1
|
Kita K, Morkos C, Nolan K. Maintenance of stem cell self-renewal by sex chromosomal zinc-finger transcription factors. World J Methodol 2024; 14:97664. [PMID: 39712568 PMCID: PMC11287546 DOI: 10.5662/wjm.v14.i4.97664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/26/2024] Open
Abstract
In this Editorial review, we would like to focus on a very recent discovery showing the global autosomal gene regulation by Y- and inactivated X-chromosomal transcription factors, zinc finger gene on the Y chromosome (ZFY) and zinc finger protein X-linked (ZFX). ZFX and ZFY are both zinc-finger proteins that encode general transcription factors abundant in hematopoietic and embryonic stem cells. Although both proteins are homologs, interestingly, the regulation of self-renewal by these transcriptional factors is almost exclusive to ZFX. This fact implies that there are some differential roles between ZFX and ZFY in regulating the maintenance of self-renewal activity in stem cells. Besides the maintenance of stemness, ZFX overexpression or mutations may be linked to certain cancers. Although cancers and stem cells are double-edged swords, there is no study showing the link between ZFX activity and the telomere. Thus, stemness or cancers with ZFX may be linked to other molecules, such as Oct4, Sox2, Klf4, and others. Based on very recent studies and a few lines of evidence in the past decade, it appears that the ZFX is linked to the canonical Wnt signaling, which is one possible mechanism to explain the role of ZFX in the self-renewal of stem cells.
Collapse
Affiliation(s)
- Katsuhiro Kita
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| | - Celine Morkos
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| | - Kathleen Nolan
- Department of Biology, St. Francis College, Brooklyn, NY 11201, United States
| |
Collapse
|
2
|
Bu L, Huang S, Rao Z, Wu C, Sun BY, Liu Y, He L, Zhao D. CHD6 eviction of promoter nucleosomes maintains housekeeping transcriptional program in prostate cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102397. [PMID: 39717618 PMCID: PMC11665337 DOI: 10.1016/j.omtn.2024.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024]
Abstract
CHD6, a member of the chromodomain helicase DNA-binding protein family, has been implicated in various diseases and tumors. However, its precise binding model of CHD6 on regulatory functional genes remains poorly understood. In this study, we discovered sharp peaks of CHD6, as the first member of CHD family for housekeeping process, binding only to the promoter region of genes in the C4-2 cell line. These genes, with conserved sharp CHD6 peaks across tumor cells, likely represent housekeeping genes ADNP and GOLGA5. Genes with sharp CHD6 peaks exhibit stable and low expression levels, sharing epigenetic features similar to housekeeping genes. Furthermore, this regulatory model also exists in both HEK293 cells and cardiomyocytes. Overall, the results of this study demonstrate that CHD6 binds to the promoter regions of housekeeping genes, regulating their histone modifications, chromatin structure, and gene expression.
Collapse
Affiliation(s)
- Lina Bu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Shaodong Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Ziyan Rao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chenyang Wu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Bryan-Yu Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanhua Liu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Forbes AN, Xu D, Cohen S, Pancholi P, Khurana E. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. Cell Syst 2024; 15:824-837.e6. [PMID: 39236711 PMCID: PMC11415227 DOI: 10.1016/j.cels.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.
Collapse
Affiliation(s)
- Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Priya Pancholi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
4
|
Blanton LV, San Roman AK, Wood G, Buscetta A, Banks N, Skaletsky H, Godfrey AK, Pham TT, Hughes JF, Brown LG, Kruszka P, Lin AE, Kastner DL, Muenke M, Page DC. Stable and robust Xi and Y transcriptomes drive cell-type-specific autosomal and Xa responses in vivo and in vitro in four human cell types. CELL GENOMICS 2024; 4:100628. [PMID: 39111319 PMCID: PMC11480847 DOI: 10.1016/j.xgen.2024.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Recent in vitro studies of human sex chromosome aneuploidy showed that the Xi ("inactive" X) and Y chromosomes broadly modulate autosomal and Xa ("active" X) gene expression. We tested these findings in vivo. Linear modeling of CD4+ T cells and monocytes from individuals with one to three X chromosomes and zero to two Y chromosomes revealed 82 sex-chromosomal and 344 autosomal genes whose expression changed significantly with Xi and/or Y dosage in vivo. Changes in sex-chromosomal expression were remarkably constant in vivo and in vitro; autosomal responses to Xi and/or Y dosage were largely cell-type specific (∼2.6-fold more variation than sex-chromosomal responses). Targets of the sex-chromosomal transcription factors ZFX and ZFY accounted for a significant fraction of these autosomal responses both in vivo and in vitro. We conclude that the human Xi and Y transcriptomes are surprisingly robust and stable, yet they modulate autosomal and Xa genes in a cell-type-specific fashion.
Collapse
Affiliation(s)
| | | | - Geryl Wood
- Inflammatory Disease Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley Buscetta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Banks
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | | | - Thao T Pham
- Whitehead Institute, Cambridge, MA 02142, USA
| | | | - Laura G Brown
- Whitehead Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela E Lin
- Genetics Unit, MassGeneral for Children, Boston, MA 02114, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Yao X, Yang Z, Hou G, Jiang J, Wang L, Jiang J. TRIM24/ZFX affects the stemness and resistance to 5-FU of colorectal cancer cells. J Chemother 2024:1-12. [PMID: 39221698 DOI: 10.1080/1120009x.2024.2376422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death, and about 10% of all malignancies are CRC. Cancer stem cells are considered main culprits in CRC treatment resistance and disease recurrence. This study explored the effects of tripartite motif containing 24 (TRIM24) and zinc finger protein, X-linked (ZFX) on CRC cell stemness and 5-FU resistance. A 5-FU-resistant cell line (HT29-5-FU) was constructed for functional analysis of CRC 5-FU-resistant cells. qRT-PCR and western blot (WB) were employed to analyze mRNA and protein levels of ZFX in 5-FU resistant cells and sensitive cells. WB was also utilized to analyze the surface markers of stem cells in each group. CCK-8 assay determined the IC50 values of different cell groups treated with 5-FU. The sphere-forming ability of cells in each group was determined using tumor sphere assay. Dual-luciferase reporter gene assay validated binding of ZFX to TRIM24. ZFX was highly expressed in HT29-5-FU cells. Silencing ZFX significantly reduced the 5-FU resistance and IC50 value of HT29-5-FU cells, and the surface markers and cell sphere-forming ability of stem cells were also significantly reduced. The function of HT29 cells was opposite when ZFX was overexpressed. In CRC cells, TRIM24 was an upstream transcription factor of ZFX, and they interacted with each other. TRIM24 activated the expression of ZFX to influence the stemness and 5-FU resistance of cells. The TRIM24/ZFX regulatory axis affected the stemness of CRC cells and their sensitivity to 5-FU, providing potential drug targets for novel therapeutic avenues for CRC.
Collapse
Affiliation(s)
- Xuming Yao
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Zhiping Yang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Jialu Jiang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Lvbin Wang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Jin Jiang
- Department of Oncology, The Affliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
6
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. Protein Sci 2024; 33:e5149. [PMID: 39180464 PMCID: PMC11344264 DOI: 10.1002/pro.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711, it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal-ligand. The Z7 domain adopts a stable tertiary structure upon metal-binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenylalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80°C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitrophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
7
|
Lavorando E, Owens MC, Liu KF. Comparing the roles of sex chromosome-encoded protein homologs in gene regulation. Genes Dev 2024; 38:585-596. [PMID: 39048311 PMCID: PMC11368246 DOI: 10.1101/gad.351890.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The X and Y chromosomes play important roles outside of human reproduction; namely, their potential contribution to human sex biases in physiology and disease. While sex biases are often thought to be an effect of hormones and environmental exposures, genes encoded on the sex chromosomes also play a role. Seventeen homologous gene pairs exist on the X and Y chromosomes whose proteins have critical functions in biology, from direct regulation of transcription and translation to intercellular signaling and formation of extracellular structures. In this review, we cover the current understanding of several of these sex chromosome-encoded protein homologs that are involved in transcription and chromatin regulation: SRY/SOX3, ZFX/ZFY, KDM5C/KDM5D, UTX/UTY, and TBL1X/TBL1Y. Their mechanisms of gene regulation are discussed, including any redundancies or divergent roles of the X- and Y-chromosome homologs. Additionally, we discuss associated diseases related to these proteins and any sex biases that exist therein in an effort to drive further research into how these pairs contribute to sexually dimorphic gene regulation in health and disease.
Collapse
Affiliation(s)
- Ellen Lavorando
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Hsu E, Hutchison K, Liu Y, Nicolet CM, Schreiner S, Zemke N, Farnham P. Reduction of ZFX levels decreases histone H4 acetylation and increases Pol2 pausing at target promoters. Nucleic Acids Res 2024; 52:6850-6865. [PMID: 38726870 PMCID: PMC11229363 DOI: 10.1093/nar/gkae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
The ZFX transcriptional activator binds to CpG island promoters, with a major peak at ∼200-250 bp downstream from transcription start sites. Because ZFX binds within the transcribed region, we investigated whether it regulates transcriptional elongation. We used GRO-seq to show that loss or reduction of ZFX increased Pol2 pausing at ZFX-regulated promoters. To further investigate the mechanisms by which ZFX regulates transcription, we determined regions of the protein needed for transactivation and for recruitment to the chromatin. Interestingly, although ZFX has 13 grouped zinc fingers, deletion of the first 11 fingers produces a protein that can still bind to chromatin and activate transcription. We next used TurboID-MS to detect ZFX-interacting proteins, identifying ZNF593, as well as proteins that interact with the N-terminal transactivation domain (which included histone modifying proteins), and proteins that interact with ZFX when it is bound to the chromatin (which included TAFs and other histone modifying proteins). Our studies support a model in which ZFX enhances elongation at target promoters by recruiting H4 acetylation complexes and reducing pausing.
Collapse
Affiliation(s)
- Emily Hsu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Katherine Hutchison
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yao Liu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nathan R Zemke
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Fu X, Mo S, Buendia A, Laurent A, Shao A, del Mar Alvarez-Torres M, Yu T, Tan J, Su J, Sagatelian R, Ferrando AA, Ciccia A, Lan Y, Owens DM, Palomero T, Xing EP, Rabadan R. GET: a foundation model of transcription across human cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559168. [PMID: 39005360 PMCID: PMC11244937 DOI: 10.1101/2023.09.24.559168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transcriptional regulation, involving the complex interplay between regulatory sequences and proteins, directs all biological processes. Computational models of transcription lack generalizability to accurately extrapolate in unseen cell types and conditions. Here, we introduce GET, an interpretable foundation model designed to uncover regulatory grammars across 213 human fetal and adult cell types. Relying exclusively on chromatin accessibility data and sequence information, GET achieves experimental-level accuracy in predicting gene expression even in previously unseen cell types. GET showcases remarkable adaptability across new sequencing platforms and assays, enabling regulatory inference across a broad range of cell types and conditions, and uncovering universal and cell type specific transcription factor interaction networks. We evaluated its performance on prediction of regulatory activity, inference of regulatory elements and regulators, and identification of physical interactions between transcription factors. Specifically, we show GET outperforms current models in predicting lentivirus-based massive parallel reporter assay readout with reduced input data. In fetal erythroblasts, we identify distal (>1Mbp) regulatory regions that were missed by previous models. In B cells, we identified a lymphocyte-specific transcription factor-transcription factor interaction that explains the functional significance of a leukemia-risk predisposing germline mutation. In sum, we provide a generalizable and accurate model for transcription together with catalogs of gene regulation and transcription factor interactions, all with cell type specificity.
Collapse
Affiliation(s)
- Xi Fu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Shentong Mo
- Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
- Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
| | - Alejandro Buendia
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Anouchka Laurent
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Anqi Shao
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | - Tianji Yu
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jimin Tan
- Regeneron Genetics Center, Regeneron, Tarrytown, NY, USA
| | - Jiayu Su
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Adolfo A. Ferrando
- Department of Dermatology, Columbia University, New York, NY, USA
- Regeneron Genetics Center, Regeneron, Tarrytown, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Yanyan Lan
- Institute for AI Industry Research, Tsinghua University, Beijing, China
| | - David M. Owens
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Eric P. Xing
- Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
- Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588434. [PMID: 38645208 PMCID: PMC11030341 DOI: 10.1101/2024.04.06.588434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc-fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711 it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal ligand. The Z7 domain adopts a stable tertiary structure upon metal binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenyalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80 °C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors. Our findings that Z7 can fold with only a subset of three metal ligands suggests the recent view that most everything about protein structure can be predicted through homology modeling might be premature for at least the resilient and versatile zinc-finger motif.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut
| | | |
Collapse
|
11
|
Blanton LV, San Roman AK, Wood G, Buscetta A, Banks N, Skaletsky H, Godfrey AK, Pham TT, Hughes JF, Brown LG, Kruszka P, Lin AE, Kastner DL, Muenke M, Page DC. Stable and robust Xi and Y transcriptomes drive cell-type-specific autosomal and Xa responses in vivo and in vitro in four human cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585578. [PMID: 38562807 PMCID: PMC10983990 DOI: 10.1101/2024.03.18.585578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent in vitro studies of human sex chromosome aneuploidy showed that the Xi ("inactive" X) and Y chromosomes broadly modulate autosomal and Xa ("active" X) gene expression in two cell types. We tested these findings in vivo in two additional cell types. Using linear modeling in CD4+ T cells and monocytes from individuals with one to three X chromosomes and zero to two Y chromosomes, we identified 82 sex-chromosomal and 344 autosomal genes whose expression changed significantly with Xi and/or Y dosage in vivo . Changes in sex-chromosomal expression were remarkably constant in vivo and in vitro across all four cell types examined. In contrast, autosomal responses to Xi and/or Y dosage were largely cell-type-specific, with up to 2.6-fold more variation than sex-chromosomal responses. Targets of the X- and Y-encoded transcription factors ZFX and ZFY accounted for a significant fraction of these autosomal responses both in vivo and in vitro . We conclude that the human Xi and Y transcriptomes are surprisingly robust and stable across the four cell types examined, yet they modulate autosomal and Xa genes - and cell function - in a cell-type-specific fashion. These emerging principles offer a foundation for exploring the wide-ranging regulatory roles of the sex chromosomes across the human body.
Collapse
|
12
|
Bridges J, Ramirez-Guerrero JA, Rosa-Garrido M. Gender-specific genetic and epigenetic signatures in cardiovascular disease. Front Cardiovasc Med 2024; 11:1355980. [PMID: 38529333 PMCID: PMC10962446 DOI: 10.3389/fcvm.2024.1355980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Cardiac sex differences represent a pertinent focus in pursuit of the long-awaited goal of personalized medicine. Despite evident disparities in the onset and progression of cardiac pathology between sexes, historical oversight has led to the neglect of gender-specific considerations in the treatment of patients. This oversight is attributed to a predominant focus on male samples and a lack of sex-based segregation in patient studies. Recognizing these sex differences is not only relevant to the treatment of cisgender individuals; it also holds paramount importance in addressing the healthcare needs of transgender patients, a demographic that is increasingly prominent in contemporary society. In response to these challenges, various agencies, including the National Institutes of Health, have actively directed their efforts toward advancing our comprehension of this phenomenon. Epigenetics has proven to play a crucial role in understanding sex differences in both healthy and disease states within the heart. This review presents a comprehensive overview of the physiological distinctions between males and females during the development of various cardiac pathologies, specifically focusing on unraveling the genetic and epigenetic mechanisms at play. Current findings related to distinct sex-chromosome compositions, the emergence of gender-biased genetic variations, and variations in hormonal profiles between sexes are highlighted. Additionally, the roles of DNA methylation, histone marks, and chromatin structure in mediating pathological sex differences are explored. To inspire further investigation into this crucial subject, we have conducted global analyses of various epigenetic features, leveraging data previously generated by the ENCODE project.
Collapse
Affiliation(s)
| | | | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Shepherdson JL, Hutchison K, Don DW, McGillivray G, Choi TI, Allan CA, Amor DJ, Banka S, Basel DG, Buch LD, Carere DA, Carroll R, Clayton-Smith J, Crawford A, Dunø M, Faivre L, Gilfillan CP, Gold NB, Gripp KW, Hobson E, Holtz AM, Innes AM, Isidor B, Jackson A, Katsonis P, Amel Riazat Kesh L, Küry S, Lecoquierre F, Lockhart P, Maraval J, Matsumoto N, McCarrier J, McCarthy J, Miyake N, Moey LH, Németh AH, Østergaard E, Patel R, Pope K, Posey JE, Schnur RE, Shaw M, Stolerman E, Taylor JP, Wadman E, Wakeling E, White SM, Wong LC, Lupski JR, Lichtarge O, Corbett MA, Gecz J, Nicolet CM, Farnham PJ, Kim CH, Shinawi M. Variants in ZFX are associated with an X-linked neurodevelopmental disorder with recurrent facial gestalt. Am J Hum Genet 2024; 111:487-508. [PMID: 38325380 PMCID: PMC10940019 DOI: 10.1016/j.ajhg.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.
Collapse
Affiliation(s)
- James L Shepherdson
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie Hutchison
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - George McGillivray
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Carolyn A Allan
- Hudson Institute of Medical Research, Monash University, and Department of Endocrinology, Monash Health, Melbourne, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Donald G Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Renée Carroll
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ali Crawford
- Medical Genomics Research, Illumina Inc, San Diego, CA, USA
| | - Morten Dunø
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; INSERM UMR1231, Equipe GAD, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Christopher P Gilfillan
- Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia; Department of Endocrinology, Eastern Health, Box Hill Hospital, Melbourne, VIC, Australia
| | - Nina B Gold
- Harvard Medical School, Boston, MA, USA; Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, MA, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, USA
| | - Emma Hobson
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Department of Clinical Genetics, Chapel Allerton Hospital, Leeds, UK
| | - Alexander M Holtz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - A Micheil Innes
- Departments of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Leila Amel Riazat Kesh
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Department of Clinical Genetics, Chapel Allerton Hospital, Leeds, UK
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du Thorax, 44000 Nantes, France
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, 76000 Rouen, France
| | - Paul Lockhart
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Julien Maraval
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; INSERM UMR1231, Equipe GAD, Université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Julie McCarrier
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Josephine McCarthy
- Department of Endocrinology, Eastern Health, Box Hill Hospital, Melbourne, VIC, Australia
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Lip Hen Moey
- Department of Genetics, Penang General Hospital, George Town, Penang, Malaysia
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rushina Patel
- Medical Genetics, Kaiser Permanente Oakland Medical Center, Oakland, CA, USA
| | - Kate Pope
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Julie P Taylor
- Medical Genomics Research, Illumina Inc, San Diego, CA, USA
| | - Erin Wadman
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, DE, USA
| | - Emma Wakeling
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Susan M White
- Victorian Clinical Genetics Services, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Lawrence C Wong
- Medical Genetics, Kaiser Permanente Downey Medical Center, Downey, CA, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea.
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Tang L, Zhou X, Guo A, Han L, Pan S. Blockade of ZFX Alleviates Hypoxia-Induced Pulmonary Vascular Remodeling by Regulating the YAP Signaling. Cardiovasc Toxicol 2024; 24:158-170. [PMID: 38310188 DOI: 10.1007/s12012-023-09822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
High expression of the zinc finger X-chromosomal protein (ZFX) correlates with proliferation, aggressiveness, and development in many types of cancers. In the current report, we investigated the efficacy of ZFX in mouse pulmonary artery smooth muscle cells (PASMCs) proliferation during pulmonary arterial hypertension (PAH). PASMCs were cultured in hypoxic conditions. Real-time PCR and western blotting were conducted to detect the expression of ZFX. Cell proliferation, apoptosis, migration, and invasion were, respectively, measured by CCK-8, flow cytometry, wound scratchy, and transwell assays. Glycolytic ability was validated by the extracellular acidification rate and oxygen consumption rate. Transcriptome sequencing technology was used to explore the genes affected by ZFX knockdown. Luciferase and chromatin immunoprecipitation assays were utilized to verify the possible binding site of ZFX and YAP1. Mice were subjected to hypoxia for 21 days to induce PAH. The right ventricular systolic pressure (RVSP) was measured and ratio of RV/LV + S was calculated. The results show that ZFX was increased in hypoxia-induced PASMCs and mice. ZFX knockdown inhibited the proliferation, migration, and invasion of PASMC. Using RNA sequencing, we identify glycolysis and YAP as a key signaling of ZFX. ZFX knockdown inhibited Glycolytic ability. ZFX strengthened the transcription activity of YAP1, thereby regulating the YAP signaling. YAP1 overexpression reversed the effect of ZFX knockdown on hypoxia-treated PASMCs. In conclusion, ZFX knockdown protected mice from hypoxia-induced PAH injury. ZFX knockdown dramatically reduced RVSP and RV/(LV + S) in hypoxia-treated mice.
Collapse
Affiliation(s)
- Ling Tang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Xiao Zhou
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Aili Guo
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Department of Pediatrics, Central Hosptial Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Silin Pan
- Heart Center, Qingdao Women and Children's Hospital, Shandong University, No.217 West Liaoyang Road, Qingdao, 266034, Shandong, People's Republic of China.
| |
Collapse
|
15
|
San Roman AK, Skaletsky H, Godfrey AK, Bokil NV, Teitz L, Singh I, Blanton LV, Bellott DW, Pyntikova T, Lange J, Koutseva N, Hughes JF, Brown L, Phou S, Buscetta A, Kruszka P, Banks N, Dutra A, Pak E, Lasutschinkow PC, Keen C, Davis SM, Lin AE, Tartaglia NR, Samango-Sprouse C, Muenke M, Page DC. The human Y and inactive X chromosomes similarly modulate autosomal gene expression. CELL GENOMICS 2024; 4:100462. [PMID: 38190107 PMCID: PMC10794785 DOI: 10.1016/j.xgen.2023.100462] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors-ZFX and ZFY-encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Alexander K Godfrey
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neha V Bokil
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Levi Teitz
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isani Singh
- Whitehead Institute, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Julian Lange
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Laura Brown
- Whitehead Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Sidaly Phou
- Whitehead Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Ashley Buscetta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Banks
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evgenia Pak
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Shanlee M Davis
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela E Lin
- Medical Genetics, Massachusetts General for Children, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole R Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Developmental Pediatrics, eXtraOrdinarY Kids Program, Children's Hospital Colorado, Aurora, CO 80011, USA
| | - Carole Samango-Sprouse
- Focus Foundation, Davidsonville, MD 21035, USA; Department of Pediatrics, George Washington University, Washington, DC 20052, USA; Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Stuckel AJ, Zeng S, Lyu Z, Zhang W, Zhang X, Dougherty U, Mustafi R, Khare T, Zhang Q, Joshi T, Bissonnette M, Khare S. Sprouty4 is epigenetically upregulated in human colorectal cancer. Epigenetics 2023; 18:2145068. [PMID: 36384366 PMCID: PMC9980603 DOI: 10.1080/15592294.2022.2145068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sprouty4 (SPRY4) has been frequently reported as a tumor suppressor and is therefore downregulated in various cancers. For the first time, we report that SPRY4 is epigenetically upregulated in colorectal cancer (CRC). In this study, we explored DNA methylation and hydroxymethylation levels of SPRY4 in CRC cells and patient samples and correlated these findings with mRNA and protein expression levels. Three loci within the promoter region of SPRY4 were evaluated for 5mC levels in CRC using the combined bisulfite restriction analysis. In addition, hydroxymethylation levels within SPRY4 were measured in CRC patients. Lastly, DNA methylation and mRNA expression data were extracted from CRC patients in multiple high-throughput data repositories like Gene Expression Omnibus and The Cancer Genome Atlas. Combined in vitro and in silico analysis of promoter methylation levels of SPRY4 clearly demonstrates that the distal promoter region undergoes hypomethylation in CRC patients and is associated with increased expression. Moreover, a decrease in gene body hydroxymethylation and an increase in gene body methylation within the coding region of SPRY4 were found in CRC patients and correlated with increased expression. SPRY4 is epigenetically upregulated in CRC by promoter hypomethylation and hypermethylation within the gene body that warrants future investigation of atypical roles of this established tumor suppressor.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Shuai Zeng
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Zhen Lyu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Wei Zhang
- Department of Preventive Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois, Chicago, Illinois, 60607, USA
| | - Urszula Dougherty
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Reba Mustafi
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Qiong Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA,Department of Health Management and Informatics; School of Medicine, University of Missouri, Columbia, Missouri, 65212, USA
| | - Marc Bissonnette
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA,Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, 65201, USA,CONTACT Sharad Khare Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| |
Collapse
|
17
|
Zhang X, Wang Y, Lu J, Xiao L, Chen H, Li Q, Li YY, Xu P, Ruan C, Zhou H, Zhao Y. A conserved ZFX/WNT3 axis modulates the growth and imatinib response of chronic myeloid leukemia stem/progenitor cells. Cell Mol Biol Lett 2023; 28:83. [PMID: 37864206 PMCID: PMC10589942 DOI: 10.1186/s11658-023-00496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Zinc finger protein X-linked (ZFX) has been shown to promote the growth of tumor cells, including leukemic cells. However, the role of ZFX in the growth and drug response of chronic myeloid leukemia (CML) stem/progenitor cells remains unclear. METHODS Real-time quantitative PCR (RT-qPCR) and immunofluorescence were used to analyze the expression of ZFX and WNT3 in CML CD34+ cells compared with normal control cells. Short hairpin RNAs (shRNAs) and clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) technologies were used to study the role of ZFX in growth and drug response of CML cells. Microarray data were generated to compare ZFX-silenced CML CD34+ cells with their controls. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to study the molecular mechanisms of ZFX to regulate WNT3 expression. RT-qPCR and western blotting were used to study the effect of ZFX on β-catenin signaling. RESULTS We showed that ZFX expression was significantly higher in CML CD34+ cells than in control cells. Overexpression and gene silencing experiments indicated that ZFX promoted the in vitro growth of CML cells, conferred imatinib mesylate (IM) resistance to these cells, and enhanced BCR/ABL-induced malignant transformation. Microarray data and subsequent validation revealed that WNT3 transcription was conservatively regulated by ZFX. WNT3 was highly expressed in CML CD34+ cells, and WNT3 regulated the growth and IM response of these cells similarly to ZFX. Moreover, WNT3 overexpression partially rescued ZFX silencing-induced growth inhibition and IM hypersensitivity. ZFX silencing decreased WNT3/β-catenin signaling, including c-MYC and CCND1 expression. CONCLUSION The present study identified a novel ZFX/WNT3 axis that modulates the growth and IM response of CML stem/progenitor cells.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/metabolism
- beta Catenin/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Stem Cells/metabolism
- Signal Transduction
- Drug Resistance, Neoplasm/genetics
- Neoplastic Stem Cells/metabolism
- Wnt3 Protein/metabolism
- Wnt3 Protein/pharmacology
Collapse
Affiliation(s)
- Xiuyan Zhang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China.
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yu Wang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Jinchang Lu
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Chen
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Quanxue Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan-Yuan Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Peng Xu
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China
| | - Haixia Zhou
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China.
| | - Yun Zhao
- Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Suzhou, 215006, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, 21513, China.
| |
Collapse
|
18
|
Tallaksen HBL, Johannsen EB, Just J, Viuff MH, Gravholt CH, Skakkebæk A. The multi-omic landscape of sex chromosome abnormalities: current status and future directions. Endocr Connect 2023; 12:e230011. [PMID: 37399516 PMCID: PMC10448593 DOI: 10.1530/ec-23-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Sex chromosome abnormalities (SCAs) are chromosomal disorders with either a complete or partial loss or gain of sex chromosomes. The most frequent SCAs include Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Trisomy X syndrome (47,XXX), and Double Y syndrome (47,XYY). The phenotype seen in SCAs is highly variable and may not merely be due to the direct genomic imbalance from altered sex chromosome gene dosage but also due to additive alterations in gene networks and regulatory pathways across the genome as well as individual genetic modifiers. This review summarizes the current insight into the genomics of SCAs. In addition, future directions of research that can contribute to decipher the genomics of SCA are discussed such as single-cell omics, spatial transcriptomics, system biology thinking, human-induced pluripotent stem cells, and animal models, and how these data may be combined to bridge the gap between genomics and the clinical phenotype.
Collapse
Affiliation(s)
- Helene Bandsholm Leere Tallaksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
San Roman AK, Skaletsky H, Godfrey AK, Bokil NV, Teitz L, Singh I, Blanton LV, Bellott DW, Pyntikova T, Lange J, Koutseva N, Hughes JF, Brown L, Phou S, Buscetta A, Kruszka P, Banks N, Dutra A, Pak E, Lasutschinkow PC, Keen C, Davis SM, Lin AE, Tartaglia NR, Samango-Sprouse C, Muenke M, Page DC. The human Y and inactive X chromosomes similarly modulate autosomal gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543763. [PMID: 37333288 PMCID: PMC10274745 DOI: 10.1101/2023.06.05.543763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex-chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors - ZFX and ZFY - encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Alexander K. Godfrey
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Neha V. Bokil
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Levi Teitz
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Isani Singh
- Whitehead Institute; Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Julian Lange
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | | | | | - Laura Brown
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Sidaly Phou
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Ashley Buscetta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - Nicole Banks
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, MD 20892 USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD 20892 USA
| | - Evgenia Pak
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD 20892 USA
| | | | | | - Shanlee M. Davis
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela E. Lin
- Medical Genetics, Massachusetts General for Children, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole R. Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Developmental Pediatrics, eXtraOrdinarY Kids Program, Children’s Hospital Colorado, Aurora, CO 80011, USA
| | - Carole Samango-Sprouse
- Focus Foundation, Davidsonville, MD 21035, USA
- Department of Pediatrics, George Washington University, Washington, DC 20052, USA; Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - David C. Page
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Reddy KD, Oliver BGG. Sexual dimorphism in chronic respiratory diseases. Cell Biosci 2023; 13:47. [PMID: 36882807 PMCID: PMC9993607 DOI: 10.1186/s13578-023-00998-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Sex differences in susceptibility, severity, and progression are prevalent for various diseases in multiple organ systems. This phenomenon is particularly apparent in respiratory diseases. Asthma demonstrates an age-dependent pattern of sexual dimorphism. However, marked differences between males and females exist in other pervasive conditions such as chronic obstructive pulmonary disease (COPD) and lung cancer. The sex hormones estrogen and testosterone are commonly considered the primary factors causing sexual dimorphism in disease. However, how they contribute to differences in disease onset between males and females remains undefined. The sex chromosomes are an under-investigated fundamental form of sexual dimorphism. Recent studies highlight key X and Y-chromosome-linked genes that regulate vital cell processes and can contribute to disease-relevant mechanisms. This review summarises patterns of sex differences in asthma, COPD and lung cancer, highlighting physiological mechanisms causing the observed dimorphism. We also describe the role of the sex hormones and present candidate genes on the sex chromosomes as potential factors contributing to sexual dimorphism in disease.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Brian Gregory George Oliver
- Respiratory and Cellular Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia
- School of Life Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
21
|
Akcan TS, Vilov S, Heinig M. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures. Nucleic Acids Res 2023; 51:1608-1624. [PMID: 36727445 PMCID: PMC9976927 DOI: 10.1093/nar/gkac1272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Promoter-proximal Polymerase II (Pol II) pausing is a key rate-limiting step for gene expression. DNA and RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack a quantitative model of how interactions of these factors determine pausing, therefore the relative importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here we address this gap with a machine learning model that accurately predicts the extent of promoter-proximal Pol II pausing from large-scale genome and transcriptome binding maps and gene annotation and sequence composition features. We demonstrate high accuracy and generalizability of the model by validation on an independent cell line which reveals the model's cell line agnostic character. Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms the interconnection of pausing with other RNA processing steps. Harnessing underlying feature contributions, we assess the relative importance of each factor, quantify their predictive effects and systematically identify previously unknown regulators of pausing. We additionally identify 16 previously unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a framework to further our understanding of the regulation of the critical early steps in transcriptional elongation.
Collapse
Affiliation(s)
- Toray S Akcan
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Sergey Vilov
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| |
Collapse
|
22
|
Roura AJ, Szadkowska P, Poleszak K, Dabrowski MJ, Ellert-Miklaszewska A, Wojnicki K, Ciechomska IA, Stepniak K, Kaminska B, Wojtas B. Regulatory networks driving expression of genes critical for glioblastoma are controlled by the transcription factor c-Jun and the pre-existing epigenetic modifications. Clin Epigenetics 2023; 15:29. [PMID: 36850002 PMCID: PMC9972689 DOI: 10.1186/s13148-023-01446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM, WHO grade IV) is an aggressive, primary brain tumor. Despite extensive tumor resection followed by radio- and chemotherapy, life expectancy of GBM patients did not improve over decades. Several studies reported transcription deregulation in GBMs, but regulatory mechanisms driving overexpression of GBM-specific genes remain largely unknown. Transcription in open chromatin regions is directed by transcription factors (TFs) that bind to specific motifs, recruit co-activators/repressors and the transcriptional machinery. Identification of GBM-related TFs-gene regulatory networks may reveal new and targetable mechanisms of gliomagenesis. RESULTS We predicted TFs-regulated networks in GBMs in silico and intersected them with putative TF binding sites identified in the accessible chromatin in human glioma cells and GBM patient samples. The Cancer Genome Atlas and Glioma Atlas datasets (DNA methylation, H3K27 acetylation, transcriptomic profiles) were explored to elucidate TFs-gene regulatory networks and effects of the epigenetic background. In contrast to the majority of tumors, c-Jun expression was higher in GBMs than in normal brain and c-Jun binding sites were found in multiple genes overexpressed in GBMs, including VIM, FOSL2 or UPP1. Binding of c-Jun to the VIM gene promoter was stronger in GBM-derived cells than in cells derived from benign glioma as evidenced by gel shift and supershift assays. Regulatory regions of the majority of c-Jun targets have distinct DNA methylation patterns in GBMs as compared to benign gliomas, suggesting the contribution of DNA methylation to the c-Jun-dependent gene expression. CONCLUSIONS GBM-specific TFs-gene networks identified in GBMs differ from regulatory pathways attributed to benign brain tumors and imply a decisive role of c-Jun in controlling genes that drive glioma growth and invasion as well as a modulatory role of DNA methylation.
Collapse
Affiliation(s)
- Adria-Jaume Roura
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Poleszak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Michal J. Dabrowski
- Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | | | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Iwona A. Ciechomska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, ul. Ludwika Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Gravholt CH, Viuff M, Just J, Sandahl K, Brun S, van der Velden J, Andersen NH, Skakkebaek A. The Changing Face of Turner Syndrome. Endocr Rev 2023; 44:33-69. [PMID: 35695701 DOI: 10.1210/endrev/bnac016] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 01/20/2023]
Abstract
Turner syndrome (TS) is a condition in females missing the second sex chromosome (45,X) or parts thereof. It is considered a rare genetic condition and is associated with a wide range of clinical stigmata, such as short stature, ovarian dysgenesis, delayed puberty and infertility, congenital malformations, endocrine disorders, including a range of autoimmune conditions and type 2 diabetes, and neurocognitive deficits. Morbidity and mortality are clearly increased compared with the general population and the average age at diagnosis is quite delayed. During recent years it has become clear that a multidisciplinary approach is necessary toward the patient with TS. A number of clinical advances has been implemented, and these are reviewed. Our understanding of the genomic architecture of TS is advancing rapidly, and these latest developments are reviewed and discussed. Several candidate genes, genomic pathways and mechanisms, including an altered transcriptome and epigenome, are also presented.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Mette Viuff
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Kristian Sandahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Sara Brun
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Janielle van der Velden
- Department of Pediatrics, Radboud University Medical Centre, Amalia Children's Hospital, 6525 Nijmegen, the Netherlands
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Anne Skakkebaek
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus 8200 N, Denmark
| |
Collapse
|
24
|
Lee BH, Wu Z, Rhie SK. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C. Epigenetics Chromatin 2022; 15:41. [PMID: 36544209 PMCID: PMC9768916 DOI: 10.1186/s13072-022-00473-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory elements such as promoters, enhancers, and insulators interact each other to mediate molecular processes. To capture chromatin interactions of regulatory elements, 3C-derived methods such as Hi-C and Micro-C are developed. Here, we generated and analyzed Hi-C, Micro-C, and promoter capture Micro-C datasets with different sequencing depths to study chromatin interactions of regulatory elements and nucleosome positions in human prostate cancer cells. RESULTS Compared to Hi-C, Micro-C identifies more high-resolution loops, including ones around structural variants. By evaluating the effect of sequencing depth, we revealed that more than 2 billion reads of Micro-C are needed to detect chromatin interactions at 1 kb resolution. Moreover, we found that deep-sequencing identifies additional long-range loops that are longer than 1 Mb in distance. Furthermore, we found that more than 50% of the loops are involved in insulators while less than 10% of the loops are promoter-enhancer loops. To comprehensively capture chromatin interactions that promoters are involved in, we performed promoter capture Micro-C. Promoter capture Micro-C identifies loops near promoters with a lower amount of sequencing reads. Sequencing of 160 million reads of promoter capture Micro-C resulted in reaching a plateau of identifying loops. However, there was still a subset of promoters that are not involved in loops even after deep-sequencing. By integrating Micro-C with NOMe-seq and ChIP-seq, we found that active promoters involved in loops have a more accessible region with lower levels of DNA methylation and more highly phased nucleosomes, compared to active promoters that are not involved in loops. CONCLUSION We determined the required sequencing depth for Micro-C and promoter capture Micro-C to generate high-resolution chromatin interaction maps and loops. We also investigated the effect of sequencing coverage of Hi-C, Micro-C, and promoter capture Micro-C on detecting chromatin loops. Our analyses suggest the presence of distinct regulatory element groups, which are differently involved in nucleosome positions and chromatin interactions. This study does not only provide valuable insights on understanding chromatin interactions of regulatory elements, but also present guidelines for designing research projects on chromatin interactions among regulatory elements.
Collapse
Affiliation(s)
- Beoung Hun Lee
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zexun Wu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Suhn K Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
25
|
Prasad M, Veeraraghavan VP, Jayaraman S. Methylated ZNF582: a therapeutic target in oral cancer. Epigenomics 2022; 14:1389-1392. [PMID: 36722134 DOI: 10.2217/epi-2022-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tweetable abstract Zinc finger proteins control the transcription of downstream genes that are implicated in migration, invasion, cell death and proliferation. More mechanistic research on ZNF582 is needed to ascertain how this protein's methylation regulates the inflammatory pathway in oral cancer.
Collapse
Affiliation(s)
- Monisha Prasad
- Center of Molecular Medicine & Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Center of Molecular Medicine & Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Selvaraj Jayaraman
- Center of Molecular Medicine & Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
26
|
Characterizing and Targeting Genes Regulated by Transcription Factor MYBL2 in Lung Adenocarcinoma Cells. Cancers (Basel) 2022; 14:cancers14204979. [PMID: 36291764 PMCID: PMC9599349 DOI: 10.3390/cancers14204979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 01/16/2023] Open
Abstract
Overexpression of MYBL2 is associated with poor survival of lung adenocarcinoma patients, but the molecular mechanism by which it regulates transcription and carcinogenesis has not yet been elucidated. In this study, we performed ChIP-seq using an MYBL2-targeted antibody and discovered that MYBL2 primarily binds to the promoters of highly expressed genes in lung adenocarcinoma cells. Using a knockdown experiment of MYBL2 and global transcriptome profiling, we identified that over a thousand genes are dysregulated by MYBL2, and MYBL2 acts as a transcriptional activator in lung adenocarcinoma cells. Moreover, we revealed that the binding sites of FOXM1 are largely shared with MYBL2 binding sites, and genes involved in cell cycle phase transitions are regulated by these transcription factors. We furthermore investigated the effect of a previously reported FOXM1 inhibitor, FDI-6, in lung adenocarcinoma cells. We demonstrated that FDI-6 decreases the proliferation of lung adenocarcinoma cells and inhibits the activities of FOXM1 as well as MYBL2. Moreover, we found that genes involved in cell death and cell cycle are inhibited by FDI-6. Overall, our findings suggest that MYBL2 and FOXM1 activate cell cycle genes together, acting as oncogenic transcription factors in lung adenocarcinoma cells, and they are potential treatment targets for the disease.
Collapse
|
27
|
Kong S, Lu Y, Tan S, Li R, Gao Y, Li K, Zhang Y. Nucleosome-Omics: A Perspective on the Epigenetic Code and 3D Genome Landscape. Genes (Basel) 2022; 13:1114. [PMID: 35885897 PMCID: PMC9323251 DOI: 10.3390/genes13071114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic information is loaded on chromatin, which involves DNA sequence arrangement and the epigenetic landscape. The epigenetic information including DNA methylation, nucleosome positioning, histone modification, 3D chromatin conformation, and so on, has a crucial impact on gene transcriptional regulation. Out of them, nucleosomes, as basal chromatin structural units, play an important central role in epigenetic code. With the discovery of nucleosomes, various nucleosome-level technologies have been developed and applied, pushing epigenetics to a new climax. As the underlying methodology, next-generation sequencing technology has emerged and allowed scientists to understand the epigenetic landscape at a genome-wide level. Combining with NGS, nucleosome-omics (or nucleosomics) provides a fresh perspective on the epigenetic code and 3D genome landscape. Here, we summarized and discussed research progress in technology development and application of nucleosome-omics. We foresee the future directions of epigenetic development at the nucleosome level.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yubo Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Animal Functional Genomics Group, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (S.K.); (Y.L.); (S.T.); (R.L.); (Y.G.); (K.L.)
| |
Collapse
|
28
|
Partial-Methylated HeyL Promoter Predicts the Severe Illness in Egyptian COVID-19 Patients. DISEASE MARKERS 2022; 2022:6780710. [PMID: 35655915 PMCID: PMC9153385 DOI: 10.1155/2022/6780710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
Background To date (14 January 2022), the incidence and related mortality rate of COVID-19 in America, Europe, and Asia despite administrated of billions doses of many approved vaccines are still higher than in Egypt. Epigenetic alterations mediate the effects of environmental factors on the regulation of genetic material causing many diseases. Objective We aimed to explore the methylation status of HeyL promoter, a downstream transcription factor in Notch signal, an important regulator of cell proliferation and differentiation blood, pulmonary epithelial, and nerves cells. Methods Our objective was achieved by DNA sequencing of the product from methyl-specific PCR of HeyL promoter after bisulfite modification of DNA extracted from the blood samples of 30 COVID-19 patients and 20 control health subjects and studying its association with clinical-pathological biomarkers. Results We found that the HeyL promoter was partial-methylated in Egyptian COVID-19 patients and control healthy subjects compared to full methylated one that was published in GenBank. We identified unmethylated CpG (TG) flanking the response elements within HeyL promoter in Egyptian COVID-19 patients and control healthy subjects vs. methylated CpG (CG) in reference sequence (GenBank). Also, we observed that the frequency of partial-methylated HeyL promoter was higher in COVID-19 patients and associated with aging, fever, severe pneumonia, ageusia/anosmia, and dry cough compared to control healthy subjects. Conclusion We concluded that hypomethylated HeyL promoter in Egyptian population may facilitate the binding of transcription factors to their binding sites, thus enhancing its regulatory action on the blood, pulmonary epithelium, and nerves cells in contrast to full methylated one that was published in GenBank; thus, addition of demethylating agents to the treatment protocol of COVID-19 may improve the clinical outcomes. Administration of therapy must be based on determination of methylation status of HeyL, a novel prognostic marker for severe illness in COVID-19 patients.
Collapse
|
29
|
Cistrome and transcriptome analysis identifies unique androgen receptor (AR) and AR-V7 splice variant chromatin binding and transcriptional activities. Sci Rep 2022; 12:5351. [PMID: 35354884 PMCID: PMC8969163 DOI: 10.1038/s41598-022-09371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
The constitutively active androgen receptor (AR) splice variant, AR-V7, plays an important role in resistance to androgen deprivation therapy in castration resistant prostate cancer (CRPC). Studies seeking to determine whether AR-V7 is a partial mimic of the AR, or also has unique activities, and whether the AR-V7 cistrome contains unique binding sites have yielded conflicting results. One limitation in many studies has been the low level of AR variant compared to AR. Here, LNCaP and VCaP cell lines in which AR-V7 expression can be induced to match the level of AR, were used to compare the activities of AR and AR-V7. The two AR isoforms shared many targets, but overall had distinct transcriptomes. Optimal induction of novel targets sometimes required more receptor isoform than classical targets such as PSA. The isoforms displayed remarkably different cistromes with numerous differential binding sites. Some of the unique AR-V7 sites were located proximal to the transcription start sites (TSS). A de novo binding motif similar to a half ARE was identified in many AR-V7 preferential sites and, in contrast to conventional half ARE sites that bind AR-V7, FOXA1 was not enriched at these sites. This supports the concept that the AR isoforms have unique actions with the potential to serve as biomarkers or novel therapeutic targets.
Collapse
|
30
|
Jiang Z, Elsarrag SZ, Duan Q, LaGory EL, Wang Z, Alexanian M, McMahon S, Rulifson IC, Winchester S, Wang Y, Vaisse C, Brown JD, Quattrocelli M, Lin CY, Haldar SM. KLF15 cistromes reveal a hepatocyte pathway governing plasma corticosteroid transport and systemic inflammation. SCIENCE ADVANCES 2022; 8:eabj2917. [PMID: 35263131 PMCID: PMC8906731 DOI: 10.1126/sciadv.abj2917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of Serpina6, which encodes corticosteroid-binding globulin (CBG). Klf15-deficient mice have profoundly low CBG, reduced plasma corticosteroid binding capacity, and heightened mortality during inflammatory stress. These defects are completely rescued by reconstituting CBG, supporting that KLF15 works primarily through CBG to control plasma corticosterone homeostasis. To understand transcriptional mechanisms, we generated the first KLF15 cistromes using newly engineered Klf153xFLAG mice. Unexpectedly, liver KLF15 is predominantly promoter enriched, including Serpina6, where it binds a palindromic GC-rich motif, opens chromatin, and transactivates genes with minimal associated direct gene repression. Overall, we provide critical mechanistic insight into KLF15 function and identify a hepatocyte-intrinsic transcriptional module that potently regulates systemic corticosteroid transport and inflammation.
Collapse
Affiliation(s)
- Zhen Jiang
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Selma Z. Elsarrag
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program and Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Zhe Wang
- Amgen Research, South San Francisco, CA 94080, USA
| | | | - Sarah McMahon
- Gladstone Institutes, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | | | - Yi Wang
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Christian Vaisse
- UCSF Diabetes Center and Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jonathan D. Brown
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Kronos Bio Inc., Cambridge, MA 02142, USA
| | - Saptarsi M. Haldar
- Amgen Research, South San Francisco, CA 94080, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Cardiology Division, Department of Medicine, UCSF School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Zhou H, Wang Y, Liu Z, Zhang Z, Xiong L, Wen Y. Recent advances of NEAT1-miRNA interactions in cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:153-162. [PMID: 35538025 PMCID: PMC9827865 DOI: 10.3724/abbs.2021022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
With high incidence rate, cancer is the main cause of death in humans. Non-coding RNAs, as novel master regulators, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play important roles in the regulation of tumorigenesis. lncRNA NEAT1 has recently gained much attention, as it is dysregulated in a broad spectrum of cancers, where it acts as either an oncogene or a tumor suppressor gene. Accumulating evidence shows that NEAT1 is correlated with the process of carcinogenesis, including proliferation, invasion, survival, drug resistance, and metastasis. NEAT1 is considered to be a biomarker and a novel therapeutic target for the diagnosis and prognosis of different cancer types. The mechanisms by which NEAT1 plays a critical role in cancers are mainly via interactions with miRNAs. NEAT1-miRNA regulatory networks play significant roles in tumorigenesis, which has attracted much attention from researchers around the world. In this review, we summarize the interaction of NEAT1 with miRNAs in the regulation of protein-coding genes in cancer. A better understanding of the NEAT1-miRNA interactions in cancer will help develop new diagnostic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhou
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Yongxiang Wang
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zhongtao Liu
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zijian Zhang
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Li Xiong
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Yu Wen
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| |
Collapse
|
32
|
Sherlaw-Sturrock CA, Graham S, Morgan A, Reali L, Naik S. Xq21.1q21.31 Duplication in Two Male Siblings. Mol Syndromol 2022; 13:152-158. [PMID: 35418824 PMCID: PMC8928204 DOI: 10.1159/000518933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/06/2021] [Indexed: 10/10/2023] Open
Abstract
Despite the increased use of array comparative genomic hybridisation, duplications of Xq remain rarely reported in the literature. Xq21.1q21.31 duplication has previously been reported only once in a boy with features of Prader Willi syndrome (PWS). We report 2 malesiblings with maternally inherited duplication of Xq21.1q21.31 who demonstrate a variable phenotype. The proband has Prader Willi-like features such as global developmental delay, autism, obesity, short hands, and small genitalia with a history of food seeking behaviour, while his younger brother has isolated speech delay with some autistic features under evaluation. Both siblings have features such as bitemporal narrowing and small hands. It is therefore likely that the phenotype of duplications in this region is broader than PWS phenocopy, and further cases would be required to elucidate this.
Collapse
Affiliation(s)
| | - Sarah Graham
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Anita Morgan
- Department of Paediatrics, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Lisa Reali
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| | - Swati Naik
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
33
|
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J, Liao Z, Chen X, Zhang B. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res 2022; 10:2. [PMID: 35000617 PMCID: PMC8744215 DOI: 10.1186/s40364-021-00345-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
34
|
Bengtsen M, Winje IM, Eftestøl E, Landskron J, Sun C, Nygård K, Domanska D, Millay DP, Meza-Zepeda LA, Gundersen K. Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genet 2021; 17:e1009907. [PMID: 34752468 PMCID: PMC8604348 DOI: 10.1371/journal.pgen.1009907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/19/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023] Open
Abstract
Muscle cells have different phenotypes adapted to different usage, and can be grossly divided into fast/glycolytic and slow/oxidative types. While most muscles contain a mixture of such fiber types, we aimed at providing a genome-wide analysis of the epigenetic landscape by ChIP-Seq in two muscle extremes, the fast/glycolytic extensor digitorum longus (EDL) and slow/oxidative soleus muscles. Muscle is a heterogeneous tissue where up to 60% of the nuclei can be of a different origin. Since cellular homogeneity is critical in epigenome-wide association studies we developed a new method for purifying skeletal muscle nuclei from whole tissue, based on the nuclear envelope protein Pericentriolar material 1 (PCM1) being a specific marker for myonuclei. Using antibody labelling and a magnetic-assisted sorting approach, we were able to sort out myonuclei with 95% purity in muscles from mice, rats and humans. The sorting eliminated influence from the other cell types in the tissue and improved the myo-specific signal. A genome-wide comparison of the epigenetic landscape in EDL and soleus reflected the differences in the functional properties of the two muscles, and revealed distinct regulatory programs involving distal enhancers, including a glycolytic super-enhancer in the EDL. The two muscles were also regulated by different sets of transcription factors; e.g. in soleus, binding sites for MEF2C, NFATC2 and PPARA were enriched, while in EDL MYOD1 and SIX1 binding sites were found to be overrepresented. In addition, more novel transcription factors for muscle regulation such as members of the MAF family, ZFX and ZBTB14 were identified. Complex tissues like skeletal muscle contain a variety of cells which confound the analysis of each cell type when based on homogenates, thus only about half of the cell nuclei in muscles reside inside the muscle cells. We here describe a labelling and sorting technique that allowed us to study the epigenetic landscape in purified muscle cell nuclei leaving the other cell types out. Differences between a fast/glycolytic and a slow/oxidative muscle were studied. While all skeletal muscle fibers have a similar make up and basic function, they differ in their physiology and the way they are used. Thus, some fibers are fast contracting but fatigable, and are used for short lasting explosive tasks such as sprinting. Other fibers are slow and are used for more prolonged tasks such as standing or long distance running. Since fiber type correlate with metabolic profile these features can also be related to metabolic diseases. We here show that the epigenetic landscape differed in gene loci corresponding to the differences in functional properties, and revealed that the two types are enriched in different gene regulatory networks. Exercise can alter muscle phenotype, and the epigenetic landscape might be related to how plastic different properties are.
Collapse
Affiliation(s)
- Mads Bengtsen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | | | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kamilla Nygård
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Diana Domanska
- Department of Pathology, University of Oslo, Oslo, Norway
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Leonardo A. Meza-Zepeda
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
35
|
Wu G, Peng H, Tang M, Yang M, Wang J, Hu Y, Li Z, Li J, Li Z, Song L. ZNF711 down-regulation promotes CISPLATIN resistance in epithelial ovarian cancer via interacting with JHDM2A and suppressing SLC31A1 expression. EBioMedicine 2021; 71:103558. [PMID: 34521054 PMCID: PMC8441092 DOI: 10.1016/j.ebiom.2021.103558] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background Resistance to platinum-based chemotherapy is a major cause of therapeutic failure during the treatment of epithelial ovarian cancer (EOC) patients. Our study aims to elucidate the molecular mechanisms by which ZNF711 down regulation promotes CISPLATIN resistance in EOC. Methods ZNF711 expression in 150 EOC specimens was examined using immunohistochemistry. ZNF711 expression and the survival of EOC patients were assessed with a Kaplan-Meier analysis. The effects of ZNF711 expression on CDDP resistance were studied by IC50, Annexin V, and colony formation in vitro, and in an in vivo intra-peritoneal tumor model. The molecular mechanism was determined using a luciferase reporter assay, ChIP assay, CAPTURE approach, and co-IP assay. Findings ZNF711 down-regulation exerts a great impact on CDDP resistance for EOC patients by suppressing SLC31A1 and inhibiting CDDP influx. ZNF711 down-regulation promoted, while ZNF711 overexpression drastically inhibited CDDP resistance, both in vivo and in vitro. Mechanistically, the histone demethylase JHDM2A was recruited to the SLC31A1 promoter by ZNF711 and decreased the H3K9me2 level, resulting in the activation of SLC31A1 transcription and enhancement of CDDP uptake. Importantly, co-treatment with the histone methylation inhibitor, BIX-01294, increased the therapeutic efficacy of CDDP treatment in ZNF711-suppressed EOC cells. Interpretation These findings both verified the clinical importance of ZNF711 in CDDP resistance and provide novel therapeutic regimens for EOC treatment. Funding This work was supported by the Natural Science Foundation of China; Guangzhou Science and Technology Plan Projects; Natural Science Foundation of Guangdong Province; The Fundamental Research Funds for the Central Universities; and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Geyan Wu
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hu Peng
- Department of Gynecological Oncology, Hubei Cancer Hospital, Wuhan 430071, China
| | - Miaoling Tang
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meisongzhu Yang
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Wang
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650118, China
| | - Yameng Hu
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziwen Li
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Li
- Department of biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zheng Li
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650118, China.
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
36
|
Developing ZNF Gene Signatures Predicting Radiosensitivity of Patients with Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:9255494. [PMID: 34504527 PMCID: PMC8423582 DOI: 10.1155/2021/9255494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
Adjuvant radiotherapy is one of the main treatment methods for breast cancer, but its clinical benefit depends largely on the characteristics of the patient. This study aimed to explore the relationship between the expression of zinc finger (ZNF) gene family proteins and the radiosensitivity of breast cancer patients. Clinical and gene expression data on a total of 976 breast cancer samples were obtained from The Cancer Genome Atlas (TCGA) database. ZNF gene expression was dichotomized into groups with a higher or lower level than the median level of expression. Univariate and multivariate Cox regression analyses were used to evaluate the relationship between ZNF gene expression levels and radiosensitivity. The Molecular Taxonomy Data of the International Federation of Breast Cancer (METABRIC) database was used for validation. The results revealed that 4 ZNF genes were possible radiosensitivity markers. High expression of ZNF644 and low expression levels of the other 3 genes (ZNF341, ZNF541, and ZNF653) were related to the radiosensitivity of breast cancer. Hierarchical cluster, Cox, and CoxBoost analysis based on these 4 ZNF genes indicated that patients with a favorable 4-gene signature had better overall survival on radiotherapy. Thus, this 4-gene signature may have value for selecting those patients most likely to benefit from radiotherapy. ZNF gene clusters could act as radiosensitivity signatures for breast cancer patients and may be involved in determining the radiosensitivity of cancer.
Collapse
|
37
|
Wu J, Zhou Y, Wang T, Jiang C, Gao Y, Wei B. ZFX promotes tumorigenesis and confers chemotherapy resistance in esophageal squamous cell carcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101586. [PMID: 33662636 DOI: 10.1016/j.clinre.2020.101586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Zinc finger X-chromosomal protein (ZFX) has been shown to be essential for the development and progression of multiple types of human cancers. However, its potential roles in esophageal squamous cell carcinoma (ESCC) have not yet been elucidated. MATERIALS AND METHODS Eighty-three pairs of frozen ESCC samples and their para-cancer samples and 24 fresh ESCC samples were collected. In vitro chemosensitivity was tested using the histoculture drug response assay. Quantitative RT-PCR and western blotting were used to measure the expression of functional genes. The effects of ZFX on cell growth, cell apoptosis, and chemosensitivity of the esophageal cancer cells were assessed. RESULTS We found that ZFX was more upregulated in ESCC tissues than in the para-cancer tissues, and its high expression was correlated with inferior clinicopathological characteristics and overall survival. Multivariate analysis revealed that ZFX was an independent prognostic factor in ESCC patients. In ESCC cell lines, ZFX silencing suppressed cell growth and induced cell apoptosis. In addition, ZFX expression was negatively correlated with the sensitivity of fresh ESCC tissues to chemotherapeutic drugs, including cisplatin, docetaxel, fluorouracil, and irinotecan. Furthermore, the depletion of ZFX sensitized ESCC cells to cisplatin, and docetaxel treatment. Mechanistically, ZFX silencing resulted in the inactivation of the MEK/ERK pathway, which mediated the downregulation of P-glycoprotein expression. CONCLUSION Our study therefore indicates that ZFX possibly plays a critical role in ESCC tumorigenesis and chemotherapy resistance and could be a significant prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China; Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Yu Zhou
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Tao Wang
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Chao Jiang
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Yong Gao
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China.
| | - Bin Wei
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China.
| |
Collapse
|
38
|
ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements. PLoS Comput Biol 2021; 17:e1009203. [PMID: 34292930 PMCID: PMC8330942 DOI: 10.1371/journal.pcbi.1009203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/03/2021] [Accepted: 06/20/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors (TFs) often function as a module including both master factors and mediators binding at cis-regulatory regions to modulate nearby gene transcription. ChIP-seq profiling of multiple TFs makes it feasible to infer functional TF modules. However, when inferring TF modules based on co-localization of ChIP-seq peaks, often many weak binding events are missed, especially for mediators, resulting in incomplete identification of modules. To address this problem, we develop a ChIP-seq data-driven Gibbs Sampler to infer Modules (ChIP-GSM) using a Bayesian framework that integrates ChIP-seq profiles of multiple TFs. ChIP-GSM samples read counts of module TFs iteratively to estimate the binding potential of a module to each region and, across all regions, estimates the module abundance. Using inferred module-region probabilistic bindings as feature units, ChIP-GSM then employs logistic regression to predict active regulatory elements. Validation of ChIP-GSM predicted regulatory regions on multiple independent datasets sharing the same context confirms the advantage of using TF modules for predicting regulatory activity. In a case study of K562 cells, we demonstrate that the ChIP-GSM inferred modules form as groups, activate gene expression at different time points, and mediate diverse functional cellular processes. Hence, ChIP-GSM infers biologically meaningful TF modules and improves the prediction accuracy of regulatory region activities.
Collapse
|
39
|
Frisby TS, Baker SJ, Marçais G, Hoang QM, Kingsford C, Langmead CJ. HARVESTMAN: a framework for hierarchical feature learning and selection from whole genome sequencing data. BMC Bioinformatics 2021; 22:174. [PMID: 33794760 PMCID: PMC8017869 DOI: 10.1186/s12859-021-04096-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Supervised learning from high-throughput sequencing data presents many challenges. For one, the curse of dimensionality often leads to overfitting as well as issues with scalability. This can bring about inaccurate models or those that require extensive compute time and resources. Additionally, variant calls may not be the optimal encoding for a given learning task, which also contributes to poor predictive capabilities. To address these issues, we present HARVESTMAN, a method that takes advantage of hierarchical relationships among the possible biological interpretations and representations of genomic variants to perform automatic feature learning, feature selection, and model building. RESULTS We demonstrate that HARVESTMAN scales to thousands of genomes comprising more than 84 million variants by processing phase 3 data from the 1000 Genomes Project, one of the largest publicly available collection of whole genome sequences. Using breast cancer data from The Cancer Genome Atlas, we show that HARVESTMAN selects a rich combination of representations that are adapted to the learning task, and performs better than a binary representation of SNPs alone. We compare HARVESTMAN to existing feature selection methods and demonstrate that our method is more parsimonious-it selects smaller and less redundant feature subsets while maintaining accuracy of the resulting classifier. CONCLUSION HARVESTMAN is a hierarchical feature selection approach for supervised model building from variant call data. By building a knowledge graph over genomic variants and solving an integer linear program , HARVESTMAN automatically and optimally finds the right encoding for genomic variants. Compared to other hierarchical feature selection methods, HARVESTMAN is faster and selects features more parsimoniously.
Collapse
Affiliation(s)
- Trevor S Frisby
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shawn J Baker
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Guillaume Marçais
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Quang Minh Hoang
- Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Carl Kingsford
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| | | |
Collapse
|
40
|
Yang D, Ma X, Xu J, Jia K, Liu X, Zhang P. Zfx-induced upregulation of UBE2J1 facilitates endometrial cancer progression via PI3K/AKT pathway. Cancer Biol Ther 2021; 22:238-247. [PMID: 33632059 DOI: 10.1080/15384047.2021.1883186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Emerging documents revealed that E2 enzyme family has been implicated in regulating the progression of numerous human cancers. Ubiquitin-conjugating enzyme E2 J1 (UBE2J1), a member of E2 enzyme family, has been reported to participate in the biological process of medulloblastoma, while little is known about its functionality in endometrial cancer (EC). Gene expression at the mRNA and protein levels were identified using RT-qPCR and western blot analysis, separately. The alteration on cell proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) process was determined through 5-Ethynyl-2'-deoxyuridine, cell adhesion, wound healing and transwell assays as well as western blot analysis. The role of UBE2J1 in xenograft tumor in mice was determined. Luciferase reporter and chromatin immunoprecipitation assays were conducted to reveal the undering mechanism of UBE2J1. Our results indicated that UBE2J1 displayed high level in EC tissues and cells and predicted poor prognosis of EC patients. In addition, UBE2J1 depletion inhibited cell proliferation, adhesion, motion, EMT process invitro, and repressed tumor growth invivo. Rescue assays manifested that ethyl 2-amino-6-chloro-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate treatment reversed the effects of UBE2J1 on PI3K/AKT pathway activation and malignant phenotypes of EC cells. Finally, zinc finger X-chromosomal protein (zfx), with high expression in EC tissues, was verified to activate UBE2J1 transcription by binding to UBE2J1 promoter. In conclusion, all facts signified that zfx-induced upregulation of UBE2J1 accelerated the progression of EC via regulating the PI3K/AKT signaling pathway, which suggested that UBE2J1 might be of great significance in probing into the underlying therapeutic strategies of EC.
Collapse
Affiliation(s)
- Dexin Yang
- Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xin Ma
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Jie Xu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ke Jia
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Xiaoli Liu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ping Zhang
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| |
Collapse
|
41
|
Edlund K, Madjar K, Lebrecht A, Aktas B, Pilch H, Hoffmann G, Hofmann M, Kolberg HC, Boehm D, Battista M, Seehase M, Stewen K, Gebhard S, Cadenas C, Marchan R, Brenner W, Hasenburg A, Koelbl H, Solbach C, Gehrmann M, Tanner B, Weber KE, Loibl S, Sachinidis A, Rahnenführer J, Schmidt M, Hengstler JG. Gene Expression-Based Prediction of Neoadjuvant Chemotherapy Response in Early Breast Cancer: Results of the Prospective Multicenter EXPRESSION Trial. Clin Cancer Res 2021; 27:2148-2158. [PMID: 33542080 DOI: 10.1158/1078-0432.ccr-20-2662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression-based classifiers to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NACT) are not routinely used in the clinic. We aimed to build and validate a classifier for pCR after NACT. PATIENTS AND METHODS We performed a prospective multicenter study (EXPRESSION) including 114 patients treated with anthracycline/taxane-based NACT. Pretreatment core needle biopsies from 91 patients were used for gene expression analysis and classifier construction, followed by validation in five external cohorts (n = 619). RESULTS A 20-gene classifier established in the EXPRESSION cohort using a Youden index-based cut-off point predicted pCR in the validation cohorts with an accuracy, AUC, negative predictive value (NPV), positive predictive value, sensitivity, and specificity of 0.811, 0.768, 0.829, 0.587, 0.216, and 0.962, respectively. Alternatively, aiming for a high NPV by defining the cut-off point for classification based on the complete responder with the lowest predicted probability of pCR in the EXPRESSION cohort led to an NPV of 0.960 upon external validation. With this extreme-low cut-off point, a recommendation to not treat with anthracycline/taxane-based NACT would be possible for 121 of 619 unselected patients (19.5%) and 112 of 322 patients with luminal breast cancer (34.8%). The analysis of the molecular subtypes showed that the identification of patients who do not achieve a pCR by the 20-gene classifier was particularly relevant in luminal breast cancer. CONCLUSIONS The novel 20-gene classifier reliably identifies patients who do not achieve a pCR in about one third of luminal breast cancers in both the EXPRESSION and combined validation cohorts.
Collapse
Affiliation(s)
- Karolina Edlund
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Katrin Madjar
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Antje Lebrecht
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, Leipzig, Germany
| | - Henryk Pilch
- Department of Gynecology and Obstetrics, University Hospital Köln, Köln, Germany
| | - Gerald Hoffmann
- Department of Obstetrics and Gynecology, St. Josefs-Hospital, Wiesbaden, Germany
| | - Manfred Hofmann
- Department of Obstetrics and Gynecology, Vinzenz von Paul Kliniken gGmbH Marienhospital, Stuttgart, Germany
| | | | - Daniel Boehm
- Center of Minimal Invasive Surgery, Senology and Oncology, mic.ma.mainz, Mainz, Germany
| | - Marco Battista
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Martina Seehase
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Stewen
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Susanne Gebhard
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Cristina Cadenas
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Annette Hasenburg
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Heinz Koelbl
- Department of Obstetrics and Gynecology, University of Vienna Medical School, Vienna, Austria
| | - Christine Solbach
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Berno Tanner
- Practice for Gynecological Oncology, Hoen Neuendorf, Germany
| | | | | | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Jan G Hengstler
- Leibniz-Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany.
| |
Collapse
|
42
|
Ghaffari S, Hanson C, Schmidt RE, Bouchonville KJ, Offer SM, Sinha S. An integrated multi-omics approach to identify regulatory mechanisms in cancer metastatic processes. Genome Biol 2021; 22:19. [PMID: 33413550 PMCID: PMC7789593 DOI: 10.1186/s13059-020-02213-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metastatic progress is the primary cause of death in most cancers, yet the regulatory dynamics driving the cellular changes necessary for metastasis remain poorly understood. Multi-omics approaches hold great promise for addressing this challenge; however, current analysis tools have limited capabilities to systematically integrate transcriptomic, epigenomic, and cistromic information to accurately define the regulatory networks critical for metastasis. RESULTS To address this limitation, we use a purposefully generated cellular model of colon cancer invasiveness to generate multi-omics data, including expression, accessibility, and selected histone modification profiles, for increasing levels of invasiveness. We then adopt a rigorous probabilistic framework for joint inference from the resulting heterogeneous data, along with transcription factor binding profiles. Our approach uses probabilistic graphical models to leverage the functional information provided by specific epigenomic changes, models the influence of multiple transcription factors simultaneously, and automatically learns the activating or repressive roles of cis-regulatory events. Global analysis of these relationships reveals key transcription factors driving invasiveness, as well as their likely target genes. Disrupting the expression of one of the highly ranked transcription factors JunD, an AP-1 complex protein, confirms functional relevance to colon cancer cell migration and invasion. Transcriptomic profiling confirms key regulatory targets of JunD, and a gene signature derived from the model demonstrates strong prognostic potential in TCGA colorectal cancer data. CONCLUSIONS Our work sheds new light into the complex molecular processes driving colon cancer metastasis and presents a statistically sound integrative approach to analyze multi-omics profiles of a dynamic biological process.
Collapse
Affiliation(s)
- Saba Ghaffari
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Casey Hanson
- Department of Genetics, Stanford University, Stanford, USA
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA.
| | - Saurabh Sinha
- Department of Computer Science, Carl R. Woese Institute of Genomic Biology, and Cancer Center of Illinois, University of Illinois at Urbana-Champaign, 2122, Siebel Center, 201 N. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
43
|
CCAT1 promotes triple-negative breast cancer progression by suppressing miR-218/ZFX signaling. Aging (Albany NY) 2020; 11:4858-4875. [PMID: 31310241 PMCID: PMC6682511 DOI: 10.18632/aging.102080] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate cancer development and progression. Here, we investigated the role of the lncRNA CCAT1 in triple-negative breast cancer (TNBC). CCAT1 expression was higher in TNBC cells than normal breast epithelial cells. Additionally, CCAT1 expression was higher in TNBC patient tumor tissue than adjacent normal breast tissue. Silencing CCAT1 inhibited TNBC cell proliferation, migration, and invasion in vitro, and tumor growth and progression in vivo. Bioinformatics analysis revealed that microRNA-218 (miR-218) is a potential target of CCAT1. Silencing CCAT1 resulted in an increase in miR-218 expression and inhibited TNBC cell proliferation, migration, and invasion. Silencing miR-218 reversed the effects of CCAT1 knockdown on cell proliferation, migration, and invasion, suggesting that CCAT1 promotes TNBC progression by downregulating miR-218 expression. We identified the zinc finger protein ZFX as a putative downstream target of miR-218 through bioinformatics analysis. ZFX expression was higher in TNBC than normal breast cell lines and higher in TNBC tumor tissue than adjacent normal breast tissue. Overexpression of ZFX reversed the tumor-suppressive effects of miR-218 on TNBC cell proliferation, migration, and invasion. Our data indicate that CCAT1 promotes TNBC progression by targeting the miR-218/ZFX axis.
Collapse
|
44
|
Song N, Zhang Y, Kong F, Yang H, Ma X. HOXA-AS2 promotes type I endometrial carcinoma via miRNA-302c-3p-mediated regulation of ZFX. Cancer Cell Int 2020; 20:359. [PMID: 32760226 PMCID: PMC7393821 DOI: 10.1186/s12935-020-01443-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background HOXA cluster antisense RNA2 (HOXA-AS2), a long-chain non-coding RNA, plays an important role in the behavior of various malignant tumors. The roles of HOXA-AS2 in endometrial cancer remain unclear. Methods We test expression levels of HOXA-AS2, miRNA-302c-3p, the transcription factor zinc finger X-chromosomal protein (ZFX), and the chitinase-like protein YKL-40 in endometrial carcinoma by qRT-PCR and western blotting. Luciferase reporter and qRT-PCR assays were conducted to identify potential binding sites of HOXA-AS2 to miRNA-302c-3p. Cell cycle, migration and invasion ability of endometrial cancer cells were investigated using flow-cytometric analysis, CCK-8 and transwell assays, respectively. Results HOXA-AS2 levels were significantly increased in endometrial cancer specimens compared to normal endometrial specimens. Upregulated HOXA-AS2 promoted invasion and proliferation of type I endometrial cancer cells. HOXA-AS2 silenced miRNA-302c-3p by binding to it. MiRNA-302c-3p negatively regulates ZFX and YKL-40. Thus HOXA-AS2 promotes the development of type I endometrial cancer via miRNA-302c-3p-mediated regulation of ZFX. Conclusions These findings suggest that HOXA-AS2 can act as a new therapeutic target for type I endometrial cancer.
Collapse
Affiliation(s)
- Ning Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| | - Ying Zhang
- Experimental technology center of China Medical University, Shenyang, China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Heping District Sanhao Street 36, Shenyang, 110004 China
| |
Collapse
|
45
|
Li X, Tian L, Zhang L, Xu B, Zhang Y, Li Q. Clinical Significance of ZNF711 in Human Breast Cancer. Onco Targets Ther 2020; 13:6593-6601. [PMID: 32753895 PMCID: PMC7351981 DOI: 10.2147/ott.s251702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/28/2020] [Indexed: 01/31/2023] Open
Abstract
Purpose To investigate the clinicopathologic and prognostic significance of the zinc-finger protein 711 (ZNF711) in breast cancer (BCa). Materials and Methods The relevance of ZNF711 in BCa was analyzed using bioinformatics. The expression of ZNF711 was detected by immunohistochemistry in paraffin blocks of BCa. To evaluate its clinical significance, the correlation between the expression of ZNF711 and BCa clinical indicators, including estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2), was analyzed. Finally, the Kaplan-Meier method was applied to explore the prognostic value of ZNF711. Results ZNF711 expression was decreased in BCa and was negatively correlated with ER expression (P < 0.05) and positively correlated with HER-2 expression (P < 0.01), but there was no significant correlation between ZNF711 and PR expression. ZNF711 expression was not correlated with age, tumor diameter, or lymph node metastasis; however, ZNF711 expression was correlated with staging in BCa. Survival analysis results showed that the ZNF711-positive group patients had a poorer prognosis compared with the ZNF711-negative group. Conclusion The expression of ZNF711 was deceased in BCa and closely related to ER and HER-2 expression. Therefore, ZNF711 could not only serve as a predictor of BCa with poor prognosis but also as a potential biomarker for targeted therapy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Liu Tian
- Psychiatry and Mental Health Center, Shenyang Mental Health Center, Shenyang, Liaoning 110168, People's Republic of China
| | - Lina Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Baojin Xu
- Departments of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| | - Qiang Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, People's Republic of China
| |
Collapse
|
46
|
Ni W, Perez AA, Schreiner S, Nicolet CM, Farnham P. Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters. Nucleic Acids Res 2020; 48:5986-6000. [PMID: 32406922 PMCID: PMC7293018 DOI: 10.1093/nar/gkaa384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023] Open
Abstract
Our study focuses on a family of ubiquitously expressed human C2H2 zinc finger proteins comprised of ZFX, ZFY and ZNF711. Although their protein structure suggests that ZFX, ZFY and ZNF711 are transcriptional regulators, the mechanisms by which they influence transcription have not yet been elucidated. We used CRISPR-mediated deletion to create bi-allelic knockouts of ZFX and/or ZNF711 in female HEK293T cells (which naturally lack ZFY). We found that loss of either ZFX or ZNF711 reduced cell growth and that the double knockout cells have major defects in proliferation. RNA-seq analysis revealed that thousands of genes showed altered expression in the double knockout clones, suggesting that these TFs are critical regulators of the transcriptome. To gain insight into how these TFs regulate transcription, we created mutant ZFX proteins and analyzed them for DNA binding and transactivation capability. We found that zinc fingers 11-13 are necessary and sufficient for DNA binding and, in combination with the N terminal region, constitute a functional transactivator. Our functional analyses of the ZFX family provides important new insights into transcriptional regulation in human cells by members of the large, but under-studied family of C2H2 zinc finger proteins.
Collapse
Affiliation(s)
- Weiya Ni
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew A Perez
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles M Nicolet
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
47
|
Chen QY, Shen S, Sun H, Wu F, Kluz T, Kibriya MG, Chen Y, Ahsan H, Costa M. PBMC gene expression profiles of female Bangladeshi adults chronically exposed to arsenic-contaminated drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113672. [PMID: 31918125 PMCID: PMC11062206 DOI: 10.1016/j.envpol.2019.113672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Arsenic, a class I human carcinogen, is ubiquitously found throughout the environment and around the globe, posing a great public health concern. Notably, Bangladesh and regions of West Bengal have been found to have high levels (0.5-4600 μg/L) of arsenic drinking water contamination, and approximately 50 million of the world's 200 million people chronically exposed to arsenic in Bangladesh alone. This study was carried out to examine genome-wide gene expression changes in individuals chronically exposed to arsenic-contaminated drinking water. Our study population includes twenty-nine Bangladeshi female participants with urinary arsenic levels ranging from 22.32 to 1828.12 μg/g creatinine. RNA extracted from peripheral blood mononuclear cells (PBMCs) were evaluated using RNA-Sequencing analysis. Our results indicate that a total of 1,054 genes were significantly associated with increasing urinary arsenic levels (FDR p < 0.05), which include 418 down-regulated and 636 up-regulated genes. Further Ingenuity Pathway Analysis revealed potential target genes (DAPK1, EGR2, APP), microRNAs (miR-155, -338, -210) and pathways (NOTCH signaling pathway) related to arsenic carcinogenesis. The selection of female-only participants provides a homogenous study population since arsenic has significant sex dependent effects, and the wide exposure range provides new insight for key gene expression changes that correlate with increasing urinary arsenic levels.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA.
| | - Steven Shen
- Institute of Health Informatics, University of Minnesota, 55455, Minneapolis, MN, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA
| | - Fen Wu
- Department of Population Health and Environmental Medicine, 10016, New York University School of Medicine, New York, NY, USA
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA
| | - Muhammad G Kibriya
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Yu Chen
- Department of Population Health and Environmental Medicine, 10016, New York University School of Medicine, New York, NY, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA.
| |
Collapse
|
48
|
Rhie SK, Perez AA, Lay FD, Schreiner S, Shi J, Polin J, Farnham PJ. A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nat Commun 2019; 10:4154. [PMID: 31515496 PMCID: PMC6742760 DOI: 10.1038/s41467-019-12079-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022] Open
Abstract
To better understand the impact of chromatin structure on regulation of the prostate cancer transcriptome, we develop high-resolution chromatin interaction maps in normal and prostate cancer cells using in situ Hi-C. By combining the in situ Hi-C data with active and repressive histone marks, CTCF binding sites, nucleosome-depleted regions, and transcriptome profiling, we identify topologically associating domains (TADs) that change in size and epigenetic states between normal and prostate cancer cells. Moreover, we identify normal and prostate cancer-specific enhancer-promoter loops and involved transcription factors. For example, we show that FOXA1 is enriched in prostate cancer-specific enhancer-promoter loop anchors. We also find that the chromatin structure surrounding the androgen receptor (AR) locus is altered in the prostate cancer cells with many cancer-specific enhancer-promoter loops. This creation of 3D epigenomic maps enables a better understanding of prostate cancer biology and mechanisms of gene regulation. In prostate cancer, chromatin structure can impact the transcriptome. Here, the authors develop high resolution chromatin interaction maps in prostate cancer cells using in situ Hi-C, revealing prostate cancer-specific TADs and enhancer-promoter loops surrounding the androgen receptor (AR) locus.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Andrew A Perez
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fides D Lay
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jiani Shi
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jenevieve Polin
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
49
|
Sharma BS, Swain PK, Verma RJ. A Systematic Bioinformatics Approach to Motif-Based Analysis of Human Locus Control Regions. J Comput Biol 2019; 26:1427-1437. [PMID: 31305132 DOI: 10.1089/cmb.2019.0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Locus control regions (LCRs), cis-acting, noncoding regulatory elements with strong transcription-enhancing activity, are conserved in sequence and organization, and exhibit strict gene-specific expression. LCRs have been reported and studied in several mammalian gene systems, signifying that they play an important role in eukaryotic gene expression control. Their highly regulated, stable, and precise levels of expression have made them a strong candidate for use in gene therapy vectors. In this study, we attempted to determine the unique signatures of human LCRs by analyzing a data set of LCR sequences for the presence of motifs through systematic bioinformatics approach. Using web-based regulatory sequence analysis tools (RSAT), motif-based analysis was performed. Detected significant motifs were analyzed further for their identity using Tomtom tool. RSAT analysis revealed that significant motifs are existent within the LCRs. Identity analysis using Tomtom showed that detected significant motifs were comparable with known transcription factor (TF) binding sites and the top scoring motifs belong to zinc finger-containing proteins, an important group of proteins involved in a variety of cellular activities. Correspondence to segment of known motif indicates the biological relevance of the detected motifs. Motif-based analysis is valuable for analyzing the various characteristics of sequences, notably TF binding models in this study. Owning to their unique expression control abilities, LCRs form an important component of integrating vectors, therefore identification of unique signatures present within LCR sequences will be instrumental in the design of new generation of regulatory elements containing LCR sequences.
Collapse
Affiliation(s)
- B Sharan Sharma
- Life Sciences Research Division, Indrashil Institute of Science and Technology (IIST), Indrashil University (IU), Mehsana, India.,Department of Human Genetics, Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Prabodha K Swain
- Life Sciences Research Division, Indrashil Institute of Science and Technology (IIST), Indrashil University (IU), Mehsana, India
| | - Ramtej J Verma
- Department of Human Genetics, Zoology and Biomedical Technology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
50
|
Song J, Diao F, Ma X, Xu S, Cui Y, Jiang S, Liu J. Androgen upregulates NR4A1 via the TFAP2A and ETS signaling networks. Int J Biochem Cell Biol 2019; 113:1-7. [PMID: 31146003 DOI: 10.1016/j.biocel.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/20/2019] [Accepted: 05/25/2019] [Indexed: 01/28/2023]
Abstract
Hyperandrogenism is one of the clinical and biochemical characteristics of polycystic ovary syndrome (PCOS). Our previous studies confirmed that nuclear receptor subfamily 4 group A member 1 (NR4A1), as a differentially expressed gene in the ovaries of PCOS patients, was upregulated by increased androgen. However, the potential mechanism of NR4A1 upregulation remains unknown. To elucidate the molecular mechanisms involved in NR4A1 regulation, we cloned and characterized the promoter regions of the NR4A1 gene using a series of truncated promoter plasmids in luciferase reporter assays. We identified two unique core promoters of NR4A1 located within the +1055/+1251 and +3183/+3233 regions relative to the transcription start site. TFAP2A downregulated NR4A1 expression, while five ETS transcription factors, ETS1, ELK1, ERG, FLI1 and SPI1, could upregulate NR4A1 promoter activity in HeLa cells. Of these transcription factors, ETS1 and ELK1 were the most effective ones. Moreover, all six transcription factors were confirmed to interact directly with the NR4A1 promoter. In conclusion, this study presents the first description that TFAP2A and ETS family signaling networks are involved in the androgen-mediated transcriptional regulation of NR4A1, which contributes to the understanding of the molecular mechanisms involved in the TFAP2A-NR4A1 and ETS-NR4A1 signaling networks in PCOS.
Collapse
Affiliation(s)
- Jie Song
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Feiyang Diao
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Xiang Ma
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Siliang Xu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shiwen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|