1
|
Shi Y, Wang H, Chai M, Ji M, Zhao W, Xu Q, Yan T, Liu Z, Weng X. The analysis of X chromosome activity of porcine embryonic stem Cells: Study based on parthenogenetic embryonic stem cells with LCDM medium. Theriogenology 2025; 244:117479. [PMID: 40367543 DOI: 10.1016/j.theriogenology.2025.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025]
Abstract
The derivation of porcine embryonic stem cell (pESC) lines remains a major challenge in this field. To date, the porcine naïve ESCs have yet to be successfully established, and standardized criteria for their characterization and evaluation are still lacking. The regulation of X-chromosome activity integrates information from embryonic development and the dosage of sex chromosomes, which is closely associated with the pluripotent state of embryonic stem cells. In this study, we aimed to establish pESC lines in LCDM medium from porcine blastocyst-stage embryos, and analyzed the features of ESCs from the sight of X chromosome activity. We assessed molecular markers and epigenetic characteristics to confirm pluripotency and X chromosome activity in porcine parthenogenetic ESCs (named as ppLCDM) using XIST RNA-FISH, immunofluorescence staining, single-cell RNA sequencing (scRNA-seq), and other techniques. Results showed that ppLCDM cells expressed most pluripotent markers. The percentage of ppLCDM cells exhibiting H3K27me3 and XIST aggregation signals increased with passage, indicating the progressive establishment of X-chromosome inactivation (XCI). Meanwhile, the pluripotency of most ppLCDM cells gradually declined during extended passaging. However, two distinct patterns of ppLCDM cells were observed from passage 35 (type I cells, P35-I) displayed normal XCI states, while type II cells (P35-II) exhibited X-chromosome erosion-like state, characterized by the loss of aggregation signals, abnormal X-linked gene ratios. Particularly, the pluripotency of ppLCDM cells with an X-chromosome erosion-like state undergoes unusual changes compared to normal cells. These findings indicate that X chromosome activity is closely associated with the pluripotent state of porcine ESCs and that heterogeneity in X chromosome activity arises during passaging. Our research provides crucial insights into X chromosome dynamics in large-animal ESC models and contribute to ongoing efforts to establish stable naïve pESC lines.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Hongxing Wang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Mengjia Chai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Mengru Ji
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Wenqian Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qianqian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
2
|
He W, Luo Q, Zhao J, Wang M, Zhao A, Feng L, Reda A, Lindgren E, Stukenborg J, Chen J, Deng Q. X-Linked Gene Dosage and SOX2 Act as Key Roadblocks for Human Germ Cell Specification in Klinefelter Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410533. [PMID: 39996497 PMCID: PMC12005746 DOI: 10.1002/advs.202410533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Klinefelter syndrome (KS), characterized by the presence of at least one extra X-chromosome, is a common cause of male infertility. However, the mechanism underlying the failure of germline specification is not well studied. Intriguingly, the differentiation efficiency of female human pluripotent stem cells (hPSCs) is often lower than that of male. This study investigates how X-linked gene dosage affects human primordial germ cell-like cells (hPGCLCs) specification in both healthy and diseased conditions. This work reveals that X-linked genes play a multifaceted role against the fate competency to hPGCLCs, with escape genes IGSF1 and CHRDL1 inhibiting the TGF-beta/Activin A and BMP pathways, respectively. Notably, this work identifies a previously unrecognized role of SOX2, upregulated by the escape gene USP9X, elucidating a species-specific function in the mammalian germline. The USP9X-SOX2 regulatory axis profoundly influenced cellular metabolism, mitochondrial morphology, and progenitor competence in hPGCLCs specification. Furthermore, the inability to downregulate SOX2 and upregulate SOX17 in response to BMP signaling impedes downstream gene activation due to motif binding competition. These findings shed novel insights into the human germline specification by elucidating the divergent roles of SOX2 versus SOX17 in mammals, influenced by X-linked gene dosage effects. These results offer potential applications for improving the induction efficiency of hPGCLCs, facilitating disease mechanistic studies.
Collapse
Affiliation(s)
- Wenteng He
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Qing Luo
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jian Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Oncology‐PathologyKarolinska InstitutetStockholm171 77Sweden
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Allan Zhao
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Luohua Feng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Ahmed Reda
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Eva Lindgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
| | - Jan‐Bernd Stukenborg
- NORDFERTIL Research Lab StockholmChildhood Cancer Research UnitDepartment of Women's and Children's HealthKarolinska InstitutetKarolinska University HospitalStockholm17 165Sweden
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Frontier Science Center for Stem Cell ResearchTongji UniversityShanghai200092China
| | - Qiaolin Deng
- Department of Physiology and PharmacologyKarolinska InstitutetStockholm171 77Sweden
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm UnviersityStockholm11418Sweden
| |
Collapse
|
3
|
Gadek M, Shaw CK, Abdulai-Saiku S, Saloner R, Marino F, Wang D, Bonham LW, Yokoyama JS, Panning B, Benayoun BA, Casaletto KB, Ramani V, Dubal DB. Aging activates escape of the silent X chromosome in the female mouse hippocampus. SCIENCE ADVANCES 2025; 11:eads8169. [PMID: 40043106 PMCID: PMC11881916 DOI: 10.1126/sciadv.ads8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 03/09/2025]
Abstract
Women live longer than men and exhibit less cognitive aging. The X chromosome contributes to sex differences, as females harbor an inactive X (Xi) and active X (Xa), in contrast to males with only an Xa. Thus, reactivation of silent Xi genes may contribute to sex differences. We use allele-specific, single-nucleus RNA sequencing to show that aging remodels transcription of the Xi and Xa across hippocampal cell types. Aging preferentially changed gene expression on the X's relative to autosomes. Select genes on the Xi underwent activation, with new escape across cells including in the dentate gyrus, critical to learning and memory. Expression of the Xi escapee Plp1, a myelin component, was increased in the aging hippocampus of female mice and parahippocampus of women. AAV-mediated Plp1 elevation in the dentate gyrus of aging male and female mice improved cognition. Understanding how the Xi may confer female advantage could lead to novel targets that counter brain aging and disease in both sexes.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Cayce K. Shaw
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Samira Abdulai-Saiku
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Saloner
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luke W. Bonham
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer S. Yokoyama
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine; USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- USC Stem Cell Initiative, Los Angeles, CA, USA
| | - Kaitlin B. Casaletto
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Peng B, Wang Q, Zhang F, Shen H, Du P. Mouse totipotent blastomere-like cells model embryogenesis from zygotic genome activation to post implantation. Cell Stem Cell 2025; 32:391-408.e11. [PMID: 39826539 DOI: 10.1016/j.stem.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Embryo development begins with zygotic genome activation (ZGA), eventually generating blastocysts for implantation. However, in vitro systems modeling the pre-implantation development are still absent and challenging. Here, we used mouse totipotent blastomere-like cells (TBLCs) to develop spontaneous differentiation and blastoid formation systems, respectively. We found Wnt signaling enabled the rapid expansion of TBLCs and the optimization of their culture medium. We successfully developed a TBLC-spontaneous differentiation system in which mouse TBLCs (mTBLCs) firstly converted into two types of ZGA-like cells (ZLCs) distinguished by Zscan4 expression. Surprisingly, Zscan4-, but not Zscan4+, ZLCs further passed through intermediate 4-cell and then 8-cell/morula stages to produce epiblast, primitive endoderm, and trophectoderm lineages. Significantly, single TBLCs underwent expansion, compaction, and polarization to efficiently generate blastocyst-like structures and even post-implantation egg-cylinder-like structures. Conclusively, we established TBLC-based differentiation and embryo-like structure formation systems to model early embryonic development, offering criteria for evaluating and understanding totipotency.
Collapse
Affiliation(s)
- Bing Peng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qingyi Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Li Z, Cao C, Zhao Q, Li D, Han Y, Zhang M, Mao L, Zhou B, Wang L. RNA splicing controls organ-wide maturation of postnatal heart in mice. Dev Cell 2025; 60:236-252.e8. [PMID: 39406241 DOI: 10.1016/j.devcel.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/27/2024] [Accepted: 09/15/2024] [Indexed: 01/23/2025]
Abstract
Postnatal cardiac development requires the orchestrated maturation of diverse cellular components for which unifying control mechanisms are still lacking. Using full-length sequencing, we examined the transcriptomic landscape of the maturating mouse heart (E18.5-P28) at single-cell and transcript isoform resolution. We identified dynamically changing intercellular networks as a molecular basis of the maturing heart and alternative splicing (AS) as a common mechanism that distinguished developmental age. Manipulation of RNA-binding proteins (RBPs) remodeled the AS landscape, cardiac cell maturation, and intercellular communication through direct binding of splice targets, which were enriched for functions related to general, as well as cell-type-specific, maturation. Overexpression of an RBP nuclear cap-binding protein subunit 2 (NCBP2) in neonatal hearts repressed cardiac maturation. Together, our data suggest AS regulation by RBPs as an organ-level control mechanism in mammalian postnatal cardiac development and provide insight into the possibility of manipulating RBPs for therapeutic purposes.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yan Han
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Mingzhi Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences-Shenzhen, Shenzhen 518057, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China.
| |
Collapse
|
6
|
Formichetti S, Sadowska A, Ascolani M, Hansen J, Ganter K, Lancrin C, Humphreys N, Boulard M. Genetic gradual reduction of OGT activity unveils the essential role of O-GlcNAc in the mouse embryo. PLoS Genet 2025; 21:e1011507. [PMID: 39787076 PMCID: PMC11717234 DOI: 10.1371/journal.pgen.1011507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees. The severity of the embryonic lethality was proportional to the extent of impairment of OGT's catalysis, demonstrating that the O-GlcNAc modification itself is required for early development. We identified hypomorphic Ogt alleles that perturb O-GlcNAc homeostasis while being compatible with embryogenesis. The analysis of the transcriptomes of the mutant embryos at different developmental stages suggested a sexually-dimorphic developmental delay caused by the decrease in O-GlcNAc. Furthermore, a mild reduction of OGT's enzymatic activity was sufficient to loosen the silencing of endogenous retroviruses in vivo.
Collapse
Affiliation(s)
- Sara Formichetti
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Agnieszka Sadowska
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Michela Ascolani
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Julia Hansen
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Kerstin Ganter
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Christophe Lancrin
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Neil Humphreys
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| | - Mathieu Boulard
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy
| |
Collapse
|
7
|
Proks M, Salehin N, Brickman JM. Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing. Nat Methods 2025; 22:207-216. [PMID: 39543284 PMCID: PMC11725497 DOI: 10.1038/s41592-024-02511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
The rapid growth of single-cell transcriptomic technology has produced an increasing number of datasets for both embryonic development and in vitro pluripotent stem cell-derived models. This avalanche of data surrounding pluripotency and the process of lineage specification has meant it has become increasingly difficult to define specific cell types or states in vivo, and compare these with in vitro differentiation. Here we utilize a set of deep learning tools to integrate and classify multiple datasets. This allows the definition of both mouse and human embryo cell types, lineages and states, thereby maximizing the information one can garner from these precious experimental resources. Our approaches are built on recent initiatives for large-scale human organ atlases, but here we focus on material that is difficult to obtain and process, spanning early mouse and human development. Using publicly available data for these stages, we test different deep learning approaches and develop a model to classify cell types in an unbiased fashion at the same time as defining the set of genes used by the model to identify lineages, cell types and states. We used our models trained on in vivo development to classify pluripotent stem cell models for both mouse and human development, showcasing the importance of this resource as a dynamic reference for early embryogenesis.
Collapse
Affiliation(s)
- Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nazmus Salehin
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Wei C, Kesner B, Weissbein U, Wasserzug-Pash P, Das P, Lee JT. Dosage compensation of transposable elements in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628797. [PMID: 39763768 PMCID: PMC11702583 DOI: 10.1101/2024.12.16.628797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In mammals, X-linked dosage compensation involves two processes: X-chromosome inactivation (XCI) to balance X chromosome dosage between males and females, and hyperactivation of the remaining X chromosome (Xa-hyperactivation) to achieve X-autosome balance in both sexes. Studies of both processes have largely focused on coding genes and have not accounted for transposable elements (TEs) which comprise 50% of the X-chromosome, despite TEs being suspected to have numerous epigenetic functions. This oversight is due in part to the technical challenge of capturing repeat RNAs, bioinformatically aligning them, and determining allelic origin. To overcome these challenges, here we develop a new bioinformatic pipeline tailored to repetitive elements with capability for allelic discrimination. We then apply the pipeline to our recent So-Smart-Seq analysis of single embryos to comprehensively interrogate whether X-linked TEs are subject to either XCI or Xa-hyperactivation. With regards to XCI, we observe significant differences in TE silencing in parentally driven "imprinted" XCI versus zygotically driven "random" XCI. Chromosomal positioning and genetic background impact TE silencing. We also find that SINEs may influence 3D organization during XCI. In contrast, TEs do not undergo Xa-hyperactivation. Thus, while coding genes are subject to both forms of dosage compensation, TEs participate only in Xi silencing. Evolutionary and functional implications are discussed.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Peera Wasserzug-Pash
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Priyojit Das
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Naik HC, Chandel D, Majumdar S, Arava M, Baro R, Bv H, Hari K, Ayyamperumal P, Manhas A, Jolly MK, Gayen S. Lineage-specific dynamics of loss of X upregulation during inactive-X reactivation. Stem Cell Reports 2024; 19:1564-1582. [PMID: 39486405 PMCID: PMC11589478 DOI: 10.1016/j.stemcr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024] Open
Abstract
In mammals, X chromosome dosage is balanced between sexes through the silencing of one X chromosome in females. Recent single-cell RNA sequencing analysis demonstrated that the inactivation of the X chromosome is accompanied by the upregulation of the active X chromosome (Xa) during mouse embryogenesis. Here, we have investigated if the reactivation of inactive-X (Xi) leads to the loss of Xa upregulation in different cellular or developmental contexts. We find that while Xi reactivation and loss of Xa upregulation are tightly coupled in mouse embryonic epiblast and induced pluripotent stem cells, that is not the case in germ cells. Moreover, we demonstrate that partial reactivation of Xi in mouse extra-embryonic endoderm stem cells and human B cells does not result in the loss of Xa upregulation. Finally, we have established a mathematical model for the transcriptional coordination of two X chromosomes. Together, we conclude that the reactivation of Xi is not always synchronized with the loss of Xa upregulation.
Collapse
Affiliation(s)
- Hemant Chandru Naik
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Deepshikha Chandel
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Sudeshna Majumdar
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Maniteja Arava
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Runumi Baro
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Harshavardhan Bv
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India; Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; IISc Mathematics Initiative (IMI), Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Parichitran Ayyamperumal
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Avinchal Manhas
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Srimonta Gayen
- Chromatin, RNA and Genome Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
10
|
Segers A, Gilis J, Van Heetvelde M, Risso D, De Baere E, Clement L. saseR: Juggling offsets unlocks RNA-seq tools for fast and Scalable differential usage, Aberrant Splicing and Expression Retrieval. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547014. [PMID: 39464066 PMCID: PMC11507730 DOI: 10.1101/2023.06.29.547014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
RNA-seq data analysis relies on many different tools, each tailored to specific applications and coming with unique assumptions and restrictions. Indeed, tools for differential transcript usage, or diagnosing patients with rare diseases through splicing and expression outliers, either lack in performance, discard information, or do not scale to massive data compendia. Here, we show that replacing the normalisation offsets unlocks bulk RNA-seq workflows for scalable differential usage, aberrant splicing and expression analyses. Our method, saseR, is much faster than state-of-the-art methods, dramatically outperforms these to detect aberrant splicing, and provides a single workflow for various short- and long-read RNA-seq applications.
Collapse
Affiliation(s)
- Alexandre Segers
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Jeroen Gilis
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Mattias Van Heetvelde
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Davide Risso
- Department of Statistical Sciences, Universiy of Padova, Padova, Italy
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lieven Clement
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Shang Y, Wang N, Wang H, An C, Sun W. Modeling X chromosome inactivation using t5iLA naive human pluripotent stem cells. BMC Biol 2024; 22:210. [PMID: 39294757 PMCID: PMC11411763 DOI: 10.1186/s12915-024-01994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND X chromosome inactivation (XCI) is a critical epigenetic event for dosage compensation of X-linked genes in female mammals, ensuring developmental stability. A robust in vitro model is required for mimicking XCI during the early stages of embryonic development. This methodology article introduces an advanced framework for the in-depth study of XCI using human pluripotent stem cells (hPSCs). By focusing on the transition between naive and primed pluripotent states, we highlight the role of long non-coding RNA X-inactive specific transcript (XIST) and epigenetic alterations in mediating XCI. RESULTS Our methodology enables the distinction between naive and primed hESCs based on XIST expression and the activity of X-linked reporters, facilitating the investigation of XCI initiation and maintenance. Through detailed experimental procedures, we demonstrate the utility of our hESC lines in modeling the process of human XCI, including the establishment of conditions for random XCI induction and the analysis of X chromosome reactivation. METHODS The study outlines a comprehensive approach for characterizing the X chromosome status in hPSCs, employing dual fluorescent reporter hESC lines. These reporter lines enable real-time tracking of XCI dynamics through differentiation processes. We detailed protocols for the induction of X chromosome reactivation and inactivation, as well as the X status characterization methods including cultivation of hESCs, flow cytometric analysis, RNA fluorescence in situ hybridization (FISH), and transcriptome sequencing, providing a step-by-step guide for researchers to investigate XCI mechanisms in vitro. CONCLUSIONS This article provides a detailed, reproducible methodology for studying XCI mechanisms in vitro, employing hPSCs as a model system. It presents a significant advance in our ability to investigate XCI, offering potential applications in developmental biology, disease modeling, and regenerative medicine. By facilitating the study of XCI dynamics, this methodological framework paves the way for deeper understanding and manipulation of this fundamental biological process.
Collapse
Affiliation(s)
- Yudan Shang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Nannan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chenrui An
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
12
|
Koshiguchi M, Yonezawa N, Hatano Y, Suenaga H, Yamagata K, Kobayashi S. A system to analyze the initiation of random X-chromosome inactivation using time-lapse imaging of single cells. Sci Rep 2024; 14:20327. [PMID: 39223177 PMCID: PMC11369159 DOI: 10.1038/s41598-024-71105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
In female eutherian mammal development, X-chromosome inactivation (XCI) of one of the two X chromosomes is initiated early. Understanding the relationship between the initiation of XCI and cell fate is critical for understanding early female development and requires a system that can monitor XCI in single living cells. Traditional embryonic stem cells (ESCs) used for XCI studies often lose X chromosomes spontaneously during culture and differentiation, making accurate monitoring difficult. Additionally, most XCI assessment methods necessitate cell disruption, hindering cell fate tracking. We developed the Momiji (version 2) ESC line to address these difficulties, enabling real-time monitoring of X-chromosome activity via fluorescence. We inserted green and red fluorescent reporter genes and neomycin and puromycin resistance genes into the two X chromosomes of PGK12.1 ESCs, creating a female ESC line that retains two X chromosomes more faithfully during differentiation. Momiji (version 2) ESCs exhibit a more stable XX karyotype than other ESC lines, including the parental PGK12.1 line. This new tool offers valuable insights into the relationship between XCI and cell fate, improving our understanding of early female development.
Collapse
Affiliation(s)
- Manami Koshiguchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Yu Hatano
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Yamanashi, 400-8510, Japan
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, 649-6493, Japan
| | - Shin Kobayashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
13
|
Park Y, Hauschild AC. The effect of data transformation on low-dimensional integration of single-cell RNA-seq. BMC Bioinformatics 2024; 25:171. [PMID: 38689234 PMCID: PMC11059821 DOI: 10.1186/s12859-024-05788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Recent developments in single-cell RNA sequencing have opened up a multitude of possibilities to study tissues at the level of cellular populations. However, the heterogeneity in single-cell sequencing data necessitates appropriate procedures to adjust for technological limitations and various sources of noise when integrating datasets from different studies. While many analysis procedures employ various preprocessing steps, they often overlook the importance of selecting and optimizing the employed data transformation methods. RESULTS This work investigates data transformation approaches used in single-cell clustering analysis tools and their effects on batch integration analysis. In particular, we compare 16 transformations and their impact on the low-dimensional representations, aiming to reduce the batch effect and integrate multiple single-cell sequencing data. Our results show that data transformations strongly influence the results of single-cell clustering on low-dimensional data space, such as those generated by UMAP or PCA. Moreover, these changes in low-dimensional space significantly affect trajectory analysis using multiple datasets, as well. However, the performance of the data transformations greatly varies across datasets, and the optimal method was different for each dataset. Additionally, we explored how data transformation impacts the analysis of deep feature encodings using deep neural network-based models, including autoencoder-based models and proto-typical networks. Data transformation also strongly affects the outcome of deep neural network models. CONCLUSIONS Our findings suggest that the batch effect and noise in integrative analysis are highly influenced by data transformation. Low-dimensional features can integrate different batches well when proper data transformation is applied. Furthermore, we found that the batch mixing score on low-dimensional space can guide the selection of the optimal data transformation. In conclusion, data preprocessing is one of the most crucial analysis steps and needs to be cautiously considered in the integrative analysis of multiple scRNA-seq datasets.
Collapse
Affiliation(s)
- Youngjun Park
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research Schools for Genome Science, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anne-Christin Hauschild
- Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany.
- Campus-Institute Data Science (CIDAS), Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Li C, He X, Wu Y, Li J, Zhang R, An X, Yue Y. Single-Cell Transcriptome Sequence Profiling on the Morphogenesis of Secondary Hair Follicles in Ordos Fine-Wool Sheep. Int J Mol Sci 2024; 25:584. [PMID: 38203755 PMCID: PMC10779399 DOI: 10.3390/ijms25010584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The Ordos fine-wool sheep is a high-quality breed in China that produces superior natural textiles and raw materials such as wool and lamb meat. However, compared to the Australian Merino sheep, there is still a gap in terms of the wool fiber fineness and wool yield. The hair follicle is the main organ that controls the type of wool fiber, and the morphological changes in the secondary hair follicle are crucial in determining wool quality. However, the process and molecular mechanisms of hair follicle morphogenesis in Ordos fine-wool sheep are not yet clear. Therefore, analyzing the molecular mechanisms underlying the process of follicle formation is of great significance for improving the fiber diameter and wool production of Ordos fine-wool sheep. The differential expressed genes, APOD, POSTN, KRT5, and KRT15, which related to primary hair follicles and secondary hair follicles, were extracted from the dermal papillae. Based on pseudo-time analysis, the differentiation trajectories of dermal lineage cells and epidermal lineage cells in the Ordos fine-wool sheep were successfully constructed, providing a theoretical basis for breeding research in Ordos fine-wool sheep.
Collapse
Affiliation(s)
- Chenglan Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xue He
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yi Wu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rui Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
15
|
Vandal K, Biondic S, Canizo J, Petropoulos S. Manual Dissociation of Mammalian Preimplantation Embryos for Single-Cell Genomics. Methods Mol Biol 2024; 2767:293-305. [PMID: 37418145 DOI: 10.1007/7651_2023_494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Single-cell genomics allow the characterization and quantification of molecular heterogeneity from a wide variety of tissues. Here, we describe the manual dissociation and collection of single cells, a method adapted for the characterization of precious small tissues like preimplantation embryos. We also describe the acquisition of mouse embryos by flushing of the oviducts. The cells can then be used in multiple sequencing protocols, for example, Smart-seq2, Smart-seq3, smallseq, and scBSseq.
Collapse
Affiliation(s)
- Katherine Vandal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
| | - Savana Biondic
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
| | - Jesica Canizo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, ON, Canada
- Département de Médecine, Université de Montréal, Montréal, ON, Canada
- , Stockholm, Sweden
| |
Collapse
|
16
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
17
|
Tan F, Xuan Y, Long L, Yu Y, Zhang C, Liang P, Wang Y, Chen M, Wen J, Chen G. Single-cell analysis of human prepuce reveals dynamic changes in gene regulation and cellular communications. BMC Genomics 2023; 24:514. [PMID: 37658288 PMCID: PMC10474653 DOI: 10.1186/s12864-023-09615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The cellular and molecular dynamics of human prepuce are crucial for understanding its biological and physiological functions, as well as the prevention of related genital diseases. However, the cellular compositions and heterogeneity of human prepuce at single-cell resolution are still largely unknown. Here we systematically dissected the prepuce of children and adults based on the single-cell RNA-seq data of 90,770 qualified cells. RESULTS We identified 15 prepuce cell subtypes, including fibroblast, smooth muscle cells, T/natural killer cells, macrophages, vascular endothelial cells, and dendritic cells. The proportions of these cell types varied among different individuals as well as between children and adults. Moreover, we detected cell-type-specific gene regulatory networks (GRNs), which could contribute to the unique functions of related cell types. The GRNs were also highly dynamic between the prepuce cells of children and adults. Our cell-cell communication network analysis among different cell types revealed a set of child-specific (e.g., CD96, EPO, IFN-1, and WNT signaling pathways) and adult-specific (e.g., BMP10, NEGR, ncWNT, and NPR1 signaling pathways) signaling pathways. The variations of GRNs and cellular communications could be closely associated with prepuce development in children and prepuce maintenance in adults. CONCLUSIONS Collectively, we systematically analyzed the cellular variations and molecular changes of the human prepuce at single-cell resolution. Our results gained insights into the heterogeneity of prepuce cells and shed light on the underlying molecular mechanisms of prepuce development and maintenance.
Collapse
Affiliation(s)
- Fei Tan
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
| | - Yuan Xuan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Lan Long
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, 518172, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhua Zhang
- Department of Dermatology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 201999, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Yaoqun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Meiyu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Geng Chen
- School of Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Center for Bioinformatics and Computational Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
18
|
Ping W, Sheng Y, Hu G, Zhong H, Li Y, Liu Y, Luo W, Yan C, Wen Y, Wang X, Li Q, Guo R, Zhang J, Liu A, Pan G, Yao H. RBBP4 is an epigenetic barrier for the induced transition of pluripotent stem cells into totipotent 2C-like cells. Nucleic Acids Res 2023; 51:5414-5431. [PMID: 37021556 PMCID: PMC10287929 DOI: 10.1093/nar/gkad219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cellular totipotency is critical for whole-organism generation, yet how totipotency is established remains poorly illustrated. Abundant transposable elements (TEs) are activated in totipotent cells, which is critical for embryonic totipotency. Here, we show that the histone chaperone RBBP4, but not its homolog RBBP7, is indispensable for maintaining the identity of mouse embryonic stem cells (mESCs). Auxin-induced degradation of RBBP4, but not RBBP7, reprograms mESCs to the totipotent 2C-like cells. Also, loss of RBBP4 enhances transition from mESCs to trophoblast cells. Mechanistically, RBBP4 binds to the endogenous retroviruses (ERVs) and functions as an upstream regulator by recruiting G9a to deposit H3K9me2 on ERVL elements, and recruiting KAP1 to deposit H3K9me3 on ERV1/ERVK elements, respectively. Moreover, RBBP4 facilitates the maintenance of nucleosome occupancy at the ERVK and ERVL sites within heterochromatin regions through the chromatin remodeler CHD4. RBBP4 depletion leads to the loss of the heterochromatin marks and activation of TEs and 2C genes. Together, our findings illustrate that RBBP4 is required for heterochromatin assembly and is a critical barrier for inducing cell fate transition from pluripotency to totipotency.
Collapse
Affiliation(s)
- Wangfang Ping
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxin Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yaoyi Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - YanJiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wei Luo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chenghong Yan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xinxiu Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Richardson V, Engel N, Kulathinal RJ. Comparative developmental genomics of sex-biased gene expression in early embryogenesis across mammals. Biol Sex Differ 2023; 14:30. [PMID: 37208698 DOI: 10.1186/s13293-023-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Mammalian gonadal sex is determined by the presence or absence of a Y chromosome and the subsequent production of sex hormones contributes to secondary sexual differentiation. However, sex chromosome-linked genes encoding dosage-sensitive transcription and epigenetic factors are expressed well before gonad formation and have the potential to establish sex-biased expression that persists beyond the appearance of gonadal hormones. Here, we apply a comparative bioinformatics analysis on a pair of published single-cell datasets from mouse and human during very early embryogenesis-from two-cell to pre-implantation stages-to characterize sex-specific signals and to assess the degree of conservation among early acting sex-specific genes and pathways. RESULTS Clustering and regression analyses of gene expression across samples reveal that sex initially plays a significant role in overall gene expression patterns at the earliest stages of embryogenesis which potentially may be the byproduct of signals from male and female gametes during fertilization. Although these transcriptional sex effects rapidly diminish, sex-biased genes appear to form sex-specific protein-protein interaction networks across pre-implantation stages in both mammals providing evidence that sex-biased expression of epigenetic enzymes may establish sex-specific patterns that persist beyond pre-implantation. Non-negative matrix factorization (NMF) on male and female transcriptomes generated clusters of genes with similar expression patterns across sex and developmental stages, including post-fertilization, epigenetic, and pre-implantation ontologies conserved between mouse and human. While the fraction of sex-differentially expressed genes (sexDEGs) in early embryonic stages is similar and functional ontologies are conserved, the genes involved are generally different in mouse and human. CONCLUSIONS This comparative study uncovers much earlier than expected sex-specific signals in mouse and human embryos that pre-date hormonal signaling from the gonads. These early signals are diverged with respect to orthologs yet conserved in terms of function with important implications in the use of genetic models for sex-specific disease.
Collapse
Affiliation(s)
- Victorya Richardson
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Nora Engel
- Department of Cancer Biology, Lewis Katz School of Medicine, Fels Cancer Institute for Personalized Medicine, Temple University, 3400 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Rob J Kulathinal
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
20
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
21
|
Zhu Q, Ge J, Liu Y, Xu JW, Yan S, Zhou F. Decoding anterior-posterior axis emergence among mouse, monkey, and human embryos. Dev Cell 2023; 58:63-79.e4. [PMID: 36626872 DOI: 10.1016/j.devcel.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Anterior-posterior axis formation regulated by the distal visceral endoderm (DVE) and anterior visceral endoderm (AVE) is essential for peri-implantation embryogenesis. However, the principles of the origin and specialization of DVE and AVE remain elusive. Here, with single-cell transcriptome analysis and pseudotime prediction, we show that DVE and AVE independently originate from the specialized primary endoderm in mouse blastocysts. Along distinct developmental paths, these two lineages, respectively, undergo four representative states with stage-specific transcriptional patterns around implantation. Further comparative analysis shows that AVE, but not DVE, is detected in human and non-human primate embryos, defining differences in polarity formation across species. Moreover, stem cell-assembled human blastoids lack DVE or AVE precursors, implying that additional induction of stem cells with DVE/AVE potential could promote the current embryo-like models and their post-implantation growth. Our work provides insight into understanding of embryonic polarity formation and early mammalian development.
Collapse
Affiliation(s)
- Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitao Ge
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Wen Xu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyi Yan
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
DNA methyltransferases 3A and 3B target specific sequences during mouse gastrulation. Nat Struct Mol Biol 2022; 29:1252-1265. [PMID: 36510023 DOI: 10.1038/s41594-022-00885-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
In mammalian embryos, DNA methylation is initialized to maximum levels in the epiblast by the de novo DNA methyltransferases DNMT3A and DNMT3B before gastrulation diversifies it across regulatory regions. Here we show that DNMT3A and DNMT3B are differentially regulated during endoderm and mesoderm bifurcation and study the implications in vivo and in meso-endoderm embryoid bodies. Loss of both Dnmt3a and Dnmt3b impairs exit from the epiblast state. More subtly, independent loss of Dnmt3a or Dnmt3b leads to small biases in mesoderm-endoderm bifurcation and transcriptional deregulation. Epigenetically, DNMT3A and DNMT3B drive distinct methylation kinetics in the epiblast, as can be predicted from their strand-specific sequence preferences. The enzymes compensate for each other in the epiblast, but can later facilitate lineage-specific methylation kinetics as their expression diverges. Single-cell analysis shows that differential activity of DNMT3A and DNMT3B combines with replication-linked methylation turnover to increase epigenetic plasticity in gastrulation. Together, these findings outline a dynamic model for the use of DNMT3A and DNMT3B sequence specificity during gastrulation.
Collapse
|
23
|
Zheng H, Wang S, Li X, Hu H. INSISTC: Incorporating network structure information for single-cell type classification. Genomics 2022; 114:110480. [PMID: 36075505 DOI: 10.1016/j.ygeno.2022.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/27/2022]
Abstract
Uncovering gene regulatory mechanisms in individual cells can provide insight into cell heterogeneity and function. Recent accumulated Single-Cell RNA-Seq data have made it possible to analyze gene regulation at single-cell resolution. Understanding cell-type-specific gene regulation can assist in more accurate cell type and state identification. Computational approaches utilizing such relationships are under development. Methods pioneering in integrating gene regulatory mechanism discovery with cell-type classification encounter challenges such as determine gene regulatory relationships and incorporate gene regulatory network structure. To fill this gap, we developed INSISTC, a computational method to incorporate gene regulatory network structure information for single-cell type classification. INSISTC is capable of identifying cell-type-specific gene regulatory mechanisms while performing single-cell type classification. INSISTC demonstrated its accuracy in cell type classification and its potential for providing insight into molecular mechanisms specific to individual cells. In comparison with the alternative methods, INSISTC demonstrated its complementary performance for gene regulation interpretation.
Collapse
Affiliation(s)
- Hansi Zheng
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Saidi Wang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Haiyan Hu
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
24
|
Kubasova N, Alves-Pereira CF, Gupta S, Vinogradova S, Gimelbrant A, Barreto VM. In Vivo Clonal Analysis Reveals Random Monoallelic Expression in Lymphocytes That Traces Back to Hematopoietic Stem Cells. Front Cell Dev Biol 2022; 10:827774. [PMID: 36003148 PMCID: PMC9393635 DOI: 10.3389/fcell.2022.827774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Evaluating the epigenetic landscape in the stem cell compartment at the single-cell level is essential to assess the cells’ heterogeneity and predict their fate. Here, using a genome-wide transcriptomics approach in vivo, we evaluated the allelic expression imbalance in the progeny of single hematopoietic cells (HSCs) as a read-out of epigenetic marking. After 4 months of extensive proliferation and differentiation, we found that X-chromosome inactivation (XCI) is tightly maintained in all single-HSC derived hematopoietic cells. In contrast, the vast majority of the autosomal genes did not show clonal patterns of random monoallelic expression (RME). However, a persistent allele-specific autosomal transcription in HSCs and their progeny was found in a rare number of cases, none of which has been previously reported. These data show that: 1) XCI and RME in the autosomal chromosomes are driven by different mechanisms; 2) the previously reported high frequency of genes under RME in clones expanded in vitro (up to 15%) is not found in clones undergoing multiple differentiation steps in vivo; 3) prior to differentiation, HSCs have stable patterns of autosomal RME. We propose that most RME patterns in autosomal chromosomes are erased and established de novo during cell lineage differentiation.
Collapse
Affiliation(s)
- Nadiya Kubasova
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- Genetagus, Egas Moniz – Cooperativa de Ensino Superior, CRL, Monte de Caparica, Portugal
| | - Clara F. Alves-Pereira
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Saumya Gupta
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Svetlana Vinogradova
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alexander Gimelbrant
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| | - Vasco M. Barreto
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| |
Collapse
|
25
|
Ichihara S, Nagao K, Sakaguchi T, Obuse C, Sado T. SmcHD1 underlies the formation of H3K9me3 blocks on the inactive X chromosome in mice. Development 2022; 149:dev200864. [PMID: 38771307 DOI: 10.1242/dev.200864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
Stable silencing of the inactive X chromosome (Xi) in female mammals is crucial for the development of embryos and their postnatal health. SmcHD1 is essential for stable silencing of the Xi, and its functional deficiency results in derepression of many X-inactivated genes. Although SmcHD1 has been suggested to play an important role in the formation of higher-order chromatin structure of the Xi, the underlying mechanism is largely unknown. Here, we explore the epigenetic state of the Xi in SmcHD1-deficient epiblast stem cells and mouse embryonic fibroblasts in comparison with their wild-type counterparts. The results suggest that SmcHD1 underlies the formation of H3K9me3-enriched blocks on the Xi, which, although the importance of H3K9me3 has been largely overlooked in mice, play a crucial role in the establishment of the stably silenced state. We propose that the H3K9me3 blocks formed on the Xi facilitate robust heterochromatin formation in combination with H3K27me3, and that the substantial loss of H3K9me3 caused by SmcHD1 deficiency leads to aberrant distribution of H3K27me3 on the Xi and derepression of X-inactivated genes.
Collapse
Affiliation(s)
- Saya Ichihara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Koji Nagao
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takehisa Sakaguchi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikashi Obuse
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
26
|
Buen Abad Najar CF, Burra P, Yosef N, Lareau LF. Identifying cell state-associated alternative splicing events and their coregulation. Genome Res 2022; 32:1385-1397. [PMID: 35858747 PMCID: PMC9341514 DOI: 10.1101/gr.276109.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Alternative splicing shapes the transcriptome and contributes to each cell's unique identity, but single-cell RNA sequencing (scRNA-seq) has struggled to capture the impact of alternative splicing. We previously showed that low recovery of mRNAs from single cells led to erroneous conclusions about the cell-to-cell variability of alternative splicing. Here, we present a method, Psix, to confidently identify splicing that changes across a landscape of single cells, using a probabilistic model that is robust against the data limitations of scRNA-seq. Its autocorrelation-inspired approach finds patterns of alternative splicing that correspond to patterns of cell identity, such as cell type or developmental stage, without the need for explicit cell clustering, labeling, or trajectory inference. Applying Psix to data that follow the trajectory of mouse brain development, we identify exons whose alternative splicing patterns cluster into modules of coregulation. We show that the exons in these modules are enriched for binding by distinct neuronal splicing factors and that their changes in splicing correspond to changes in expression of these splicing factors. Thus, Psix reveals cell type-dependent splicing patterns and the wiring of the splicing regulatory networks that control them. Our new method will enable scRNA-seq analysis to go beyond transcription to understand the roles of post-transcriptional regulation in determining cell identity.
Collapse
Affiliation(s)
| | - Prakruthi Burra
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Liana F Lareau
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Song Z, Gao P, Zhong X, Li M, Wang M, Song X. Identification of Five Hub Genes Based on Single-Cell RNA Sequencing Data and Network Pharmacology in Patients With Acute Myocardial Infarction. Front Public Health 2022; 10:894129. [PMID: 35757636 PMCID: PMC9219909 DOI: 10.3389/fpubh.2022.894129] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myocardial infarction (AMI) has a high mortality. The single-cell RNA sequencing (scRNA-seq) method was used to analyze disease heterogeneity at the single-cell level. From the Gene Expression Omnibus (GEO) database (GSE180678), AMI scRNA-seq were downloaded and preprocessed by the Seurat package. Gene expression data came from GSE182923. Cell cluster analysis was conducted. Cell types were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed on hub genes. Drugs were predicted by protein–protein interaction (PPI) and molecular docking. In total, 7 cell clusters were defined based on the scRNA-seq dataset, and the clusters were labeled as 5 cell types by marker genes. Hematopoietic stem cell types as a differential subgroups were higher in AMI than in healthy tissues. From available databases and PPI analysis, 52 common genets were identified. Based on 52 genes, 5 clusters were obtained using the MCODE algorithm, and genes in these 5 clusters involved in immune and inflammatory pathways were determined. Correlation analysis showed that hematopoietic stem cell types were negatively correlated with ATM, CARM1, and CASP8 but positively correlated with CASP3 and PPARG. This was reversed with immune cells. Molecular docking analysis showed that DB05490 had the lowest docking score with PPARG. We identified 5 hub genes (ATM, CARM1, CASP8, CASP3, and PPARG) involved in AMI progression. Compound DB05490 was a potential inhibitor of PPAG.
Collapse
Affiliation(s)
- Ziguang Song
- Department of Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Pingping Gao
- Department of Cardiovascular Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiao Zhong
- Department of Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Mingyang Li
- Department of Cardiovascular Center, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Mengmeng Wang
- Fourth Department of Clinical Medicine, GI Medicine, Cancer Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Xiang Song
- Department of Cardiovascular Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
28
|
Malkowska A, Penfold C, Bergmann S, Boroviak TE. A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes. Nat Commun 2022; 13:3407. [PMID: 35710749 PMCID: PMC9203550 DOI: 10.1038/s41467-022-30194-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for biochemical studies. To address this issue, we compiled single-cell embryo profiling data in six mammalian species and determined their metabolic dynamics through glycolysis and oxidative phosphorylation associated gene expression. Strikingly, we identify a conserved switch from bivalent respiration in the late blastocyst towards a glycolytic metabolism in early gastrulation stages across species, which is independent of embryo implantation. Extraembryonic lineages followed the dynamics of the embryonic lineage, except visceral endoderm. Finally, we demonstrate that in vitro primate embryo culture substantially impacts metabolic gene regulation by comparison to in vivo samples. Our work reveals a conserved metabolic programme despite different implantation modes and highlights the need to optimise postimplantation embryo culture protocols.
Collapse
Affiliation(s)
- Anna Malkowska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
29
|
Cloutier M, Kumar S, Buttigieg E, Keller L, Lee B, Williams A, Mojica-Perez S, Erliandri I, Rocha AMD, Cadigan K, Smith GD, Kalantry S. Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nat Commun 2022; 13:2516. [PMID: 35523820 PMCID: PMC9076865 DOI: 10.1038/s41467-022-30259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation is a paradigm of epigenetic transcriptional regulation. Female human embryonic stem cells (hESCs) often undergo erosion of X-inactivation upon prolonged culture. Here, we investigate the sources of X-inactivation instability by deriving new primed pluripotent hESC lines. We find that culture media composition dramatically influenced the expression of XIST lncRNA, a key regulator of X-inactivation. hESCs cultured in a defined xenofree medium stably maintained XIST RNA expression and coating, whereas hESCs cultured in the widely used mTeSR1 medium lost XIST RNA expression. We pinpointed lithium chloride in mTeSR1 as a cause of XIST RNA loss. The addition of lithium chloride or inhibitors of GSK-3 proteins that are targeted by lithium to the defined hESC culture medium impeded XIST RNA expression. GSK-3 inhibition in differentiating female mouse embryonic stem cells and epiblast stem cells also resulted in a loss of XIST RNA expression. Together, these data may reconcile observed variations in X-inactivation in hESCs and inform the faithful culture of pluripotent stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura Keller
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brandon Lee
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aaron Williams
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandra Mojica-Perez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Indri Erliandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine & Cardiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gary D Smith
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
30
|
Xu Y, Zhao J, Ren Y, Wang X, Lyu Y, Xie B, Sun Y, Yuan X, Liu H, Yang W, Fu Y, Yu Y, Liu Y, Mu R, Li C, Xu J, Deng H. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res 2022; 32:513-529. [PMID: 35508506 PMCID: PMC9160264 DOI: 10.1038/s41422-022-00668-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
It is challenging to derive totipotent stem cells in vitro that functionally and molecularly resemble cells from totipotent embryos. Here, we report that a chemical cocktail enables the derivation of totipotent-like stem cells, designated as totipotent potential stem (TPS) cells, from 2-cell mouse embryos and extended pluripotent stem cells, and that these TPS cells can be stably maintained long term in vitro. TPS cells shared features with 2-cell mouse embryos in terms of totipotency markers, transcriptome, chromatin accessibility and DNA methylation patterns. In vivo chimera formation assays show that these cells have embryonic and extraembryonic developmental potentials at the single-cell level. Moreover, TPS cells can be induced into blastocyst-like structures resembling preimplantation mouse blastocysts. Mechanistically, inhibition of HDAC1/2 and DOT1L activity and activation of RARγ signaling are important for inducing and maintaining totipotent features of TPS cells. Our study opens up a new path toward fully capturing totipotent stem cells in vitro.
Collapse
Affiliation(s)
- Yaxing Xu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jingru Zhao
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yixuan Ren
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xuyang Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Bingqing Xie
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yiming Sun
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Haiyin Liu
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weifeng Yang
- Beijing Vitalstar Biotechnology Co., Ltd, Beijing, China
| | - Yenan Fu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, PKU International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yu Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, PKU International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yinan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
31
|
Lentini A, Cheng H, Noble JC, Papanicolaou N, Coucoravas C, Andrews N, Deng Q, Enge M, Reinius B. Elastic dosage compensation by X-chromosome upregulation. Nat Commun 2022; 13:1854. [PMID: 35388014 PMCID: PMC8987076 DOI: 10.1038/s41467-022-29414-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
X-chromosome inactivation and X-upregulation are the fundamental modes of chromosome-wide gene regulation that collectively achieve dosage compensation in mammals, but the regulatory link between the two remains elusive and the X-upregulation dynamics are unknown. Here, we use allele-resolved single-cell RNA-seq combined with chromatin accessibility profiling and finely dissect their separate effects on RNA levels during mouse development. Surprisingly, we uncover that X-upregulation elastically tunes expression dosage in a sex- and lineage-specific manner, and moreover along varying degrees of X-inactivation progression. Male blastomeres achieve X-upregulation upon zygotic genome activation while females experience two distinct waves of upregulation, upon imprinted and random X-inactivation; and ablation of Xist impedes female X-upregulation. Female cells carrying two active X chromosomes lack upregulation, yet their collective RNA output exceeds that of a single hyperactive allele. Importantly, this conflicts the conventional dosage compensation model in which naïve female cells are initially subject to biallelic X-upregulation followed by X-inactivation of one allele to correct the X dosage. Together, our study provides key insights to the chain of events of dosage compensation, explaining how transcript copy numbers can remain remarkably stable across developmental windows wherein severe dose imbalance would otherwise be experienced by the cell.
Collapse
Affiliation(s)
- Antonio Lentini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Huaitao Cheng
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - J C Noble
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Natali Papanicolaou
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christos Coucoravas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nathanael Andrews
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Enge
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Quan Y, Wang X, Li L. In vitro investigation of mammalian peri-implantation embryogenesis†. Biol Reprod 2022; 107:205-211. [PMID: 35294001 DOI: 10.1093/biolre/ioac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
The embryos attach and invade into the uterus and establish the connection with their mother in peri-implantation development. During this period, the pluripotent epiblast cells of embryo undergo symmetry breaking, cell lineage allocation, and morphogenetic remodeling, accompanying with the dramatic changes of transcriptome, epigenome, and signal pathways, to prepare a state for their differentiation and gastrulation. The progresses in mouse genetics and stem cell biology have largely advanced the knowledge of these transformations which are largely hindered by the hard accessibility of natural embryos. To gain insight into mammalian peri-implantation development, great efforts have been made in the field. Recently, the advances in the prolonged in vitro culture of blastocysts, the derivation of multiple pluripotent stem cells, as well as the construction of stem cell-based embryo-like models have opened novel avenues to investigate peri-implantation development in mammals, especially for the humans. Combining with other emerging new technologies, these new models will substantially promote the comprehension of mammalian peri-implantation development, accelerating the progress of reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Yujun Quan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Li M, Min Q, Banton MC, Dun X. Single-Cell Regulatory Network Inference and Clustering Identifies Cell-Type Specific Expression Pattern of Transcription Factors in Mouse Sciatic Nerve. Front Cell Neurosci 2021; 15:676515. [PMID: 34955748 PMCID: PMC8693779 DOI: 10.3389/fncel.2021.676515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Advances in single-cell RNA sequencing technologies and bioinformatics methods allow for both the identification of cell types in a complex tissue and the large-scale gene expression profiling of various cell types in a mixture. In this report, we analyzed a single-cell RNA sequencing (scRNA-seq) dataset for the intact adult mouse sciatic nerve and examined cell-type specific transcription factor expression and activity during peripheral nerve homeostasis. In total, we identified 238 transcription factors expressed in nine different cell types of intact mouse sciatic nerve. Vascular smooth muscle cells have the lowest number of transcription factors expressed with 17 transcription factors identified. Myelinating Schwann cells (mSCs) have the highest number of transcription factors expressed, with 61 transcription factors identified. We created a cell-type specific expression map for the identified 238 transcription factors. Our results not only provide valuable information about the expression pattern of transcription factors in different cell types of adult peripheral nerves but also facilitate future studies to understand the function of key transcription factors in the peripheral nerve homeostasis and disease.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Matthew C Banton
- School of Biomedical Science, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Xinpeng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
34
|
Induction of Rosette-to-Lumen stage embryoids using reprogramming paradigms in ESCs. Nat Commun 2021; 12:7322. [PMID: 34916498 PMCID: PMC8677818 DOI: 10.1038/s41467-021-27586-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.
Collapse
|
35
|
Single-Cell Genomics: Enabling the Functional Elucidation of Infectious Diseases in Multi-Cell Genomes. Pathogens 2021; 10:pathogens10111467. [PMID: 34832622 PMCID: PMC8624509 DOI: 10.3390/pathogens10111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Since the time when detection of gene expression in single cells by microarrays to the Next Generation Sequencing (NGS) enabled Single Cell Genomics (SCG), it has played a pivotal role to understand and elucidate the functional role of cellular heterogeneity. Along this journey to becoming a key player in the capture of the individuality of cells, SCG overcame many milestones, including scale, speed, sensitivity and sample costs (4S). There have been many important experimental and computational innovations in the efficient analysis and interpretation of SCG data. The increasing role of AI in SCG data analysis has further enhanced its applicability in building models for clinical intervention. Furthermore, SCG has been instrumental in the delineation of the role of cellular heterogeneity in specific diseases, including cancer and infectious diseases. The understanding of the role of differential immune responses in driving coronavirus disease-2019 (COVID-19) disease severity and clinical outcomes has been greatly aided by SCG. With many variants of concern (VOC) in sight, it would be of great importance to further understand the immune response specificity vis-a-vis the immune cell repertoire, the identification of novel cell types, and antibody response. Given the potential of SCG to play an integral part in the multi-omics approach to the study of the host-pathogen interaction and its outcomes, our review attempts to highlight its strengths, its implications for infectious disease biology, and its current limitations. We conclude that the application of SCG would be a critical step towards future pandemic preparedness.
Collapse
|
36
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
37
|
Bonora G, Ramani V, Singh R, Fang H, Jackson DL, Srivatsan S, Qiu R, Lee C, Trapnell C, Shendure J, Duan Z, Deng X, Noble WS, Disteche CM. Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation. Genome Biol 2021; 22:279. [PMID: 34579774 PMCID: PMC8474932 DOI: 10.1186/s13059-021-02432-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. RESULTS Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a "bookmark" mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. CONCLUSIONS Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
Mullin NK, Voigt AP, Cooke JA, Bohrer LR, Burnight ER, Stone EM, Mullins RF, Tucker BA. Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Prog Retin Eye Res 2021; 83:100918. [PMID: 33130253 PMCID: PMC8559964 DOI: 10.1016/j.preteyeres.2020.100918] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of inherited retinal disease has benefited immensely from molecular genetic analysis over the past several decades. New technologies that allow for increasingly detailed examination of a patient's DNA have expanded the catalog of genes and specific variants that cause retinal disease. In turn, the identification of pathogenic variants has allowed the development of gene therapies and low-cost, clinically focused genetic testing. Despite this progress, a relatively large fraction (at least 20%) of patients with clinical features suggestive of an inherited retinal disease still do not have a molecular diagnosis today. Variants that are not obviously disruptive to the codon sequence of exons can be difficult to distinguish from the background of benign human genetic variations. Some of these variants exert their pathogenic effect not by altering the primary amino acid sequence, but by modulating gene expression, isoform splicing, or other transcript-level mechanisms. While not discoverable by DNA sequencing methods alone, these variants are excellent targets for studies of the retinal transcriptome. In this review, we present an overview of the current state of pathogenic variant discovery in retinal disease and identify some of the remaining barriers. We also explore the utility of new technologies, specifically patient-derived induced pluripotent stem cell (iPSC)-based modeling, in further expanding the catalog of disease-causing variants using transcriptome-focused methods. Finally, we outline bioinformatic analysis techniques that will allow this new method of variant discovery in retinal disease. As the knowledge gleaned from previous technologies is informing targets for therapies today, we believe that integrating new technologies, such as iPSC-based modeling, into the molecular diagnosis pipeline will enable a new wave of variant discovery and expanded treatment of inherited retinal disease.
Collapse
Affiliation(s)
- Nathaniel K Mullin
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew P Voigt
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica A Cooke
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Laura R Bohrer
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- The Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
39
|
Pacini G, Dunkel I, Mages N, Mutzel V, Timmermann B, Marsico A, Schulz EG. Integrated analysis of Xist upregulation and X-chromosome inactivation with single-cell and single-allele resolution. Nat Commun 2021; 12:3638. [PMID: 34131144 PMCID: PMC8206119 DOI: 10.1038/s41467-021-23643-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
To ensure dosage compensation between the sexes, one randomly chosen X chromosome is silenced in each female cell in the process of X-chromosome inactivation (XCI). XCI is initiated during early development through upregulation of the long non-coding RNA Xist, which mediates chromosome-wide gene silencing. Cell differentiation, Xist upregulation and gene silencing are thought to be coupled at multiple levels to ensure inactivation of exactly one out of two X chromosomes. Here we perform an integrated analysis of all three processes through allele-specific single-cell RNA-sequencing. Specifically, we assess the onset of random XCI in differentiating mouse embryonic stem cells, and develop dedicated analysis approaches. By exploiting the inter-cellular heterogeneity of XCI onset, we identify putative Xist regulators. Moreover, we show that transient Xist upregulation from both X chromosomes results in biallelic gene silencing right before transitioning to the monoallelic state, confirming a prediction of the stochastic model of XCI. Finally, we show that genetic variation modulates the XCI process at multiple levels, providing a potential explanation for the long-known X-controlling element (Xce) effect, which leads to preferential inactivation of a specific X chromosome in inter-strain crosses. We thus draw a detailed picture of the different levels of regulation that govern the initiation of XCI. The experimental and computational strategies we have developed here will allow us to profile random XCI in more physiological contexts, including primary human cells in vivo.
Collapse
Affiliation(s)
- Guido Pacini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Norbert Mages
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing core facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annalisa Marsico
- Institute for Computational Biology, Helmholtz Center, München, Germany.
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
40
|
Bansal P, Ahern DT, Kondaveeti Y, Qiu CW, Pinter SF. Contiguous erosion of the inactive X in human pluripotency concludes with global DNA hypomethylation. Cell Rep 2021; 35:109215. [PMID: 34107261 PMCID: PMC8267460 DOI: 10.1016/j.celrep.2021.109215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/18/2020] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Female human pluripotent stem cells (hPSCs) routinely undergo inactive X (Xi) erosion. This progressive loss of key repressive features follows the loss of XIST expression, the long non-coding RNA driving X inactivation, and causes reactivation of silenced genes across the eroding X (Xe). To date, the sporadic and progressive nature of erosion has obscured its scale, dynamics, and key transition events. To address this problem, we perform an integrated analysis of DNA methylation (DNAme), chromatin accessibility, and gene expression across hundreds of hPSC samples. Differential DNAme orders female hPSCs across a trajectory from initiation to terminal Xi erosion. Our results identify a cis-regulatory element crucial for XIST expression, trace contiguously growing reactivated domains to a few euchromatic origins, and indicate that the late-stage Xe impairs DNAme genome-wide. Surprisingly, from this altered regulatory landscape emerge select features of naive pluripotency, suggesting that its link to X dosage may be partially conserved in human embryonic development. Reactivation of the silenced X in human female iPSC/ESCs compromises their utility. Bansal et al. perform an integrated genomics analysis to reveal a prevalent X erosion trajectory that they validate in long-term culture. Starting with XIST loss, this trajectory indicates that reactivation may spread contiguously from escapees to silenced genes.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Catherine W Qiu
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
41
|
Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and Development. Front Cardiovasc Med 2021; 8:668252. [PMID: 34124200 PMCID: PMC8189176 DOI: 10.3389/fcvm.2021.668252] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth.
Collapse
Affiliation(s)
| | | | - Nora Engel
- Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
42
|
Gilis J, Vitting-Seerup K, Van den Berge K, Clement L. satuRn: Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications. F1000Res 2021; 10:374. [PMID: 36762203 PMCID: PMC9892655 DOI: 10.12688/f1000research.51749.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive single-cell transcriptome sequencing (scRNA-seq) datasets. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs, and scaling to scRNA-seq applications.
Collapse
Affiliation(s)
- Jeroen Gilis
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| | - Kristoffer Vitting-Seerup
- Department of Biology, Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Biotech Research and Innovation Centre (BRIC), Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- Department of Health Technology, Danish Technical University, Kongens Lyngby, 2800, Denmark
| | - Koen Van den Berge
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
- Department of Statistics, University of California, Berkeley, Berkeley, California, USA
| | - Lieven Clement
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
43
|
Posfai E, Lanner F, Mulas C, Leitch HG. All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports 2021; 16:1117-1141. [PMID: 33979598 PMCID: PMC8185978 DOI: 10.1016/j.stemcr.2021.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.
Collapse
Affiliation(s)
- Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
44
|
Gilis J, Vitting-Seerup K, Van den Berge K, Clement L. satuRn: Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications. F1000Res 2021; 10:374. [PMID: 36762203 PMCID: PMC9892655 DOI: 10.12688/f1000research.51749.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 10/04/2023] Open
Abstract
Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive scRNA-seq data. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs and scaling to scRNA-seq applications.
Collapse
Affiliation(s)
- Jeroen Gilis
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| | - Kristoffer Vitting-Seerup
- Department of Biology, Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Biotech Research and Innovation Centre (BRIC), Kobenhavns Universitet, Copenhagen, 2200, Denmark
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- Department of Health Technology, Danish Technical University, Kongens Lyngby, 2800, Denmark
| | - Koen Van den Berge
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
- Department of Statistics, University of California, Berkeley, Berkeley, California, USA
| | - Lieven Clement
- Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
- Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
45
|
Wang X, Xiang Y, Yu Y, Wang R, Zhang Y, Xu Q, Sun H, Zhao ZA, Jiang X, Wang X, Lu X, Qin D, Quan Y, Zhang J, Shyh-Chang N, Wang H, Jing N, Xie W, Li L. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Res 2021; 31:526-541. [PMID: 33608671 PMCID: PMC8089102 DOI: 10.1038/s41422-021-00477-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 01/29/2023] Open
Abstract
The pluripotency of mammalian early and late epiblast could be recapitulated by naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naïve ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yunlong Xiang
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Yang Yu
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ran Wang
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yu Zhang
- grid.12527.330000 0001 0662 3178Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Qianhua Xu
- grid.12527.330000 0001 0662 3178Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Hao Sun
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhen-Ao Zhao
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiangxiang Jiang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaoqing Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xukun Lu
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Dandan Qin
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yujun Quan
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jiaqi Zhang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ng Shyh-Chang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Naihe Jing
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.9227.e0000000119573309Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530 China
| | - Wei Xie
- grid.12527.330000 0001 0662 3178Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Lei Li
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
46
|
Li Y, Ma L, Wu D, Chen G. Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine. Brief Bioinform 2021; 22:6189773. [PMID: 33778867 DOI: 10.1093/bib/bbab024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Multi-omics allows the systematic understanding of the information flow across different omics layers, while single omics can mainly reflect one aspect of the biological system. The advancement of bulk and single-cell sequencing technologies and related computational methods for multi-omics largely facilitated the development of system biology and precision medicine. Single-cell approaches have the advantage of dissecting cellular dynamics and heterogeneity, whereas traditional bulk technologies are limited to individual/population-level investigation. In this review, we first summarize the technologies for producing bulk and single-cell multi-omics data. Then, we survey the computational approaches for integrative analysis of bulk and single-cell multimodal data, respectively. Moreover, the databases and data storage for multi-omics, as well as the tools for visualizing multimodal data are summarized. We also outline the integration between bulk and single-cell data, and discuss the applications of multi-omics in precision medicine. Finally, we present the challenges and perspectives for multi-omics development.
Collapse
Affiliation(s)
| | - Lu Ma
- China Normal University, China
| | | | | |
Collapse
|
47
|
Posfai E, Schell JP, Janiszewski A, Rovic I, Murray A, Bradshaw B, Yamakawa T, Pardon T, El Bakkali M, Talon I, De Geest N, Kumar P, To SK, Petropoulos S, Jurisicova A, Pasque V, Lanner F, Rossant J. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 2021. [PMID: 33420491 DOI: 10.1101/2020.1103.1102.972893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - John Paul Schell
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Isidora Rovic
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Alexander Murray
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tatsuya Yamakawa
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tine Pardon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Mouna El Bakkali
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pankaj Kumar
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrea Jurisicova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Departments of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Posfai E, Schell JP, Janiszewski A, Rovic I, Murray A, Bradshaw B, Yamakawa T, Pardon T, El Bakkali M, Talon I, De Geest N, Kumar P, To SK, Petropoulos S, Jurisicova A, Pasque V, Lanner F, Rossant J. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 2021; 23:49-60. [PMID: 33420491 DOI: 10.1038/s41556-020-00609-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Totipotency is the ability of a single cell to give rise to all of the differentiated cell types that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies on a variety of assays of variable stringency. Here, we describe criteria to define totipotency. We explain how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in mice, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbour increased totipotent potential relative to conventional embryonic stem cells under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - John Paul Schell
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Adrian Janiszewski
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Isidora Rovic
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Alexander Murray
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tatsuya Yamakawa
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tine Pardon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Mouna El Bakkali
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Natalie De Geest
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Pankaj Kumar
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - San Kit To
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Sophie Petropoulos
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Andrea Jurisicova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Departments of Obstetrics and Gynecology and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Ming Wai Lau Center for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|