubc9p. Stu2p was found to be sumoylated both in vitro and in vivo. Stu2p copurified with SUMO in a pull‐down assay and vice versa. Stu2p also bound to a nonconjugatable form of SUMO, suggesting that Stu2p can interact noncovalently with SUMO. In addition, Stu2p interacted with the STUbL enzyme Ris1p. Stu2p also copurified with ubiquitin in a pull‐down assay, suggesting that it can be modified by both SUMO and ubiquitin. Tubulin, a major binding partner of Stu2p, also interacted noncovalently with SUMO. By two‐hybrid analysis, the beta‐tubulin Tub2p interacted with SUMO independently of the microtubule stressor, benomyl. Together, these findings raise the possibility that the microtubule polymerization activities mediated by Stu2p are regulated through sumoylation pathways.
Collapse
Affiliation(s)
- Matt Greenlee
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Annabel Alonso
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Maliha Rahman
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Nida Meednu
- Department of Biology, University of Rochester, Rochester, New York, 14627
| | - Kayla Davis
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Victoria Tabb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - River Cook
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | - Rita K Miller
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| |
Collapse
|
20
|
Bimolecular Fluorescence Complementation to Assay the Interactions of Ubiquitylation Enzymes in Living Yeast Cells. Methods Mol Biol 2018; 1449:223-41. [PMID: 27613039 DOI: 10.1007/978-1-4939-3756-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Ubiquitylation is a versatile posttranslational protein modification catalyzed through the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). These enzymes form transient complexes with each other and their modification substrates and determine the nature of the ubiquitin signals attached to their substrates. One challenge in the field of protein ubiquitylation is thus to identify the E2-E3 pairs that function in the cell. In this chapter, we describe the use of bimolecular fluorescence complementation to assay E2-E3 interactions in living cells, using budding yeast as a model organism.
Collapse
|
21
|
Unruh JR, Slaughter BD, Jaspersen SL. Functional Analysis of the Yeast LINC Complex Using Fluctuation Spectroscopy and Super-Resolution Imaging. Methods Mol Biol 2018; 1840:137-161. [PMID: 30141044 DOI: 10.1007/978-1-4939-8691-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Saccharomyces cerevisiae and Schizosaccharomyces pombe genomes encode a single SUN domain-containing protein, Mps3 and Sad1, respectively. Both localize to the yeast centrosome (known as the spindle pole body, SPB) and are essential for bipolar spindle formation. In addition, Mps3 and Sad1 play roles in chromosome organization in both mitotic and meiotic cells that are independent of their SPB function. To dissect the function of Mps3 at the nuclear envelope (NE) and SPB, we employed cell imaging methods such as scanning fluorescence cross-correlation spectroscopy (SFCCS) and single particle averaging with structured illumination microscopy (SPA-SIM) to determine the strength, nature, and location of protein-protein interactions in vivo. We describe how these same techniques can also be used in fission yeast to analyze Sad1, providing evidence of their applicability to other NE proteins and systems.
Collapse
Affiliation(s)
- Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Komiya M, Ito A, Endo M, Hiruma D, Hattori M, Saitoh H, Yoshida M, Ozawa T. A genetic screen to discover SUMOylated proteins in living mammalian cells. Sci Rep 2017; 7:17443. [PMID: 29234079 PMCID: PMC5727073 DOI: 10.1038/s41598-017-17450-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Post-translational modification by the Small Ubiquitin-related Modifier (SUMO) is indispensable for diverse biological mechanisms. Although various attempts have been made to discover novel SUMO substrate proteins to unveil the roles of SUMOylation, the reversibility of SUMOylation, and the differences in the SUMOylation level still makes it difficult to explore infrequently-SUMOylated proteins in mammalian cells. Here, we developed a method to screen for mammalian SUMOylated proteins using the reconstitution of split fluorescent protein fragments in living mammalian cells. Briefly, the cells harboring cDNAs of SUMOylated proteins were identified by the reconstituted fluorescence emission and separated by cell sorting. The method successfully identified 36 unreported SUMO2-substrate candidates with distinct intracellular localizations and functions. Of the candidates, we found Atac2, a histone acetyltransferase, was SUMOylated at a lysine 408, and further modified by multiple SUMOs without isoform specificity. Because the present method is applicable to other SUMO isoforms and mammalian cell-types, it could contribute to a deeper understanding of the role of SUMOylation in various biological contexts.
Collapse
Affiliation(s)
- Maki Komiya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mizuki Endo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Hiruma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Biomolecular Science and Engineering, The Institute of Scientific & Industrial Research, Osaka University, Osaka, Japan
| | - Hisato Saitoh
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
23
|
Chymkowitch P, Enserink JM. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:310-319. [PMID: 29127063 DOI: 10.1016/j.bbagrm.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
RNA polymerase III (RNAPIII) transcribes tRNA genes, 5S RNA as well as a number of other non-coding RNAs. Because transcription by RNAPIII is an energy-demanding process, its activity is tightly linked to the stress levels and nutrient status of the cell. Multiple signaling pathways control RNAPIII activity in response to environmental cues, but exactly how these pathways regulate RNAPIII is still poorly understood. One major target of these pathways is the transcriptional repressor Maf1, which inhibits RNAPIII activity under conditions that are detrimental to cell growth. However, recent studies have found that the cell can also directly regulate the RNAPIII machinery through phosphorylation and sumoylation of RNAPIII subunits. In this review we summarize post-translational modifications of RNAPIII subunits that mainly have been identified in large-scale proteomics studies, and we highlight several examples to discuss their relevance for regulation of RNAPIII.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Department of Microbiology, Oslo University Hospital, NO-0027 Oslo, Norway.
| | - Jorrit M Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, the Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway; Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Norway.
| |
Collapse
|
24
|
A Bimolecular Fluorescence Complementation Tool for Identification of Protein-Protein Interactions in Candida albicans. G3-GENES GENOMES GENETICS 2017; 7:3509-3520. [PMID: 28860184 PMCID: PMC5633398 DOI: 10.1534/g3.117.300149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Investigation of protein-protein interactions (PPI) in Candida albicans is essential for understanding the regulation of the signal transduction network that triggers its pathogenic lifestyle. Unique features of C. albicans, such as its alternative codon usage and incomplete meiosis, have enforced the optimization of standard genetic methods as well as development of novel approaches. Since the existing methods for detection of PPI are limited for direct visualization of the interacting complex in vivo, we have established a bimolecular fluorescence complementation (BiFC) assay in C. albicans, a powerful technique for studying PPI. We have developed an optimized set of plasmids that allows for N- and C-terminal tagging of proteins with split yeast-enhanced monomeric Venus fragments, so that all eight combinations of fusion orientations can be analyzed. With the use of our BiFC assay we demonstrate three interaction complexes in vivo, which were also confirmed by two-hybrid analysis. Our Candida-optimized BiFC assay represents a useful molecular tool for PPI studies and shows great promise in expanding our knowledge of molecular mechanisms of protein functions.
Collapse
|
25
|
Roggenkamp E, Giersch RM, Wedeman E, Eaton M, Turnquist E, Schrock MN, Alkotami L, Jirakittisonthon T, Schluter-Pascua SE, Bayne GH, Wasko C, Halloran M, Finnigan GC. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains. Front Microbiol 2017; 8:1773. [PMID: 28979241 PMCID: PMC5611381 DOI: 10.3389/fmicb.2017.01773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae continues to serve as a powerful model system for both basic biological research and industrial application. The development of genome-wide collections of individually manipulated strains (libraries) has allowed for high-throughput genetic screens and an emerging global view of this single-celled Eukaryote. The success of strain construction has relied on the innate ability of budding yeast to accept foreign DNA and perform homologous recombination, allowing for efficient plasmid construction (in vivo) and integration of desired sequences into the genome. The development of molecular toolkits and “integration cassettes” have provided fungal systems with a collection of strategies for tagging, deleting, or over-expressing target genes; typically, these consist of a C-terminal tag (epitope or fluorescent protein), a universal terminator sequence, and a selectable marker cassette to allow for convenient screening. However, there are logistical and technical obstacles to using these traditional genetic modules for complex strain construction (manipulation of many genomic targets in a single cell) or for the generation of entire genome-wide libraries. The recent introduction of the CRISPR/Cas gene editing technology has provided a powerful methodology for multiplexed editing in many biological systems including yeast. We have developed four distinct uses of the CRISPR biotechnology to generate yeast strains that utilizes the conversion of existing, commonly-used yeast libraries or strains. We present Cas9-based, marker-less methodologies for (i) N-terminal tagging, (ii) C-terminally tagging yeast genes with 18 unique fusions, (iii) conversion of fluorescently-tagged strains into newly engineered (or codon optimized) variants, and finally, (iv) use of a Cas9 “gene drive” system to rapidly achieve a homozygous state for a hypomorphic query allele in a diploid strain. These CRISPR-based methods demonstrate use of targeting universal sequences previously introduced into a genome.
Collapse
Affiliation(s)
- Emily Roggenkamp
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Rachael M Giersch
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Wedeman
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Muriel Eaton
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Turnquist
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Madison N Schrock
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Linah Alkotami
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Thitikan Jirakittisonthon
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | | | - Gareth H Bayne
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Cory Wasko
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| |
Collapse
|
26
|
Regulation of Cellular Processes by SUMO: Understudied Topics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:89-97. [PMID: 28197907 DOI: 10.1007/978-3-319-50044-7_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SUMO plays a multiple role in maintenance of cellular homeostasis, both under normal conditions and under cell stress . Considerable effort has been devoted to unraveling the functions of SUMO in regulation of transcription and preservation of genome stability. However, it is clear from high-throughput SUMO proteome studies that SUMO likely regulates many more cellular processes. The function of SUMO in these processes has hardly been explored. This review will focus on the emerging function of SUMO in regulation of several of these processes.
Collapse
|
27
|
Wu D, Huang CJ, Khan FA, Jiao XF, Liu XM, Pandupuspitasari NS, Brohi RD, Huo LJ. SENP3 grants tight junction integrity and cytoskeleton architecture in mouse Sertoli cells. Oncotarget 2017; 8:58430-58442. [PMID: 28938568 PMCID: PMC5601664 DOI: 10.18632/oncotarget.16915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 11/25/2022] Open
Abstract
Germ cells develop in a sophisticated immune privileged microenvironment provided by specialized junctions contiguous the basement membrane of the adjacent Sertoli cells that constituted the blood-testis barrier (BTB) in seminiferous epithelium of testis in mammals. Deciphering the molecular regulatory machinery of BTB activity is central to improve male fertility and the role of post-translational modification including SUMOylation pathway is one of the key factors. Herein, we unveiled the mystery of the SUMO-2/3 specific protease SENP3 (Sentrin-specific protease 3) in BTB dynamics regulation. SENP3 is predominantly expressed in the nucleus of Sertoli and spermatocyte cells in adult mouse testis, and knockdown of SENP3 compromises tight junction in Sertoli cells by destructing the permeability function with a concomitant decline in trans-epithelial electrical resistance in primary Sertoli cells, which could attribute to the conspicuous dysfunction of tight junction (TJ) proteins (e.g., ZO-1, occludin) at the cell-cell interface due to the inactivation of STAT3. Moreover, SENP3 knockdown disrupts F-actin architecture in Sertoli cells through intervening Rac1/CDC42-N-WASP-Arp2/3 signaling pathway and Profilin-1 abundance. Our study pinpoints SENP3 might be a novel determinant of multiple pathways governing BTB dynamics in testis to support germ cells development in mammals.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiao-Ming Liu
- Second Affiliated Hospital and Center of Reproductive Medicine, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Nuruliarizki Shinta Pandupuspitasari
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Rahim Dad Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
28
|
Newman HA, Meluh PB, Lu J, Vidal J, Carson C, Lagesse E, Gray JJ, Boeke JD, Matunis MJ. A high throughput mutagenic analysis of yeast sumo structure and function. PLoS Genet 2017; 13:e1006612. [PMID: 28166236 PMCID: PMC5319795 DOI: 10.1371/journal.pgen.1006612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/21/2017] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways.
Collapse
Affiliation(s)
- Heather A. Newman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Pamela B. Meluh
- High Throughput Biology Center and Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Jian Lu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Jeremy Vidal
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Caryn Carson
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Elizabeth Lagesse
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jef D. Boeke
- High Throughput Biology Center and Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD, United States of America
| | - Michael J. Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
29
|
Rintala-Dempsey AC, Kothe U. Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol 2017; 14:1185-1196. [PMID: 28045575 PMCID: PMC5699540 DOI: 10.1080/15476286.2016.1276150] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
For a long time, eukaryotic stand-alone pseudouridine synthases (Pus enzymes) were neglected as non-essential enzymes adding seemingly simple modifications to tRNAs and small nuclear RNAs. Most studies were limited to the identification and initial characterization of the yeast Pus enzymes. However, recent transcriptome-wide mapping of pseudouridines in yeast and humans revealed pervasive modification of mRNAs and other non-coding RNAs by Pus enzymes which is dynamically regulated in response to cellular stress. Moreover, mutations in at least 2 genes encoding human Pus enzymes cause inherited diseases affecting muscle and brain function. Together, the recent findings suggest a broader-than-anticipated role of the Pus enzymes which are emerging as potential regulators of gene expression. In this review, we summarize the current knowledge on Pus enzymes, generate hypotheses regarding their cellular function and outline future areas of research of pseudouridine synthases.
Collapse
Affiliation(s)
- Anne C Rintala-Dempsey
- a Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry , University of Lethbridge , Lethbridge , AB , Canada
| | - Ute Kothe
- a Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry , University of Lethbridge , Lethbridge , AB , Canada
| |
Collapse
|
30
|
Buntru A, Trepte P, Klockmeier K, Schnoegl S, Wanker EE. Current Approaches Toward Quantitative Mapping of the Interactome. Front Genet 2016; 7:74. [PMID: 27200083 PMCID: PMC4854875 DOI: 10.3389/fgene.2016.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Protein–protein interactions (PPIs) play a key role in many, if not all, cellular processes. Disease is often caused by perturbation of PPIs, as recently indicated by studies of missense mutations. To understand the associations of proteins and to unravel the global picture of PPIs in the cell, different experimental detection techniques for PPIs have been established. Genetic and biochemical methods such as the yeast two-hybrid system or affinity purification-based approaches are well suited to high-throughput, proteome-wide screening and are mainly used to obtain qualitative results. However, they have been criticized for not reflecting the cellular situation or the dynamic nature of PPIs. In this review, we provide an overview of various genetic methods that go beyond qualitative detection and allow quantitative measuring of PPIs in mammalian cells, such as dual luminescence-based co-immunoprecipitation, Förster resonance energy transfer or luminescence-based mammalian interactome mapping with bait control. We discuss the strengths and weaknesses of different techniques and their potential applications in biomedical research.
Collapse
Affiliation(s)
| | - Philipp Trepte
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| | | | | | - Erich E Wanker
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| |
Collapse
|
31
|
Wei L, Zhao X. A new MCM modification cycle regulates DNA replication initiation. Nat Struct Mol Biol 2016; 23:209-16. [PMID: 26854664 PMCID: PMC4823995 DOI: 10.1038/nsmb.3173] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/06/2016] [Indexed: 01/16/2023]
Abstract
The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.
Collapse
Affiliation(s)
- Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
32
|
One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat Methods 2016; 13:371-378. [PMID: 26928762 PMCID: PMC4869835 DOI: 10.1038/nmeth.3795] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
The yeast Saccharomyces cerevisiae is ideal for systematic studies relying on collections of modified strains (libraries). Despite the significance of yeast libraries and the immense variety of available tags and regulatory elements, only a few such libraries exist as their construction is extremely expensive and laborious. To overcome these limitations we developed a SWAp-Tag method (SWAT), in which one parental library can be modified easily and efficiently to give rise to an endless variety of libraries of choice. We showcase the versatility of the SWAT approach by constructing and investigating a library of ~1,800 strains carrying a SWAT-GFP module at the amino termini of endomembrane proteins and then using it to create two new libraries (mCherry or seamless GFP). Our work demonstrates how the SWAT method enables fast and effortless creation of yeast libraries, opening the door for endless new ways to systematically study cell biology.
Collapse
|
33
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
34
|
Gallina I, Colding C, Henriksen P, Beli P, Nakamura K, Offman J, Mathiasen DP, Silva S, Hoffmann E, Groth A, Choudhary C, Lisby M. Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 2015; 6:6533. [PMID: 25817432 PMCID: PMC4389229 DOI: 10.1038/ncomms7533] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 02/05/2015] [Indexed: 11/09/2022] Open
Abstract
DNA replication stress is a source of genomic instability. Here we identify changed mutation rate 1 (Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that Cmr1--together with Mrc1/Claspin, Pph3, the chaperonin containing TCP1 (CCT) and 25 other proteins--define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to Cmr1, its human orthologue WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that Cmr1/WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins.
Collapse
Affiliation(s)
- Irene Gallina
- Department of Biology, University of Copenhagen, Room 4.1.07, Copenhagen N DK-2200, Denmark
| | - Camilla Colding
- Department of Biology, University of Copenhagen, Room 4.1.07, Copenhagen N DK-2200, Denmark
| | - Peter Henriksen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Petra Beli
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kyosuke Nakamura
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Judith Offman
- MRC, Centre for Genome Damage and Stability, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - David P Mathiasen
- Department of Biology, University of Copenhagen, Room 4.1.07, Copenhagen N DK-2200, Denmark
| | - Sonia Silva
- Department of Biology, University of Copenhagen, Room 4.1.07, Copenhagen N DK-2200, Denmark
| | - Eva Hoffmann
- MRC, Centre for Genome Damage and Stability, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Room 4.1.07, Copenhagen N DK-2200, Denmark
| |
Collapse
|
35
|
Miller KE, Kim Y, Huh WK, Park HO. Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies. J Mol Biol 2015; 427:2039-2055. [PMID: 25772494 DOI: 10.1016/j.jmb.2015.03.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/09/2022]
Abstract
Complex protein networks are involved in nearly all cellular processes. To uncover these vast networks of protein interactions, various high-throughput screening technologies have been developed. Over the last decade, bimolecular fluorescence complementation (BiFC) assay has been widely used to detect protein-protein interactions (PPIs) in living cells. This technique is based on the reconstitution of a fluorescent protein in vivo. Easy quantification of the BiFC signals allows effective cell-based high-throughput screenings for protein binding partners and drugs that modulate PPIs. Recently, with the development of large screening libraries, BiFC has been effectively applied for genome-wide PPI studies and has uncovered novel protein interactions, providing new insight into protein functions. In this review, we describe the development of reagents and methods used for BiFC-based screens in yeast, plants, and mammalian cells. We also discuss the advantages and drawbacks of these methods and highlight the application of BiFC in large-scale studies.
Collapse
Affiliation(s)
- Kristi E Miller
- Molecular Cellular Developmental Biology Program, Ohio State University, OH, USA
| | - Yeonsoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program, Ohio State University, OH, USA
| |
Collapse
|
36
|
Binding properties of SUMO-interacting motifs (SIMs) in yeast. J Mol Model 2015; 21:50. [PMID: 25690366 DOI: 10.1007/s00894-015-2597-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/27/2022]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.
Collapse
|
37
|
Schuldiner M, Zalckvar E. Peroxisystem: Harnessing systems cell biology to study peroxisomes. Biol Cell 2015; 107:89-97. [DOI: 10.1111/boc.201400091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Maya Schuldiner
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| | - Einat Zalckvar
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot 7610001 Israel
| |
Collapse
|
38
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
39
|
A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae. J Mol Biol 2015; 427:2088-103. [PMID: 25644660 DOI: 10.1016/j.jmb.2015.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 01/05/2023]
Abstract
Sho1p, an integral membrane protein, plays a vital role in the high-osmolarity glycerol (HOG) mitogen-activated protein kinase pathway in the yeast Saccharomyces cerevisiae. Activated under conditions of high osmotic stress, it interacts with other HOG pathway proteins to mediate cell signaling events, ensuring that yeast cells can adapt and remain viable. In an attempt to further understand how the function of Sho1p is regulated through its protein-protein interactions (PPIs), we identified 49 unique Sho1p PPIs through the use of membrane yeast two-hybrid (MYTH), an assay specifically suited to identify PPIs of full-length integral membrane proteins in their native membrane environment. Secondary validation by literature search, or two complementary PPI assays, confirmed 80% of these interactions, resulting in a high-quality Sho1p interactome. This set of putative PPIs included both previously characterized interactors, along with a large subset of interactors that have not been previously identified as binding to Sho1p. The SH3 domain of Sho1p was found to be important for binding to many of these interactors. One particular novel interactor of interest is the glycerol transporter Fps1p, which was shown to require the SH3 domain of Sho1p for binding via its N-terminal soluble regulatory domain. Furthermore, we found that Fps1p is involved in the positive regulation of Sho1p function and plays a role in the phosphorylation of the downstream kinase Hog1p. This study represents the largest membrane interactome analysis of Sho1p to date and complements past studies on the HOG pathway by increasing our understanding of Sho1p regulation.
Collapse
|
40
|
Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. Proc Natl Acad Sci U S A 2014; 111:E3880-9. [PMID: 25187565 DOI: 10.1073/pnas.1414748111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as cholesterol and ubiquinone, as well as other metabolites. In humans, an age-dependent decrease in ubiquinone levels and changes in cholesterol homeostasis suggest that mevalonate pathway activity changes with age. However, our knowledge of the mechanistic basis of these changes remains rudimentary. We have identified a regulatory circuit controlling the sumoylation state of Caenorhabditis elegans HMG-CoA synthase (HMGS-1). This protein is the ortholog of human HMGCS1 enzyme, which mediates the first committed step of the mevalonate pathway. In vivo, HMGS-1 undergoes an age-dependent sumoylation that is balanced by the activity of ULP-4 small ubiquitin-like modifier protease. ULP-4 exhibits an age-regulated expression pattern and a dynamic cytoplasm-to-mitochondria translocation. Thus, spatiotemporal ULP-4 activity controls the HMGS-1 sumoylation state in a mechanism that orchestrates mevalonate pathway activity with the age of the organism. To expand the HMGS-1 regulatory network, we combined proteomic analyses with knockout studies and found that the HMGS-1 level is also governed by the ubiquitin-proteasome pathway. We propose that these conserved molecular circuits have evolved to govern the level of mevalonate pathway flux during aging, a flux whose dysregulation is associated with numerous age-dependent cardiovascular and cancer pathologies.
Collapse
|