1
|
Sabili Z, Rashidi-Monfard S, Haghi R, Kahrizi D. Comparative analysis of simple sequence repeats and synteny across ten Oryza species: Implications for stress response and genetic diversity. Comput Biol Chem 2025; 116:108379. [PMID: 39978112 DOI: 10.1016/j.compbiolchem.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
Rice is a pivotal food source for most of the global population, necessitating a strategic focus on maximizing its production under diverse conditions through various methods. As molecular markers, simple sequence repeats (SSRs) emerge as instrumental tools in product enhancement and molecular research. This study employs in silico methods to predict the presence of molecular markers across distinct genomic and genic regions within ten Oryza species. Subsequently, we conducted a comprehensive comparison and synteny analysis of common molecular markers shared among most species, particularly those implicated in stress responses, utilizing McscanX. Beyond identifying common SSRs across the ten species under investigation, we delved into the functional analysis of these markers, specifically pinpointing those associated with stress. Additionally, our investigation illustrated the uniform distribution of SSRs along chromosomes and created a physical map showcasing their prevalence. Notably, chromosomes 1, 2, and 3 exhibited a higher density of molecular markers compared to their counterparts. Furthermore, our study highlighted that Oryza glumipatula, Oryza brachyantha, Oryza meridionalis, and Oryza longistaminata species manifested more pronounced differences in SSR markers compared to other Oryza species. The implications of these findings extend to applications in genetic diversity assessment, genetic mapping, and molecular marker-assisted selection breeding, providing valuable insights for future research and development in the field.
Collapse
Affiliation(s)
- Zahra Sabili
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Sajad Rashidi-Monfard
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Reza Haghi
- The Gene Bank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| | - Danial Kahrizi
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Du L, Chen J, Sun D, Zhao K, Zeng Q, Yang N. Krait2: a versatile software for microsatellite investigation, visualization and marker development. BMC Genomics 2025; 26:72. [PMID: 39863857 PMCID: PMC11762079 DOI: 10.1186/s12864-025-11252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis. RESULTS We present Krait2, a user-friendly graphical tool for investigating perfect, imperfect and compound microsatellites from FASTA and FASTQ formatted genomic datasets. Krait2 not only provides features such as primer design, repeat filtering, repeat annotation and statistical analysis, but also offers various output formats to support customized downstream analysis. Moreover, it has capability of analyzing multiple genomes simultaneously and conducting comparative analysis. CONCLUSIONS Krait2 is a versatile and easy-to-use software for both novices and experts to identify and analyze microsatellites. The installer and source code are available at https://github.com/lmdu/krait2 .
Collapse
Affiliation(s)
- Lianming Du
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Jiahao Chen
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Dalin Sun
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qianglin Zeng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Nan Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
3
|
Ou T, Wu Z, Tian C, Yang Y, Gong W, Niu J, Li Z. Development of Genome-Wide SSR Markers in Leymus chinensis with Genetic Diversity Analysis and DNA Fingerprints. Int J Mol Sci 2025; 26:918. [PMID: 39940687 PMCID: PMC11817961 DOI: 10.3390/ijms26030918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Leymus chinensis, a major component of the plant community in the eastern Eurasian grasslands with a wide distribution, provides stability to grassland ecosystems and supports animal husbandry. This study aimed to bridge the gap between the molecular breeding and industrial application of L. chinensis by conducting a comprehensive simple sequence repeat (SSR) analysis. A total of 973,129 SSRs were identified in the L. chinensis whole genome, which was used to design 20 polymorphic pairs of SSR primers to further assess 105 L. chinensis accessions. On average, 33.55 alleles were detected per locus, with an average Shannon index of 2.939 and a polymorphic information content value of 0.910. Principal coordinate, maximum likelihood, and structure analyses consistently showed that all samples were coincidentally divided into four subclasses. In addition, Mantel test data indicated a weak correlation between genetic and geographical distances in L. chinensis, whose variability may be related to the pollination mode and natural selection pressures. Finally, we used the 20 pairs of selected markers to scan 105 accessions, constructing a fingerprint for them. These findings provide new foundations for identifying superior varieties, improving the management of genetic resources, and constructing a germplasm resource database for L. chinensis.
Collapse
Affiliation(s)
- Taiyou Ou
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (T.O.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (T.O.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (T.O.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (T.O.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Wenlong Gong
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (T.O.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Jianjiang Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (T.O.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (T.O.)
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot 010010, China
| |
Collapse
|
4
|
Kalboush ZA, Mazrou YSA, Hassan AA, Sherif A, Gabr WE, Ali Q, Nehela Y. Revisiting the emerging pathosystem of rice sheath blight: deciphering the Rhizoctonia solani virulence, host range, and rice genotype-based resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1499785. [PMID: 39748817 PMCID: PMC11693681 DOI: 10.3389/fpls.2024.1499785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Sheath blight, caused by Rhizoctonia solani AG1 IA, is a challenging disease of rice worldwide. In the current study, nine R. solani isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, R. solani AG1 IA -isolate SHBP9 was the most aggressive isolate. The virulence of isolate SHBP9 was correlated with its overproduction of CWDEs, where it had the highest pectinase, amylase, and cellulase activity in vitro. R. solani AG1 IA -isolate SHBP9 was able to infect 12 common rice-associated weeds from the family Poaceae, as well as over 25 economic crops from different families, except chickpea (Cicer arietinum) from Fabaceae, Rocket (Eruca sativa) from Brassicaceae, and the four crops from Solanaceae. Additionally, rice genotype-based resistance was evaluated using 11 rice genotypes for their response to R. solani isolates, morphological traits, yield components, and using 12 SSR markers linked to sheath blight resistance. Briefly, the tested 11 rice genotypes were divided into three groups; Cluster "I" included only two resistant genotypes (Egyptian Yasmine and Giza 182), Cluster "II" included four moderately resistant genotypes (Egyptian hybrid 1, Giza 178, 181, and 183), whereas Cluster "III" included five susceptible (Sakha 104, 101, 108, Super 300 and Giza 177). Correspondingly, only surface-mycelium growth was microscopically noticed on the resistant cultivar Egyptian Yasmine, as well as the moderately resistant Egyptian hybrid 1, however, on the susceptible Sakha 104, the observed mycelium was branched, shrunk, and formed sclerotia. Accordingly, Indica and Indica/Japonica rice genotypes showed more resistance to R. solani than Japonica genotypes. These findings provide insights into its pathogenicity mechanisms and identify potential targets for disease control which ultimately contributes to the development of sustainable eco-friendly disease management strategies. Moreover, our findings might pave the way for developing resistant rice varieties by using more reliable resistance sources of non-host plants, as well as, rice genotype-based resistance as a genetic resource.
Collapse
Affiliation(s)
- Zeinab A. Kalboush
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha, Saudi Arabia
| | - Amr A. Hassan
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Ahmed Sherif
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Wael E. Gabr
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, Egypt
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-ain, Abu-Dhabi, United Arab Emirates
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Srichan M, Laosatit K, Lin Y, Yuan X, Chen X, Somta P. QTL-seq and QTL mapping identify a new locus for Cercospora leaf spot (Cercospora canescens) resistance in mungbean (Vigna radiata) and a cluster of Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:278. [PMID: 39601832 DOI: 10.1007/s00122-024-04782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
KEY MESSAGE QTL-seq, linkage mapping, and whole-genome resequencing revealed a new locus (qCLS5.1) controlling Cercospora canescens resistance in mungbean and Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. Cercospora leaf spot (CLS) disease, caused by Cercospora canescens, is a common disease of mungbean (Vigna radiata). In this study, the genetics of CLS resistance was investigated in a new source of resistance (accession V2817) and the resistance was finely mapped to identify candidate genes. F2 and F2:3 populations of the cross V1197 (susceptible) × V2718 and a BC1F1 population of the cross V1197 × (V1197 × V2817) were used in this study. Segregation analysis suggested that the resistance is controlled by a single dominant gene. QTL-seq using F2 individuals revealed that a single QTL (designated qCLS5.1) on chromosome 5 controlled the resistance. The qCLS5.1 was confirmed in the F2:3 and BC1F1 populations by QTL analysis. Fine mapping using 978 F2 individuals localized qCLS5.1 to a 48.94 Kb region containing three tandemly duplicated Receptor-like protein 12 (RLP12) genes. Whole-genome resequencing and alignment of V1197 and V2817 revealed polymorphisms causing amino acid changes and premature stop codons in the three RLP12 genes. Collectively, these results show that qCLS5.1 is a new locus for CLS resistance in mungbean, and a cluster of RLP12 genes are candidate genes for the resistance. The new locus qCLS5.1 will be useful for molecular breeding of durable CLS-resistant mungbean cultivars.
Collapse
Affiliation(s)
- Makawan Srichan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
- Tropical Vegetable Research Center, Department of Horticulture, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
6
|
Chen HJ, Sawasdee A, Lin YL, Chiang MY, Chang HY, Li WH, Wang CS. Reverse Mutations in Pigmentation Induced by Sodium Azide in the IR64 Rice Variety. Curr Issues Mol Biol 2024; 46:13328-13346. [PMID: 39727923 PMCID: PMC11727009 DOI: 10.3390/cimb46120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Pigmentation in rice is due mainly to the accumulation of anthocyanins. Five color mutant lines, AZ1701, AZ1702, AZ1711, AZ1714, and AZ1715, derived from the sodium azide mutagenesis on the non-pigmented IR64 variety, were applied to study inheritance modes and genes for pigmentation. The mutant line AZ1711, when crossed with IR64, displays pigmentation in various tissues, exhibiting a 3:1 pigmented to non-pigmented ratio in the F2 progeny, indicating a single dominant locus controlling pigmentation. Eighty-four simple sequence repeat (SSR) markers were applied to map the pigment gene using 92 F2 individuals. RM6773, RM5754, RM253, and RM2615 markers are found to be linked to the color phenotype. RM253 explains 78% of the phenotypic variation, implying linkage to the pigmentation gene(s). Three candidate genes, OsC1 (MYB), bHLH, and 3GT, as anthocyanin biosynthesis-related genes, were identified within a 0.83 Mb region tightly linked to RM253. PCR cloning and sequencing revealed 10 bp and 72 bp insertions in the OsC1 and 3GT genes, respectively, restoring pigmentation as in wild rice. The 72 bp insertion is highly homologous to a sequence of Ty1-Copia retrotransposon and shows a particular secondary structure, suggesting that it was derived from the transposition of Ty1-Copia in the IR64 genome.
Collapse
Affiliation(s)
- Hsian-Jun Chen
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Anuchart Sawasdee
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Yu-Ling Lin
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Min-Yu Chiang
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Hsin-Yi Chang
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| |
Collapse
|
7
|
Alves SIA, Dantas CWD, Macedo DB, Ramos RTJ. What are microsatellites and how to choose the best tool: a user-friendly review of SSR and 74 SSR mining tools. Front Genet 2024; 15:1474611. [PMID: 39606018 PMCID: PMC11599195 DOI: 10.3389/fgene.2024.1474611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Microsatellites, also known as SSR or STR, are essential molecular markers in genomic research, playing crucial roles in genetic mapping, population genetics, and evolutionary studies. Their applications range from plant breeding to forensics, highlighting their diverse utility across disciplines. Despite their widespread use, traditional methods for SSR analysis are often laborious and time-consuming, requiring significant resources and expertise. To address these challenges, a variety of computational tools for SSR analysis have been developed, offering faster and more efficient alternatives to traditional methods. However, selecting the most appropriate tool can be daunting due to rapid technological advancements and the sheer number of options available. This study presents a comprehensive review and analysis of 74 SSR tools, aiming to provide researchers with a valuable resource for SSR analysis tool selection. The methodology employed includes thorough literature reviews, detailed tool comparisons, and in-depth analyses of tool functionality. By compiling and analyzing these tools, this study not only advances the field of genomic research but also contributes to the broader scientific community by facilitating informed decision-making in the selection of SSR analysis tools. Researchers seeking to understand SSRs and select the most appropriate tools for their projects will benefit from this comprehensive guide. Overall, this study enhances our understanding of SSR analysis tools, paving the way for more efficient and effective SSR research in various fields of study.
Collapse
Affiliation(s)
- Sandy Ingrid Aguiar Alves
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Carlos Willian Dias Dantas
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Daralyns Borges Macedo
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel Thiago Jucá Ramos
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
8
|
Geng R, Xu J, Jiang J, Cheng Z, Sun M, Xia N, Gao J. Identification of New Cultivar and Different Provenances of Dendrocalamus brandisii (Poaceae: Bambusoideae) Using Simple Sequence Repeats Developed from the Whole Genome. PLANTS (BASEL, SWITZERLAND) 2024; 13:2910. [PMID: 39458856 PMCID: PMC11511551 DOI: 10.3390/plants13202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Dendrocalamus brandisii is a high-quality bamboo species that can be used for both bamboo shoots and wood. The nutritional components and flavors of D. brandisii vary from different geographical provenances. However, the unique biological characteristics of bamboo make morphological classification methods unsuitable for distinguishing them. Although the new cultivar 'Manxie No.1' has significant differences in the branch characteristics and the color of shoot sheaths compared to the D. brandisii, it still lacks precise genetic information at the molecular level. This study identified 231,789 microsatellite markers based on the whole genome of D. brandisii and analyzed their type composition and distribution on chromosomes in detail. Then, using TP-M13-SSR fluorescence-labeling technology, 34 pairs of polymorphic primers were screened to identify the new cultivar 'Manxie No.1' and 11 different geographical provenances of D. brandisii. We also constructed DNA fingerprinting profiles for them. At the same time, we mapped six polymorphic SSRs to the gene of D. brandisii, among which SSR673 was mapped to DhB10G011540, which is related to plant immunity. The specific markers selected in this study can rapidly identify the provenances and the new cultivar of D. brandisii and help explore candidate genes related to some important traits.
Collapse
Affiliation(s)
- Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| | - Maosheng Sun
- Institute of Bamboo and Rattan, Southwest Forestry University, Kunming 650224, China;
| | - Nianhe Xia
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China; (R.G.); (J.X.); (J.J.); (Z.C.)
| |
Collapse
|
9
|
Höschele T, Malagol N, Bori SO, Müllner S, Töpfer R, Sturm J, Zyprian E, Trapp O. Rpv10.2: A Haplotype Variant of Locus Rpv10 Enables New Combinations for Pyramiding Downy Mildew Resistance Traits in Grapevine. PLANTS (BASEL, SWITZERLAND) 2024; 13:2624. [PMID: 39339604 PMCID: PMC11434656 DOI: 10.3390/plants13182624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
In viticulture, pathogens like the oomycete Plasmopara viticola, the causal agent of downy mildew, can cause severe yield loss and require extensive application of plant protection chemicals. Breeders are generating pathogen-resistant varieties exploiting American and Asian wild Vitis germplasm as sources of resistance. Several loci mediating resistance to P. viticola have been identified in the past but may be overcome by specifically adapted strains of the pathogen. Aiming to find and characterize novel loci, a cross population with Vitis amurensis ancestry was investigated searching for resistance-correlated quantitative trait loci (QTL). As a prerequisite, a genetic map was generated by analyzing the 244 F1 individuals derived from a cross of the downy mildew susceptible Vitis vinifera cultivar 'Tigvoasa' and the resistant V. amurensis pBC1 breeding line We 90-06-12. This genetic map is based on the information from 627 molecular markers including 56 simple sequence repeats and 571 rhAmpSeq markers. A phenotypic characterization of the progeny showed a clear segregation of the resistance traits in the F1 population after an experimental inoculation of leaf discs with downy mildew. Combining genetic and phenotypic data, an analysis for QTL revealed a major locus on linkage Group 9 that correlates strongly with the resistance to downy mildew. The locus was mapped to a region of about 80 kb on the PN40024 (12x.V2) grapevine reference genome. This genomic region co-localizes with the formerly identified locus Rpv10 from the grapevine cultivar 'Solaris'. As we found different allele sizes of the locus-linked SSR markers than those characterizing the known Rpv10 locus and differences in the sequence of a candidate gene, it was regarded as a haplotype variant and named Rpv10.2.
Collapse
Affiliation(s)
- Tim Höschele
- Staatliche Lehr- und Versuchsanstalt im Wein- und Obstbau Weinsberg (LVWO), Traubenplatz 5, 74189 Weinsberg, Germany
| | - Nagarjun Malagol
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Salvador Olivella Bori
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Sophia Müllner
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Reinhard Töpfer
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Jürgen Sturm
- Staatliche Lehr- und Versuchsanstalt im Wein- und Obstbau Weinsberg (LVWO), Traubenplatz 5, 74189 Weinsberg, Germany
| | - Eva Zyprian
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Oliver Trapp
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| |
Collapse
|
10
|
Geethanjali S, Kadirvel P, Anumalla M, Hemanth Sadhana N, Annamalai A, Ali J. Streamlining of Simple Sequence Repeat Data Mining Methodologies and Pipelines for Crop Scanning. PLANTS (BASEL, SWITZERLAND) 2024; 13:2619. [PMID: 39339594 PMCID: PMC11435353 DOI: 10.3390/plants13182619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Genetic markers are powerful tools for understanding genetic diversity and the molecular basis of traits, ushering in a new era of molecular breeding in crops. Over the past 50 years, DNA markers have rapidly changed, moving from hybridization-based and second-generation-based to sequence-based markers. Simple sequence repeats (SSRs) are the ideal markers in plant breeding, and they have numerous desirable properties, including their repeatability, codominance, multi-allelic nature, and locus specificity. They can be generated from any species, which requires prior sequence knowledge. SSRs may serve as evolutionary tuning knobs, allowing for rapid identification and adaptation to new circumstances. The evaluations published thus far have mostly ignored SSR polymorphism and gene evolution due to a lack of data regarding the precise placements of SSRs on chromosomes. However, NGS technologies have made it possible to produce high-throughput SSRs for any species using massive volumes of genomic sequence data that can be generated fast and at a minimal cost. Though SNP markers are gradually replacing the erstwhile DNA marker systems, SSRs remain the markers of choice in orphan crops due to the lack of genomic resources at the reference level and their adaptability to resource-limited labor. Several bioinformatic approaches and tools have evolved to handle genomic sequences to identify SSRs and generate primers for genotyping applications in plant breeding projects. This paper includes the currently available methodologies for producing SSR markers, genomic resource databases, and computational tools/pipelines for SSR data mining and primer generation. This review aims to provide a 'one-stop shop' of information to help each new user carefully select tools for identifying and utilizing SSRs in genetic research and breeding programs.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Palchamy Kadirvel
- Crop Improvement Section, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India
| | - Mahender Anumalla
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Laguna, Philippines
- IRRI South Asia Hub, Patancheru, Hyderabad 502324, India
| | - Nithyananth Hemanth Sadhana
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Anandan Annamalai
- Indian Council of Agricultural Research (ICAR), Indian Institute of Seed Science, Bengaluru 560065, India
| | - Jauhar Ali
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Laguna, Philippines
| |
Collapse
|
11
|
Spoorthi V, Ramesh S, Sunitha NC, Vedashree, Vaijayanthi PV, Anilkumar C. Genetic dissection of green pod yield in dolichos bean, an orphan vegetable legume, using new molecular markers. J Appl Genet 2024; 65:429-438. [PMID: 38587611 DOI: 10.1007/s13353-024-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
In the era of genomic-assisted breeding for crop improvement, developing new molecular markers and validating them for use in breeding programs are the prelude. Dolichos bean is one of the most important vegetable legume crops owing to its nutrient-rich green pods used as vegetables. Limitations in genomic resources, including molecular markers, restrict the accelerated improvement of the crop. In the present investigation, a set of 430 new simple sequence repeat markers was developed from sequence information of a reference variety. These markers included di- and tri-nucleotide repeats. The markers were assayed on an association panel, which was evaluated for green pod yield over 5 years. A multi-locus model, FarmCPU, was used to assess the marker-trait association analysis. A total of 106 marker-trait associations were identified using an efficient mixed-model approach. Tri-nucleotide repeats were more informative and predominantly associated with trait. Among these markers, 17 were associated with a high level of significance. Markers LP-D-68 and LP-D-14 were identified with a high level of significance in 5-year pooled data and explained 12.70% and 12% of the phenotypic variance, respectively. These markers associated with a high level of confidence have significant scope for use in marker-assisted selection programmes. Other associated markers may be utilized for improving parents through marker-assisted recurrent selection or genomic selection programs.
Collapse
Affiliation(s)
- Vinayak Spoorthi
- University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Sampangi Ramesh
- University of Agricultural Sciences, Bangalore, Karnataka, India.
| | | | - Vedashree
- University of Agricultural Sciences, Bangalore, Karnataka, India
| | | | - Chandrappa Anilkumar
- University of Agricultural Sciences, Bangalore, Karnataka, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| |
Collapse
|
12
|
Davis RF, Harris-Shultz K, Knoll JE, Krakowsky M, Scully B. A Quantitative Trait Locus on Maize Chromosome 5 Is Associated with Root-Knot Nematode Resistance. PHYTOPATHOLOGY 2024; 114:1657-1663. [PMID: 38427606 DOI: 10.1094/phyto-08-23-0286-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
This study provides the first report of a quantitative trait locus (QTL) in maize (Zea mays) for resistance to the southern root-knot nematode (SRKN) (Meloidogyne incognita). The SRKN can feed on the roots of maize in the U.S. Southern Coastal Plain region and can cause yield losses of 30% or more in heavily infested fields. Increases in SRKN density in the soil may reduce the yield for subsequently planted susceptible crops. The use of maize hybrids with resistance to SRKN could prevent an increase in SRKN density, yet no genetic regions have been identified that confer host resistance. In this study, a B73 (susceptible) × Ky21 (resistant) S5 recombinant inbred line (RIL) population was phenotyped for total number of eggs (TE) and root weight. This population had been genotyped using single-nucleotide polymorphisms (SNPs). By utilizing the SNP data with the phenotype data, a single QTL was identified on chromosome 5 that explained 15% of the phenotypic variation (PV) for the number of eggs and 11% of the PV for the number of eggs per gram of root (EGR). Plants that were homozygous for the Ky21 allele for the most associated marker PZA03172.3 had fewer eggs and fewer EGR than the plants that were homozygous or heterozygous for the B73 allele. Thus, the first QTL for SRKN resistance in maize has been identified and could be incorporated into maize hybrids.
Collapse
Affiliation(s)
- Richard F Davis
- U.S. Department of Agriculture-Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA
| | - Karen Harris-Shultz
- U.S. Department of Agriculture-Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA
| | - Joseph E Knoll
- U.S. Department of Agriculture-Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA
| | - Matthew Krakowsky
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, NC
| | - Brian Scully
- U.S. Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL (retired)
| |
Collapse
|
13
|
Laosatit K, Amkul K, Lin Y, Yuan X, Chen X, Somta P. Two genes encoding caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1) are candidate genes for physical seed dormancy in cowpea (Vigna unguiculata (L.) Walp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:146. [PMID: 38834825 DOI: 10.1007/s00122-024-04653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.
Collapse
Affiliation(s)
- Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand.
| |
Collapse
|
14
|
Yang TY, Zhu ZY, Liu YP, Wang SG. The First Genome-Wide Survey of Shortbelly Eel (Dysomma anguillare Barnard, 1923) to Provide Genomic Characteristics, Microsatellite Markers and Complete Mitogenome Information. Biochem Genet 2024; 62:2296-2313. [PMID: 37906301 DOI: 10.1007/s10528-023-10543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Dysomma anguillare is a demersal eel widespread distributing in tropical waters of the Indo-West Pacific and Atlantic. As an important component of the coastal fishery and marine ecosystem, the lack of genomic information for this species severely restricts the progress of relevant researches. In this study, the abecedarian genome-wide characteristics and phylogenetic relationships analyses were carried out based on next-generation sequencing (NGS) platform. The revised genome size was approximately 1 310 Mb, with the largest scaffold length reaching 23 878 bp through K-mer (K = 17) method. The heterozygosity, repetitive rate and average GC content were about 0.94%, 51.93% and 42.23%, respectively. A total of 1 160 104 microsatellite motifs were identified from the de novo assembled genome of D. anguillare, in which dinucleotide repeats accounted for the largest proportion (592 234, 51.05%), the highest occurrence frequency (14.58%) as well as the largest relative abundance (379.27/Mb). The high-polymorphic and moderate-polymorphic loci composed around 73% of the total single sequence repeats (SSRs), showing a latent capacity for subsequent population genetic structure and genetic diversity appraisal researches. Another byproduct of whole-genome sequencing, the double-stranded and circular mitogenome (16 690 bp) was assembled to investigate the evolutionary relationships of D. anguillare. The phylogenic tree constructed with maximum likelihood (ML) method showed that D. anguillare was closely related to Synaphobranchidae species, and the molecular systematic results further supported classical taxonomy status of D. anguillare.
Collapse
Affiliation(s)
- Tian-Yan Yang
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| | - Zi-Yan Zhu
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Yu-Ping Liu
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Si-Ge Wang
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| |
Collapse
|
15
|
Jiao L, Han C, Zhu J, Zhang P, Ma Y, Dai X, Zhang Y. Transcriptome analysis and development of EST-SSR markers in the mushroom Auricularia heimuer. Sci Rep 2024; 14:12340. [PMID: 38811679 PMCID: PMC11136984 DOI: 10.1038/s41598-024-63080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Auricularia heimuer, the third most frequently cultivated edible mushroom species worldwide, has high medicinal value. However, a shortage of molecular marker hinders the efficiency and accuracy of genetic breeding efforts for A. heimuer. High-throughput transcriptome sequencing data are essential for gene discovery and molecular markers development. This study aimed to clarify the distribution of SSR loci across the A. heimuer transcriptome and to develop highly informative EST-SSR markers. These tools can be used for phylogenetic analysis, functional gene mining, and molecular marker-assisted breeding of A. heimuer. This study used Illumina high-throughput sequencing technology to obtain A. heimuer transcriptome data. The results revealed 37,538 unigenes in the A. heimuer transcriptome. Of these unigenes, 24,777 (66.01%) were annotated via comparison with the COG, Pfam, and NR databases. Overall, 2510 SSRs were identified from the unigenes, including 6 types of SSRs. The most abundant type of repeats were trinucleotides (1425, 56.77%), followed by mononucleotides (391, 15.58%) and dinucleotides (456, 18.17%). Primer pairs for 102 SSR loci were randomly designed for validity confirmation and polymorphism identification; this process yielded 53 polymorphic EST-SSR markers. Finally, 13 pairs of highly polymorphic EST-SSR primers were used to analyze the genetic diversity and population structure of 52 wild A. heimuer germplasms, revealing that the 52 germplasms could be divided into three categories. These results indicated that SSR loci were abundant in types, numbers, and frequencies, providing a potential basis for germplasm resource identification, genetic diversity analysis, and molecular marker-assisted breeding of A. heimuer.
Collapse
Affiliation(s)
- Lihe Jiao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Chuang Han
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Jianan Zhu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Piqi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Yinpeng Ma
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Xiaodong Dai
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China.
| | - Yunzhi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China.
| |
Collapse
|
16
|
Waengwan P, Laosatit K, Lin Y, Yimram T, Yuan X, Chen X, Somta P. A Cluster of Peronospora parasitica 13-like ( NBS-LRR) Genes Is Associated with Powdery Mildew ( Erysiphe polygoni) Resistance in Mungbean ( Vigna radiata). PLANTS (BASEL, SWITZERLAND) 2024; 13:1230. [PMID: 38732445 PMCID: PMC11085486 DOI: 10.3390/plants13091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Powdery mildew (PM) caused by Erysiphe polygoni is an important foliar disease in mungbean (Vigna radiata). A previous study showed that QTL qPMRUM5-2 is a major locus for PM resistance in mungbean accession RUM5 (highly resistant). Bioinformatics analysis revealed that flanking markers of the qPMRUM5-2 covered a region of 1.93 Mb. In this study, we conducted fine mapping for the qPMRUM5-2 using the F2 population of 1156 plants of the cross between Chai Nat 60 (CN60; highly susceptible) and RUM5. PM resistance evaluation was performed under field conditions using F2:3 lines grown in three different environments. QTL analyses consistently located the qPMRUM5-2 to a 0.09 cm interval on linkage group 6 between InDel markers VrLG6-InDel05 and VrLG6-InDel10, which corresponded to a 135.0 kb region on chromosome 8 containing nine predicted genes of which five were NBS-LRR-type genes Recognition of Peronospora parasitica 13-like protein (RPP13L). Whole-genome re-sequencing of RUM5 and CN60 showed polymorphisms in four RPP13L genes predictively cause substantial amino acid changes, rendering them important candidate genes for PM resistance. The InDel markers VrLG6-InDel05 and VrLG6-InDel10 flanking to the qPMRUM5-2 would be useful for marker-assisted breeding of PM resistance in the mungbean.
Collapse
Affiliation(s)
- Pitsanupong Waengwan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen 73140, Thailand; (P.W.); (K.L.); (T.Y.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen 73140, Thailand; (P.W.); (K.L.); (T.Y.)
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.); (X.C.)
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen 73140, Thailand; (P.W.); (K.L.); (T.Y.)
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.); (X.C.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.); (X.C.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen 73140, Thailand; (P.W.); (K.L.); (T.Y.)
| |
Collapse
|
17
|
Amkul K, Laosatit K, Lin Y, Yimram T, Chen J, Yuan X, Chen X, Somta P. Narrowing down a major QTL region reveals Phytochrome E ( PHYE) as the candidate gene controlling flowering time in mungbean ( Vigna radiata). BREEDING SCIENCE 2024; 74:83-92. [PMID: 39355630 PMCID: PMC11442112 DOI: 10.1270/jsbbs.23036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 10/03/2024]
Abstract
Flowering time is an important agronomic trait that is highly correlated with plant height, maturity time and yield in mungbean. Up to present, however, molecular basis of flowering time in mungbean is poorly understood. Previous studies demonstrated that flowering time in mungbean is largely controlled by a major QTL on linkage group 2 (LG2). In this study, the QTL on the LG2 in mungbean was investigated using F2 and F2:3 populations derived from a cross between mungbean cultivar Kamphaeng Saen 2 (KPS2) and wild mungbean accession ACC41. The QTL was narrowed down to a genome region of 164.87 Kb containing a phytochrome gene, designated VrPHYE, encoding phytochrome E (phyE), a known photoreceptor modulating flowering time. Compared to VrPHYE of the wild ACC41, VrPHYE of KPS2 contained several single nucleotide polymorphisms (SNPs) causing amino acid changes. Those SNPs were also found in other mungbean cultivars. Some amino acid changes were predicted to occur in the regulatory region of phytochromes. Gene expression analysis revealed that VrPHYE in KPS2 was expressed significantly higher than that in ACC41. These results showed that VrPHYE is the candidate gene controlling flowering time in the mungbean.
Collapse
Affiliation(s)
- Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Yun Lin
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Jingbin Chen
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Chen
- Institute of Crop Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
18
|
Hemasai B, Kumbha DK, Modem VN, Gannavarapu SK, Bommaka RR, Mallapuram S, Chintala S, Sreevalli MD, Ramireddy E, Vemireddy LR. Development of miRNA-SSR and target-SSR markers from yield-associate genes and their applicability in the assessment of genetic diversity and association mapping in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:30. [PMID: 38634111 PMCID: PMC11018576 DOI: 10.1007/s11032-024-01462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/25/2024] [Indexed: 04/19/2024]
Abstract
The gene-derived functional markers are considered effective to use in marker-assisted breeding and genetic diversity analysis. As of now, no functional markers have been identified from miRNAs regulating yield traits. The miRNAs play a key role as regulators in controlling the candidate genes involved in grain yield improvement in rice. In this study, 13 miRNA-SSR and their target gene SSR markers were mined from 29 yield-responsive miRNA along with their 29 target genes in rice. The validation of these markers showed that four miRNA-SSRs and one target gene SSR markers had shown polymorphism among 120 diverse rice genotypes. The PIC values ranged from 0.25 (OsARF18-SSR) to 0.72 (miR408-SSR, miR172b-SSR, and miR396f-SSR) with an average value of 0.57. These polymorphic markers grouped 120 rice genotypes into 3 main clusters based on the levels of high genetic diversity. These markers also showed significant association with key yield traits. Among all, miR172b-SSR showed a strong association with plant height in two seasons. This investigation suggests that this new class of molecular markers has great potential in the characterization of rice germplasm by genetic diversity and population structure and in marker-assisted breeding for the development of high-yielding varieties. Supplementary information The online version contains supplementary material available at 10.1007/s11032-024-01462-z.
Collapse
Affiliation(s)
- Bavisetti Hemasai
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Dinesh K. Kumbha
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Vinodkumar Naik Modem
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Srividya K. Gannavarapu
- Dept. of Molecular Biology and Biotechnology, S. V. Agricultural College, ANGRAU, Tirupati, 517 502 Andhra Pradesh India
| | - Rupeshkumar R. Bommaka
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Shanthipriya Mallapuram
- Dept. of Genetics and Plant Breeding, Agricultural Research Station, ANGRAU, Perumallapalle, Tirupati, 517 502 Andhra Pradesh India
| | | | - Muga D. Sreevalli
- Dept. of Genetics and Plant Breeding, S. V. Agricultural College, Acharya N.G. Ranga Agricultural University (ANGRAU), Tirupati, 517 502 Andhra Pradesh India
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institutes of Science Education and Research, Tirupati, 517507 Andhra Pradesh India
| | - Lakshminarayana R. Vemireddy
- Dept. of Molecular Biology and Biotechnology, S. V. Agricultural College, ANGRAU, Tirupati, 517 502 Andhra Pradesh India
| |
Collapse
|
19
|
Sowadan O, Xu S, Li Y, Muleke EM, Sitoe HM, Dang X, Jiang J, Dong H, Hong D. Genome-Wide Association Analysis Unravels New Quantitative Trait Loci (QTLs) for Eight Lodging Resistance Constituent Traits in Rice ( Oryza sativa L.). Genes (Basel) 2024; 15:105. [PMID: 38254994 PMCID: PMC10815206 DOI: 10.3390/genes15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Lodging poses a significant challenge to rice yield, prompting the need to identify elite alleles for lodging resistance traits to improve cultivated rice varieties. In this study, a natural population of 518 rice accessions was examined to identify elite alleles associated with plant height (PH), stem diameter (SD), stem anti-thrust (AT/S), and various internode lengths (first (FirINL), second (SecINL), third (ThirINL), fourth (ForINL), and fifth (FifINL) internode lengths). A total of 262 SSR markers linked to these traits were uncovered through association mapping in two environmental conditions. Phenotypic evaluations revealed striking differences among cultivars, and genetic diversity assessments showed polymorphisms across the accessions. Favorable alleles were identified for PH, SD, AT/S, and one to five internode lengths, with specific alleles displaying considerable effects. Noteworthy alleles include RM6811-160 bp on chromosome 6 (which reduces PH) and RM161-145 bp on chromosome 5 (which increases SD). The study identified a total of 42 novel QTLs. Specifically, seven QTLs were identified for PH, four for SD, five for AT/S, five for FirINL, six for SecINL, five for ThirINL, six for ForINL, and four for FifINL. QTLs qAT/S-2, qPH2.1, qForINL2.1, and qFifINL exhibited the most significant phenotypic variance (PVE) of 3.99% for the stem lodging trait. AT/S, PH, ForINL, and FifINL had additive effects of 5.31 kPa, 5.42 cm, 4.27 cm, and 4.27 cm, respectively, offering insights into eight distinct cross-combinations for enhancing each trait. This research suggests the potential for crossbreeding superior parents based on stacked alleles, promising improved rice cultivars with enhanced lodging resistance to meet market demands.
Collapse
Affiliation(s)
- Ognigamal Sowadan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Shanbin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Yulong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Institute of Crop Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Everlyne Mmbone Muleke
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Department of Agriculture and Land Use Management, School of Agriculture, Veterinary Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega P.O. Box 190-50100, Kenya
| | - Hélder Manuel Sitoe
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
- Faculty of Agronomy and Biological Sciences, Púngue University, P.O. Box 323, Manica 2202, Mozambique
| | - Xiaojing Dang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (X.D.); (J.J.)
| | - Jianhua Jiang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (X.D.); (J.J.)
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| | - Delin Hong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (O.S.); (S.X.); (Y.L.); (E.M.M.); (H.M.S.); (H.D.)
| |
Collapse
|
20
|
Kumari A, Sharma P, Rani M, Laxmi V, Sahil, Sahi C, Satturu V, Katiyar-Agarwal S, Agarwal M. Meta-QTL and ortho analysis unravels the genetic architecture and key candidate genes for cold tolerance at seedling stage in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:93-108. [PMID: 38435852 PMCID: PMC10902255 DOI: 10.1007/s12298-024-01412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 03/05/2024]
Abstract
Rice, a critical cereal crop, grapples with productivity challenges due to its inherent sensitivity to low temperatures, primarily during the seedling and booting stages. Recognizing the polygenic complexity of cold stress signaling in rice, a meta-analysis was undertaken, focusing on 20 physiological traits integral to cold tolerance. This initiative allowed the consolidation of genetic data from 242 QTLs into 58 meta-QTLs, thereby significantly constricting the genetic and physical intervals, with 84% of meta-QTLs (MQTLs) being reduced to less than 2 Mb. The list of 10,505 genes within these MQTLs, was further refined utilizing expression datasets to pinpoint 46 pivotal genes exhibiting noteworthy differential regulation during cold stress. The study underscored the presence of several TFs such as WRKY, NAC, CBF/DREB, MYB, and bHLH, known for their roles in cold stress response. Further, ortho-analysis involving maize, barley, and Arabidopsis identified OsWRKY71, among others, as a prospective candidate for enhancing cold tolerance in diverse crop plants. In conclusion, our study delineates the intricate genetic architecture underpinning cold tolerance in rice and propounds significant candidate genes, offering crucial insights for further research and breeding strategies focused on fortifying crops against cold stress, thereby bolstering global food resilience. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01412-1.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Mamta Rani
- Department of Botany, University of Delhi, Delhi, India
| | - Vijay Laxmi
- Department of Botany, University of Delhi, Delhi, India
| | - Sahil
- Department of Botany, University of Delhi, Delhi, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066 India
| | - Vanisree Satturu
- Professor Jayashankar, Telangana State Agricultural University, Hyderabad, India
| | | | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
21
|
Gupta P, Geniza M, Elser J, Al-Bader N, Baschieri R, Phillips JL, Haq E, Preece J, Naithani S, Jaiswal P. Reference genome of the nutrition-rich orphan crop chia ( Salvia hispanica) and its implications for future breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1272966. [PMID: 38162307 PMCID: PMC10757625 DOI: 10.3389/fpls.2023.1272966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Chia (Salvia hispanica L.) is one of the most popular nutrition-rich foods and pseudocereal crops of the family Lamiaceae. Chia seeds are a rich source of proteins, polyunsaturated fatty acids (PUFAs), dietary fibers, and antioxidants. In this study, we present the assembly of the chia reference genome, which spans 303.6 Mb and encodes 48,090 annotated protein-coding genes. Our analysis revealed that ~42% of the chia genome harbors repetitive content, and identified ~3 million single nucleotide polymorphisms (SNPs) and 15,380 simple sequence repeat (SSR) marker sites. By investigating the chia transcriptome, we discovered that ~44% of the genes undergo alternative splicing with a higher frequency of intron retention events. Additionally, we identified chia genes associated with important nutrient content and quality traits, such as the biosynthesis of PUFAs and seed mucilage fiber (dietary fiber) polysaccharides. Notably, this is the first report of in-silico annotation of a plant genome for protein-derived small bioactive peptides (biopeptides) associated with improving human health. To facilitate further research and translational applications of this valuable orphan crop, we have developed the Salvia genomics database (SalviaGDB), accessible at https://salviagdb.org.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Matthew Geniza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Noor Al-Bader
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, OR, United States
| | - Rachel Baschieri
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeremy Levi Phillips
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Ebaad Haq
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
22
|
Niu Z, Lin Z, Tong Y, Chen X, Deng Y. Complete plastid genome structure of 13 Asian Justicia (Acanthaceae) species: comparative genomics and phylogenetic analyses. BMC PLANT BIOLOGY 2023; 23:564. [PMID: 37964203 PMCID: PMC10647099 DOI: 10.1186/s12870-023-04532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Justicia L. is the largest genus in Acanthaceae Juss. and widely distributed in tropical and subtropical regions of the world. Previous phylogenetic studies have proposed a general phylogenetic framework for Justicia based on several molecular markers. However, their studies were mainly focused on resolution of phylogenetic issues of Justicia in Africa, Australia and South America due to limited sampling from Asia. Additionally, although Justicia plants are of high medical and ornamental values, little research on its genetics was reported. Therefore, to improve the understanding of its genomic structure and relationships among Asian Justicia plants, we sequenced complete chloroplast (cp.) genomes of 12 Asian plants and combined with the previously published cp. genome of Justicia leptostachya Hemsl. for further comparative genomics and phylogenetic analyses. RESULTS All the cp. genomes exhibit a typical quadripartite structure without genomic rearrangement and gene loss. Their sizes range from 148,374 to 151,739 bp, including a large single copy (LSC, 81,434-83,676 bp), a small single copy (SSC, 16,833-17,507 bp) and two inverted repeats (IR, 24,947-25,549 bp). GC contents range from 38.1 to 38.4%. All the plastomes contain 114 genes, including 80 protein-coding genes, 30 tRNAs and 4 rRNAs. IR variation and repetitive sequences analyses both indicated that Justicia grossa C. B. Clarke is different from other Justicia species because its lengths of ndhF and ycf1 in IRs are shorter than others and it is richest in SSRs and dispersed repeats. The ycf1 gene was identified as the candidate DNA barcode for the genus Justicia. Our phylogenetic results showed that Justicia is a polyphyletic group, which is consistent with previous studies. Among them, J. grossa belongs to subtribe Tetramerinae of tribe Justicieae while the other Justicia members belong to subtribe Justiciinae. Therefore, based on morphological and molecular evidence, J. grossa should be undoubtedly recognized as a new genus. Interestingly, the evolutionary history of Justicia was discovered to be congruent with the morphology evolution. CONCLUSION Our study not only elucidates basic features of Justicia whole plastomes, but also sheds light on interspecific relationships of Asian Justicia plants for the first time.
Collapse
Affiliation(s)
- Zhengyang Niu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheli Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, 512005, China
| | - Yi Tong
- School of Chinese Materia Medica Medical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
23
|
Amkul K, Laosatit K, Lin Y, Yuan X, Chen X, Somta P. A Gene Encoding Xylanase Inhibitor Is a Candidate Gene for Bruchid ( Callosobruchus spp.) Resistance in Zombi Pea ( Vigna vexillata (L.) A. Rich). PLANTS (BASEL, SWITZERLAND) 2023; 12:3602. [PMID: 37896065 PMCID: PMC10610162 DOI: 10.3390/plants12203602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Two bruchid species, Callosobruchus maculatus and Callosobruchus chinensis, are the most significant stored insect pests of tropical legume crops. Previously, we identified a major QTL, qBr6.1, controlling seed resistance to these bruchids in the cultivated zombi pea (Vigna vexillata) accession 'TVNu 240'. In this study, we have narrowed down the qBr6.1 region and identified a candidate gene conferring this resistance. Fine mapping using F2 and F2:3 populations derived from a cross between TVNu 240 and TVNu 1623 (susceptible) revealed the existence of two tightly linked QTLs, designated qBr6.1-A and qBr6.1-B, within the qBr6.1. The QTLs qBr6.1-A and qBr6.1-B explained 37.46% and 10.63% of bruchid resistance variation, respectively. qBr6.1-A was mapped to a 28.24 kb region containing four genes, from which the gene VvTaXI encoding a xylanase inhibitor was selected as a candidate gene responsible for the resistance associated with the qBr6.1-A. Sequencing and sequence alignment of VvTaXI from TVNu 240 and TVNu 1623 revealed a 1-base-pair insertion/deletion and five single-nucleotide polymorphisms (SNPs) in the 5' UTR and 11 SNPs in the exon. Alignment of the VvTAXI protein sequences showed five amino acid changes between the TVNu 240 and TVNu 1623 sequences. Altogether, these results demonstrated that the VvTaXI encoding xylanase inhibitor is the candidate gene conferring bruchid resistance in the zombi pea accession TVNu 240. The gene VvTaXI will be useful for the molecular breeding of bruchid resistance in the zombi pea.
Collapse
Affiliation(s)
- Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| |
Collapse
|
24
|
Chaudhary S, Singh RK, Kumar P. Genome-wide identification, characterization and primer designing of simple sequence repeats across Leguminosae family. 3 Biotech 2023; 13:286. [PMID: 37520343 PMCID: PMC10382446 DOI: 10.1007/s13205-023-03706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023] Open
Abstract
Legumes are important clade of commercially important family Leguminosae that mainly include medicinal, flowering and edible plants. Although the genomic sequence of legumes is accessible, only the limited number of effective simple sequence repeat markers has been identified by prior research. Additional polymorphic simple sequence repeats marker discovery will aid in the genetics and breeding of legumes. In this study, 13 complete genome sequences were screened for the identification of chromosome-wise simple sequence repeats (SSRs) and 1,866,861 SSRs were identified. Based on the study, it was observed that the number of SSRs in non-coding region was more as compared to coding region and frequency of mononucleotides was highest followed by di-nucleotides while penta- and hexa-nucleotide repeats were least frequent one. The identified genome-wide SSRs and newly developed SSR markers, primers and their mapping will provide a powerful means for genetic researches across Leguminosae plants, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping and marker-assisted selection for breeding as well as comparative genomic analysis studies.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Ravi Kant Singh
- Amity Institute of Biotechnology, Amity University, Noida, UP 201313 India
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, UP 226007 India
| |
Collapse
|
25
|
Goto S, Fujii H, Hamada H, Ohta S, Endo T, Shimizu T, Nonaka K, Shimada T. Allelic haplotype combinations at the MS-P1 region, including P-class pentatricopeptide repeat family genes, influence wide phenotypic variation in pollen grain number through a cytoplasmic male sterility model in citrus. FRONTIERS IN PLANT SCIENCE 2023; 14:1163358. [PMID: 37342126 PMCID: PMC10278581 DOI: 10.3389/fpls.2023.1163358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
In citrus breeding programs, male sterility is an important trait for developing seedless varieties. Sterility associated with the male sterile cytoplasm of Kishu mandarin (Kishu-cytoplasm) has been proposed to fit the cytoplasmic male sterility (CMS) model. However, it remains undetermined whether CMS in citrus is controlled by interactions between sterile cytoplasm and nuclear restorer-of-fertility (Rf) genes. Accordingly, mechanisms underlying the control of the wide phenotypic variation in pollen number for breeding germplasm should be elucidated. This study aimed to identify complete linkage DNA markers responsible for male sterility at the MS-P1 region based on fine mapping. Two P-class pentatricopeptide repeat (PPR) family genes were identified as candidates for Rf based on predicted mitochondrial localization and higher expression in a male fertile variety/selected strain than in a male sterile variety. Eleven haplotypes (HT1-HT11) at the MS-P1 region were defined based on genotyping of DNA markers. Association analysis of diplotypes at the MS-P1 region and the number of pollen grains per anther (NPG) in breeding germplasms harboring Kishu-cytoplasm revealed that the diplotypes in this region influenced NPG. Among these haplotypes, HT1 is a non-functional restorer-of-fertility (rf) haplotype; HT2, a less-functional Rf; HT3-HT5 are semi-functional Rfs; and HT6 and HT7 are functional Rfs. However, the rare haplotypes HT8-HT11 could not be characterized. Therefore, P-class PPR family genes in the MS-P1 region may constitute the nuclear Rf genes within the CMS model, and a combination of the seven haplotypes could contribute to phenotypic variation in the NPG of breeding germplasms. These findings reveal the genomic mechanisms of CMS in citrus and will contribute to seedless citrus breeding programs by selecting candidate seedless seedlings using the DNA markers at the MS-P1 region.
Collapse
Affiliation(s)
- Shingo Goto
- Citrus Breeding and Production Group, Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kamal MM, Nguyen CD, Sanada-Morimura S, Zheng SH, Fujita D. Near-isogenic lines for resistance to brown planthopper with the genetic background of Indica Group elite rice ( Oryza sativa L.) variety 'IR64'. BREEDING SCIENCE 2023; 73:278-289. [PMID: 37840984 PMCID: PMC10570883 DOI: 10.1270/jsbbs.22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/25/2023] [Indexed: 10/17/2023]
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål, is an insect pest that severely damages rice (Oryza sativa L.) in Asia, causing huge yield loss. Use of resistant variety is a cost-effective and eco-friendly strategy for maintaining BPH populations below the economic injury level. However, current BPH populations have been changed to virulence against resistant varieties. In this study, to estimate effective combinations among eight BPH resistance genes (BPH32, BPH17-ptb, BPH20, BPH17, BPH3, BPH25, BPH26 and qBPH6), eight near-isogenic lines with the genetic background of an Indica Group rice variety 'IR64' (IR64-NIL) were developed using marker-assisted selection. The genome recoveries of these NILs ranged from 89.3% to 98.8% and agronomic traits of them were similar to those of 'IR64'. In modified seed box screening test, resistance level of IR64-NILs was higher than that of 'IR64'. In antibiosis test, high adult mortalities of BPH (from 56.0% to 97.0%) were observed among NILs, in comparison with that of 'IR64'. Among IR64-NILs, the line carrying BPH17 showed the highest resistance level at all tests. Thus, these IR64-NILs with multiple BPH resistance genes could be valuable breeding lines for enhancing resistance levels by gene pyramiding and multiline variety.
Collapse
Affiliation(s)
- Md. Mostofa Kamal
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Agrotechnology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Cuong Dinh Nguyen
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Biotechnology Department, College of Food Industry, 101B Le Huu Trac Street, Son Tra District, Da Nang City 550000, Vietnam
| | - Sachiyo Sanada-Morimura
- Agro-Enviroment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Shao-Hui Zheng
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Daisuke Fujita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
27
|
Anilkumar C, Muhammed Azharudheen TP, Sah RP, Sunitha NC, Devanna BN, Marndi BC, Patra BC. Gene based markers improve precision of genome-wide association studies and accuracy of genomic predictions in rice breeding. Heredity (Edinb) 2023; 130:335-345. [PMID: 36792661 PMCID: PMC10163052 DOI: 10.1038/s41437-023-00599-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
It is hypothesized that the genome-wide genic markers may increase the prediction accuracy of genomic selection for quantitative traits. To test this hypothesis, a set of candidate gene-based markers for yield and grain traits-related genes cloned across the rice genome were custom-designed. A multi-model, multi-locus genome-wide association study (GWAS) was performed using new genic markers developed to test their effectiveness for gene discovery. Two multi-locus models, FarmCPU and mrMLM, along with a single-locus mixed linear model (MLM), identified 28 significant marker-trait associations. These associations revealed novel causative alleles for grain weight and pleiotropic associations with other traits. For instance, the marker YD91 derived from the gene OsAAP3 on chromosome 1 was consistently associated with grain weight, while the gene has a significant effect on grain yield. Furthermore, nine genomic selection methods, including regression-based and machine learning-based models, were used to predict grain weight using a leave-one-out five-fold cross-validation approach to optimize the genomic selection model with genic markers. Among nine prediction models, Kernel Hilbert Space Regression (RKHS) is the best among regression-based models, and Random Forest Regression (RFR) is the best among machine learning-based models. Genomic prediction accuracies with and without GWAS significant markers were compared to assess the effectiveness of markers. The rapid decreases in prediction accuracy upon dropping GWAS significant markers indicate the effectiveness of new genic markers in genomic selection. Apart from that, the candidate gene-based markers were found to be more effective in genomic selection programs for better accuracy.
Collapse
|
28
|
Zhu Z, Liu Y, Zhang S, Wang S, Yang T. Genomic microsatellite characteristics analysis of Dysommaanguillare (Anguilliformes, Dysommidae), based on high-throughput sequencing technology. Biodivers Data J 2023; 11:e100068. [PMID: 38327339 PMCID: PMC10848815 DOI: 10.3897/bdj.11.e100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/31/2023] [Indexed: 02/09/2024] Open
Abstract
Microsatellite loci were screened from the genomic data of Dysommaanguillare and their composition and distribution were analysed by bioinformatics for the first time. The results showed that 4,060,742 scaffolds with a total length of 1,562 Mb were obtained by high-throughput sequencing and 1,160,104 microsatellite loci were obtained by MISA screening, which were distributed on 770,294 scaffolds. The occurrence frequency and relative abundance were 28.57% and 743/Mb, respectively. Amongst the six complete microsatellite types, dinucleotide repeats accounted for the largest proportion (592,234, 51.05%), the highest occurrence frequency (14.58%) and the largest relative abundance (379.27/Mb). A total of 1488 microsatellite repeats were detected in the genome of D.anguillare, amongst which the hexanucleotide repeat motifs were the most abundant (608), followed by pentanucleotide repeat motifs (574), tetranucleotide repeat motifs (232), trinucleotide repeat motifs (59), dinucleotide repeat motifs (11) and mononucleotide repeat motifs (4). The abundance of microsatellites of the same repeat type decreased with the increase of copy numbers. Amongst the six types of nucleotide repeats, the preponderance of repeated motifs are A (191,390, 43.77%), CA (150,240, 25.37%), AAT (13,168, 14.05%), CACG (2,649, 8.14%), TAATG (119, 19.16%) and CCCTAA (190, 19.16%, 7.65%), respectively. The data of the number, distribution and abundance of different types of microsatellites in the genome of D.anguillare were obtained in this study, which would lay a foundation for the development of high-quality microsatellite markers of D.anguillare in the future.
Collapse
Affiliation(s)
- Ziyan Zhu
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Yuping Liu
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Guangzhou, ChinaGuangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research InstituteGuangzhouChina
| | - Sige Wang
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| | - Tianyan Yang
- Zhejiang Ocean University, Zhoushan, ChinaZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
29
|
Cui J, Qiu T, Li L, Cui S. De novo full-length transcriptome analysis of two ecotypes of Phragmites australis (swamp reed and dune reed) provides new insights into the transcriptomic complexity of dune reed and its long-term adaptation to desert environments. BMC Genomics 2023; 24:180. [PMID: 37020272 PMCID: PMC10077656 DOI: 10.1186/s12864-023-09271-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The extremely harsh environment of the desert is changing dramatically every moment, and the rapid adaptive stress response in the short term requires enormous energy expenditure to mobilize widespread regulatory networks, which is all the more detrimental to the survival of the desert plants themselves. The dune reed, which has adapted to desert environments with complex and variable ecological factors, is an ideal type of plant for studying the molecular mechanisms by which Gramineae plants respond to combinatorial stress of the desert in their natural state. But so far, the data on the genetic resources of reeds is still scarce, therefore most of their research has focused on ecological and physiological studies. RESULTS In this study, we obtained the first De novo non-redundant Full-Length Non-Chimeric (FLNC) transcriptome databases for swamp reeds (SR), dune reeds (DR) and the All of Phragmites australis (merged of iso-seq data from SR and DR), using PacBio Iso-Seq technology and combining tools such as Iso-Seq3 and Cogent. We then identified and described long non-coding RNAs (LncRNA), transcription factor (TF) and alternative splicing (AS) events in reeds based on a transcriptome database. Meanwhile, we have identified and developed for the first time a large number of candidates expressed sequence tag-SSR (EST-SSRs) markers in reeds based on UniTransModels. In addition, through differential gene expression analysis of wild-type and homogenous cultures, we found a large number of transcription factors that may be associated with desert stress tolerance in the dune reed, and revealed that members of the Lhc family have an important role in the long-term adaptation of dune reeds to desert environments. CONCLUSIONS Our results provide a positive and usable genetic resource for Phragmites australis with a widespread adaptability and resistance, and provide a genetic database for subsequent reeds genome annotation and functional genomic studies.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Tianhang Qiu
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China.
| |
Collapse
|
30
|
Meena RK, Kashyap P, Shamoon A, Dhyani P, Sharma H, Bhandari MS, Barthwal S, Ginwal HS. Genome survey sequencing-based SSR marker development and their validation in Dendrocalamus longispathus. Funct Integr Genomics 2023; 23:103. [PMID: 36973584 DOI: 10.1007/s10142-023-01033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Bamboo is an important genetic resource in India, supporting rural livelihood and industries. Unfortunately, most Indian bamboo taxa are devoid of basic genomic or marker information required to comprehend the genetic processes for further conservation and management. In this study, we perform genome survey sequencing for development of de novo genomic SSRs in Dendrocalamus longispathus, a socioeconomically important bamboo species of northeast India. Using Illumina platform, 69.49 million raw reads were generated and assembled into 1,145,321 contig with GC content 43% and N50 1228 bp. In total, 46,984 microsatellite repeats were mined-out wherein di-nucleotide repeats were most abundant (54.71%) followed by mono- (31.91%) and tri-repeats (9.85%). Overall, AT-rich repeats were predominant in the genome, but GC-rich motifs were more frequent in tri-repeats. Afterwards, 21,596 SSR loci were successfully tagged with the primer pairs, and a subset of 50 were validated through polymerase chain reaction amplification. Of these, 36 SSR loci were successfully amplified, and 16 demonstrated polymorphism. Using 13 polymorphic SSRs, a moderate level of gene diversity (He = 0.480; Ar = 3.52) was recorded in the analysed populations of D. longispathus. Despite the high gene flow (Nm = 4.928) and low genetic differentiation (FST = 0.119), severe inbreeding (FIS = 0.407) was detected. Further, genetic clustering and STRUCTURE analysis revealed that the entire genetic variability is captured under two major gene pools. Conclusively, we present a comprehensive set of novel SSR markers in D. longispathus as well as other taxa of tropical woody bamboos.
Collapse
Affiliation(s)
- Rajendra K Meena
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India.
| | - Priyanka Kashyap
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Arzoo Shamoon
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Payal Dhyani
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Hansraj Sharma
- ICFRE - Bamboo & Rattan Centre, Aizawl, 796007, Mizoram, India
- ICFRE-Rain Forest Research Institute, Jorhat, 785001, Assam, India
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Santan Barthwal
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Harish S Ginwal
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| |
Collapse
|
31
|
Zhao M, Shu G, Hu Y, Cao G, Wang Y. Pattern and variation in simple sequence repeat (SSR) at different genomic regions and its implications to maize evolution and breeding. BMC Genomics 2023; 24:136. [PMID: 36944913 PMCID: PMC10029318 DOI: 10.1186/s12864-023-09156-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/30/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Repetitive DNA sequences accounts for over 80% of maize genome. Although simple sequence repeats (SSRs) account for only 0.03% of the genome, they have been widely used in maize genetic research and breeding as highly informative codominant DNA markers. The genome-wide distribution and polymorphism of SSRs are not well studied due to the lack of high-quality genome DNA sequence data. RESULTS In this study, using data from high-quality de novo-sequenced maize genomes of five representative maize inbred lines, we revealed that SSRs were more densely present in telomeric region than centromeric region, and were more abundant in genic sequences than intergenic sequences. On genic sequences, tri- and hexanucleotide motifs were more abundant in CDS sequence and some mono- and dinucleotide motifs were more abundant in UTR sequences. Median length and chromosomal density of SSRs were both narrowly range-bound, with median length of 14-18 bp and genome-wide average density of 3355.77 bp/Mbp. LTR-RTs of < 0.4 Mya had higher SSR density (4498-4992 bp/Mbp). The genome-specific and motif-specific SSR polymorphism were studied. Their potential breeding applications were discussed. CONCLUSIONS We found that the median length of SSR sequences of different SSR motifs was nearly constant. SSR density in genic regions was much higher than intergenic regions. In addition, SSR density at LTR-RTs of different evolutionary ages varied in a narrow range. The SSRs and their LTR-RT carriers evolved at an equal rate. All these observations indicated that SSR length and density were under control of yet unknown evolutionary forces. The chromosome region-specific and motif-specific SSR polymorphisms we observed supported the notion that SSR polymorphism was invaluable genome resource for developing highly informative genome and gene markers in maize genetic research and molecular breeding.
Collapse
Affiliation(s)
- Meiqi Zhao
- Zhengzhou University Graduate Student Training Base at Beijing Lantron Seed, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guoping Shu
- Zhengzhou University Graduate Student Training Base at Beijing Lantron Seed, Zhengzhou, 450001, China
- Center of Biotechnology, Beijing Lantron Seed, Zhengzhou, 450001, China
| | - Yanhong Hu
- Zhengzhou University Graduate Student Training Base at Beijing Lantron Seed, Zhengzhou, 450001, China
- Center of Biotechnology, Beijing Lantron Seed, Zhengzhou, 450001, China
| | - Gangqiang Cao
- Zhengzhou University Graduate Student Training Base at Beijing Lantron Seed, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yibo Wang
- Zhengzhou University Graduate Student Training Base at Beijing Lantron Seed, Zhengzhou, 450001, China.
- Center of Biotechnology, Beijing Lantron Seed, Zhengzhou, 450001, China.
- Henan LongPing-Lantron AgriScience & Technology Co., LTD, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Thulasinathan T, Ayyenar B, Kambale R, Manickam S, Chellappan G, Shanmugavel P, Narayanan MB, Swaminathan M, Muthurajan R. Marker Assisted Introgression of Resistance Genes and Phenotypic Evaluation Enabled Identification of Durable and Broad-Spectrum Blast Resistance in Elite Rice Cultivar, CO 51. Genes (Basel) 2023; 14:genes14030719. [PMID: 36980991 PMCID: PMC10048046 DOI: 10.3390/genes14030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 03/17/2023] Open
Abstract
Across the globe, rice cultivation is seriously affected by blast disease, caused by Magnaporthe oryzae. This disease has caused heavy yield loss to farmers over the past few years. In this background, the most affordable and eco-friendly strategy is to introgress blast-resistant genes from donors into elite rice cultivars. However, it is not only challenging to evolve such resistance lines using conventional breeding approaches, but also a time-consuming process. Therefore, the marker-assisted introduction of resistance genes has been proposed as a rapid strategy to develop durable and broad-spectrum resistance in rice cultivars. The current study highlights the successful introgression of a blast resistance gene, i.e., Pi9, into CO 51, an elite rice cultivar which already has another resistance gene named Pi54. The presence of two blast resistance genes in the advanced backcross breeding materials (BC2F2:3) was confirmed in this study through a foreground selection method using functional markers such as NBS4 and Pi54MAS. The selected positive introgressed lines were further genotyped for background selection with 55 SSR markers that are specific to CO 51. Consequently, both Pi9 as well as Pi54 pyramided lines, with 82.7% to 88.1% of the recurrent parent genome recovery, were identified and the selected lines were evaluated under hotspot. The analysis outcomes found that both the lines possessed a high level of resistance against blast disease during the seedling stage itself. In addition to this, it was also noticed that the advanced breeding rice lines that carry Pi9 + Pi54 were effective in nature and exhibited a higher degree of resistance against blast disease compared to the lines that were introgressed with a single blast resistance gene. Thus, the current study demonstrates a rapid and a successful introgression and pyramiding of two blast resistance genes, with the help of markers, into a susceptible yet high-yielding elite rice cultivar within a short period of time. Those gene pyramided rice lines can be employed as donors to introgress the blast-resistant genes in other popular susceptible cultivars.
Collapse
Affiliation(s)
- Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Bharathi Ayyenar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Gopalakrishnan Chellappan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Priyanka Shanmugavel
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manikanda B. Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Manonmani Swaminathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence:
| |
Collapse
|
33
|
Kumari A, Sharma D, Sharma P, Wang C, Verma V, Patil A, Imran M, Singh MP, Kumar K, Paritosh K, Caragea D, Kapoor S, Chandel G, Grover A, Jagadish SVK, Katiyar-Agarwal S, Agarwal M. Meta-QTL and haplo-pheno analysis reveal superior haplotype combinations associated with low grain chalkiness under high temperature in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1133115. [PMID: 36968399 PMCID: PMC10031497 DOI: 10.3389/fpls.2023.1133115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Chalk, an undesirable grain quality trait in rice, is primarily formed due to high temperatures during the grain-filling process. Owing to the disordered starch granule structure, air spaces and low amylose content, chalky grains are easily breakable during milling thereby lowering head rice recovery and its market price. Availability of multiple QTLs associated with grain chalkiness and associated attributes, provided us an opportunity to perform a meta-analysis and identify candidate genes and their alleles contributing to enhanced grain quality. From the 403 previously reported QTLs, 64 Meta-QTLs encompassing 5262 non-redundant genes were identified. MQTL analysis reduced the genetic and physical intervals and nearly 73% meta-QTLs were narrower than 5cM and 2Mb, revealing the hotspot genomic regions. By investigating expression profiles of 5262 genes in previously published datasets, 49 candidate genes were shortlisted on the basis of their differential regulation in at least two of the datasets. We identified non-synonymous allelic variations and haplotypes in 39 candidate genes across the 3K rice genome panel. Further, we phenotyped a subset panel of 60 rice accessions by exposing them to high temperature stress under natural field conditions over two Rabi cropping seasons. Haplo-pheno analysis uncovered haplotype combinations of two starch synthesis genes, GBSSI and SSIIa, significantly contributing towards the formation of grain chalk in rice. We, therefore, report not only markers and pre-breeding material, but also propose superior haplotype combinations which can be introduced using either marker-assisted breeding or CRISPR-Cas based prime editing to generate elite rice varieties with low grain chalkiness and high HRY traits.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Divya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Priya Sharma
- Department of Botany, University of Delhi, Delhi, India
| | - Sahil
- Department of Botany, University of Delhi, Delhi, India
| | - Chaoxin Wang
- Department of Computer Science, Kansas State University, Manhattan, KS, United States
| | - Vibha Verma
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Arun Patil
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Chattisgarh, India
| | - Md Imran
- Department of Botany, University of Delhi, Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Kuldeep Kumar
- National Institute for Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, New Delhi, India
| | - Doina Caragea
- Department of Computer Science, Kansas State University, Manhattan, KS, United States
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Girish Chandel
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Chattisgarh, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | | | | | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
34
|
Tan C, Zhang H, Chen H, Guan M, Zhu Z, Cao X, Ge X, Zhu B, Chen D. First Report on Development of Genome-Wide Microsatellite Markers for Stock ( Matthiola incana L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:748. [PMID: 36840095 PMCID: PMC9965543 DOI: 10.3390/plants12040748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Stock (Matthiola incana (L.) R. Br.) is a famous annual ornamental plant with important ornamental and economic value. The lack of DNA molecular markers has limited genetic analysis, genome evolution, and marker-assisted selective breeding studies of M. incana. Therefore, more DNA markers are needed to support the further elucidation of the biology and genetics of M. incana. In this study, a high-quality genome of M. incana was initially assembled and a set of effective SSR primers was developed at the whole-genome level using genome data. A total of 45,612 loci of SSRs were identified; the di-nucleotide motifs were the most abundant (77.35%). In total, 43,540 primer pairs were designed, of which 300 were randomly selected for PCR validation, and as the success rate for amplification. In addition, 22 polymorphic SSR markers were used to analyze the genetic diversity of 40 stock varieties. Clustering analysis showed that all varieties could be divided into two clusters with a genetic distance of 0.68, which were highly consistent with their flower shape (potted or cut type). Moreover, we have verified that these SSR markers are effective and transferable within the Brassicaceae family. In this study, potential SSR molecular markers were successfully developed for 40 M. incana varieties using whole genome analysis, providing an important genetic tool for theoretical and applied research on M. incana.
Collapse
Affiliation(s)
- Chen Tan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haimei Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haidong Chen
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Miaotian Guan
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Zhenzhi Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xueying Cao
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Xianhong Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 431700, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Daozong Chen
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
35
|
Sah RP, Nayak AK, Chandrappa A, Behera S, Azharudheen Tp M, Lavanya GR. cgSSR marker-based genome-wide association study identified genomic regions for panicle characters and yield in rice (Oryza sativa L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:720-728. [PMID: 36054367 DOI: 10.1002/jsfa.12183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND To improve production efficiency, positive alleles corresponding to yield-related attributes must be accumulated in a single elite background. We designed and used cgSSR markers, which are superior to random SSR markers in genome-wide association study, to identify genomic regions that contribute to panicle characters and grain yield in this study. RESULTS As evidenced by the high polymorphic information content value and gene diversity coefficient, the new cgSSR markers were determined to be highly informative. These cgSSR markers were employed to generate genotype data for an association panel evaluated for four panicle characters and grain yield over three seasons. For five traits, 17 significant marker-trait associations on six chromosomes were discovered. The percentage of phenotypic variance that could be explained ranged from 4% to 13%. Unrelated gene-derived markers had a strong association with target traits as well. CONCLUSION Trait-associated cgSSR markers derived from corresponding or related genes ensure their utility in direct allele selection, while other linked markers aid in allele selection indirectly by altering the phenotype of interest. Through a marker-assisted breeding approach, these marker-trait associations can be leveraged to accumulate favourable alleles for yield enhancement in rice. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rameswar Prasad Sah
- Crop Improvement Division, ICAR - National Rice Research Institute, Cuttack, India
| | - Amrit Kumar Nayak
- Department of Genetics and Plant breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Anilkumar Chandrappa
- Crop Improvement Division, ICAR - National Rice Research Institute, Cuttack, India
| | - Sasmita Behera
- Crop Improvement Division, ICAR - National Rice Research Institute, Cuttack, India
| | | | - G Roopa Lavanya
- Department of Genetics and Plant breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| |
Collapse
|
36
|
Taura S, Ichitani K. Chromosomal Location of xa19, a Broad-Spectrum Rice Bacterial Blight Resistant Gene from XM5, a Mutant Line from IR24. PLANTS (BASEL, SWITZERLAND) 2023; 12:602. [PMID: 36771686 PMCID: PMC9919685 DOI: 10.3390/plants12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Bacterial blight is an important rice disease caused by bacteria named Xanthomonas oryzae pv. oryzae (Xoo). XM5 is an Xoo resistant mutant line with the genetic background of IR24, an Indica Xoo susceptible cultivar, induced by a chemical mutagen N-methyl-N-nitrosourea (MNU). XM5 carries a recessive Xoo resistant gene, xa19. Trisomic analysis was conducted using the cross between XM5 and the trisomic series under the genetic background of IR24, showing that xa19 was located on chromosome 7. The approximate chromosomal location was found using 37 surely resistant plants in the F2 population from XM5 × Kinmaze, which was susceptible to most Japanese Xoo races. The IAS44 line carries a Japonica cultivar Asominori chromosomal segment covering the xa19 locus under the IR24 genetic background. Linkage analysis using the F2 population from the cross between XM5 and IAS44 revealed that xa19 was located within the 0.8 cM region between RM8262 and RM6728. xa19 is not allelic to the known Xoo resistant genes. However, its location suggests that it might be allelic to a lesion-mimic mutant gene spl5, some alleles of which are resistant to several Xoo races. Together with xa20 and xa42, three Xoo resistant genes were induced from IR24 by MNU. The significance of chemical mutagen as a source of Xoo resistance was discussed.
Collapse
Affiliation(s)
- Satoru Taura
- Institute of Gene Research, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Katsuyuki Ichitani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
37
|
Vittal H, Sharma N, Dubey AK, Shivran M, Singh SK, Meena MC, Kumar N, Sharma N, Singh N, Pandey R, Bollinedi H, Singh BP, Sharma RM. Rootstock-mediated carbohydrate metabolism, nutrient contents, and physiological modifications in regular and alternate mango (Mangifera indica L.) scion varieties. PLoS One 2023; 18:e0284910. [PMID: 37134101 PMCID: PMC10155985 DOI: 10.1371/journal.pone.0284910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Most of the popular scion varieties of mango possess alternate/irregular bearing. There are many external and internal factors assigned, among them carbohydrate reserves, and nutrient content plays important roles in the floral induction process in many crop species. In addition to that rootstock can alter the carbohydrate reserve and nutrient acquisition of scion varieties in fruit crops. The present investigation was carried out to understand the effect of rootstocks on the physiochemical traits of leaf, and bud and nutrient content in regular and alternate bearing varieties of mango. The rootstock "Kurukkan" promoted starch content in leaves of both alternate bearing varieties 'Dashehari' (5.62 mg/g) and regular 'Amrapali' (5.49 mg/g) and encouraged higher protein content (6.71 mg/g) and C/N ratio (37.94) in buds of alternate bearing 'Dashehari'. While Olour rootstock upregulated the reducing sugar in leaves of 'Amrapali' (43.56 mg/g) and promoted K (1.34%) and B (78.58 ppm) content in reproductive buds of 'Dashehari'. Stomatal density in 'Dashehari' scion variety was found higher on Olour rootstock (700.40/mm 2), while the rootstock fails to modify stomatal density in the scion variety regular bearer 'Amrapali'. Further, a total of 30 carbohydrate metabolism-specific primers were designed and validated in 15 scion/rootstock combinations. A total of 33 alleles were amplified among carbohydrate metabolism-specific markers, which varied from 2 to 3 alleles with a mean of 2.53 per locus. Maximum and minimum PIC value was found for NMSPS10, and NMTPS9 primers (0.58). Cluster analysis revealed that scion grafted on Kurukkan rootstock clustered together except 'Pusa Arunima' on Olour rootstock. Our analysis revealed that Fe is the key component that is commonly expressed in both leaf and bud. Although Stomatal density (SD) and Intercellular CO2 Concentration (Ci) are more specific to leaf and Fe, B, and total sugar (TS) are abundant in buds. Based on the results it can be inferred that the physiochemical and nutrient responses of mango scion varieties are manipulated by the rootstock, hence, the scion-rootstock combination can be an important consideration in mango for selecting suitable rootstock for alternate/irregular bearer varieties.
Collapse
Affiliation(s)
- Hatkari Vittal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nimisha Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mukesh Shivran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjay Kumar Singh
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | | | - Nirmal Kumar
- ICAR-National Bureau of Soil Survey & Land Use Planning, Nagpur, Maharashtra, India
| | - Neha Sharma
- IILM- IILM Academy of Higher Learning, College of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Nisha Singh
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Rakesh Pandey
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | |
Collapse
|
38
|
Lu S. Transcriptome analysis and development of EST-SSR markers in Anoectochilus emeiensis (Orchidaceae). PLoS One 2022; 17:e0278551. [PMID: 36472967 PMCID: PMC9725121 DOI: 10.1371/journal.pone.0278551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Anoectochilus emeiensis K. Y. Lang, together with other Anoectochilus species, has long been used as the main source of many traditional Chinese medicines. Owing to the shortcomings of molecular markers, the study of the genetic diversity and medicinal component synthesis mechanism of the endemic Anoectochilus species has been delayed. In this study, I carried out a transcriptome analysis of A. emeiensis. A total of 78,381 unigenes were assembled from 64.2 million reads, and 47,541 (60.65%) unigenes were matched to known proteins in the public databases. Then, 9284 expressed sequence tag-derived simple sequence repeats (EST-SSRs) were identified, and the frequency of SSRs in the A. emeiensis transcriptome was 9.88%. Trinucleotide repeats (3699, 39.84%) were the most common type, followed by dinucleotide (3251, 35.02%) and mononucleotide (1750, 18.85%) repeats. Based on the SSR sequence, 6683 primer pairs were successfully designed, 40 primer pairs were randomly selected, and 10 primer pairs were identified as polymorphic loci from 186 individuals of A. emeiensis. The EST-SSR markers examined in this study will be informative for future population genetic studies of A. emeiensis.
Collapse
Affiliation(s)
- Song Lu
- Sichuan Natural Resources Academy, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
39
|
Nair MM, Kumar SHK, Jyothsna S, Sundaram KT, Manjunatha C, Sivasamy M, Alagu M. Stem and leaf rust-induced miRNAome in bread wheat near-isogenic lines and their comparative analysis. Appl Microbiol Biotechnol 2022; 106:8211-8232. [PMID: 36385566 DOI: 10.1007/s00253-022-12268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
Abstract
Wheat rusts remain a major threat to global wheat production and food security. The R-gene-mediated resistance has been employed as an efficient approach to develop rust-resistant varieties. However, evolution of new fungal races and infection strategies put forward the urgency of unravelling novel molecular players, including non-coding RNAs for plant response. This study identified microRNAs associated with Sr36 and Lr45 disease resistance genes in response to stem and leaf rust, respectively. Here, small RNA sequencing was performed on susceptible and resistant wheat near-isogenic lines inoculated with stem and leaf rust pathotypes. microRNA mining in stem rust-inoculated cultivars revealed a total of distinct 26 known and 7 novel miRNAs, and leaf rust libraries culminated with 22 known and 4 novel miRNAs. The comparative analysis between two disease sets provides a better understanding of altered miRNA profiles associated with respective R-genes and infections. Temporal differential expression pattern of miRNAs pinpoints their role during the progress of infection. Differential expression pattern of miRNAs among various treatments as well as time-course expression of miRNAs revealed stem and leaf rust-responsive miRNAs and their possible role in balancing disease resistance/susceptibility. Disclosure of guide strand, passenger strand and a variant of novel-Tae-miR02 from different subgenome origins might serve as a potential link between stem and leaf rust defence mechanisms downstream to respective R-genes. The outcome from the analysis of microRNA dynamics among two rust diseases and further characterization of identified microRNAs can contribute to significant novel insights on wheat-rust interactions and rust management. KEY POINTS: • Identification and comparative analysis of stem and leaf rust-responsive miRNAs. • Chromosomal location and functional prediction of miRNAs. • Time-course expression analysis of pathogen-responsive miRNAs.
Collapse
Affiliation(s)
- Minu M Nair
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - S Hari Krishna Kumar
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - S Jyothsna
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Krishna T Sundaram
- International Rice Research Institute (IRRI), South Asia Hub, Patancheru, 502324, Telangana, India
| | - C Manjunatha
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, Karnataka, India
| | - M Sivasamy
- ICAR-Indian Agricultural, Research Institute, Regional Station, Wellington, 643231, Tamil Nadu, India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671316, Kerala, India.
| |
Collapse
|
40
|
Kumari G, Shanmugavadivel PS, Lavanya GR, Tiwari P, Singh D, Gore PG, Tripathi K, Madhavan Nair R, Gupta S, Pratap A. Association mapping for important agronomic traits in wild and cultivated Vigna species using cross-species and cross-genera simple sequence repeat markers. Front Genet 2022; 13:1000440. [PMID: 36406138 PMCID: PMC9669911 DOI: 10.3389/fgene.2022.1000440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 10/10/2023] Open
Abstract
The genus Vigna is an agronomically important taxon, with many of its species inhabiting a wide range of environments and offering numerous useful genes for the improvement of the cultivated types. The present study aimed to detect the genomic regions associated with yield-attributing traits by genome-wide association mapping. A diverse panel of 98 wild and cultivated Vigna accessions (acc.) belonging to 13 different species was evaluated for yield and related traits during the kharif season of 2017 and 2018. The panel was also genotyped using 92 cross-genera and cross-species simple sequence repeat markers to study the population genetic structure and useful market-trait associations. The PCA and trait correlation established relationships amongst the traits during both seasons while 100-seed weight (HSW) had a positive correlation with pod length (PL), and days to first flowering (DFF) with days to maturity (DM). The population genetic structure analysis grouped different acc. into three genetically distinct sub-populations with SP-1 comprising 34 acc., SP-2 (24 acc.), and SP-3 (33 acc.) and one admixture group (7 acc.). Mixed linear model analysis revealed an association of 13 markers, namely, VR018, VR039, VR022, CEDG033, GMES0337, MBSSR008, CEDG220, VM27, CP1225, CP08695, CEDG100, CEDG008, and CEDG096A with nine traits. Seven of the aforementioned markers, namely, VR018 for plant height (PH) and terminal leaflet length (TLL), VR022 for HSW and pod length (PL), CEDG033 for DFF and DM, MBSSR008 for DFF and DM, CP1225 for CC at 30 days (CC30), DFF and DM, CEDG100 for PH and terminal leaflet length (TLL), and CEDG096A for CC30 and chlorophyll content at 45 days were associated with multiple traits. The marker CEDG100, associated with HSW, PH, and TLL, is co-localized in gene-encoding histone-lysine N-methyltransferase ATX5. Similarly, VR22, associated with PL and HSW, is co-located in gene-encoding SHOOT GRAVITROPISM 5 in mungbean. These associations may be highly useful for marker-assisted genetic improvement of mungbean and other related Vigna species.
Collapse
Affiliation(s)
- Gita Kumari
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | | - G. Roopa Lavanya
- Sam Higginbottom University of Agricultural Technology and Sciences, Prayagraj, India
| | - Pravin Tiwari
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | | | - P. G. Gore
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Tripathi
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Sanjeev Gupta
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| |
Collapse
|
41
|
Genome-Wide Identification and Characterization of the Oat ( Avena sativa L.) WRKY Transcription Factor Family. Genes (Basel) 2022; 13:genes13101918. [PMID: 36292803 PMCID: PMC9601435 DOI: 10.3390/genes13101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022] Open
Abstract
The WRKY family is widely involved in the regulation of plant growth and stress response and is one of the largest gene families related to plant environmental adaptation. However, no systematic studies on the WRKY family in oat (Avena sativa L.) have been conducted to date. The recently published complete genome sequence of oat enables the systematic analysis of the AsWRKYs. Based on a genome-wide study of oat, we identified 162 AsWRKYs that were unevenly distributed across 21 chromosomes; a phylogenetic tree of WRKY domains divided these genes into three groups (I, II, and III). We also analyzed the gene duplication events and identified a total of 111 gene pairs that showed strong purifying selection during the evolutionary process. Surprisingly, almost all genes evolved after the completion of subgenomic differentiation of hexaploid oat. Further studies on the functional analysis indicated that AsWRKYs were widely involved in various biological processes. Notably, expression patterns of 16 AsWRKY genes revealed that the response of AsWRKYs were affected by stress level and time. In conclusion, this study provides a reference for further analysis of the role of WRKY transcription factors in species evolution and functional differentiation.
Collapse
|
42
|
Rathnayaka Gamage SI, Kaewwongwal A, Laosatit K, Yimram T, Lin Y, Chen X, Nakazono M, Somta P. Tandemly duplicated genes encoding polygalacturonase inhibitors are associated with bruchid (Callosobruchus chinensis) resistance in moth bean (Vigna aconitifolia). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111402. [PMID: 35905896 DOI: 10.1016/j.plantsci.2022.111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Bruchids are stored-grain insect pests responsible for serious seed loss in legume crops. A previous study using an F2 population (F2OA) derived from a cross between wild moth-bean (Vigna aconitifolia [Jacq.] Maréchal) accession TN67 (resistant) and cultivated moth-bean accession ICPMO056 (susceptible) revealed that resistance to the azuki bean weevil (Callosobruchus chinensis L.) in TN67 was regulated by a single gene located in the major quantitative trait locus-qVacBrc2.1. In this study, qVacBrc2.1 was finely mapped and candidate genes in this locus were identified using F2OA and another large F2 population (F2NB) derived from the cross mentioned previously. In contrast to the previous study, segregation analysis in the F2NB population revealed that resistance against this pest was controlled by two genes. Furthermore, the addition of novel markers to qVacBrc2.1 and reanalysis of the QTL in the F2OA population demonstrated that qVacBrc2.1 constituted two linked QTLs-qVacBrc2.1-A and qVacBrc2.1-B. The presence of qVacBrc2.1-B was verified using the population F2NB. Comparative genomics using three Vigna spp. strongly suggested the presence of two tandemly duplicated genes, VacPGIP1 and VacPGIP2, which encoded polygalacturonase inhibitors (polygalacturonase-inhibiting proteins) as the candidates for conferring resistance, but only VacPGIP1 could be successfully cloned and sequenced. The alignment of VacPGIP1 coding sequences of TN67 and ICPMO056 revealed eight single nucleotide polymorphisms, three of which altered the amino-acid sequence of the predicted domains of polygalacturonase inhibitors in ICPMO056. Overall, these findings indicate that VacPGIP1 and VacPGIP2 regulated C. chinensis resistance in TN67.
Collapse
Affiliation(s)
- Shyali Iroshani Rathnayaka Gamage
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Anochar Kaewwongwal
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
43
|
Tp MA, Kumar A, Anilkumar C, Sah RP, Behera S, Marndi BC. Understanding natural genetic variation for grain phytic acid content and functional marker development for phytic acid-related genes in rice. BMC PLANT BIOLOGY 2022; 22:446. [PMID: 36114452 PMCID: PMC9482188 DOI: 10.1186/s12870-022-03831-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The nutritional value of rice can be improved by developing varieties with optimum levels of grain phytic acid (PA). Artificial low-PA mutants with impaired PA biosynthesis have been developed in rice through induced mutagenesis. However, low-PA mutant stocks with drastically reduced grain PA content have poor breeding potential, and their use in rice breeding is restricted due to their detrimental pleiotropic effects, which include decreased seed viability, low grain weight, and low seed yield. Therefore, it is necessary to take advantage of the natural variation in grain PA content in order to reduce the PA content to an ideal level without compromising the crop's agronomic performance. Natural genetic diversity in grain PA content has not been thoroughly examined among elite genetic stocks. Additionally, given grain PA content as a quantitative trait driven by polygenes, DNA marker-assisted selection may be required for manipulation of such a trait; however, informative DNA markers for PA content have not yet been identified in rice. Here we investigated and dissected natural genetic variation and genetic variability components for grain PA content in rice varieties cultivated in Eastern and North-Eastern India during the last 50 years. We developed novel gene-based markers for the low-PA-related candidate genes in rice germplasm, and their allelic diversity and association with natural variation in grain PA content were studied. RESULTS A wide (0.3-2.8%), significant variation for grain PA content, with decade-wise and ecology-wise differences, was observed among rice varieties. Significant genotype x environment interaction suggested polygenic inheritance. The novel candidate gene-based markers detected 43 alleles in the rice varieties. The new markers were found highly informative as indicated by PIC values (0.11-0.65; average: 0.34) and coverage of total diversity. Marker alleles developed from two putative transporter genes viz., SPDT and OsPT8 were significantly associated with grain PA variation assayed on the panel. A 201 bp allele at the 3' UTR of SPDT gene was negatively associated with grain PA content and explained 7.84% of the phenotypic variation. A rare allele in the coding sequence of OsPT8 gene was positively associated with grain PA content which explained phenotypic variation of 18.49%. CONCLUSION Natural variation in grain PA content is substantial and is mostly controlled by genetic factors. The unique DNA markers linked with PA content have significant potential as genomic resources for the development of low-PA rice varieties through genomics-assisted breeding procedures.
Collapse
Affiliation(s)
| | - Awadhesh Kumar
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Chandrappa Anilkumar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Rameswar Prasad Sah
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Sasmita Behera
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Bishnu Charan Marndi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
44
|
Brake M, Al-Qadumii L, Hamasha H, Migdadi H, Awad A, Haddad N, Sadder MT. Development of SSR Markers Linked to Stress Responsive Genes along Tomato Chromosome 3 (Solanum lycopersicum L.). BIOTECH 2022; 11:biotech11030034. [PMID: 35997342 PMCID: PMC9397033 DOI: 10.3390/biotech11030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to develop novel SSR markers in tomato. Several BAC clones along chromosome 3 in tomato were selected based on their content. The criteria was the availability of genes, either directly or indirectly related to stress response (drought, salinity, and heat) in tomato. A total of 20 novel in silico SSR markers were developed and 96 important nearby genes were identified. The identified nearby genes represent different tomato genes involved in plant growth and development and biotic and abiotic stress tolerance. The developed SSR markers were assessed using tomato landraces. A total of 29 determinate and semi-determinate local tomato landraces collected from diverse environments were utilized. A total of 33 alleles with mean of 1.65 alleles per locus were scored, showing 100% polymorphic patterns, with a mean of 0.18 polymorphism information content (PIC) values. The mean of observed and expected heterozygosity were 0.19 and 0.24, respectively. The mean value of the Jaccard similarity index was used for clustering the landraces. The developed microsatellite markers showed potential to assess genetic variability among tomato landraces. The genetic distance information reported in this study can be used by breeders in future genetic improvement of tomato for tolerance against diverse stresses.
Collapse
Affiliation(s)
- Mohammad Brake
- Science Department, Jerash University, Jerash 26150, Jordan
| | - Lana Al-Qadumii
- Faculty of Science, Philadelphia University, Jerash 19392, Jordan
| | - Hassan Hamasha
- Science Department, Jerash University, Jerash 26150, Jordan
| | | | - Abi Awad
- Food Testing Lab, Jordan Standards and Metrology Organization, Amman 11194, Jordan
| | - Nizar Haddad
- National Agricultural Research Center, Amman 19381, Jordan
| | - Monther T. Sadder
- Plant Biotechnology Lab, Department of Horticulture and Crop Science, School of Agriculture, University of Jordan, Amman 11942, Jordan
- Correspondence:
| |
Collapse
|
45
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
46
|
Ashfaq M, Rasheed A, Sajjad M, Ali M, Rasool B, Javed MA, Allah SU, Shaheen S, Anwar A, Ahmad MS, Mubashar U. Genome wide association mapping of yield and various desirable agronomic traits in Rice. Mol Biol Rep 2022; 49:11371-11383. [PMID: 35939183 DOI: 10.1007/s11033-022-07687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the staple foods worldwide. To feed the growing population, the improvement of rice cultivars is important. To make the improvement in the rice breeding program, it is imperative to understand the similarities and differences of the existing rice accessions to find out the genetic diversity. Previous studies demonstrated the existence of abundant elite genes in rice landraces. A genome-wide association study (GWAS) was performed for yield and yield related traits to find the genetic diversity. DESIGN Experimental study. METHODS AND RESULTS A total of 204 SSRs markers were used among 17 SSRs found to be located on each chromosome in the rice genome. The diversity was analyzed using different genetic characters i.e., the total number of alleles (TNA), polymorphic information content (PIC), and gene diversity by Power markers, and the values for each genetic character per marker ranged from 2 to 9, 0.332 to 0.887 and 0.423 to 0.900 respectively across the whole genome. The results of population structure identified four main groups. MTA identified several markers associated with many agronomically important traits. These results will be very useful for the selection of potential parents, recombinants, and MTAs that govern the improvements and developments of new high yielding rice varieties. CONCLUSIONS Analysis of diversity in germplasm is important for the improvement of cultivars in the breeding program. In the present study, the diversity was analyzed with different methods and found that enormous diversity was present in the studied rice germplasm. The structure analysis found the presence of 4 genetic groups in the existing germplasm. A total of 129 marker-trait associations (MTAs) have been found in this study.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Abdul Rasheed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, 45550, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Entomology Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.,Department of Biosciences, COMSAT University, Islamabad, Pakistan
| | - Bilal Rasool
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sami Ul Allah
- Department of Plant Breeding and Genetics, Bahuddin Zakaria University Bahudar Campus Layyah, Bahudar, Pakistan
| | - Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Alia Anwar
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Urooj Mubashar
- Government Training Education Academy, Gujranwala, Pakistan
| |
Collapse
|
47
|
The Diversity of Melia azedarach L. from China Based on Transcriptome-Developed SSR Marker. FORESTS 2022. [DOI: 10.3390/f13071011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Melia azedarach L. is a native tree species that can be used in a comprehensive way and is widely distributed in all provinces south of the Yellow River in China. Genetic diversity analysis of different M. azedarach germplasm sources is an important basic work for the selection, evaluation, and genetic improvement of M. azedarach germplasm resources. In this study, 100 pairs of SSR primers were designed and synthesized based on M. azedarach transcriptome data, and 16 pairs of reliable SSR primers were finally selected. The developed primers were used to analyze the genetic diversity of M. azedarach from 15 sources in 10 provinces in East, Central, and South China. The results showed that the frequency of the M. azedarach transcriptome SSR loci was high, and the distribution density was high. There were 15 sources of M. azedarach genetic diversity at a moderate level, and genetic variation was mainly present within the sources. The present study further enriches the existing SSR marker database of the M. azedarach family and can provide a reference for genetic diversity analysis and molecularly assisted breeding of M. azedarach plants at the genomic level.
Collapse
|
48
|
Maibam A, Lone SA, Ningombam S, Gaikwad K, Amitha Mithra SV, Singh MP, Singh SP, Dalal M, Padaria JC. Transcriptome Analysis of Pennisetum glaucum (L.) R. Br. Provides Insight Into Heat Stress Responses. Front Genet 2022; 13:884106. [PMID: 35719375 PMCID: PMC9201763 DOI: 10.3389/fgene.2022.884106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pennisetum glaucum (L.) R. Br., being widely grown in dry and hot weather, frequently encounters heat stress at various stages of growth. The crop, due to its inherent capacity, efficiently overcomes such stress during vegetative stages. However, the same is not always the case with the terminal (flowering through grain filling) stages of growth, where recovery from stress is more challenging. However, certain pearl millet genotypes such as 841-B are known to overcome heat stress even at the terminal growth stages. Therefore, we performed RNA sequencing of two contrasting genotypes of pearl millet (841-B and PPMI-69) subjected to heat stress (42°C for 6 h) at flowering stages. Over 274 million high quality reads with an average length of 150 nt were generated, which were assembled into 47,310 unigenes having an average length of 1,254 nucleotides, N50 length of 1853 nucleotides, and GC content of 53.11%. Blastx resulted in the annotation of 35,628 unigenes, and functional classification showed 15,950 unigenes designated to 51 Gene Ontology terms. A total of 13,786 unigenes were allocated to 23 Clusters of Orthologous Groups, and 4,255 unigenes were distributed to 132 functional Kyoto Encyclopedia of Genes and Genomes database pathways. A total of 12,976 simple sequence repeats and 305,759 SNPs were identified in the transcriptome data. Out of 2,301 differentially expressed genes, 10 potential candidate genes were selected based on log2 fold change and adjusted p value parameters for their differential gene expression by qRT-PCR. We were able to identify differentially expressed genes unique to either of the two genotypes, and also, some DEGs common to both the genotypes were enriched. The differential expression patterns suggested that 841-B 6 h has better ability to maintain homeostasis during heat stress as compared to PPMI-69 6 h. The sequencing data generated in this study, like the SSRs and SNPs, shall serve as an important resource for the development of genetic markers, and the differentially expressed heat responsive genes shall be used for the development of transgenic crops.
Collapse
Affiliation(s)
- Albert Maibam
- PG School, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Showkat Ahmad Lone
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Sunil Ningombam
- PG School, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - S. V. Amitha Mithra
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Madan Pal Singh
- Division of Plant Physiology, Indian Council of Agricultural Research -Indian Agricultural Research Institute, New Delhi, India
| | - Sumer Pal Singh
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Monika Dalal
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
| | - Jasdeep Chatrath Padaria
- Indian Council of Agricultural Research -National Institute for Plant Biotechnology, New Delhi, India
- *Correspondence: Jasdeep Chatrath Padaria,
| |
Collapse
|
49
|
Negi A, Singh K, Jaiswal S, Kokkat JG, Angadi UB, Iquebal MA, Umadevi P, Rai A, Kumar D. Rapid Genome-Wide Location-Specific Polymorphic SSR Marker Discovery in Black Pepper by GBS Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:846937. [PMID: 35712605 PMCID: PMC9197322 DOI: 10.3389/fpls.2022.846937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Black pepper (Piper nigrum), the "King of Spices," is an economically important spice in India and is known for its medicinal and cultural values. SSRs, the tandem repeats of small DNA sequences, are often polymorphic in nature with diverse applications. For population structure, QTL/gene discovery, MAS, and diversity analysis, it is imperative to have their location specificity. The existing PinigSSRdb catalogs ~70K putative SSR markers but these are anonymous (unknown chromosomal location), based on 916 scaffolds rather than 26 chromosomes. Under this study, we generated ddRAD sequence data of 29 black pepper genotypes from all over India, being low-cost and most efficient technique for the identification of polymorphic markers. The major limitation of ddRAD with compromised/non-uniform coverage has been successfully overcome by taking advantage of chromosome-wise data availability. The latest black pepper genome assembly was used to extract genome-wide SSRs. A total of 276,230 genomic SSRs were mined distributed over 26 chromosomes, with relative density of 362.88 SSRs/Mb and average distance of 2.76 Kb between two SSRs. This assembly was also used to find the polymorphic SSRs in the generated GBS data of 29 black pepper genotypes utilizing rapid and cost-effective method giving 3,176 polymorphic SSRs, out of which 2015 were found to be hypervariable. The developed web-genomic resource, BlackP2MSATdb (http://webtom.cabgrid.res.in/blackp2msatdb/), is the largest and first reported web resource for genomic and polymorphic SSRs of black pepper, which is useful to develop varietal signature, coreset, physical map, QTL/gene identification, and MAS in endeavor of black pepper production.
Collapse
Affiliation(s)
- Ankita Negi
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, India
| | - Kalpana Singh
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, India
| | - Johnson George Kokkat
- Indian Council of Agricultural Research-Indian Institute of Spices Research, Kozhikode, India
| | - Ulavappa B. Angadi
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, India
| | - P. Umadevi
- Indian Council of Agricultural Research-Indian Institute of Spices Research, Kozhikode, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research-Indian Agricultural Statistical Research Institute, PUSA, New Delhi, India
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
50
|
Gebeyehu A, Hammenhag C, Tesfaye K, Vetukuri RR, Ortiz R, Geleta M. RNA-Seq Provides Novel Genomic Resources for Noug ( Guizotia abyssinica) and Reveals Microsatellite Frequency and Distribution in Its Transcriptome. FRONTIERS IN PLANT SCIENCE 2022; 13:882136. [PMID: 35646044 PMCID: PMC9132581 DOI: 10.3389/fpls.2022.882136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 06/02/2023]
Abstract
Genomic resources and tools are essential for improving crops and conserving their genetic resources. Guizotia abyssinica (noug), an outcrossing edible oilseed crop, has highly limited genomic resources. Hence, RNA-Seq based transcriptome sequencing of 30 noug genotypes was performed to generate novel genomic resources and assess their usefulness. The genotypes include self-compatible and self-incompatible types, which differ in maturity time, photoperiod sensitivity, or oil content and quality. RNA-Seq was performed on Illumina HiSeq 2500 platform, and the transcript was reconstructed de novo, resulting in 409,309 unigenes. The unigenes were characterized for simple sequence repeats (SSRs), and served as a reference for single nucleotide polymorphism (SNP) calling. In total, 40,776 SSRs were identified in 35,639 of the 409,309 unigenes. Of these, mono, di, tri, tetra, penta and hexanucleotide repeats accounted for 55.4, 20.8, 21.1, 2.3, 0.2, and 0.2%, respectively. The average G+C content of the unigenes and their SSRs were 40 and 22.1%, respectively. The vast majority of mononucleotide repeat SSRs (97%) were of the A/T type. AG/CT and CCA/TGG were the most frequent di and trinucleotide repeat SSRs. A different number of single nucleotide polymorphism (SNP) loci were discovered in each genotype, of which 1,687 were common to all 30 genotypes and 5,531 to 28 of them. The mean observed heterozygosity of the 5,531 SNPs was 0.22; 19.4% of them had polymorphism information content above 0.30 while 17.2% deviated significantly from Hardy-Weinberg equilibrium (P < 0.05). In both cluster and principal coordinate analyses, the genotypes were grouped into four major clusters. In terms of population structure, the genotypes are best represented by three genetic populations, with significant admixture within each. Genetic similarity between self-compatible genotypes was higher, due to the narrow genetic basis, than that between self-incompatible genotypes. The genotypes that shared desirable characteristics, such as early maturity, and high oil content were found to be genetically diverse, and hence superior cultivars with multiple desirable traits can be developed through crossbreeding. The genomic resources developed in this study are vital for advancing research in noug, such as genetic linkage mapping and genome-wide association studies, which could lead to genomic-led breeding.
Collapse
Affiliation(s)
- Adane Gebeyehu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Kassahun Tesfaye
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|