1
|
Potabattula R, Dittrich M, Hahn T, Schorsch M, Ptak GE, Haaf T. rDNA Copy Number Variation and Methylation in Human and Mouse Sperm. Int J Mol Sci 2025; 26:4197. [PMID: 40362434 PMCID: PMC12071970 DOI: 10.3390/ijms26094197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
In this study, droplet digital PCR and deep bisulfite sequencing were used to study the absolute and active rDNA copy number (CN) and the effect of paternal age on human and mouse sperm. The absolute CN ranged from 98 to 404 (219 ± 47) in human and from 98 to 177 (133 ± 14) in mouse sperm. Methylation of the human upstream control element/core promoter (UCE/CP) region and the 5' external transcribed spacer, as well as that of the mouse CP, the spacer promoter, and 28S rDNA, significantly increased with donor age and absolute CN. Overall, rDNA hypomethylation was much more pronounced in mouse sperm, with 101.7 ± 11.4 copies showing a completely (0%) unmethylated and 11.3 ± 2.8 (8.5%) a slightly methylated (1-10%) CP region, compared to humans with 25.7 ± 9.5 (12%) completely unmethylated and 83.0 ± 19.8 slightly methylated UCE/CP regions. Although the absolute CN was much higher in human sperm, the number of copies with a hypomethylated (0-10%) promoter was comparable in humans (108.7 ± 28.3) and mice (113.0 ± 12.2). However, in mice, the majority (77%) of all copies were completely unmethylated, whereas in humans a high percentage (38%) showed one or two single CpG methylation errors. These different germline methylation dynamics may be due to species differences in reproductive strategies and lifespan. Complete demethylation of the sperm rDNA promoter in mice may be essential for embryonic genome activation, which already occurs at the 2-cell stage in mice and at the 4-8-cell stage in humans. The paternal age effect has been conserved between humans and mice with some notable differences. In humans, the number of hypomethylated (0-10%) copies decreased with age, whereas in mice only the completely unmethylated copies decreased with age. The number of methylated rDNA copies (>1% in mice and >10% in humans) significantly increased with age.
Collapse
Affiliation(s)
- Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (R.P.); (M.D.)
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (R.P.); (M.D.)
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | | | | | - Grazyna Ewa Ptak
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, 30-387 Krakow, Poland;
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (R.P.); (M.D.)
| |
Collapse
|
2
|
Nakamura M, Matsumoto Y, Yasuda K, Nagata M, Nakaki R, Okumura M, Yamazaki J. Unraveling the DNA methylation landscape in dog blood across breeds. BMC Genomics 2024; 25:1089. [PMID: 39548380 PMCID: PMC11566899 DOI: 10.1186/s12864-024-10963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND DNA methylation is a covalent bond modification that is observed mainly at cytosine bases in the context of CG pairs. DNA methylation patterns reflect the status of individual tissues, such as cell composition, age, and the local environment, in mammals. Genetic factors also impact DNA methylation, and the genetic diversity among various dog breeds provides a valuable platform for exploring this topic. Compared to those in the human genome, studies on the profiling of methylation in the dog genome have been less comprehensive. RESULTS Our study provides extensive profiling of DNA methylation in the whole blood of three dog breeds using whole-genome bisulfite sequencing. The difference in DNA methylation between breeds was moderate after removing CpGs overlapping with potential genetic variation. However, variance in methylation between individuals was common and often occurred in promoters and CpG islands (CGIs). Moreover, we adopted contextual awareness methodology to characterize DNA primary sequences using natural language processing (NLP). This method could be used to effectively separate unmethylated CGIs from highly methylated CGIs in the sequences that are identified by the conventional criteria. CONCLUSIONS This study presents a comprehensive DNA methylation landscape in the dog blood. Our observations reveal the similar methylation patterns across dog breeds, while CGI regions showed high variations in DNA methylation level between individuals. Our study also highlights the potential of NLP approach for analyzing low-complexity DNA sequences, such as CGIs.
Collapse
Affiliation(s)
- Miyuki Nakamura
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan.
| | - Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Kanagawa, Japan
- Data Science Center, Azabu University, Kanagawa, Japan
| | - Keiji Yasuda
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan
| | - Masatoshi Nagata
- KDDI Research Inc., Ohara 2-1-15, Fujimino, Saitama, 356-0003, Japan
| | | | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei Yamazaki
- Graduate School of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan.
- Translational Research Unit, Graduate School of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Kita 19 Nishi 10, Sapporo, Hokkaido, 060-0819, Japan.
- One Health Research Center, Cancer Research Unit, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Dittrich M, Bernhardt L, Penfold CA, Boroviak TE, Drummer C, Behr R, Müller T, Haaf T. Age-related and species-specific methylation changes in the protein-coding marmoset sperm epigenome. Aging Cell 2024; 23:e14200. [PMID: 38757354 PMCID: PMC11320356 DOI: 10.1111/acel.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
The sperm epigenome is thought to affect the developmental programming of the resulting embryo, influencing health and disease in later life. Age-related methylation changes in the sperm of old fathers may mediate the increased risks for reproductive and offspring medical problems. The impact of paternal age on sperm methylation has been extensively studied in humans and, to a lesser extent, in rodents and cattle. Here, we performed a comparative analysis of paternal age effects on protein-coding genes in the human and marmoset sperm methylomes. The marmoset has gained growing importance as a non-human primate model of aging and age-related diseases. Using reduced representation bisulfite sequencing, we identified age-related differentially methylated transcription start site (ageTSS) regions in 204 marmoset and 27 human genes. The direction of methylation changes was the opposite, increasing with age in marmosets and decreasing in humans. None of the identified ageTSS was differentially methylated in both species. Although the average methylation levels of all TSS regions were highly correlated between marmosets and humans, with the majority of TSS being hypomethylated in sperm, more than 300 protein-coding genes were endowed with species-specifically (hypo)methylated TSS. Several genes of the glycosphingolipid (GSL) biosynthesis pathway, which plays a role in embryonic stem cell differentiation and regulation of development, were hypomethylated (<5%) in human and fully methylated (>95%) in marmoset sperm. The expression levels and patterns of defined sets of GSL genes differed considerably between human and marmoset pre-implantation embryo stages and blastocyst tissues, respectively.
Collapse
Affiliation(s)
- Marcus Dittrich
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
- Department of BioinformaticsJulius Maximilians UniversityWürzburgGermany
| | - Laura Bernhardt
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| | - Christopher A. Penfold
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
| | - Thorsten E. Boroviak
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK
- Wellcome Trust – Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical CentreUniversity of CambridgeCambridgeUK
| | - Charis Drummer
- Platform Degenerative DiseasesGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Rüdiger Behr
- Platform Degenerative DiseasesGerman Primate Center‐Leibniz Institute for Primate ResearchGöttingenGermany
- DZHK (German Centre for Cardiovascular Research)GöttingenGermany
| | - Tobias Müller
- Department of BioinformaticsJulius Maximilians UniversityWürzburgGermany
| | - Thomas Haaf
- Institute of Human GeneticsJulius Maximilians UniversityWürzburgGermany
| |
Collapse
|
4
|
Joseph J, Prentout D, Laverré A, Tricou T, Duret L. High prevalence of PRDM9-independent recombination hotspots in placental mammals. Proc Natl Acad Sci U S A 2024; 121:e2401973121. [PMID: 38809707 PMCID: PMC11161765 DOI: 10.1073/pnas.2401973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexandre Laverré
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
- Swiss Institute of Bioinformatics, LausanneCH-1015, Switzerland
| | - Théo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| |
Collapse
|
5
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. Iterative oxidation by TET1 is required for reprogramming of imprinting control regions and patterning of mouse sperm hypomethylated regions. Dev Cell 2024; 59:1010-1027.e8. [PMID: 38569549 PMCID: PMC11042979 DOI: 10.1016/j.devcel.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.
Collapse
Affiliation(s)
- Rexxi D Prasasya
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake A Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhengfeng Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Songze Wu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Johanna M Fowler
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 84143, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 84143, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Chen S, Liu S, Shi S, Yin H, Tang Y, Zhang J, Li W, Liu G, Qu K, Ding X, Wang Y, Liu J, Zhang S, Fang L, Yu Y. Cross-Species Comparative DNA Methylation Reveals Novel Insights into Complex Trait Genetics among Cattle, Sheep, and Goats. Mol Biol Evol 2024; 41:msae003. [PMID: 38266195 PMCID: PMC10834038 DOI: 10.1093/molbev/msae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The cross-species characterization of evolutionary changes in the functional genome can facilitate the translation of genetic findings across species and the interpretation of the evolutionary basis underlying complex phenotypes. Yet, this has not been fully explored between cattle, sheep, goats, and other mammals. Here, we systematically characterized the evolutionary dynamics of DNA methylation and gene expression in 3 somatic tissues (i.e. brain, liver, and skeletal muscle) and sperm across 7 mammalian species, including 3 ruminant livestock species (cattle, sheep, and goats), humans, pigs, mice, and dogs, by generating and integrating 160 DNA methylation and transcriptomic data sets. We demonstrate dynamic changes of DNA hypomethylated regions and hypermethylated regions in tissue-type manner across cattle, sheep, and goats. Specifically, based on the phylo-epigenetic model of DNA methylome, we identified a total of 25,074 hypomethylated region extension events specific to cattle, which participated in rewiring tissue-specific regulatory network. Furthermore, by integrating genome-wide association studies of 50 cattle traits, we provided novel insights into the genetic and evolutionary basis of complex phenotypes in cattle. Overall, our study provides a valuable resource for exploring the evolutionary dynamics of the functional genome and highlights the importance of cross-species characterization of multiomics data sets for the evolutionary interpretation of complex phenotypes in cattle livestock.
Collapse
Affiliation(s)
- Siqian Chen
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shaolei Shi
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongwei Yin
- Agriculture Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongjie Tang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinning Zhang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenlong Li
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100125, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Sarić A, Rajić J, Tolić A, Dučić T, Vidaković M. Synchrotron-based FTIR microspectroscopy reveals DNA methylation profile in DNA-HALO structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123090. [PMID: 37413921 DOI: 10.1016/j.saa.2023.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a rapid, non-destructive and label-free technique for identifying subtle changes in all bio-macromolecules, and has been used as a method of choice for studying DNA conformation, secondary DNA structure transition and DNA damage. In addition, the specific level of chromatin complexity is introduced via epigenetic modifications forcing the technological upgrade in the analysis of such an intricacy. As the most studied epigenetic mechanism, DNA methylation is a major regulator of transcriptional activity, involved in the suppression of a broad spectrum of genes and its deregulation is involved in all non-communicable diseases. The present study was designed to explore the use of synchrotron-based FTIR analysis to monitor the subtle changes in molecule bases regarding the DNA methylation status of cytosine in the whole genome. In order to reveal the conformation-related best sample for FTIR-based DNA methylation analysis in situ, we used methodology for nuclear HALO preparations and slightly modified it to isolated DNA in HALO formations. Nuclear DNA-HALOs represent samples with preserved higher-order chromatin structure liberated of any protein residues that are closer to native DNA conformation than genomic DNA (gDNA) isolated by the standard batch procedure. Using FTIR spectroscopy we analyzed the DNA methylation profile of isolated gDNA and compared it with the DNA-HALOs. This study demonstrated the potential of FTIR microspectroscopy to detect DNA methylation marks in analyzed DNA-HALO specimens more precisely in comparison with classical DNA extraction procedures that yield unstructured whole genomic DNA. In addition, we used different cell types to assess their global DNA methylation profile, as well as defined specific infrared peaks that can be used for screening DNA methylation.
Collapse
Affiliation(s)
- Ana Sarić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Tanja Dučić
- ALBA CELLS Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain.
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| |
Collapse
|
8
|
Haghani A, Li CZ, Robeck TR, Zhang J, Lu AT, Ablaeva J, Acosta-Rodríguez VA, Adams DM, Alagaili AN, Almunia J, Aloysius A, Amor NM, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter G, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chavez AS, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke S, Cook JA, Cooper LN, Cossette ML, Day J, DeYoung J, Dirocco S, Dold C, Dunnum JL, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Fei Z, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Goya RG, Grant MJ, Green CB, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Belmonte JCI, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaître JF, Levine AJ, Li X, Li C, Lim AR, Lin DTS, Lindemann DM, Liphardt SW, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, et alHaghani A, Li CZ, Robeck TR, Zhang J, Lu AT, Ablaeva J, Acosta-Rodríguez VA, Adams DM, Alagaili AN, Almunia J, Aloysius A, Amor NM, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter G, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chavez AS, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke S, Cook JA, Cooper LN, Cossette ML, Day J, DeYoung J, Dirocco S, Dold C, Dunnum JL, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Fei Z, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Goya RG, Grant MJ, Green CB, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Belmonte JCI, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaître JF, Levine AJ, Li X, Li C, Lim AR, Lin DTS, Lindemann DM, Liphardt SW, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Murphy WJ, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, Nyamsuren B, O’Brien JK, Ginn PO, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pedersen AB, Pellegrini M, Peters KJ, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Shafer AB, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmohammadi E, Spangler ML, Spriggs M, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Vu H, Wallingford MC, Wang N, Wilkinson GS, Williams RW, Yan Q, Yao M, Young BG, Zhang B, Zhang Z, Zhao Y, Zhao P, Zhou W, Zoller JA, Ernst J, Seluanov A, Gorbunova V, Yang XW, Raj K, Horvath S. DNA methylation networks underlying mammalian traits. Science 2023; 381:eabq5693. [PMID: 37561875 PMCID: PMC11180965 DOI: 10.1126/science.abq5693] [Show More Authors] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.
Collapse
Affiliation(s)
- Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Janssen Research & Development, Spring House, PA, USA
| | - Todd R. Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Joshua Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Victoria A. Acosta-Rodríguez
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M. Adams
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Abdulaziz N. Alagaili
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javier Almunia
- Loro Parque Fundacion, Avenida Loro Parque, Puerto de la Cruz, Tenerife, Spain
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Nabil M.S. Amor
- Laboratory of Biodiversity, Parasitology, and Ecology, University of Tunis El Manar, Tunis, Tunisia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adriana Arneson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - C. Scott Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nigel C. Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | | | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Eleanor K. Bors
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | | | | | - Janine L. Brown
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology, Front Royal, VA, USA
| | - Gerald Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Alex Caulton
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Julie M. Cavin
- Gulf World Marine Park - Dolphin Company, Panama City Beach, FL, USA
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Andreas S. Chavez
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaiyang Cheng
- Medical Informatics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Priscila Chiavellini
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - Oi-Wa Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shannon Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
| | - Joseph A. Cook
- University of New Mexico, Department of Biology and Museum of Southwestern Biology, Albuquerque, NM, USA
| | - Lisa N. Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Marie-Laurence Cossette
- Department of Environmental & Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Joanna Day
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Joseph DeYoung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Christopher Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Jonathan L. Dunnum
- University of New Mexico, Department of Biology and Museum of Southwestern Biology, Albuquerque, NM, USA
| | | | - Candice K. Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Ebru Erbay
- Altos Labs, Bay Area Institute of Science, Redwood City, CA, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Chris G. Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Statistics, University of California, Riverside, CA, USA
| | - Steven H. Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Carrie J. Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | | | - Jean-Michel Gaillard
- University of Lyon, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Eva Garde
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Livia Gerber
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Australian National Wildlife Collection, CSIRO, Canberra, Australia
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rodolfo G. Goya
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - Matthew J Grant
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Carla B. Green
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M. Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | | | | | - Andrew N. Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Taosheng Huang
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | | | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Olga Kashpur
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | | | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pawel Kordowitzki
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | | | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Soo Bin Kwon
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brenda Larison
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - Jean-François Lemaître
- University of Lyon, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Andrew J. Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinmin Li
- Technology Center for Genomics and Bioinformatics, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - Andrea R. Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David T. S. Lin
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Thomas J. Little
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - June Mergl
- Marineland of Canada, Niagara Falls, Ontario, Canada
| | - Jennifer J. Meudt
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI, USA
| | - Gisele A. Montano
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - Jason Munshi-South
- Louis Calder Center - Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Asieh Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Martina Nagy
- Museum fur Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Pritika Narayan
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Peter W. Nathanielsz
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - Ngoc B. Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Justine K. O’Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | | | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Deutsches Krebsforschungszentrum, Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | | | | | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kim M. Parsons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Matteo Pellegrini
- Department Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katharina J. Peters
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Darren W. Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Gabriela M. Pinho
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jesse R. Poganik
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia A. Prado
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Pradeep Reddy
- Altos Labs, San Diego, CA, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Rey
- University of Lyon, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Beate R. Ritz
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | | | | | | | - Elena Rydkina
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dennis Schmitt
- College of Agriculture, Missouri State University, Springfield, MO, USA
| | | | | | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Karen E. Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Aaron B.A. Shafer
- Department of Forensic Science, Environmental & Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Anastasia V. Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’S NMIMS University, Mumbai, India
| | - Ishani Sinha
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesse Slone
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Russel G. Snell
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Elham Soltanmohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | | | | | | | | | - Karen J. Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | - Donald T Stewart
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Balazs Szladovits
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael J. Thompson
- Department Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bill Van Bonn
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL, USA
| | - Sonja C. Vernes
- School of Biology, The University of St. Andrews, Fife, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Diego Villar
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ha Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - Qi Yan
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Mingjia Yao
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Peng Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - X. William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Altos Labs, Cambridge, UK
| |
Collapse
|
9
|
de Sena Brandine G, Aston KI, Jenkins TG, Smith AD. Global effects of identity and aging on the human sperm methylome. Clin Epigenetics 2023; 15:127. [PMID: 37550724 PMCID: PMC10408082 DOI: 10.1186/s13148-023-01541-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND As the average age of fatherhood increases worldwide, so too does the need for understanding effects of aging in male germline cells. Molecular change, including epigenomic alterations, may impact offspring. Age-associated change to DNA cytosine methylation in the cytosine-guanine (CpG) context is a hallmark of aging tissues, including sperm. Prior studies have led to accurate models that predict a man's age based on specific methylation features in the DNA of sperm, but the relationship between aging and global DNA methylation in sperm remains opaque. Further clarification requires a more complete survey of the methylome with assessment of variability within and between individuals. RESULTS We collected sperm methylome data in a longitudinal study of ten healthy fertile men. We used whole-genome bisulfite sequencing of samples collected 10 to 18 years apart from each donor. We found that, overall, variability between donors far exceeds age-associated variation. After controlling for donor identity, we see significant age-dependent genome-wide change to the methylome. Notably, trends of change with age depend on genomic location or annotation, with contrasting signatures that correlate with gene density and proximity to centromeres and promoter regions. CONCLUSIONS We uncovered epigenetic signatures that reflect a stable process which begins in early adulthood, progressing steadily through most of the male lifespan, and warrants consideration in any future study of the aging sperm epigenome.
Collapse
Affiliation(s)
- Guilherme de Sena Brandine
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, USA
| | - Timothy G Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, USA
| | - Andrew D Smith
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA.
| |
Collapse
|
10
|
Prasasya RD, Caldwell BA, Liu Z, Wu S, Leu NA, Fowler JM, Cincotta SA, Laird DJ, Kohli RM, Bartolomei MS. TET1 Catalytic Activity is Required for Reprogramming of Imprinting Control Regions and Patterning of Sperm-Specific Hypomethylated Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529426. [PMID: 36865267 PMCID: PMC9980038 DOI: 10.1101/2023.02.21.529426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA methylation erasure is required for mammalian primordial germ cell reprogramming. TET enzymes iteratively oxidize 5-methylcytosine to generate 5-hyroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxycytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during germline reprogramming remains unresolved due to the lack of genetic models that decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 ( Tet1-HxD ) and TET1 that stalls oxidation at 5hmC ( Tet1-V ). Tet1 -/- , Tet1 V/V , and Tet1 HxD/HxD sperm methylomes show that TET1 V and TET1 HxD rescue most Tet1 -/- hypermethylated regions, demonstrating the importance of TET1’s extra-catalytic functions. Imprinted regions, in contrast, require iterative oxidation. We further reveal a broader class of hypermethylated regions in sperm of Tet1 mutant mice that are excluded from de novo methylation during male germline development and depend on TET oxidation for reprogramming. Our study underscores the link between TET1-mediated demethylation during reprogramming and sperm methylome patterning.
Collapse
|
11
|
Moharrek F, Ingerslev LR, Altıntaş A, Lundell L, Hansen AN, Small L, Workman CT, Barrès R. Comparative analysis of sperm DNA methylation supports evolutionary acquired epigenetic plasticity for organ speciation. Epigenomics 2022; 14:1305-1324. [PMID: 36420698 DOI: 10.2217/epi-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aim: To perform a comparative epigenomic analysis of DNA methylation in spermatozoa from humans, mice, rats and mini-pigs. Materials & methods: Genome-wide DNA methylation analysis was used to compare the methylation profiles of orthologous CpG sites. Transcription profiles of early embryo development were analyzed to provide insight into the association between sperm methylation and gene expression programming. Results: We identified DNA methylation variation near genes related to the central nervous system and signal transduction. Gene expression dynamics at different time points of preimplantation stages were modestly associated with spermatozoal DNA methylation at the nearest promoters. Conclusion: Conserved genomic regions subject to epigenetic variation across different species were associated with specific organ functions, suggesting their potential contribution to organ speciation and long-term adaptation to the environment.
Collapse
Affiliation(s)
- Farideh Moharrek
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lars R Ingerslev
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ali Altıntaş
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Leonidas Lundell
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ann N Hansen
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lewin Small
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Christopher T Workman
- Department of Biotechnology & Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Romain Barrès
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.,Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France
| |
Collapse
|
12
|
Hanson HE, Liebl AL. The Mutagenic Consequences of DNA Methylation within and across Generations. EPIGENOMES 2022; 6:33. [PMID: 36278679 PMCID: PMC9624357 DOI: 10.3390/epigenomes6040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.
Collapse
Affiliation(s)
- Haley E. Hanson
- Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| | - Andrea L. Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
13
|
Suleiman M, Kounosu A, Murcott B, Dayi M, Pawluk R, Yoshida A, Viney M, Kikuchi T, Hunt VL. piRNA-like small RNAs target transposable elements in a Clade IV parasitic nematode. Sci Rep 2022; 12:10156. [PMID: 35710810 PMCID: PMC9203780 DOI: 10.1038/s41598-022-14247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
The small RNA (sRNA) pathways identified in the model organism Caenorhabditis elegans are not widely conserved across nematodes. For example, the PIWI pathway and PIWI-interacting RNAs (piRNAs) are involved in regulating and silencing transposable elements (TE) in most animals but have been lost in nematodes outside of the C. elegans group (Clade V), and little is known about how nematodes regulate TEs in the absence of the PIWI pathway. Here, we investigated the role of sRNAs in the Clade IV parasitic nematode Strongyloides ratti by comparing two genetically identical adult stages (the parasitic female and free-living female). We identified putative small-interfering RNAs, microRNAs and tRNA-derived sRNA fragments that are differentially expressed between the two adult stages. Two classes of sRNAs were predicted to regulate TE activity including (i) a parasite-associated class of 21-22 nt long sRNAs with a 5' uridine (21-22Us) and a 5' monophosphate, and (ii) 27 nt long sRNAs with a 5' guanine/adenine (27GAs) and a 5' modification. The 21-22Us show striking resemblance to the 21U PIWI-interacting RNAs found in C. elegans, including an AT rich upstream sequence, overlapping loci and physical clustering in the genome. Overall, we have shown that an alternative class of sRNAs compensate for the loss of piRNAs and regulate TE activity in nematodes outside of Clade V.
Collapse
Affiliation(s)
- Mona Suleiman
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Asuka Kounosu
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Ben Murcott
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Mehmet Dayi
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Rebecca Pawluk
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Akemi Yoshida
- Laboratory of Genomics, Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Viney
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Taisei Kikuchi
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| | - Vicky L Hunt
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
14
|
Costes V, Chaulot-Talmon A, Sellem E, Perrier JP, Aubert-Frambourg A, Jouneau L, Pontlevoy C, Hozé C, Fritz S, Boussaha M, Le Danvic C, Sanchez MP, Boichard D, Schibler L, Jammes H, Jaffrézic F, Kiefer H. Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Clin Epigenetics 2022; 14:54. [PMID: 35477426 PMCID: PMC9047354 DOI: 10.1186/s13148-022-01275-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Conflicting results regarding alterations to sperm DNA methylation in cases of spermatogenesis defects, male infertility and poor developmental outcomes have been reported in humans. Bulls used for artificial insemination represent a relevant model in this field, as the broad dissemination of bull semen considerably alleviates confounding factors and enables the precise assessment of male fertility. This study was therefore designed to assess the potential for sperm DNA methylation to predict bull fertility. RESULTS A unique collection of 100 sperm samples was constituted by pooling 2-5 ejaculates per bull from 100 Montbéliarde bulls of comparable ages, assessed as fertile (n = 57) or subfertile (n = 43) based on non-return rates 56 days after insemination. The DNA methylation profiles of these samples were obtained using reduced representation bisulfite sequencing. After excluding putative sequence polymorphisms, 490 fertility-related differentially methylated cytosines (DMCs) were identified, most of which were hypermethylated in subfertile bulls. Interestingly, 46 genes targeted by DMCs are involved in embryonic and fetal development, sperm function and maturation, or have been related to fertility in genome-wide association studies; five of these were further analyzed by pyrosequencing. In order to evaluate the prognostic value of fertility-related DMCs, the sperm samples were split between training (n = 67) and testing (n = 33) sets. Using a Random Forest approach, a predictive model was built from the methylation values obtained on the training set. The predictive accuracy of this model was 72% on the testing set and 72% on individual ejaculates collected from an independent cohort of 20 bulls. CONCLUSION This study, conducted on the largest set of bull sperm samples so far examined in epigenetic analyses, demonstrated that the sperm methylome is a valuable source of male fertility biomarkers. The next challenge is to combine these results with other data on the same sperm samples in order to improve the quality of the model and better understand the interplay between DNA methylation and other molecular features in the regulation of fertility. This research may have potential applications in human medicine, where infertility affects the interaction between a male and a female, thus making it difficult to isolate the male factor.
Collapse
Affiliation(s)
- Valentin Costes
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Aurélie Chaulot-Talmon
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Eli Sellem
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Jean-Philippe Perrier
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Aubert-Frambourg
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Charline Pontlevoy
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Chris Hozé
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Sébastien Fritz
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.,Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Mekki Boussaha
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Marie-Pierre Sanchez
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Didier Boichard
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | | | - Hélène Jammes
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Florence Jaffrézic
- Université Paris-Saclay, AgroParisTech, INRAE, GABI, 78350, Jouy-en-Josas, France
| | - Hélène Kiefer
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France. .,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
15
|
Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022; 20:70. [PMID: 35317801 PMCID: PMC8941758 DOI: 10.1186/s12915-022-01270-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cytosine DNA methylation is a heritable epigenetic mark present in most eukaryotic groups. While the patterns and functions of DNA methylation have been extensively studied in mouse and human, their conservation in other vertebrates remains poorly explored. In this study, we interrogated the distribution and function of DNA methylation in primary fibroblasts of seven vertebrate species including bio-medical models and livestock species (human, mouse, rabbit, dog, cow, pig, and chicken). Results Our data highlight both divergence and conservation of DNA methylation patterns and functions. We show that the chicken genome is hypomethylated compared to other vertebrates. Furthermore, compared to mouse, other species show a higher frequency of methylation of CpG-rich DNA. We reveal the conservation of large unmethylated valleys and patterns of DNA methylation associated with X-chromosome inactivation through vertebrate evolution and make predictions of conserved sets of imprinted genes across mammals. Finally, using chemical inhibition of DNA methylation, we show that the silencing of germline genes and endogenous retroviruses (ERVs) are conserved functions of DNA methylation in vertebrates. Conclusions Our data highlight conserved properties of DNA methylation in vertebrate genomes but at the same time point to differences between mouse and other vertebrate species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01270-x.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Elouan Cleroux
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Sylvain Guibert
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté, Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, 21000, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction - CECOS, 14 rue Gaffarel, 21000, Dijon, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.
| |
Collapse
|
16
|
Prell A, Sen MO, Potabattula R, Bernhardt L, Dittrich M, Hahn T, Schorsch M, Zacchini F, Ptak GE, Niemann H, Haaf T. Species-Specific Paternal Age Effects and Sperm Methylation Levels of Developmentally Important Genes. Cells 2022; 11:cells11040731. [PMID: 35203380 PMCID: PMC8870257 DOI: 10.3390/cells11040731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
A growing number of sperm methylome analyses have identified genomic loci that are susceptible to paternal age effects in a variety of mammalian species, including human, bovine, and mouse. However, there is little overlap between different data sets. Here, we studied whether or not paternal age effects on the sperm epigenome have been conserved in mammalian evolution and compared methylation patterns of orthologous regulatory regions (mainly gene promoters) containing both conserved and non-conserved CpG sites in 94 human, 36 bovine, and 94 mouse sperm samples, using bisulfite pyrosequencing. We discovered three (NFKB2, RASGEF1C, and RPL6) age-related differentially methylated regions (ageDMRs) in humans, four (CHD7, HDAC11, PAK1, and PTK2B) in bovines, and three (Def6, Nrxn2, and Tbx19) in mice. Remarkably, the identified sperm ageDMRs were all species-specific. Most ageDMRs were in genomic regions with medium methylation levels and large methylation variation. Orthologous regions in species not showing this age effect were either hypermethylated (>80%) or hypomethylated (<20%). In humans and mice, ageDMRs lost methylation, whereas bovine ageDMRs gained methylation with age. Our results are in line with the hypothesis that sperm ageDMRs are in regions under epigenomic evolution and may be part of an epigenetic mechanism(s) for lineage-specific environmental adaptations and provide a solid basis for studies on downstream effects in the genes analyzed here.
Collapse
Affiliation(s)
- Andreas Prell
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (A.P.); (M.O.S.); (R.P.); (L.B.); (M.D.)
| | - Mustafa Orkun Sen
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (A.P.); (M.O.S.); (R.P.); (L.B.); (M.D.)
| | - Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (A.P.); (M.O.S.); (R.P.); (L.B.); (M.D.)
| | - Laura Bernhardt
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (A.P.); (M.O.S.); (R.P.); (L.B.); (M.D.)
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (A.P.); (M.O.S.); (R.P.); (L.B.); (M.D.)
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Thomas Hahn
- Fertility Center, 65189 Wiesbaden, Germany; (T.H.); (M.S.)
| | | | - Federica Zacchini
- PERCUROS BV, 2333 CL Leiden, The Netherlands;
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
- Wolfson Centre for Age-Related Diseases, King’s College London, London SE1 1UL, UK
| | - Grazyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Heiner Niemann
- Clinic for Gastroenterology, Hepatology and Endocrinology, Medical University Hannover, 30625 Hannover, Germany;
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; (A.P.); (M.O.S.); (R.P.); (L.B.); (M.D.)
- Correspondence: ; Tel.: +49-931-3188738
| |
Collapse
|
17
|
Kiefer H, Sellem E, Bonnet-Garnier A, Pannetier M, Costes V, Schibler L, Jammes H. The epigenome of male germ cells and the programming of phenotypes in cattle. Anim Front 2021; 11:28-38. [PMID: 34934527 PMCID: PMC8683155 DOI: 10.1093/af/vfab062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | - Amélie Bonnet-Garnier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Maëlle Pannetier
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Valentin Costes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.,R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| |
Collapse
|
18
|
Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, Yu Y. Comparative Analyses of Sperm DNA Methylomes Among Three Commercial Pig Breeds Reveal Vital Hypomethylated Regions Associated With Spermatogenesis and Embryonic Development. Front Genet 2021; 12:740036. [PMID: 34691153 PMCID: PMC8527042 DOI: 10.3389/fgene.2021.740036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Identifying epigenetic changes is essential for an in-depth understanding of phenotypic diversity and pigs as the human medical model for anatomizing complex diseases. Abnormal sperm DNA methylation can lead to male infertility, fetal development failure, and affect the phenotypic traits of offspring. However, the whole genome epigenome map in pig sperm is lacking to date. In this study, we profiled methylation levels of cytosine in three commercial pig breeds, Landrace, Duroc, and Large White using whole-genome bisulfite sequencing (WGBS). The results showed that the correlation of methylation levels between Landrace and Large White pigs was higher. We found that 1,040-1,666 breed-specific hypomethylated regions (HMRs) were associated with embryonic developmental and economically complex traits for each breed. By integrating reduced representation bisulfite sequencing (RRBS) public data of pig testis, 1743 conservated HMRs between sperm and testis were defined, which may play a role in spermatogenesis. In addition, we found that the DNA methylation patterns of human and pig sperm showed high similarity by integrating public data from WGBS and chromatin immunoprecipitation sequencing (ChIP-seq) in other mammals, such as human and mouse. We identified 2,733 conserved HMRs between human and pig involved in organ development and brain-related traits, such as NLGN1 (neuroligin 1) containing a conserved-HMR between human and pig. Our results revealed the similarities and diversity of sperm methylation patterns among three commercial pig breeds and between human and pig. These findings are beneficial for elucidating the mechanism of male fertility, and the changes in commercial traits that undergo strong selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Sahm A, Koch P, Horvath S, Hoffmann S. An analysis of methylome evolution in primates. Mol Biol Evol 2021; 38:4700-4714. [PMID: 34175932 PMCID: PMC8557466 DOI: 10.1093/molbev/msab189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the investigation of the epigenome becomes increasingly important, still little is known about the long-term evolution of epigenetic marks and systematic investigation strategies are still lacking. Here, we systematically demonstrate the transfer of classic phylogenetic methods such as maximum likelihood based on substitution models, parsimony, and distance-based to interval-scaled epigenetic data. Using a great apes blood data set, we demonstrate that DNA methylation is evolutionarily conserved at the level of individual CpGs in promotors, enhancers, and genic regions. Our analysis also reveals that this epigenomic conservation is significantly correlated with its transcription factor binding density. Binding sites for transcription factors involved in neuron differentiation and components of AP-1 evolve at a significantly higher rate at methylation than at the nucleotide level. Moreover, our models suggest an accelerated epigenomic evolution at binding sites of BRCA1, chromobox homolog protein 2, and factors of the polycomb repressor 2 complex in humans. For most genomic regions, the methylation-based reconstruction of phylogenetic trees is at par with sequence-based reconstruction. Most strikingly, phylogenetic reconstruction using methylation rates in enhancer regions was ineffective independently of the chosen model. We identify a set of phylogenetically uninformative CpG sites enriched in enhancers controlling immune-related genes.
Collapse
Affiliation(s)
- Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
20
|
Nohara K, Nakabayashi K, Okamura K, Suzuki T, Suzuki S, Hata K. Gestational arsenic exposure induces site-specific DNA hypomethylation in active retrotransposon subfamilies in offspring sperm in mice. Epigenetics Chromatin 2020; 13:53. [PMID: 33267854 PMCID: PMC7709384 DOI: 10.1186/s13072-020-00375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/12/2020] [Indexed: 01/26/2023] Open
Abstract
Background Environmental impacts on a fetus can disrupt germ cell development leading to epimutations in mature germ cells. Paternal inheritance of adverse health effects through sperm epigenomes, including DNA methylomes, has been recognized in human and animal studies. However, the impacts of gestational exposure to a variety of environmental factors on the germ cell epigenomes are not fully investigated. Arsenic, a naturally occurring contaminant, is one of the most concerning environmental chemicals, that is causing serious health problems, including an increase in cancer, in highly contaminated areas worldwide. We previously showed that gestational arsenic exposure of pregnant C3H mice paternally induces hepatic tumor increase in the second generation (F2). In the present study, we have investigated the F1 sperm DNA methylomes genome-widely by one-base resolution analysis using a reduced representation bisulfite sequencing (RRBS) method. Results We have clarified that gestational arsenic exposure increases hypomethylated cytosines in all the chromosomes and they are significantly overrepresented in the retrotransposon LINEs and LTRs, predominantly in the intergenic regions. Closer analyses of detailed annotated DNA sequences showed that hypomethylated cytosines are especially accumulated in the promoter regions of the active full-length L1MdA subfamily in LINEs, and 5′LTRs of the active IAPE subfamily in LTRs. This is the first report that has identified the specific positions of methylomes altered in the retrotransposon elements by environmental exposure, by genome-wide methylome analysis. Conclusion Lowered DNA methylation potentially enhances L1MdA retrotransposition and cryptic promoter activity of 5′LTR for coding genes and non-coding RNAs. The present study has illuminated the environmental impacts on sperm DNA methylome establishment that can lead to augmented retrotransposon activities in germ cells and can cause harmful effects in the following generation.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Shigekatsu Suzuki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| |
Collapse
|
21
|
Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Nat Commun 2020; 11:5417. [PMID: 33110091 PMCID: PMC7591512 DOI: 10.1038/s41467-020-19279-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
De novo DNA methylation (DNAme) during mammalian spermatogenesis yields a densely methylated genome, with the exception of CpG islands (CGIs), which are hypomethylated in sperm. While the paternal genome undergoes widespread DNAme loss before the first S-phase following fertilization, recent mass spectrometry analysis revealed that the zygotic paternal genome is paradoxically also subject to a low level of de novo DNAme. However, the loci involved, and impact on transcription were not addressed. Here, we employ allele-specific analysis of whole-genome bisulphite sequencing data and show that a number of genomic regions, including several dozen CGI promoters, are de novo methylated on the paternal genome by the 2-cell stage. A subset of these promoters maintains DNAme through development to the blastocyst stage. Consistent with paternal DNAme acquisition, many of these loci are hypermethylated in androgenetic blastocysts but hypomethylated in parthenogenetic blastocysts. Paternal DNAme acquisition is lost following maternal deletion of Dnmt3a, with a subset of promoters, which are normally transcribed from the paternal allele in blastocysts, being prematurely transcribed at the 4-cell stage in maternal Dnmt3a knockout embryos. These observations uncover a role for maternal DNMT3A activity in post-fertilization epigenetic reprogramming and transcriptional silencing of the paternal genome. The paternal genome in mice undergoes widespread DNA methylation loss post-fertilization. Here, the authors apply allele-specific analysis of WGBS data to show that a number of genomic regions are simultaneously de novo methylated on the paternal genome dependent on maternal DNMT3A activity, which induces transcriptional silencing of this allele in the early embryo.
Collapse
|
22
|
Zhou Y, Liu S, Hu Y, Fang L, Gao Y, Xia H, Schroeder SG, Rosen BD, Connor EE, Li CJ, Baldwin RL, Cole JB, Van Tassell CP, Yang L, Ma L, Liu GE. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biol 2020; 18:85. [PMID: 32631327 PMCID: PMC7339546 DOI: 10.1186/s12915-020-00793-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Efforts to improve animal health, and understand genetic bases for production, may benefit from a comprehensive analysis of animal genomes and epigenomes. Although DNA methylation has been well studied in humans and other model species, its distribution patterns and regulatory impacts in cattle are still largely unknown. Here, we present the largest collection of cattle DNA methylation epigenomic data to date. RESULTS Using Holstein cattle, we generated 29 whole genome bisulfite sequencing (WGBS) datasets for 16 tissues, 47 corresponding RNA-seq datasets, and 2 whole genome sequencing datasets. We did read mapping and DNA methylation calling based on two different cattle assemblies, demonstrating the high quality of the long-read-based assembly markedly improved DNA methylation results. We observed large differences across cattle tissues in the methylation patterns of global CpG sites, partially methylated domains (PMDs), hypomethylated regions (HMRs), CG islands (CGIs), and common repeats. We detected that each tissue had a distinct set of PMDs, which showed tissue-specific patterns. Similar to human PMD, cattle PMDs were often linked to a general decrease of gene expression and a decrease in active histone marks and related to long-range chromatin organizations, like topologically associated domains (TADs). We tested a classification of the HMRs based on their distributions relative to transcription start sites (TSSs) and detected tissue-specific TSS-HMRs and genes that showed strong tissue effects. When performing cross-species comparisons of paired genes (two opposite strand genes with their TSS located in the same HMR), we found out they were more consistently co-expressed among human, mouse, sheep, goat, yak, pig, and chicken, but showed lower consistent ratios in more divergent species. We further used these WGBS data to detect 50,023 experimentally supported CGIs across bovine tissues and found that they might function as a guard against C-to-T mutations for TSS-HMRs. Although common repeats were often heavily methylated, some young Bov-A2 repeats were hypomethylated in sperm and could affect the promoter structures by exposing potential transcription factor binding sites. CONCLUSIONS This study provides a comprehensive resource for bovine epigenomic research and enables new discoveries about DNA methylation and its role in complex traits.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lingzhao Fang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Steven G. Schroeder
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Erin E. Connor
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
23
|
Dukler N, Huang YF, Siepel A. Phylogenetic Modeling of Regulatory Element Turnover Based on Epigenomic Data. Mol Biol Evol 2020; 37:2137-2152. [PMID: 32176292 PMCID: PMC7306682 DOI: 10.1093/molbev/msaa073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evolutionary changes in gene expression are often driven by gains and losses of cis-regulatory elements (CREs). The dynamics of CRE evolution can be examined using multispecies epigenomic data, but so far such analyses have generally been descriptive and model-free. Here, we introduce a probabilistic modeling framework for the evolution of CREs that operates directly on raw chromatin immunoprecipitation and sequencing (ChIP-seq) data and fully considers the phylogenetic relationships among species. Our framework includes a phylogenetic hidden Markov model, called epiPhyloHMM, for identifying the locations of multiply aligned CREs, and a combined phylogenetic and generalized linear model, called phyloGLM, for accounting for the influence of a rich set of genomic features in describing their evolutionary dynamics. We apply these methods to previously published ChIP-seq data for the H3K4me3 and H3K27ac histone modifications in liver tissue from nine mammals. We find that enhancers are gained and lost during mammalian evolution at about twice the rate of promoters, and that turnover rates are negatively correlated with DNA sequence conservation, expression level, and tissue breadth, and positively correlated with distance from the transcription start site, consistent with previous findings. In addition, we find that the predicted dosage sensitivity of target genes positively correlates with DNA sequence constraint in CREs but not with turnover rates, perhaps owing to differences in the effect sizes of the relevant mutations. Altogether, our probabilistic modeling framework enables a variety of powerful new analyses.
Collapse
Affiliation(s)
- Noah Dukler
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY
| | - Yi-Fei Huang
- Department of Biology and Huck Institute of Life Sciences, Pennsylvania State University, University Park, PA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| |
Collapse
|
24
|
Kiefer H, Perrier JP. DNA methylation in bull spermatozoa: evolutionary impacts, interindividual variability, and contribution to the embryo. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA methylome of spermatozoa results from a unique epigenetic reprogramming crucial for chromatin compaction and the protection of the paternal genetic heritage. Although bull semen is widely used for artificial insemination (AI), little is known about the sperm epigenome in cattle. The purpose of this review is to synthetize recent work on the bull sperm methylome in light of the knowledge accumulated in humans and model species. We will address sperm-specific DNA methylation features and their potential evolutionary impacts, with particular emphasis on hypomethylated regions and repetitive elements. We will review recent examples of interindividual variability and intra-individual plasticity of the bull sperm methylome as related to fertility and age, respectively. Finally, we will address paternal methylome reprogramming after fertilization, as well as the mechanisms potentially involved in epigenetic inheritance, and provide some examples of disturbances that alter the dynamics of reprogramming in cattle. Because the selection of AI bulls is closely based on their genotypes, we will also discuss the complex interplay between sequence polymorphism and DNA methylation, which represents both a difficulty in addressing the role of DNA methylation in shaping phenotypes and an opportunity to better understand genome plasticity.
Collapse
Affiliation(s)
- Hélène Kiefer
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
| | - Jean-Philippe Perrier
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
| |
Collapse
|
25
|
Harris RA, Raveendran M, Worley KC, Rogers J. Unusual sequence characteristics of human chromosome 19 are conserved across 11 nonhuman primates. BMC Evol Biol 2020; 20:33. [PMID: 32106815 PMCID: PMC7045612 DOI: 10.1186/s12862-020-1595-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human chromosome 19 has many unique characteristics including gene density more than double the genome-wide average and 20 large tandemly clustered gene families. It also has the highest GC content of any chromosome, especially outside gene clusters. The high GC content and concomitant high content of hypermutable CpG sites raises the possibility chromosome 19 exhibits higher levels of nucleotide diversity both within and between species, and may possess greater variation in DNA methylation that regulates gene expression. RESULTS We examined GC and CpG content of chromosome 19 orthologs across representatives of the primate order. In all 12 primate species with suitable genome assemblies, chromosome 19 orthologs have the highest GC content of any chromosome. CpG dinucleotides and CpG islands are also more prevalent in chromosome 19 orthologs than other chromosomes. GC and CpG content are generally higher outside the gene clusters. Intra-species variation based on SNPs in human common dbSNP, rhesus, crab eating macaque, baboon and marmoset datasets is most prevalent on chromosome 19 and its orthologs. Inter-species comparisons based on phyloP conservation show accelerated nucleotide evolution for chromosome 19 promoter flanking and enhancer regions. These same regulatory regions show the highest CpG density of any chromosome suggesting they possess considerable methylome regulatory potential. CONCLUSIONS The pattern of high GC and CpG content in chromosome 19 orthologs, particularly outside gene clusters, is present from human to mouse lemur representing 74 million years of primate evolution. Much CpG variation exists both within and between primate species with a portion of this variation occurring in regulatory regions.
Collapse
Affiliation(s)
- R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA.
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM226, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Chan D, Shao X, Dumargne MC, Aarabi M, Simon MM, Kwan T, Bailey JL, Robaire B, Kimmins S, San Gabriel MC, Zini A, Librach C, Moskovtsev S, Grundberg E, Bourque G, Pastinen T, Trasler JM. Customized MethylC-Capture Sequencing to Evaluate Variation in the Human Sperm DNA Methylome Representative of Altered Folate Metabolism. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87002. [PMID: 31393794 PMCID: PMC6792365 DOI: 10.1289/ehp4812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The sperm DNA methylation landscape is unique and critical for offspring health. If gamete-derived DNA methylation escapes reprograming in early embryos, epigenetic defects in sperm may be transmitted to the next generation. Current techniques to assess sperm DNA methylation show bias toward CpG-dense regions and do not target areas of dynamic methylation, those predicted to be environmentally sensitive and tunable regulatory elements. OBJECTIVES Our goal was to assess variation in human sperm DNA methylation and design a targeted capture panel to interrogate the human sperm methylome. METHODS To characterize variation in sperm DNA methylation, we performed whole genome bisulfite sequencing (WGBS) on an equimolar pool of sperm DNA from a wide cross section of 30 men varying in age, fertility status, methylenetetrahydrofolate reductase (MTHFR) genotype, and exposures. With our targeted capture panel, in individual samples, we examined the effect of MTHFR genotype ([Formula: see text] 677CC, [Formula: see text] 677TT), as well as high-dose folic acid supplementation ([Formula: see text], per genotype, before and after supplementation). RESULTS Through WGBS we discovered nearly 1 million CpGs possessing intermediate methylation levels (20-80%), termed dynamic sperm CpGs. These dynamic CpGs, along with 2 million commonly assessed CpGs, were used to customize a capture panel for targeted interrogation of the human sperm methylome and test its ability to detect effects of altered folate metabolism. As compared with MTHFR 677CC men, those with the 677TT genotype (50% decreased MTHFR activity) had both hyper- and hypomethylation in their sperm. High-dose folic acid supplement treatment exacerbated hypomethylation in MTHFR 677TT men compared with 677CC. In both cases, [Formula: see text] of altered methylation was found in dynamic sperm CpGs, uniquely measured by our assay. DISCUSSION Our sperm panel allowed the discovery of differential methylation following conditions affecting folate metabolism in novel dynamic sperm CpGs. Improved ability to examine variation in sperm DNA methylation can facilitate comprehensive studies of environment-epigenome interactions. https://doi.org/10.1289/EHP4812.
Collapse
Affiliation(s)
- Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Xiaojian Shao
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Marie-Charlotte Dumargne
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Animal Sciences, McGill University, Montreal, Quebec, Canada
| | - Mahmoud Aarabi
- Medical Genetics & Genomics Laboratories, University of Pittsburgh Medical Center (UPMC) Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Tony Kwan
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Janice L. Bailey
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Faculté des sciences de l’agriculture et de l’alimentation, Quebec, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sarah Kimmins
- Department of Animal Sciences, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Maria C. San Gabriel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Armand Zini
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Clifford Librach
- Canadian Reproductive Assisted Technology (CReATe) Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Sergey Moskovtsev
- Canadian Reproductive Assisted Technology (CReATe) Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Center for Pediatric Genomic Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Center for Pediatric Genomic Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Jacquetta M. Trasler
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Deng C, Daley T, De Sena Brandine G, Smith AD. Molecular Heterogeneity in Large-Scale Biological Data: Techniques and Applications. Annu Rev Biomed Data Sci 2019. [DOI: 10.1146/annurev-biodatasci-072018-021339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-throughput sequencing technologies have evolved at a stellar pace for almost a decade and have greatly advanced our understanding of genome biology. In these sampling-based technologies, there is an important detail that is often overlooked in the analysis of the data and the design of the experiments, specifically that the sampled observations often do not give a representative picture of the underlying population. This has long been recognized as a problem in statistical ecology and in the broader statistics literature. In this review, we discuss the connections between these fields, methodological advances that parallel both the needs and opportunities of large-scale data analysis, and specific applications in modern biology. In the process we describe unique aspects of applying these approaches to sequencing technologies, including sequencing error, population and individual heterogeneity, and the design of experiments.
Collapse
Affiliation(s)
- Chao Deng
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Timothy Daley
- Department of Statistics and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Guilherme De Sena Brandine
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Andrew D. Smith
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
28
|
Fang L, Zhou Y, Liu S, Jiang J, Bickhart DM, Null DJ, Li B, Schroeder SG, Rosen BD, Cole JB, Van Tassell CP, Ma L, Liu GE. Comparative analyses of sperm DNA methylomes among human, mouse and cattle provide insights into epigenomic evolution and complex traits. Epigenetics 2019; 14:260-276. [PMID: 30810461 PMCID: PMC6557555 DOI: 10.1080/15592294.2019.1582217] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sperm DNA methylation is crucial for fertility and viability of offspring but epigenome evolution in mammals is largely understudied. By comparing sperm DNA methylomes and large-scale genome-wide association study (GWAS) signals between human and cattle, we aimed to examine the DNA methylome evolution and its associations with complex phenotypes in mammals. Our analysis revealed that genes with conserved non-methylated promoters (e.g., ANKS1A and WNT7A) among human and cattle were involved in common system and embryo development, and enriched for GWAS signals of body conformation traits in both species, while genes with conserved hypermethylated promoters (e.g., TCAP and CD80) were engaged in immune responses and highlighted by immune-related traits. On the other hand, genes with human-specific hypomethylated promoters (e.g., FOXP2 and HYDIN) were engaged in neuron system development and enriched for GWAS signals of brain-related traits, while genes with cattle-specific hypomethylated promoters (e.g., LDHB and DGAT2) mainly participated in lipid storage and metabolism. We validated our findings using sperm-retained nucleosome, preimplantation transcriptome, and adult tissue transcriptome data, as well as sequence evolutionary features, including motif binding sites, mutation rates, recombination rates and evolution signatures. In conclusion, our results demonstrate important roles of epigenome evolution in shaping the genetic architecture underlying complex phenotypes, hence enhance signal prioritization in GWAS and provide valuable information for human neurological disorders and livestock genetic improvement.
Collapse
Affiliation(s)
- Lingzhao Fang
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA.,b Department of Animal and Avian Sciences , University of Maryland , College Park , MD , USA
| | - Yang Zhou
- c Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China , Huazhong Agricultural University , Wuhan , Hubei , China
| | - Shuli Liu
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA.,d Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | - Jicai Jiang
- b Department of Animal and Avian Sciences , University of Maryland , College Park , MD , USA
| | - Derek M Bickhart
- e Dairy Forage Research Center , Agricultural Research Service, USDA , Madison , WI , USA
| | - Daniel J Null
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA
| | - Bingjie Li
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA
| | - Steven G Schroeder
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA
| | - Benjamin D Rosen
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA
| | - John B Cole
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA
| | - Curtis P Van Tassell
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA
| | - Li Ma
- b Department of Animal and Avian Sciences , University of Maryland , College Park , MD , USA
| | - George E Liu
- a Animal Genomics and Improvement Laboratory, BARC , Agricultural Research Service, USDA , Beltsville , MD , USA
| |
Collapse
|
29
|
Yang Y, Gu Q, Zhang Y, Sasaki T, Crivello J, O'Neill RJ, Gilbert DM, Ma J. Continuous-Trait Probabilistic Model for Comparing Multi-species Functional Genomic Data. Cell Syst 2018; 7:208-218.e11. [PMID: 29936186 PMCID: PMC6107375 DOI: 10.1016/j.cels.2018.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 01/22/2023]
Abstract
A large amount of multi-species functional genomic data from high-throughput assays are becoming available to help understand the molecular mechanisms for phenotypic diversity across species. However, continuous-trait probabilistic models, which are key to such comparative analysis, remain under-explored. Here we develop a new model, called phylogenetic hidden Markov Gaussian processes (Phylo-HMGP), to simultaneously infer heterogeneous evolutionary states of functional genomic features in a genome-wide manner. Both simulation studies and real data application demonstrate the effectiveness of Phylo-HMGP. Importantly, we applied Phylo-HMGP to analyze a new cross-species DNA replication timing (RT) dataset from the same cell type in five primate species (human, chimpanzee, orangutan, gibbon, and green monkey). We demonstrate that our Phylo-HMGP model enables discovery of genomic regions with distinct evolutionary patterns of RT. Our method provides a generic framework for comparative analysis of multi-species continuous functional genomic signals to help reveal regions with conserved or lineage-specific regulatory roles.
Collapse
Affiliation(s)
- Yang Yang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Quanquan Gu
- Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Julianna Crivello
- Institute for Systems Genomics, Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|