1
|
Baran AM, Patil AH, Aparicio-Puerta E, Jun SH, Halushka MK, McCall MN. miRglmm: a generalized linear mixed model of isomiR-level counts improves estimation of miRNA-level differential expression and uncovers variable differential expression between isomiRs. Genome Biol 2025; 26:102. [PMID: 40264242 PMCID: PMC12016310 DOI: 10.1186/s13059-025-03549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
MicroRNA-seq data is produced by aligning small RNA sequencing reads of different microRNA transcript isoforms, called isomiRs, to known microRNAs. Aggregation to microRNA-level counts discards information and violates core assumptions of differential expression methods developed for mRNA-seq data. We establish miRglmm, a differential expression method for microRNA-seq data, that uses a generalized linear mixed model of isomiR-level counts, facilitating detection of miRNA with differential expression or differential isomiR usage. We demonstrate that miRglmm outperforms current differential expression methods in estimating differential expression for miRNA, whether or not there is differential isomiR usage, and simultaneously provides estimates of isomiR-level differential expression.
Collapse
Affiliation(s)
- Andrea M Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA
| | - Arun H Patil
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe St. Suite 300, Baltimore, MD, 21205, USA
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA
| | - Seong-Hwan Jun
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA
| | - Marc K Halushka
- Institute of Pathology and Laboratory Medicine, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd, Box 630, Rochester, NY, 14642, USA.
| |
Collapse
|
2
|
Acerbi da Silva LN, Stumpp T. Bioinformatic Analysis of Autism-Related miRNAs and Their PoTential as Biomarkers for Autism Epigenetic Inheritance. Genes (Basel) 2025; 16:418. [PMID: 40282383 PMCID: PMC12026732 DOI: 10.3390/genes16040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The dysregulation of miRNA expression in samples from autistic individuals indicates that they are involved in autism. The participation of miRNAs in paternal epigenetic inheritance has also been reported. This study used bioinformatics tools to analyze the literature and genetic databases to search for miRNAs associated with autism, aiming to explore their suitability to investigate paternal epigenetic inheritance. METHODS Autism-related miRNAs were searched in public databases using bioinformatic tools (miRNA-to-genes analysis). The genes targeted by these autism-related miRNAs, which are common to neurons, sperm, and PBMCs, were identified. Enrichment analyses were performed to identify the biological processes regulated by the candidate miRNAs. Autism-related miRNAs were also identified by an inverse analysis (genes-to-miRNA analysis), starting from autism-related genes. RESULTS In the miRNA-to-gene analysis, 416 miRNAs involved in autism were found, of which 77 were expressed in sperm, PBMCs, and neurons. From these, 18 were differentially expressed in the brain and in at least one peripheral sample (saliva or blood), suggesting that they might be suitable to be used in the investigation of autism biomarkers and inheritance. In the genes-to-miRNA analysis, 36 miRNAs were identified, from which 9 coincided with the results of direct analysis. CONCLUSIONS Although there is no consensus about miRNAs related to autism, there are candidate miRNAs that show clear potential to be explored as biomarkers. The coincidence in the expression of miRNAs in sperm, neurons, and PBMCs indicates that they are valuable biological samples to study the role of miRNAs in the paternal epigenetic inheritance of autism.
Collapse
Affiliation(s)
| | - Taiza Stumpp
- Laboratory of Developmental Biology, Department of Morphology and Genetics–Paulista Medicine School, Federal University of São Paulo (UNIFESP), Sao Paulo 04021-001, Brazil;
| |
Collapse
|
3
|
Frydas A, Cacace R, van der Zee J, Van Broeckhoven C, Wauters E. Investigation of the role of miRNA variants in neurodegenerative brain diseases. Front Genet 2025; 16:1506169. [PMID: 40078479 PMCID: PMC11897046 DOI: 10.3389/fgene.2025.1506169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction miRNAs are small noncoding elements known to regulate different molecular processes, including developmental and executive functions in the brain. Dysregulation of miRNAs could contribute to brain neurodegeneration, as suggested by miRNA profiling studies of individuals suffering from neurodegenerative brain diseases (NBDs). Here, we report rare miRNA variants in patients with Alzheimer's dementia (AD) and frontotemporal dementia (FTD). Methods We initially used whole exome sequencing data in a subset of FTD patients (n = 209) from Flanders-Belgium. We then performed targeted resequencing of variant-harboring miRNAs in an additional subset of FTD patients (n = 126) and control individuals (n = 426). Lastly, we sequenced the MIR885 locus in a Flanders-Belgian AD cohort (n = 947) and a total number of n = 755 controls. Results WES identified rare seed variants in MIR656, MIR423, MIR122 and MIR885 in FTD patients. Most of these miRNAs bind to FTD-associated genes, implicated in different biological pathways. Additionally, some miRNA variants create novel binding sites for genes associated with FTD. Sequencing of the MIR885 locus in the AD cohort initially showed a significant enrichment of MIR885 variants in AD patients compared to controls (SKAT-O, p-value = 0.026). Genetic association was not maintained when we included sex and APOE status as covariates. Using the miRVaS prediction tool, variants rs897551430 and rs993255773 appeared to evoke significant structural changes in the primary miRNA. These variants are also predicted to strongly downregulate mature miR885 levels, in line with what is reported for MIR885 in the context of AD. Discussion Functional investigation of miRNAs/variants described in this study could propose novel miRNA-mediated molecular cascades in FTD and AD pathogenicity. Furthermore, we believe that the genetic evidence presented here suggests a role for MIR885 in molecular mechanisms involved in AD and warrants genetic follow-up in larger cohorts to explore this hypothesis.
Collapse
Affiliation(s)
- Alexandros Frydas
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rita Cacace
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eline Wauters
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Oliveira-Rizzo C, Colantuono CL, Fernández-Alvarez AJ, Boccaccio GL, Garat B, Sotelo-Silveira JR, Khan S, Ignatchenko V, Lee YS, Kislinger T, Liu SK, Fort RS, Duhagon MA. Multi-Omics Study Reveals Nc886/vtRNA2-1 as a Positive Regulator of Prostate Cancer Cell Immunity. J Proteome Res 2025; 24:433-448. [PMID: 39723625 DOI: 10.1021/acs.jproteome.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Noncoding RNA 886 has emerged as a pivotal regulatory RNA with distinct functions across tissues, acting as a regulator of protein activity by directly binding to protein partners. While it is well recognized as a tumor suppressor in prostate cancer, the underlying molecular mechanisms remain elusive. To discover the principal pathways regulated by nc886 in prostate cancer, we used a transcriptomic and proteomic approach analyzing malignant DU145, LNCaP, PC3, and benign RWPE-1 prostate cell line models transiently transfected with in vitro transcribed nc886 or antisense oligonucleotides. Multiomics revelead a significant enrichment of immune system-related pathways across the cell lines, including cytokines and interferon signaling. The interferon response provoked by nc886 was validated by functional assays. The invariability of PKR phosphorylation and NF-κB activity in the gain/loss of nc886 function experiments and the positive regulation of innate immunity suggest a PKR-independent mechanism of nc886 action. Accordingly, the GSEA of the PRAD-TCGA data set revealed immune stimulation as the nc886 most associated node also in the clinical setting. Our study showed that the reduction of nc886 leads to a blunted immune response in prostate cancer.
Collapse
Affiliation(s)
- Carolina Oliveira-Rizzo
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Camilla L Colantuono
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana J Fernández-Alvarez
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
| | - Graciela L Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Beatriz Garat
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Shahbaz Khan
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Thomas Kislinger
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Odette Cancer Centre and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Rafael S Fort
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - María A Duhagon
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
5
|
Liu XM, Halushka MK. Beyond the Bubble: A Debate on microRNA Sorting Into Extracellular Vesicles. J Transl Med 2025; 105:102206. [PMID: 39647608 PMCID: PMC11842217 DOI: 10.1016/j.labinv.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024] Open
Abstract
Over the past decade, a scientific field has been developed demonstrating microRNAs (miRNAs) to be actively sorted into extracellular vesicles via specific nucleotide motifs that interact with discrete RNA-binding proteins. These miRNAs are proposed to be transported into recipient cells in which they can regulate specific cellular pathways. This mechanism could have enormous potential in explaining how cells signal and regulate other cells nearby or at a distance. Tens of studies have built this theme of a regulated transport of miRNAs. However, some concerns exist about this field. Taken together, there are concerns of a lack of a consistent motif, RNA-binding protein, or preferential miRNA involved in this process. In this study, we provide an expert and extensive analysis of the field that makes the cases for and against an active sorting mechanism. We provide potential explanations on why there is a lack of agreement. Most importantly, we provide ideas on how to move this field forward with more rigor and reproducibility. It is hoped that by engaging in a scientific debate of the pros and cons of this field, more rigorous experiments can be performed to conclusively demonstrate this biological activity.
Collapse
Affiliation(s)
- Xiao-Man Liu
- The Stanley Center for Psychiatric Research, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Marc K Halushka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
6
|
Vattathil SM, Gerasimov ES, Canon SM, Lori A, Tan SSM, Kim PJ, Liu Y, Lai EC, Bennett DA, Wingo TS, Wingo AP. Mapping the microRNA landscape in the older adult brain and its genetic contribution to neuropsychiatric conditions. NATURE AGING 2025; 5:306-319. [PMID: 39643657 PMCID: PMC11839474 DOI: 10.1038/s43587-024-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
MicroRNAs (miRNAs) play a crucial role in regulating gene expression and influence many biological processes. Despite their importance, understanding of how genetic variation affects miRNA expression in the brain and how this relates to brain disorders remains limited. Here we investigated these questions by identifying microRNA expression quantitative trait loci (miR-QTLs), or genetic variants associated with brain miRNA levels, using genome-wide small RNA sequencing profiles from dorsolateral prefrontal cortex samples of 604 older adult donors of European ancestry. Here we show that nearly half (224 of 470) of the analyzed miRNAs have associated miR-QTLs, many of which fall in regulatory regions such as brain promoters and enhancers. We also demonstrate that intragenic miRNAs often have genetic regulation independent from their host genes. Furthermore, by integrating our findings with 16 genome-wide association studies of psychiatric and neurodegenerative disorders, we identified miRNAs that likely contribute to bipolar disorder, depression, schizophrenia and Parkinson's disease. These findings advance understanding of the genetic regulation of miRNAs and their role in brain health and disease.
Collapse
Affiliation(s)
- Selina M Vattathil
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Se Min Canon
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriana Lori
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Sze Min Tan
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul J Kim
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yue Liu
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
- Alzheimer's Disease Research Center, University of California, Davis, Sacramento, CA, USA.
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA.
- Veterans Affairs Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
7
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Cohn DE, Souza VGP, Forder A, Telkar N, Stewart GL, Lam WL. Post-Transcriptional Modifications to miRNAs Undergo Widespread Alterations, Creating a Unique Lung Adenocarcinoma IsomiRome. Cancers (Basel) 2024; 16:3322. [PMID: 39409941 PMCID: PMC11476290 DOI: 10.3390/cancers16193322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) modulate the expression of oncogenes and tumor suppressor genes, functioning as significant epigenetic regulators in cancer. IsomiRs are miRNA molecules that have undergone small modifications during miRNA processing. These modifications can alter an isomiR's binding stability with mRNA targets, and certain isomiRs have been implicated in the development of specific cancers. Still, the isomiRomes of many tissues, including the lung, have not been characterized; Methods: In this study, we analyzed small RNA sequencing data for three cohorts of lung adenocarcinoma (LUAD) and adult non-malignant lung (ANL) samples. RESULTS We quantified isomiR expression and found 16 A-to-I edited isomiRs expressed in multiple cohorts, as well as 213 5' isomiRs, 128 3' adenylated isomiRs, and 100 3' uridylated isomiRs. Rates of A-to-I editing at editing hotspots correlated with mRNA expression of the editing enzymes ADAR and ADARB1, which were both observed to be deregulated in LUAD. LUAD samples displayed lower overall rates of A-to-I editing and 3' adenylation than ANL samples. Support vector machines and random forest models were trained on one cohort to distinguish ANL and stage I/II LUAD samples using reads per million (RPM) and frequency data for different types of isomiRs. Models trained on A-to-I editing rates at editing hotspots displayed high accuracy when tested on the other two cohorts and compared favorably to classifiers trained on miRNA expression alone; Conclusions: We have identified isomiRs in the human lung and found that their expression differs between non-malignant and tumor tissues, suggesting they hold potential as cancer biomarkers.
Collapse
Affiliation(s)
- David E. Cohn
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Vanessa G. P. Souza
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Aisling Forder
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Nikita Telkar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| | - Wan L. Lam
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada (W.L.L.)
| |
Collapse
|
9
|
Baran AM, Patil AH, Aparicio-Puerta E, Halushka MK, McCall MN. miRglmm: a generalized linear mixed model of isomiR-level counts improves estimation of miRNA-level differential expression and uncovers variable differential expression between isomiRs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592274. [PMID: 39071300 PMCID: PMC11275874 DOI: 10.1101/2024.05.03.592274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MicroRNA-seq data is produced by aligning small RNA sequencing reads of different miRNA transcript isoforms, called isomiRs, to known microRNAs. Aggregation to microRNA-level counts discards information and violates core assumptions of differential expression (DE) methods developed for mRNA-seq data. We establish miRglmm, a DE method for microRNA-seq data, that uses a generalized linear mixed model of isomiR-level counts, facilitating detection of miRNA with differential expression or differential isomiR usage. We demonstrate that miRglmm outperforms current DE methods in estimating DE for miRNA, whether or not there is significant isomiR variability, and simultaneously provides estimates of isomiR-level DE.
Collapse
Affiliation(s)
- Andrea M Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd., Box 630, Rochester, NY 14642, USA
| | - Arun H Patil
- Lieber Institute for Brain Development, Johns Hopkins University, 855 North Wolfe St. Suite 300, Baltimore, MD 21205, USA
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd., Box 630, Rochester, NY 14642, USA
| | - Marc K Halushka
- Department of Pathology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Blvd., Box 630, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Dai Y, Xu Y, Shen J, Hu C, Li X, Chen Y, Liu Y, Hu D. MiR-30a-5p isoform -1|1 promotes the progression of gastric cancer by inhibiting TMEM66 and reducing intratumoral cytotoxic T cells. Exp Cell Res 2024; 439:114099. [PMID: 38802035 DOI: 10.1016/j.yexcr.2024.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Gastric cancer is histologically classified into the intestinal subtype, which forms tubular structures, and the aggressive diffuse subtype, characterized by rapid invasion and poor prognosis. The variety and quantity of miRNA isoforms between different histological subtypes of gastric cancer were unknown. Through systematic filtering, we found that more diverse miR-30a-5p isoforms was present in the diffuse subtype of gastric cancer, and was associated with patients' worse survival independent of tumor stage based on the TCGA miRNA-seq data. Among all nine isoforms of miR-30a-5p, miR-30a-5p -1|1 was more abundant than the archetype of miR-30a-5p. Higher expression of miR-30a-5p -1|1 was observed in patients with advanced tumor stage and poor survival. Furthermore, miR-30a-5p -1|1 could promote the metastasis of gastric cancer cells both in vitro and in vivo by down-regulating TMEM66. In clinical samples, decreased expression of TMEM66 was characteristic of gastric cancer, and the low level of TMEM66 correlated with deceased CD8 positive cells in the tumor microenvironment probably due to decreased cytokines production. In conclusion, the variety of miR-30a-5p isoforms correlates with worse survival in gastric cancer patients. Moreover, miR-30a-5p -1|1 could promote gastric cancer metastasis by inhibiting TMEM66 and the infiltration of intratumoral CD8 positive cells.
Collapse
Affiliation(s)
- Yanmiao Dai
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Yudong Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Shen
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Caihong Hu
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Xiaoli Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yongyu Chen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, China.
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Makarenkov N, Yoel U, Haim Y, Pincu Y, Bhandarkar NS, Shalev A, Shelef I, Liberty IF, Ben-Arie G, Yardeni D, Rudich A, Etzion O, Veksler-Lublinsky I. Circulating isomiRs May Be Superior Biomarkers Compared to Their Corresponding miRNAs: A Pilot Biomarker Study of Using isomiR-Ome to Detect Coronary Calcium-Based Cardiovascular Risk in Patients with NAFLD. Int J Mol Sci 2024; 25:890. [PMID: 38255963 PMCID: PMC10815227 DOI: 10.3390/ijms25020890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Circulating miRNAs are increasingly being considered as biomarkers in various medical contexts, but the value of analyzing isomiRs (isoforms of canonical miRNA sequences) has not frequently been assessed. Here we hypothesize that an in-depth analysis of the full circulating miRNA landscape could identify specific isomiRs that are stronger biomarkers, compared to their corresponding miRNA, for identifying increased CV risk in patients with non-alcoholic fatty liver disease (NAFLD)-a clinical unmet need. Plasma miRNAs were sequenced with next-generation sequencing (NGS). Liver fat content was measured with magnetic-resonance spectrometry (MRS); CV risk was determined, beyond using traditional biomarkers, by a CT-based measurement of coronary artery calcium (CAC) score and the calculation of a CAC score-based CV-risk percentile (CAC-CV%). This pilot study included n = 13 patients, age > 45 years, with an MRS-measured liver fat content of ≥5% (wt/wt), and free of overt CVD. NGS identified 1103 miRNAs and 404,022 different isomiRs, of which 280 (25%) and 1418 (0.35%), respectively, passed an abundance threshold. Eighteen (sixteen/two) circulating miRNAs correlated positively/negatively, respectively, with CAC-CV%, nine of which also significantly discriminated between high/low CV risk through ROC-AUC analysis. IsomiR-ome analyses uncovered 67 isomiRs highly correlated (R ≥ 0.55) with CAC-CV%. Specific isomiRs of miRNAs 101-3p, 144-3p, 421, and 484 exhibited stronger associations with CAC-CV% compared to their corresponding miRNA. Additionally, while miRNAs 140-3p, 223-3p, 30e-5p, and 342-3p did not correlate with CAC-CV%, specific isomiRs with altered seed sequences exhibited a strong correlation with coronary atherosclerosis burden. Their predicted isomiRs-specific targets were uniquely enriched (compared to their canonical miRNA sequence) in CV Disease (CVD)-related pathways. Two of the isomiRs exhibited discriminative ROC-AUC, and another two showed a correlation with reverse cholesterol transport from cholesterol-loaded macrophages to ApoB-depleted plasma. In summary, we propose a pipeline for exploring circulating isomiR-ome as an approach to uncover novel and strong CVD biomarkers.
Collapse
Affiliation(s)
- Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- The Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Nikhil S. Bhandarkar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Aryeh Shalev
- Cardiology Department, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Idit F. Liberty
- Diabetes Clinic, Soroka University Medical Center, Beer-Sheva 84101, Israel;
| | - Gal Ben-Arie
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - David Yardeni
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Isana Veksler-Lublinsky
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
12
|
Bao Y, Wu L, Liu Y, Fan C, Zhang J, Yang J. Role of CircCHD2 in the pathogenesis of gestational diabetes mellitus by regulating autophagy via miR-33b-3p/ULK1 axis. Placenta 2024; 145:27-37. [PMID: 38039841 DOI: 10.1016/j.placenta.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication with a high incidence in women; however, its pathophysiology remains unknown. Our previous study suggested that the circCHD2/miR-33b-3p/ULK1 axis may be involved in GDM pathogenesis. However, the mechanism through which circCHD2 regulates GDM development requires further investigation. We found that high-glucose (HG, 25 mmol/L) significantly induced the expression of circCHD2, increased autophagy and apoptosis, and decreased cell viability in human placental trophoblast HTR-8/SVneo cells. In contrast, the downregulation of circCHD2 significantly attenuated the effects of HG on HTR-8/SVneo cells. MiR-33b-3p downregulated in the placenta of GDM patients was reduced by HG and detected as a target of circCHD2 using bioinformatics analysis, a dual-luciferase reporter assay, and qRT-PCR assay. Further studies showed that the inhibition of miR-33b-3p significantly blocked the effects of circCHD2 downregulation on cell viability, apoptosis, and autophagy in HG-treated HTR-8/SVneo cells. ULK1 is a target of miR-33b-3p, based on bioinformatics analysis, a dual-luciferase reporter assay, qRT-PCR assay, and Western blot analysis. Compared to miR-33b-3p, ULK1 is upregulated in the placenta of GDM patients. ULK1 overexpression notably blocked the effects of miR-33b-3p mimics on cell viability, apoptosis, and autophagy in HG-treated HTR-8/SVneo cells. These findings suggested that circCHD2 acts as an autophagy promoter via the miR-33b-3p/ULK1 axis to induce apoptosis in HTR-8/SVneo cells, suggesting that circCHD2 is a potential diagnostic and therapeutic target for GDM.
Collapse
Affiliation(s)
- Yindi Bao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lianzhi Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Xiaogan Central Hospital Affiliated of Wuhan University of Science and Technology, Xiaogan, 432003, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medical Center/Hubei Medical Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
13
|
Pincu Y, Makarenkov N, Tsitrina AA, Rosengarten-Levine M, Haim Y, Yoel U, Liberty IF, Dukhno O, Kukeev I, Blüher M, Veksler-Lublinsky I, Rudich A. Visceral adipocyte size links obesity with dysmetabolism more than fibrosis, and both can be estimated by circulating miRNAs. Obesity (Silver Spring) 2023; 31:2986-2997. [PMID: 37746932 DOI: 10.1002/oby.23899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE In obesity, adipocyte hypertrophy is detrimental to health, but its' interrelation with fibrosis in the visceral adipose tissue (VAT) depot remains unclear. Because VAT is less accessible via biopsy, biomarkers for VAT quality are needed. The authors hypothesized that VAT adipocyte size and fibrosis are interrelated and can be estimated by circulating microRNAs (circ-miRNAs), contributing to subphenotyping obesity. METHODS Adipocyte size and AT fibrosis were estimated in n = 43 participants (BMI ≥ 30 kg/m2 ). Circ-miRNAs were sequenced (Next Generation Sequencing). RESULTS Participants with above- versus below-median VAT adipocyte area exhibited metabolic dysfunction but lower total and pericellular fibrosis. VAT adipocyte size remained associated with metabolic dysfunction even when controlling for BMI or VAT fibrosis in the entire cohort, as in matched-pairs subanalyses. Next Generation Sequencing uncovered 22 and 6 circ-miRNAs associated with VAT adipocyte size and fibrosis, respectively, with miRNA-130b-3p common to both analyses. The combination of miRNA-130b-3p + miR-150-5p + high-density lipoprotein cholesterol discriminated among those with large versus small VAT adipocytes (receiver operating characteristic-area under the curve: 0.872 [95% CI: 0.747-0.996]), whereas miRNA-130b-3p + miRNA-15a-5p + high-density lipoprotein cholesterol discriminated among those with low and high fibrosis (receiver operating characteristic-area under the curve: 0.823 [95% CI: 0.676-0.97]). CONCLUSIONS These findings suggest that VAT adipocyte size and fibrosis are inversely correlated in obesity and can be estimated by distinct circ-miRNAs, providing a potential tool to subphenotype obesity via a liquid biopsy-like approach to assess VAT health in nonsurgical patients.
Collapse
Affiliation(s)
- Yair Pincu
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma, USA
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Alexandra A Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Marina Rosengarten-Levine
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Uri Yoel
- Soroka University Medical Center, Be'er-Sheva, Israel
| | | | - Oleg Dukhno
- Soroka University Medical Center, Be'er-Sheva, Israel
| | - Ivan Kukeev
- Soroka University Medical Center, Be'er-Sheva, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
14
|
Jung AM, Furlong MA, Goodrich JM, Cardenas A, Beitel SC, Littau SR, Caban-Martinez AJ, Gulotta JJ, Wallentine DD, Urwin D, Gabriel J, Hughes J, Graber JM, Grant C, Burgess JL. Associations Between Epigenetic Age Acceleration and microRNA Expression Among U.S. Firefighters. Epigenet Insights 2023; 16:25168657231206301. [PMID: 37953967 PMCID: PMC10634256 DOI: 10.1177/25168657231206301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023] Open
Abstract
Epigenetic changes may be biomarkers of health. Epigenetic age acceleration (EAA), the discrepancy between epigenetic age measured via epigenetic clocks and chronological age, is associated with morbidity and mortality. However, the intersection of epigenetic clocks with microRNAs (miRNAs) and corresponding miRNA-based health implications have not been evaluated. We analyzed DNA methylation and miRNA profiles from blood sampled among 332 individuals enrolled across 2 U.S.-based firefighter occupational studies (2015-2018 and 2018-2020). We considered 7 measures of EAA in leukocytes (PhenoAge, GrimAge, Horvath, skin-blood, and Hannum epigenetic clocks, and extrinsic and intrinsic epigenetic age acceleration). We identified miRNAs associated with EAA using individual linear regression models, adjusted for sex, race/ethnicity, chronological age, and cell type estimates, and investigated downstream effects of associated miRNAs with miRNA enrichment analyses and genomic annotations. On average, participants were 38 years old, 88% male, and 75% non-Hispanic white. We identified 183 of 798 miRNAs associated with EAA (FDR q < 0.05); 126 with PhenoAge, 59 with GrimAge, 1 with Horvath, and 1 with the skin-blood clock. Among miRNAs associated with Horvath and GrimAge, there were 61 significantly enriched disease annotations including age-related metabolic and cardiovascular conditions and several cancers. Enriched pathways included those related to proteins and protein modification. We identified miRNAs associated with EAA of multiple epigenetic clocks. PhenoAge had more associations with individual miRNAs, but GrimAge and Horvath had greater implications for miRNA-associated pathways. Understanding the relationship between these epigenetic markers could contribute to our understanding of the molecular underpinnings of aging and aging-related diseases.
Collapse
Affiliation(s)
- Alesia M Jung
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, College of Public Health, Tucson, AZ, USA
| | - Melissa A Furlong
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Shawn C Beitel
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Sally R Littau
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | - Derek Urwin
- Los Angeles County Fire Department, Los Angeles, CA, USA
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Division of Health Safety and Medicine, International Association of Fire Fighters, Washington, DC, USA
| | - Jamie Gabriel
- Los Angeles County Fire Department, Los Angeles, CA, USA
| | | | - Judith M Graber
- Department of Biostatistics & Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA, USA
| | - Jefferey L Burgess
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Cimen I, Natarelli L, Abedi Kichi Z, Henderson JM, Farina FM, Briem E, Aslani M, Megens RTA, Jansen Y, Mann-Fallenbuchel E, Gencer S, Duchêne J, Nazari-Jahantigh M, van der Vorst EPC, Enard W, Döring Y, Schober A, Santovito D, Weber C. Targeting a cell-specific microRNA repressor of CXCR4 ameliorates atherosclerosis in mice. Sci Transl Med 2023; 15:eadf3357. [PMID: 37910599 DOI: 10.1126/scitranslmed.adf3357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.
Collapse
Affiliation(s)
- Ismail Cimen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Zahra Abedi Kichi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - James M Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Floriana M Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 85152 Planegg-Martinsried, Germany
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6200 MD Maastricht, Netherlands
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Elizabeth Mann-Fallenbuchel
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Johan Duchêne
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52062 Aachen, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, 85152 Planegg-Martinsried, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Andreas Schober
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Institute of Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council (CNR), 20090 Milan, Italy
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), 81337 Munich, Germany
| |
Collapse
|
16
|
Yang Q, Elz AE, Panis M, Liu T, Nilsson-Payant BE, Blanco-Melo D. Modulation of Influenza A virus NS1 expression reveals prioritization of host response antagonism at single-cell resolution. Front Microbiol 2023; 14:1267078. [PMID: 37876781 PMCID: PMC10590924 DOI: 10.3389/fmicb.2023.1267078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Influenza A virus (IAV) is an important human respiratory pathogen that causes significant seasonal epidemics and potential devastating pandemics. As part of its life cycle, IAV encodes the multifunctional protein NS1, that, among many roles, prevents immune detection and limits interferon (IFN) production. As distinct host immune pathways exert different selective pressures against IAV, as replication progresses, we expect a prioritization in the host immune antagonism by NS1. In this work, we profiled bulk transcriptomic differences in a primary bronchial epithelial cell model facing IAV infections at distinct NS1 levels. We further demonstrated that, at single cell level, the intracellular amount of NS1 in-part shapes the heterogeneity of the host response. We found that modulation of NS1 levels reveal a ranking in its inhibitory roles: modest NS1 expression is sufficient to inhibit immune detection, and thus the expression of pro-inflammatory cytokines (including IFNs), but higher levels are required to inhibit IFN signaling and ISG expression. Lastly, inhibition of chaperones related to the unfolded protein response requires the highest amount of NS1, often associated with later stages of viral replication. This work demystifies some of the multiple functions ascribed to IAV NS1, highlighting the prioritization of NS1 in antagonizing the different pathways involved in the host response to IAV infection.
Collapse
Affiliation(s)
- Qing Yang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Anna E. Elz
- Innovation Laboratory, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Maryline Panis
- Department of Microbiology, New York University, New York, NY, United States
| | - Ting Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Benjamin E. Nilsson-Payant
- TWINCORE Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hanover, Germany
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
17
|
Yu H, Zhang B, Qi L, Han J, Guan M, Li J, Meng Q. AP003352.1/miR-141-3p axis enhances the proliferation of osteosarcoma by LPAR3. PeerJ 2023; 11:e15937. [PMID: 37727685 PMCID: PMC10506581 DOI: 10.7717/peerj.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor with a poor prognosis and a growing incidence. LncRNAs and microRNAs control the occurrence and development process of osteosarcoma through ceRNA patterns. The LPAR3 gene is important in cancer cell proliferation, apoptosis and disease development. However, the regulatory mechanism of the ceRNA network through which LPAR3 participates in osteosarcoma has not been clarified. Herein, our study demonstrated that the AP003352.1/miR-141-3p axis drives LPAR3 expression to induce the malignant progression of osteosarcoma. First, the expression of LPAR3 is regulated by the changes in AP003352.1 and miR-141-3p. Similar to the ceRNA of miR-141-3p, AP003352.1 regulates the expression of LPAR3 through this mechanism. In addition, the regulation of AP003352.1 in malignant osteosarcoma progression depends to a certain degree on miR-141-3p. Importantly, the AP003352.1/miR-141-3p/LPAR3 axis can better serve as a multi-gene diagnostic marker for osteosarcoma. In conclusion, our research reveals a new ceRNA regulatory network, which provides a novel potential target for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hongde Yu
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Lin Qi
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jiaze Li
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| |
Collapse
|
18
|
Wu L, de Perrot M. Omics Overview of the SPARC Gene in Mesothelioma. Biomolecules 2023; 13:1103. [PMID: 37509139 PMCID: PMC10377476 DOI: 10.3390/biom13071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The SPARC gene plays multiple roles in extracellular matrix synthesis and cell shaping, associated with tumor cell migration, invasion, and metastasis. The SPARC gene is also involved in the epithelial-mesenchymal transition (EMT) process, which is a critical phenomenon leading to a more aggressive cancer cell phenotype. SPARC gene overexpression has shown to be associated with poor survival in the mesothelioma (MESO) cohort from the TCGA database, indicating that this gene may be a powerful prognostic factor in MESO. Its overexpression is correlated with the immunosuppressive tumor microenvironment. Here, we summarize the omics advances of the SPARC gene, including the summary of SPARC gene expression associated with prognosis in pancancer and MESO, the immunosuppressive microenvironment, and cancer cell stemness. In addition, SPARC might be targeted by microRNAs. Notably, despite the controversial functions on angiogenesis, SPARC may directly or indirectly contribute to tumor angiogenesis in MESO. In conclusion, SPARC is involved in tumor invasion, metastasis, immunosuppression, cancer cell stemness, and tumor angiogenesis, eventually impacting patient survival. Strategies targeting this gene may provide novel therapeutic approaches to the treatment of MESO.
Collapse
Affiliation(s)
- Licun Wu
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Toronto General Hospital Research Institute, University Health Network (UHN), 9N-961, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada;
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Toronto General Hospital Research Institute, University Health Network (UHN), 9N-961, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada;
- Division of Thoracic Surgery, Princess Margaret Hospital, University Health Network (UHN), Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
19
|
Jenike AE, Bunkelman B, Perzel Mandell KA, Oduor CI, Chin D, Mair D, Jenike KM, Kim DH, Bailey JA, Rafailovich MH, Rosenberg AZ, Halushka MK. Expression Microdissection for the Analysis of miRNA in a Single-Cell Type. J Transl Med 2023; 103:100133. [PMID: 36990152 PMCID: PMC10524025 DOI: 10.1016/j.labinv.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Cell-specific microRNA (miRNA) expression estimates are important in characterizing the localization of miRNA signaling within tissues. Much of these data are obtained from cultured cells, a process known to significantly alter miRNA expression levels. Thus, our knowledge of in vivo cell miRNA expression estimates is poor. We previously demonstrated expression microdissection-miRNA-sequencing (xMD-miRNA-seq) to acquire in vivo estimates, directly from formalin-fixed tissues, albeit with a limited yield. In this study, we optimized each step of the xMD process, including tissue retrieval, tissue transfer, film preparation, and RNA isolation, to increase RNA yields and ultimately show strong enrichment for in vivo miRNA expression by qPCR array. These method improvements, such as the development of a noncrosslinked ethylene vinyl acetate membrane, resulted in a 23- to 45-fold increase in miRNA yield, depending on the cell type. By qPCR, miR-200a increased by 14-fold in xMD-derived small intestine epithelial cells, with a concurrent 336-fold reduction in miR-143 relative to the matched nondissected duodenal tissue. xMD is now an optimized method to obtain robust in vivo miRNA expression estimates from cells. xMD will allow formalin-fixed tissues from surgical pathology archives to make theragnostic biomarker discoveries.
Collapse
Affiliation(s)
- Ana E Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brady Bunkelman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kira A Perzel Mandell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cliff I Oduor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Deborah Chin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Devin Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Miriam H Rafailovich
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
Walsh AD, Stone S, Freytag S, Aprico A, Kilpatrick TJ, Ansell BRE, Binder MD. Mouse microglia express unique miRNA-mRNA networks to facilitate age-specific functions in the developing central nervous system. Commun Biol 2023; 6:555. [PMID: 37217597 DOI: 10.1038/s42003-023-04926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Microglia regulate multiple processes in the central nervous system, exhibiting a considerable level of cellular plasticity which is facilitated by an equally dynamic transcriptional environment. While many gene networks that regulate microglial functions have been characterised, the influence of epigenetic regulators such as small non-coding microRNAs (miRNAs) is less well defined. We have sequenced the miRNAome and mRNAome of mouse microglia during brain development and adult homeostasis, identifying unique profiles of known and novel miRNAs. Microglia express both a consistently enriched miRNA signature as well as temporally distinctive subsets of miRNAs. We generated robust miRNA-mRNA networks related to fundamental developmental processes, in addition to networks associated with immune function and dysregulated disease states. There was no apparent influence of sex on miRNA expression. This study reveals a unique developmental trajectory of miRNA expression in microglia during critical stages of CNS development, establishing miRNAs as important modulators of microglial phenotype.
Collapse
Affiliation(s)
- Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Sarrabeth Stone
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC, 3052, Australia
| | - Brendan R E Ansell
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michele D Binder
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
21
|
Gómez-Martín C, Aparicio-Puerta E, van Eijndhoven MA, Medina JM, Hackenberg M, Pegtel DM. Reassessment of miRNA variant (isomiRs) composition by small RNA sequencing. CELL REPORTS METHODS 2023; 3:100480. [PMID: 37323569 PMCID: PMC10261927 DOI: 10.1016/j.crmeth.2023.100480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Abstract
IsomiRs, sequence variants of mature microRNAs, are usually detected and quantified using high-throughput sequencing. Many examples of their biological relevance have been reported, but sequencing artifacts identified as artificial variants might bias biological inference and therefore need to be ideally avoided. We conducted a comprehensive evaluation of 10 different small RNA sequencing protocols, exploring both a theoretically isomiR-free pool of synthetic miRNAs and HEK293T cells. We calculated that, with the exception of two protocols, less than 5% of miRNA reads can be attributed to library preparation artifacts. Randomized-end adapter protocols showed superior accuracy, with 40% of true biological isomiRs. Nevertheless, we demonstrate concordance across protocols for selected miRNAs in non-templated uridyl additions. Notably, NTA-U calling and isomiR target prediction can be inaccurate when using protocols with poor single-nucleotide resolution. Our results highlight the relevance of protocol choice for biological isomiRs detection and annotation, which has key potential implications for biomedical applications.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | | | - Monique A.J. van Eijndhoven
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - José M. Medina
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - D. Michiel Pegtel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Jenike AE, Jenike KM, Peterson KJ, Fromm B, Halushka MK. Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells. Evol Dev 2023; 25:226-239. [PMID: 37157156 PMCID: PMC10302300 DOI: 10.1111/ede.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.
Collapse
Affiliation(s)
- Ana E. Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Katharine M. Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
23
|
Shou X, Wang Y, Jiang Q, Chen J, Liu Q. miR-126 promotes M1 to M2 macrophage phenotype switching via VEGFA and KLF4. PeerJ 2023; 11:e15180. [PMID: 37020848 PMCID: PMC10069419 DOI: 10.7717/peerj.15180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Background
Macrophage polarization and microRNA play crucial roles in the development of atherosclerosis (AS). The M1 macrophage phenotype contributes to the formation of plaques, while the M2 macrophage phenotype resolves inflammation and promotes tissue repair. MiR-126 has been found to play a role in regulating macrophage polarization in the context of AS. However, the exact mechanism of miR-126 requires further research.
Methods
The foam cell model was established by stimulating THP-1 with oxidized low-density lipoprotein (ox-LDL). We transfected foam cells with miR-126 mimic and its negative control. The transfection of miR-126 was implemented by riboFECT CP transfection kit. The levels of miR-126 and M1/M2 associated genes in foam cells were quantified using reverse transcription-quantitative PCR (RT-qPCR). Additionally, the expressions of CD86+ and CD206+ cells in foam cells were determined by flow cytometry. Western blotting and RT-qPCR were used to determine the protein and mRNA levels of the vascular endothelial growth factor A (VEGFA) and the transcriptional regulator Krüppel-like factor 4 (KLF4), respectively. Additionally, we detected endothelial cell migration after co-culturing endothelial cells and macrophages. MG-132 was used to indirectly activate the expression of VEGFA, and the expression of KLF4 was also evaluated.
Results
The activation of apoptosis and production of foam cells were boosted by the addition of ox-LDL. We transfected foam cells with miR-126 mimic and its negative control and observed that miR-126 greatly suppressed foam cell development and inhibited phagocytosis. Moreover, it caused pro-inflammatory M1 macrophages to switch to the anti-inflammatory M2 phenotype. This was reflected by the increase in anti-inflammatory gene expression and the decrease in pro-inflammatory gene expression. Additionally, miR-126 dramatically decreased the expressions of VEGFA and KLF4. The protein-protein interaction network analysis showed a significantly high correlation between miR-126, VEGFA, and KLF4. MiR-126 may also promote EC migration by activating macrophage PPAR γ expression and effectively suppressing macrophage inflammation. MG-132 indirectly activated the expression of VEGFA, and the expression of KLF4 also significantly increased, which indicates a direct or indirect relationship between VEGFA and KLF4.
Conclusion
Our study shows that miR-126 can reverse ox-LDL-mediated phagocytosis and apoptosis in macrophages. Consequently, the potential role of miR-126 was manifested in regulating macrophage function and promoting vascular endothelial migration.
Collapse
Affiliation(s)
- Xinyang Shou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yimin Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingyu Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Liu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
24
|
Dialog beyond the Grave: Necrosis in the Tumor Microenvironment and Its Contribution to Tumor Growth. Int J Mol Sci 2023; 24:ijms24065278. [PMID: 36982351 PMCID: PMC10049335 DOI: 10.3390/ijms24065278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released from the necrotic cells dying after exposure to various stressors. After binding to their receptors, they can stimulate various signaling pathways in target cells. DAMPs are especially abundant in the microenvironment of malignant tumors and are suspected to influence the behavior of malignant and stromal cells in multiple ways often resulting in promotion of cell proliferation, migration, invasion, and metastasis, as well as increased immune evasion. This review will start with a reminder of the main features of cell necrosis, which will be compared to other forms of cell death. Then we will summarize the various methods used to assess tumor necrosis in clinical practice including medical imaging, histopathological examination, and/or biological assays. We will also consider the importance of necrosis as a prognostic factor. Then the focus will be on the DAMPs and their role in the tumor microenvironment (TME). We will address not only their interactions with the malignant cells, frequently leading to cancer progression, but also with the immune cells and their contribution to immunosuppression. Finally, we will emphasize the role of DAMPs released by necrotic cells in the activation of Toll-like receptors (TLRs) and the possible contributions of TLRs to tumor development. This last point is very important for the future of cancer therapeutics since there are attempts to use TLR artificial ligands for cancer therapeutics.
Collapse
|
25
|
Halushka MK, Witwer KW. Letter by Halushka and Witwer Regarding Article, "Circulating MicroRNA-122-5p Is Associated With a Lack of Improvement in Left Ventricular Function After Transcatheter Aortic Valve Replacement and Regulates Viability of Cardiomyocytes Through Extracellular Vesicles". Circulation 2023; 147:e64-e65. [PMID: 36689572 PMCID: PMC9883045 DOI: 10.1161/circulationaha.122.061834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine
| | - Kenneth W. Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University School of Medicine
| |
Collapse
|
26
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23:6696143. [PMID: 36094095 DOI: 10.1093/bib/bbac397] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are gene regulators involved in the pathogenesis of complex diseases such as cancers, and thus serve as potential diagnostic markers and therapeutic targets. The prerequisite for designing effective miRNA therapies is accurate discovery of miRNA-disease associations (MDAs), which has attracted substantial research interests during the last 15 years, as reflected by more than 55 000 related entries available on PubMed. Abundant experimental data gathered from the wealth of literature could effectively support the development of computational models for predicting novel associations. In 2017, Chen et al. published the first-ever comprehensive review on MDA prediction, presenting various relevant databases, 20 representative computational models, and suggestions for building more powerful ones. In the current review, as the continuation of the previous study, we revisit miRNA biogenesis, detection techniques and functions; summarize recent experimental findings related to common miRNA-associated diseases; introduce recent updates of miRNA-relevant databases and novel database releases since 2017, present mainstream webservers and new webserver releases since 2017 and finally elaborate on how fusion of diverse data sources has contributed to accurate MDA prediction.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
27
|
Olgun G, Gopalan V, Hannenhalli S. miRSCAPE - inferring miRNA expression from scRNA-seq data. iScience 2022; 25:104962. [PMID: 36060076 PMCID: PMC9437856 DOI: 10.1016/j.isci.2022.104962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Our understanding of miRNA activity at cellular resolution is thwarted by the inability of standard scRNA-seq protocols to capture miRNAs. We introduce a novel tool, miRSCAPE, to infer miRNA expression in a sample from its RNA-seq profile. We establish miRSCAPE's accuracy in 10 tumor and normal cohorts demonstrating its superiority over alternatives. miRSCAPE accurately infers cell type-specific miRNA activities (predicted versus observed fold-difference correlation ∼0.81) in two independent scRNA-seq datasets. We apply miRSCAPE to infer miRNA activities in scRNA clusters in pancreatic and lung adenocarcinomas, as well as in 56 cell types in the human cell landscape (HCL). In pancreatic and breast cancer scRNA-seq data, miRSCAPE recapitulates miRNAs associated with stemness and epithelial-mesenchymal transition (EMT) cell states, respectively. Overall, miRSCAPE recapitulates and refines miRNA biology at cellular resolution. miRSCAPE is freely available and is easily applicable to scRNA-seq data to infer miRNA activities at cellular resolution.
Collapse
Affiliation(s)
- Gulden Olgun
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Yang A, Bofill-De Ros X, Stanton R, Shao TJ, Villanueva P, Gu S. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat Commun 2022; 13:5260. [PMID: 36071058 PMCID: PMC9452540 DOI: 10.1038/s41467-022-32969-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
TENTs generate miRNA isoforms by 3' tailing. However, little is known about how tailing regulates miRNA function. Here, we generate isogenic HEK293T cell lines in which TENT2, TUT4 and TUT7 are knocked out individually or in combination. Together with rescue experiments, we characterize TENT-specific effects by deep sequencing, Northern blot and in vitro assays. We find that 3' tailing is not random but highly specific. In addition to its known adenylation, TENT2 contributes to guanylation and uridylation on mature miRNAs. TUT4 uridylates most miRNAs whereas TUT7 is dispensable. Removing adenylation has a marginal impact on miRNA levels. By contrast, abolishing uridylation leads to dysregulation of a set of miRNAs. Besides let-7, miR-181b and miR-222 are negatively regulated by TUT4/7 via distinct mechanisms while the miR-888 cluster is upregulated specifically by TUT7. Our results uncover the selective actions of TENTs in generating 3' isomiRs and pave the way to investigate their functions.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ryan Stanton
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
29
|
Patil AH, Baran A, Brehm ZP, McCall MN, Halushka MK. A curated human cellular microRNAome based on 196 primary cell types. Gigascience 2022; 11:giac083. [PMID: 36007182 PMCID: PMC9404528 DOI: 10.1093/gigascience/giac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND An incomplete picture of the expression distribution of microRNAs (miRNAs) across human cell types has long hindered our understanding of this important regulatory class of RNA. With the continued increase in available public small RNA sequencing datasets, there is an opportunity to more fully understand the general distribution of miRNAs at the cell level. RESULTS From the NCBI Sequence Read Archive, we obtained 6,054 human primary cell datasets and processed 4,184 of them through the miRge3.0 small RNA sequencing alignment software. This dataset was curated down, through shared miRNA expression patterns, to 2,077 samples from 196 unique cell types derived from 175 separate studies. Of 2,731 putative miRNAs listed in miRBase (v22.1), 2,452 (89.8%) were detected. Among reasonably expressed miRNAs, 108 were designated as cell specific/near specific, 59 as infrequent, 52 as frequent, 54 as near ubiquitous, and 50 as ubiquitous. The complexity of cellular microRNA expression estimates recapitulates tissue expression patterns and informs on the miRNA composition of plasma. CONCLUSIONS This study represents the most complete reference, to date, of miRNA expression patterns by primary cell type. The data are available through the human cellular microRNAome track at the UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/hgHubConnect) and an R/Bioconductor package (https://bioconductor.org/packages/microRNAome/).
Collapse
Affiliation(s)
- Arun H Patil
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrea Baran
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zachary P Brehm
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Ju D, Liang Y, Hou G, Zheng W, Zhang G, Dun X, Wei D, Yan F, Zhang L, Lai D, Yuan J, Zheng Y, Wang F, Meng P, Wang Y, Yu W, Yuan J. FBP1
/miR-24-1/enhancer axis activation blocks renal cell carcinoma progression via Warburg effect. Front Oncol 2022; 12:928373. [PMID: 35978816 PMCID: PMC9376222 DOI: 10.3389/fonc.2022.928373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Warburg effect is a pivotal hallmark of cancers and appears prevalently in renal cell carcinoma (RCC). FBP1 plays a negative role in Warburg effect as a rate-limiting enzyme in gluconeogenesis, yet its mechanism in RCC remains to be further characterized. Herein, we revealed that FBP1 was downregulated in RCC tissue samples and was related to the poor survival rate of RCC. Strikingly, miR-24-1 whose DNA locus is overlapped with enhancer region chr9:95084940-95087024 was closely linked with the depletion of FBP1 in RCC. Of note, miRNAs like miR-24-1 whose DNA loci are enriched with H3K27ac and H3K4me1 modifications are belonging to nuclear activating miRNAs (NamiRNAs), which surprisingly upregulate target genes in RCC through enhancer beyond the conventional role of repressing target gene expression. Moreover, miR-24-1 reactivated the expression of FBP1 to suppress Warburg effect in RCC cells, and subsequently inhibited proliferation and metastasis of RCC cells. In mechanism, the activating role of miR-24-1 was dependent on enhancer integrity by dual luciferase reporter assay and CRISPR/Cas9 system. Ultimately, animal assay in vivo validated the suppressive function of FBP1 on 786-O and ACHN cells. Collectively, the current study highlighted that activation of FBP1 by enhancer-overlapped miR-24-1 is capable of contributing to Warburg effect repression through which RCC progression is robustly blocked, providing an alternative mechanism for RCC development and as well implying a potential clue for RCC treatment strategy.
Collapse
Affiliation(s)
- Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Guangdong Hou
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinlong Dun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fei Yan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lei Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dong Lai
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiarui Yuan
- Clinical Medicine Department, St. George’s University School of Medicine, Saint George, Grenada
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Medical Innovation Center, Fourth Military Medical Univeristy, Xi’an, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ping Meng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Yong Wang, ; Wenqiang Yu, ; Jianlin Yuan,
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
- *Correspondence: Yong Wang, ; Wenqiang Yu, ; Jianlin Yuan,
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Yong Wang, ; Wenqiang Yu, ; Jianlin Yuan,
| |
Collapse
|
31
|
hnRNPC induces isoform shifts in miR-21-5p leading to cancer development. Exp Mol Med 2022; 54:812-824. [PMID: 35729324 PMCID: PMC9256715 DOI: 10.1038/s12276-022-00792-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNA (miRNA) processing is a critical step in mature miRNA production. Its dysregulation leads to an increase in miRNA isoforms with heterogenous 5'-ends (isomiRs), which can recognize distinct target sites because of their shifted seed sequence. Although some miRNA genes display productive expression of their 5'-isomiRs in cancers, how their production is controlled and how 5'-isomiRs affect tumor progression have yet to be explored. In this study, based on integrative analyses of high-throughput sequencing data produced by our group and publicly available data, we demonstrate that primary miR-21 (pri-miR-21) is processed into the cancer-specific isomiR isomiR-21-5p | ±1, which suppresses growth hormone receptor (GHR) in liver cancer. Treatment with antagomirs against isomiR-21-5p | ±1 inhibited the in vitro tumorigenesis of liver cancer cells and allowed the recovery of GHR, whereas the introduction of isomiR-21-5p | ±1 mimics attenuated these effects. These effects were validated in a mouse model of spontaneous liver cancer. Heterogeneous nuclear ribonucleoprotein C and U2 small nuclear RNA auxiliary factor 2 were predicted to bind upstream of pre-miR-21 via a poly-(U) motif and influence Drosha processing to induce the production of isomiR-21-5p | ±1. Our findings suggest an oncogenic function for the non-canonical isomiR-21-5p | ±1 in liver cancer, and its production was shown to be regulated by hnRNPC.
Collapse
|
32
|
Qi Y, Ding L, Zhang S, Yao S, Ong J, Li Y, Wu H, Du P. A plant immune protein enables broad antitumor response by rescuing microRNA deficiency. Cell 2022; 185:1888-1904.e24. [PMID: 35623329 DOI: 10.1016/j.cell.2022.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022]
Abstract
Cancer cells are featured with uncontrollable activation of cell cycle, and microRNA deficiency drives tumorigenesis. The RNA-dependent RNA polymerase (RDR) is essential for small-RNA-mediated immune response in plants but is absent in vertebrates. Here, we show that ectopic expression of plant RDR1 can generally inhibit cancer cell proliferation. In many human primary tumors, abnormal microRNA isoforms with 1-nt-shorter 3' ends are widely accumulated. RDR1 with nucleotidyltransferase activity can recognize and modify the problematic AGO2-free microRNA duplexes with mononucleotides to restore their 2 nt overhang structure, which eventually rescues AGO2-loading efficiency and elevates global miRNA expression to inhibit cancer cell-cycle specifically. The broad antitumor effects of RDR1, which can be delivered by an adeno-associated virus, are visualized in multiple xenograft tumor models in vivo. Altogether, we reveal the widespread accumulation of aberrant microRNA isoforms in tumors and develop a plant RDR1-mediated antitumor stratagem by editing and repairing defective microRNAs.
Collapse
Affiliation(s)
- Ye Qi
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Siwen Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hong Wu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
33
|
Du M, Espinosa-Diez C, Liu M, Ahmed IA, Mahan S, Wei J, Handen AL, Chan SY, Gomez D. miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. iScience 2022; 25:104169. [PMID: 35465051 PMCID: PMC9018390 DOI: 10.1016/j.isci.2022.104169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
miRNAs are versatile regulators of smooth muscle cell (SMC) fate and behavior in vascular development and disease. Targeted loss-of-function studies have established the relevance of specific miRNAs in controlling SMC differentiation or mediating phenotypic modulation. Our goal was to characterize SMC miRNAome and its contribution to transcriptome changes during phenotypic modulation. Small RNA sequencing revealed that dedifferentiation led to the differential expression of over 50 miRNAs in cultured SMC. miRNA/mRNA comparison predicted that over a third of SMC transcript expression was regulated by differentially expressed miRNAs. Our screen identified the miR-200 cluster as highly downregulated during dedifferentiation. miR-200 maintains SMC quiescence and represses proliferation, migration, and neointima formation, in part by targeting Quaking, a central SMC phenotypic switching mediator. Our study unraveled the substantial contribution of miRNAs in regulating the SMC transcriptome and identified the miR-200 cluster as a pro-quiescence mechanism and a potential inhibitor of vascular restenosis.
Collapse
Affiliation(s)
- Mingyuan Du
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ibrahim Adeola Ahmed
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jianxin Wei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adam L Handen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
34
|
Stunf Pukl S. Are miRNAs Dynamic Biomarkers in Keratoconus? A Review of the Literature. Genes (Basel) 2022; 13:genes13040588. [PMID: 35456395 PMCID: PMC9025197 DOI: 10.3390/genes13040588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Aim: A review of miRNA (microRNA) profiling studies in keratoconus. Methods: Literature search strategy—PubMed central database, using miRNA or microRNA and keratoconus as keywords. Results: Eleven experimental or clinical studies on humans regarding miRNA and keratoconus, published in English between 2009 and 2020 were retrieved. Conclusion: The publications regarding the role of miRNAs in keratoconus are scarce and diverse but provide some valuable information about potential new mechanisms of keratoconus development and progression. The cornea expresses almost 300 different miRNAs, 18 of which are specific, and miR-184 is by far the most abundant, with expression restricted to central basal and suprabasal epithelial cells. Mutations in the seed region of MIR184 were proved to be rare and nonspecific in patients with isolated keratoconus. Overall, in keratoconus, a total of 29 miRNAs were upregulated, and 11 were downregulated. It appeared that miR-143-3p, miR-182-5p, and miR-92a-3p were highly expressed, while the miRNAs connected to cell–cell junction, cell division, and motor activity were downregulated. In less advanced forms, altered expression of four miRNAs—miR-151a-3p, miR-194-5p, miR-195-5p, miR-185-5p—was proved in the cone epithelium; in contrast, in advanced keratoconus, the expression of miR-151a-3p and miR-194-5p remained altered, changes in the expression of miR-195 and miR-185 were not reported, and the expression of miR-138-5p, miR-146b-5p, miR-28-5p, and miR-181a-2-3p was also altered in the corneal epithelium. Keratoconus is a dynamic process of corneal stromal thinning that might result from a dynamic miRNA expression in the corneal epithelium exposed to environmental and behavioral factors causing repetitive traumas. Further experimental studies are needed to prove this hypothesis.
Collapse
Affiliation(s)
- Spela Stunf Pukl
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; ; Tel.: +386-41-382-487
- Eye Hospital, University Clinical Center Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Vail DJ, Somoza RA, Caplan AI. MicroRNA Regulation of Bone Marrow Mesenchymal Stem Cell Chondrogenesis: Toward Articular Cartilage. Tissue Eng Part A 2022; 28:254-269. [PMID: 34328786 PMCID: PMC8971999 DOI: 10.1089/ten.tea.2021.0112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The production of a clinically useful engineered cartilage is an outstanding and unmet clinical need. High-throughput RNA sequencing provides a means of characterizing the molecular phenotype of populations of cells and can be leveraged to better understand differences among source cells, derivative engineered tissues, and target phenotypes. In this study, small RNA sequencing is utilized to comprehensively characterize the microRNA transcriptomes (miRNomes) of native human neonatal articular cartilage and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) differentiating into cartilage organoids, contrasting the microRNA regulation of engineered cartilage with that of a promising target phenotype. Five dominant microRNAs are upregulated during cartilage organoid differentiation and disproportionately regulate transcription factors: miR-148a-3p, miR-140-3p, miR-27b-3p, miR-140-5p, and miR-181a-5p. Two microRNAs that dominate the miRNomes of hBM-MSCs, miR-21-5p and miR-143-3p, persist throughout the differentiation process and may limit the ability of these cells to differentiate into an engineered cartilage resembling target native articular cartilage. By using predictive bioinformatics tools and antagomir inhibition, these persistent microRNAs are shown to destabilize the mRNA of genes with known or potential roles in cartilage biology including FGF18, TGFBR2, TET1, STOX2, ARAP2, N4BP2L1, LHX9, NFIA, and RPS6KA5. These results shed light on the extent to which only a few microRNAs contribute to the complex regulatory environment of hBM-MSCs for engineered tissues. Impact statement MicroRNAs are emerging as important controlling elements in the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). By using a robust bioinformatic approach and further validation in vitro, here we provide a comprehensive characterization of the microRNA transcriptomes (miRNomes) of a commonly studied and clinically promising source of multipotent cells (hBM-MSCs), a gold standard model of in vitro chondrogenesis (hBM-MSC-derived cartilage organoids), and an attractive in vivo target phenotype for clinically useful engineered cartilage (neonatal articular cartilage). These analyses highlighted a specific set of microRNAs involved in the chondrogenic program that could be manipulated to acquire a more robust articular cartilage-like phenotype. This characterization provides researchers in the cartilage tissue engineering field a useful atlas with which to contextualize microRNA involvement in complex differentiation pathways.
Collapse
Affiliation(s)
- Daniel J. Vail
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Address correspondence to: Daniel J. Vail, PhD, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Biomedical Research Building, Room 647C, Cleveland, OH 44106, USA
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Arnold I. Caplan
- Department of Biology, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Bofill-De Ros X, Hong Z, Birkenfeld B, Alamo-Ortiz S, Yang A, Dai L, Gu S. Flexible pri-miRNA structures enable tunable production of 5’ isomiRs. RNA Biol 2022; 19:279-289. [PMID: 35188062 PMCID: PMC8865264 DOI: 10.1080/15476286.2022.2025680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Drosha cleavage of a pri-miRNA defines mature microRNA sequence. Drosha cleavage at alternative positions generates 5’ isoforms (isomiRs) which have distinctive functions. To understand how pri-miRNA structures influence Drosha cleavage, we performed a systematic analysis of the maturation of endogenous pri-miRNAs and their variants both in vitro and in vivo. We show that in addition to previously known features, the overall structural flexibility of pri-miRNA impact Drosha cleavage fidelity. Internal loops and nearby G · U wobble pairs on the pri-miRNA stem induce the use of non-canonical cleavage sites by Drosha, resulting in 5’ isomiR production. By analysing patient data deposited in the Cancer Genome Atlas, we provide evidence that alternative Drosha cleavage of pri-miRNAs is a tunable process that responds to the level of pri-miRNA-associated RNA-binding proteins. Together, our findings reveal that Drosha cleavage fidelity can be modulated by altering pri-miRNA structure, a potential mechanism underlying 5’ isomiR biogenesis in tumours. ![]()
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhenyi Hong
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ben Birkenfeld
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sarangelica Alamo-Ortiz
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lisheng Dai
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
37
|
Diazzi S, Baeri A, Fassy J, Lecacheur M, Marin-Bejar O, Girard CA, Lefevre L, Lacoux C, Irondelle M, Mounier C, Truchi M, Couralet M, Ohanna M, Carminati A, Berestjuk I, Larbret F, Gilot D, Vassaux G, Marine JC, Deckert M, Mari B, Tartare-Deckert S. Blockade of the pro-fibrotic reaction mediated by the miR-143/-145 cluster enhances the responses to targeted therapy in melanoma. EMBO Mol Med 2022; 14:e15295. [PMID: 35156321 PMCID: PMC8899916 DOI: 10.15252/emmm.202115295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Lineage dedifferentiation toward a mesenchymal‐like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti‐fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK‐targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR‐143/‐145 pro‐fibrotic cluster as a driver of this mesenchymal‐like phenotype. Upregulation of the miR‐143/‐145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR‐143‐3p and miR‐145‐5p, collaborated to mediate transition toward a drug‐resistant undifferentiated mesenchymal‐like state by targeting Fascin actin‐bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA‐mediated regulatory network that contributes to non‐genetic adaptive drug resistance and provides proof of principle that preventing MAPKi‐induced pro‐fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy.
Collapse
Affiliation(s)
- Serena Diazzi
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Alberto Baeri
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Julien Fassy
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Margaux Lecacheur
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Oskar Marin-Bejar
- Laboratory For Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Christophe A Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Lauren Lefevre
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Caroline Lacoux
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | | | - Carine Mounier
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France.,CYU Université, ERRMECe (EA1391), Neuville-sur-Oise, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Marie Couralet
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Mickael Ohanna
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Alexandrine Carminati
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ilona Berestjuk
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Frederic Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - David Gilot
- INSERM U1242, University of Rennes, Rennes, France
| | - Georges Vassaux
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France
| | - Jean-Christophe Marine
- Laboratory For Molecular Cancer Biology, VIB Center for Cancer Biology, VIB, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia Antipolis, France.,FHU-OncoAge, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France.,FHU-OncoAge, Nice, France
| |
Collapse
|
38
|
Liu Y, Zhao X, Li J, Zhou L, Chang W, Li J, Hou R, Li J, Yin G, Li X, Zhang K. MiR-155 Inhibits TP53INP1 Expression Leading to Enhanced Glycolysis of Psoriatic Mesenchymal Stem Cells. J Dermatol Sci 2022; 105:142-151. [DOI: 10.1016/j.jdermsci.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
|
39
|
Høye E, Fromm B, Böttger PHM, Domanska D, Torgunrud A, Lund-Andersen C, Abrahamsen TW, Fretland Å, Dagenborg VJ, Lorenz S, Edwin B, Hovig E, Flatmark K. A comprehensive framework for analysis of microRNA sequencing data in metastatic colorectal cancer. NAR Cancer 2022; 4:zcab051. [PMID: 35047825 PMCID: PMC8759566 DOI: 10.1093/narcan/zcab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Although microRNAs (miRNAs) contribute to all hallmarks of cancer, miRNA dysregulation in metastasis remains poorly understood. The aim of this work was to reliably identify miRNAs associated with metastatic progression of colorectal cancer (CRC) using novel and previously published next-generation sequencing (NGS) datasets generated from 268 samples of primary (pCRC) and metastatic CRC (mCRC; liver, lung and peritoneal metastases) and tumor adjacent tissues. Differential expression analysis was performed using a meticulous bioinformatics pipeline, including only bona fide miRNAs, and utilizing miRNA-tailored quality control and processing. Five miRNAs were identified as up-regulated at multiple metastatic sites Mir-210_3p, Mir-191_5p, Mir-8-P1b_3p [mir-141–3p], Mir-1307_5p and Mir-155_5p. Several have previously been implicated in metastasis through involvement in epithelial-to-mesenchymal transition and hypoxia, while other identified miRNAs represent novel findings. The use of a publicly available pipeline facilitates reproducibility and allows new datasets to be added as they become available. The set of miRNAs identified here provides a reliable starting-point for further research into the role of miRNAs in metastatic progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Kjersti Flatmark
- To whom correspondence should be addressed. Tel: +47 22 78 18 63;
| |
Collapse
|
40
|
De Simone S, Giacani E, Bosco MA, Vittorio S, Ferrara M, Bertozzi G, Cipolloni L, La Russa R. The Role of miRNAs as New Molecular Biomarkers for Dating the Age of Wound Production: A Systematic Review. Front Med (Lausanne) 2022; 8:803067. [PMID: 35096893 PMCID: PMC8795691 DOI: 10.3389/fmed.2021.803067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The timing of wounds production is a significant issue in forensic pathology. Although various methods have been evaluated, obtaining an accurate dating of lesions is still a challenge. The pathologist uses many parameters to value wound age, such as histological and immunohistochemical. In recent years, there have been many studies regarding the use of miRNAs in wound-age estimation; indeed, miRNAs have multiple potential uses in forensic pathology. SCOPE This review aims to verify the efficacy and feasibility of miRNAs as a tool for determining the timing of lesions. MATERIALS AND METHODS The authors conducted the systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed was used as a search engine to find articles published between January, 1st 2016 and October, 1st 2021, to evaluate the current state of the art regarding wound-age estimation. RESULTS A total of 256 articles were collected; after screening according to PRISMA guidelines, the systematic review included 8 articles. The studies included in this review were all Original articles evaluating the use of biomarkers for wound-age determination. DISCUSSION AND CONCLUSION The literature review showed that analysis of miRNA is an innovative field of study with significant potentiality in forensic pathology. There are few studies, and almost all of them are at an early stage. The challenge is to understand how to standardize the samples' selection to obtain reliable experimental data. This observation represents a necessary prerequisite to planning further clinical trials.
Collapse
Affiliation(s)
- Stefania De Simone
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Elena Giacani
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Maria Antonella Bosco
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Simona Vittorio
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Michela Ferrara
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
41
|
Zhou R, Xiao X, He P, Zhao Y, Xu M, Zheng X, Yang R, Chen S, Zhou L, Zhang D, Yang Q, Song J, Tang C, Zhang Y, Lin JW, Cheng L, Chen L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e66. [PMID: 35288753 PMCID: PMC9226526 DOI: 10.1093/nar/gkac167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/26/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative polyadenylation increases transcript diversities at the 3’ end, regulating biological processes including cell differentiation, embryonic development and cancer progression. Here, we present a Bayesian method SCAPE, which enables de novo identification and quantification of polyadenylation (pA) sites at single-cell level by utilizing insert size information. We demonstrated its accuracy and robustness and identified 31 558 sites from 36 mouse organs, 43.8% (13 807) of which were novel. We illustrated that APA isoforms were associated with miRNAs binding and regulated in tissue-, cell type-and tumor-specific manners where no difference was found at gene expression level, providing an extra layer of information for cell clustering. Furthermore, we found genome-wide dynamic changes of APA usage during erythropoiesis and induced pluripotent stem cell (iPSC) differentiation, suggesting APA contributes to the functional flexibility and diversity of single cells. We expect SCAPE to aid the analyses of cellular dynamics and diversities in health and disease.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuancun Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengying Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuran Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruirui Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shasha Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lifang Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingxin Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Song
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chao Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiming Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-wen Lin
- To whom correspondence should be addressed. Tel: +86 028 8546 8389;
| | - Lu Cheng
- Correspondence may also be addressed to Lu Cheng.
| | - Lu Chen
- Correspondence may also be addressed to Lu Chen.
| |
Collapse
|
42
|
Takada Y, Shibuta T, Hatano M, Sato K, Koga M, Ishibashi A, Harada T, Hisatomi T, Shimura H, Fukushima N, Leecharoenkiat K, Chamnanchanunt S, Svasti S, Fucharoen S, Umemura T. Pre-Analytical Modification of Serum miRNAs: Diagnostic Reliability of Serum miRNAs in Hemolytic Diseases. J Clin Med 2021; 10:jcm10215045. [PMID: 34768564 PMCID: PMC8584813 DOI: 10.3390/jcm10215045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Circulating microRNAs (miRNAs) are useful biomarkers of hemolysis. Since blood cells are the main origins of circulating miRNAs, we evaluated blood cell-related pre-analytical modification of the miRNA signatures during blood drawing and serum processing. The levels of miRNA before and after ex vivo blood drawing were analyzed with the reverse transcriptase-based polymerase chain reaction method. Furthermore, the changes of miRNA signatures caused by different time-lag between blood drawing and serum preparation by 24 h were evaluated. Finally, we compared the miRNA levels between leftover samples and samples of hemolytic diseases. Blood drawing procedure induced increments of red blood cell (RBC)-related miRNAs (miR-451a, miR-486) about 2-fold. One hour standing of blood samples before serum separation induced almost the same increases in RBC-related miRNAs. To test the clinical usefulness of miR-451a as a biomarker of hemolytic diseases, we analyzed miRNAs of samples from 10 normal subjects, 30 leftover samples in the clinical laboratory, and 20 samples from patients with hemolytic diseases. Serum miR-451a significantly increased in patients with hemolytic anemia more than the levels of pre-analytical modification. In conclusion, the pre-analytical modification of serum miRNAs did not disturb the usefulness of RBC-derived miRNAs as biomarkers of hemolytic diseases.
Collapse
Affiliation(s)
- Yukichi Takada
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Tatsuki Shibuta
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Mayu Hatano
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Kenichi Sato
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Mari Koga
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
| | - Ayaka Ishibashi
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
| | - Tetsuhiro Harada
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
| | | | - Hanae Shimura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
| | - Noriyasu Fukushima
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Kamonlak Leecharoenkiat
- Department of Clinical Microscope, Faculty of Medical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | | | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73130, Thailand; (S.S.); (S.F.)
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73130, Thailand; (S.S.); (S.F.)
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Okawa 831-8501, Japan; (Y.T.); (T.S.); (M.H.); (K.S.); (H.S.)
- Clinical Laboratory, Kouhoukai Takagi Hospital, Okawa 831-8501, Japan; (M.K.); (A.I.); (T.H.)
- Correspondence: ; Tel.: +81-0944-89-2000
| |
Collapse
|
43
|
Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martínez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22:9724. [PMID: 34575884 PMCID: PMC8466275 DOI: 10.3390/ijms22189724] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
| | - Leandro Carbone
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Medicine, University of Salvador, Buenos Aires 1020, Argentina
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Salvador Vargas
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
| | - Heidy Angulo
- Grupo de Investigación Programa de Medicina (GINUMED), Corporación Universitaria Rafael Núñez, Cartagena 130001, Colombia;
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| |
Collapse
|
44
|
Jacquet K, Vidal-Cruchez O, Rezzonico R, Nicolini VJ, Mograbi B, Hofman P, Vassaux G, Mari B, Brest P. New technologies for improved relevance in miRNA research. Trends Genet 2021; 37:1060-1063. [PMID: 34474931 DOI: 10.1016/j.tig.2021.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
After a number of years of research in the field of miRNA, the robustness and biological relevance of many published articles is increasingly being questioned. We propose the use of new RNA-seq approaches, genome editing technologies, and updated public databases to improve the quality, reliability, and relevance of published data.
Collapse
Affiliation(s)
- Karine Jacquet
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), Centre Antoine Lacassagne, CNRS, INSERM, Nice, France; FHU-OncoAge, Nice, France
| | - Olivia Vidal-Cruchez
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), Centre Antoine Lacassagne, CNRS, INSERM, Nice, France; FHU-OncoAge, Nice, France
| | - Roger Rezzonico
- FHU-OncoAge, Nice, France; Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), INSERM, CNRS, 06560 Sophia Antipolis, France
| | - Victoria J Nicolini
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), Centre Antoine Lacassagne, CNRS, INSERM, Nice, France; FHU-OncoAge, Nice, France
| | - Baharia Mograbi
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), Centre Antoine Lacassagne, CNRS, INSERM, Nice, France; FHU-OncoAge, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), Centre Antoine Lacassagne, CNRS, INSERM, Nice, France; FHU-OncoAge, Nice, France; Université Côte d'Azur, CHU-Nice, Pasteur Hospital, Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice, France
| | - Georges Vassaux
- FHU-OncoAge, Nice, France; Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), INSERM, CNRS, 06560 Sophia Antipolis, France
| | - Bernard Mari
- FHU-OncoAge, Nice, France; Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS, 06560 Sophia Antipolis, France.
| | - Patrick Brest
- Université Côte d'Azur, Institute of Research on Cancer and Ageing of Nice (IRCAN), Centre Antoine Lacassagne, CNRS, INSERM, Nice, France; FHU-OncoAge, Nice, France.
| |
Collapse
|
45
|
Patil AH, Halushka MK. miRge3.0: a comprehensive microRNA and tRF sequencing analysis pipeline. NAR Genom Bioinform 2021; 3:lqab068. [PMID: 34308351 PMCID: PMC8294687 DOI: 10.1093/nargab/lqab068] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs and tRFs are classes of small non-coding RNAs, known for their roles in translational regulation of genes. Advances in next-generation sequencing (NGS) have enabled high-throughput small RNA-seq studies, which require robust alignment pipelines. Our laboratory previously developed miRge and miRge2.0, as flexible tools to process sequencing data for annotation of miRNAs and other small-RNA species and further predict novel miRNAs using a support vector machine approach. Although miRge2.0 is a leading analysis tool in terms of speed with unique quantifying and annotation features, it has a few limitations. We present miRge3.0 that provides additional features along with compatibility to newer versions of Cutadapt and Python. The revisions of the tool include the ability to process Unique Molecular Identifiers (UMIs) to account for PCR duplicates while quantifying miRNAs in the datasets, correct erroneous single base substitutions in miRNAs with miREC and an accurate mirGFF3 formatted isomiR tool. miRge3.0 also has speed improvements benchmarked to miRge2.0, Chimira and sRNAbench. Finally, miRge3.0 output integrates into other packages for a streamlined analysis process and provides a cross-platform Graphical User Interface (GUI). In conclusion miRge3.0 is our third generation small RNA-seq aligner with improvements in speed, versatility and functionality over earlier iterations.
Collapse
Affiliation(s)
- Arun H Patil
- Department of Pathology, Division of Cardiovascular Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marc K Halushka
- Department of Pathology, Division of Cardiovascular Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Circulating miRNAs as Novel Non-Invasive Biomarkers to Aid the Early Diagnosis of Suspicious Breast Lesions for Which Biopsy Is Recommended. Cancers (Basel) 2021; 13:cancers13164028. [PMID: 34439180 PMCID: PMC8391908 DOI: 10.3390/cancers13164028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. A retrospective cohort of plasma samples divided into training and testing sets and a prospective cohort of women with suspicious imaging findings who underwent tissue biopsy were investigated through a global microRNA profile by OpenArray. Seven signatures, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were identified and validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 of them were confirmed in the prospective cohort. Abstract In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy.
Collapse
|
47
|
Desvignes T, Sydes J, Montfort J, Bobe J, Postlethwait JH. Evolution after Whole-Genome Duplication: Teleost MicroRNAs. Mol Biol Evol 2021; 38:3308-3331. [PMID: 33871629 PMCID: PMC8321539 DOI: 10.1093/molbev/msab105] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene expression regulators implicated in many biological processes, but we lack a global understanding of how miRNA genes evolve and contribute to developmental canalization and phenotypic diversification. Whole-genome duplication events likely provide a substrate for species divergence and phenotypic change by increasing gene numbers and relaxing evolutionary pressures. To understand the consequences of genome duplication on miRNA evolution, we studied miRNA genes following the teleost genome duplication (TGD). Analysis of miRNA genes in four teleosts and in spotted gar, whose lineage diverged before the TGD, revealed that miRNA genes were retained in ohnologous pairs more frequently than protein-coding genes, and that gene losses occurred rapidly after the TGD. Genomic context influenced retention rates, with clustered miRNA genes retained more often than nonclustered miRNA genes and intergenic miRNA genes retained more frequently than intragenic miRNA genes, which often shared the evolutionary fate of their protein-coding host. Expression analyses revealed both conserved and divergent expression patterns across species in line with miRNA functions in phenotypic canalization and diversification, respectively. Finally, major strands of miRNA genes experienced stronger purifying selection, especially in their seeds and 3'-complementary regions, compared with minor strands, which nonetheless also displayed evolutionary features compatible with constrained function. This study provides the first genome-wide, multispecies analysis of the mechanisms influencing metazoan miRNA evolution after whole-genome duplication.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | | | |
Collapse
|
48
|
Moreau PR, Tomas Bosch V, Bouvy-Liivrand M, Õunap K, Örd T, Pulkkinen HH, Pölönen P, Heinäniemi M, Ylä-Herttuala S, Laakkonen JP, Linna-Kuosmanen S, Kaikkonen MU. Profiling of Primary and Mature miRNA Expression in Atherosclerosis-Associated Cell Types. Arterioscler Thromb Vasc Biol 2021; 41:2149-2167. [PMID: 33980036 PMCID: PMC8216629 DOI: 10.1161/atvbaha.121.315579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pierre R. Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Vanesa Tomas Bosch
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Now with Genevia Technologies Oy, Tampere, Finland (M.B.-L.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Heidi H. Pulkkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN (P.P.)
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
- Now with MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, and Broad Institute of MIT and Harvard, Cambridge, MA (S.L.-K.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| |
Collapse
|
49
|
Tiwari A, Li J, Kho AT, Sun M, Lu Q, Weiss ST, Tantisira KG, McGeachie MJ. COPD-associated miR-145-5p is downregulated in early-decline FEV 1 trajectories in childhood asthma. J Allergy Clin Immunol 2021; 147:2181-2190. [PMID: 33385444 PMCID: PMC8184594 DOI: 10.1016/j.jaci.2020.11.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many microRNAs (miRNAs) have been associated with asthma and chronic obstructive pulmonary disease (COPD). Longitudinal lung function growth trajectories of children with asthma-normal growth, reduced growth (RG), early decline (ED), and RG with an ED (RGED)-have been observed, with RG and RGED associated with adverse outcomes, including COPD. OBJECTIVE Our aim was to determine whether circulating miRNAs from an early age in children with asthma would be prognostic of reduced lung function growth patterns over the next 16 years. METHODS We performed small RNA sequencing on sera from 492 children aged 5 to 12 years with mild-to-moderate asthma from the CAMP clinical trial, who were subsequently followed for 12 to 16 years. miRNAs were assessed for differential expression between previously assigned lung function growth patterns. RESULTS We had 448 samples and 259 miRNAs for differential analysis. In a comparison of the normal and the most severe group (ie, normal growth compared with RGED), we found 1 strongly dysregulated miRNA, hsa-miR-145-5p (P < 8.01E-05). This miR was downregulated in both ED groups (ie, ED and RGED). We verified that miR-145-5p was strongly associated with airway smooth muscle cell growth in vitro. CONCLUSION Our results showed that miR-145-5p is associated with the ED patterns of lung function growth leading to COPD in children with asthma and additionally increases airway smooth muscle cell proliferation. This represents a significant extension of our understanding of the role of miR-145-5p in COPD and suggests that reduced expression of miR-145-5p is a risk factor for ED of long-term lung function.
Collapse
Affiliation(s)
- Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Computational Health Informatics Program, Boston Children's Hospital, Boston, Mass
| | - Maoyun Sun
- Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Quan Lu
- Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
50
|
Aure MR, Fleischer T, Bjørklund S, Ankill J, Castro-Mondragon JA, Børresen-Dale AL, Tost J, Sahlberg KK, Mathelier A, Tekpli X, Kristensen VN. Crosstalk between microRNA expression and DNA methylation drives the hormone-dependent phenotype of breast cancer. Genome Med 2021; 13:72. [PMID: 33926515 PMCID: PMC8086068 DOI: 10.1186/s13073-021-00880-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Abnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play key roles in various biological processes. Here, we integrate miRNA expression and DNA methylation at CpGs to study how miRNAs may affect the breast cancer methylome and how DNA methylation may regulate miRNA expression. METHODS miRNA expression and DNA methylation data from two breast cancer cohorts, Oslo2 (n = 297) and The Cancer Genome Atlas (n = 439), were integrated through a correlation approach that we term miRNA-methylation Quantitative Trait Loci (mimQTL) analysis. Hierarchical clustering was used to identify clusters of miRNAs and CpGs that were further characterized through analysis of mRNA/protein expression, clinicopathological features, in silico deconvolution, chromatin state and accessibility, transcription factor binding, and long-range interaction data. RESULTS Clustering of the significant mimQTLs identified distinct groups of miRNAs and CpGs that reflect important biological processes associated with breast cancer pathogenesis. Notably, two major miRNA clusters were related to immune or fibroblast infiltration, hence identifying miRNAs associated with cells of the tumor microenvironment, while another large cluster was related to estrogen receptor (ER) signaling. Studying the chromatin landscape surrounding CpGs associated with the estrogen signaling cluster, we found that miRNAs from this cluster are likely to be regulated through DNA methylation of enhancers bound by FOXA1, GATA2, and ER-alpha. Further, at the hub of the estrogen cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein expression of DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We found deregulation of hsa-miR-29c-5p already present in pre-invasive breast lesions and postulate that hsa-miR-29c-5p may trigger early event abnormal DNA methylation in ER-positive breast cancer. CONCLUSIONS We describe how miRNA expression and DNA methylation interact and associate with distinct breast cancer phenotypes.
Collapse
Affiliation(s)
- Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Sunniva Bjørklund
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Jørgen Ankill
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Jaime A. Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA–Institut de Biologie François Jacob, University Paris-Saclay, Evry, France
| | - Kristine K. Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
- Department of Research, Vestre Viken Hospital Trust, Drammen, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
- Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|