1
|
Duchêne DA, Chowdhury AA, Yang J, Iglesias-Carrasco M, Stiller J, Feng S, Bhatt S, Gilbert MTP, Zhang G, Tobias JA, Ho SYW. Drivers of avian genomic change revealed by evolutionary rate decomposition. Nature 2025; 641:1208-1216. [PMID: 40108459 PMCID: PMC12119353 DOI: 10.1038/s41586-025-08777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Modern birds have diversified into a striking array of forms, behaviours and ecological roles. Analyses of molecular evolutionary rates can reveal the links between genomic and phenotypic change1-4, but disentangling the drivers of rate variation at the whole-genome scale has been difficult. Using comprehensive estimates of traits and evolutionary rates across a family-level phylogeny of birds5,6, we find that genome-wide mutation rates across lineages are predominantly explained by clutch size and generation length, whereas rate variation across genes is driven by the content of guanine and cytosine. Here, to find the subsets of genes and lineages that dominate evolutionary rate variation in birds, we estimated the influence of individual lineages on decomposed axes of gene-specific evolutionary rates. We find that most of the rate variation occurs along recent branches of the tree, associated with present-day families of birds. Additional tests on axes of rate variation show rapid changes in microchromosomes immediately after the Cretaceous-Palaeogene transition. These apparent pulses of evolution are consistent with major changes in the genetic machineries for meiosis, heart performance, and RNA splicing, surveillance and translation, and correlate with the ecological diversity reflected in increased tarsus length. Collectively, our analyses paint a nuanced picture of avian evolution, revealing that the ancestors of the most diverse lineages of birds underwent major genomic changes related to mutation, gene usage and niche expansion in the early Palaeogene period.
Collapse
Affiliation(s)
- David A Duchêne
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Jingyi Yang
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Maider Iglesias-Carrasco
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Doñana Biological Station-Spanish Research Council CSIC, Seville, Spain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Shaohong Feng
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
| | - Samir Bhatt
- Section of Health Data Science and AI, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Huang C, Ji B, Shi Z, Wang J, Yuan J, Yang P, Xu X, Jing H, Xu L, Fu J, Zhao L, Ren Y, Guo K, Li G. A comparative genomic analysis at the chromosomal-level reveals evolutionary patterns of aphid chromosomes. Commun Biol 2025; 8:427. [PMID: 40082663 PMCID: PMC11906883 DOI: 10.1038/s42003-025-07851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Genomic rearrangements are primary drivers of evolution, promoting biodiversity. Aphids, an agricultural pest with high species diversity, exhibit rapid chromosomal evolution and diverse karyotypes. These variations have been attributed to their unique holocentric chromosomes and parthenogenesis, though this hypothesis has faced scrutiny. In this study, we generated a chromosomal-level reference genome assembly of the celery aphid (Semiaphis heraclei) and conducted comparative genomic analysis, revealing varying chromosomal evolution rates among aphid lineages, positively correlating with species diversity. Aphid X chromosomes have undergone frequent intra-chromosomal recombination, while autosomes show accelerated inter-chromosomal recombination. Moreover, considering both inter- and intra-chromosomal rearrangements, the increased autosomal rearrangement rates may be common across the Aphidomorpha. We identified that the expansion of DNA transposable elements and short interspersed nuclear elements (SINEs), coupled with gene loss and duplication associated with karyotypic instability (such as RIF1, BRD8, DMC1, and TERT), may play crucial roles in aphid chromosomal evolution. Additionally, our analysis revealed that the mutation and expansion of detoxification gene families in S. heraclei may be a key factor in adapting to host plant chemical defenses. Our results provide new insights into chromosomal evolutionary patterns and detoxification gene families evolution in aphids, aiding the understanding of species diversity and adaptive evolution.
Collapse
Affiliation(s)
- Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingru Ji
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Zhaohui Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiangyue Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, P.R. China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
3
|
Li BP, Kang N, Xu ZX, Luo HR, Fan SY, Ao XH, Li X, Han YP, Ou XB, Xu LH. Transposable elements shape the landscape of heterozygous structural variation in a bird genome. Zool Res 2025; 46:75-86. [PMID: 39846188 PMCID: PMC11891004 DOI: 10.24272/j.issn.2095-8137.2024.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( Chrysolophus pictus), a species distinguished by the vibrant plumage of males. Each haploid genome assembly included complete chromosomal models, incorporating all microchromosomes. Analysis revealed extensive tandem amplification of immune-related genes across the smallest microchromosomes (dot chromosomes), with an average copy number of 54. Structural variation between the haploid genomes was primarily shaped by large insertions and deletions (indels), with minimal contributions from inversions or duplications. Approximately 28% of these large indels were associated with recent insertions of transposable elements, despite their typically low activity in bird genomes. Evidence for significant effects of transposable elements on gene expression was minimal. Evolutionary strata on the sex chromosomes were identified, along with a drastic rearrangement of the W chromosome. These analyses of the high-quality diploid genome of the golden pheasant provide valuable insights into the evolutionary patterns of structural variation in avian genomes.
Collapse
Affiliation(s)
- Bo-Ping Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
- College of Medicine, Longdong University, Qingyang, Gansu 745000, China. E-mail:
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zao-Xu Xu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China
| | - Hao-Ran Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shi-Yu Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao-Han Ao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xing Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ya-Peng Han
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China
| | - Xiao-Bin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration in Longdong, Longdong University, Qingyang, Gansu 745000, China. E-mail:
| | - Luo-Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
| |
Collapse
|
4
|
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE, Romanov MN. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol Cytogenet 2024; 17:24. [PMID: 39482771 PMCID: PMC11526677 DOI: 10.1186/s13039-024-00696-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, 96010-900, RS, Brazil
| | - Kornsorn Srikulnath
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, 142132, Moscow Oblast, Russia.
| |
Collapse
|
5
|
Bista B, González-Rodelas L, Álvarez-González L, Wu ZQ, Montiel EE, Lee LS, Badenhorst DB, Radhakrishnan S, Literman R, Navarro-Dominguez B, Iverson JB, Orozco-Arias S, González J, Ruiz-Herrera A, Valenzuela N. De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Res 2024; 34:1553-1569. [PMID: 39414368 PMCID: PMC11529993 DOI: 10.1101/gr.279443.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere-telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere-telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zhi-Qiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Eugenia E Montiel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ling Sze Lee
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Daleen B Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Beatriz Navarro-Dominguez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374, USA
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, 080003 Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
6
|
Shylo NA, Price AJ, Robb S, Kupronis R, Méndez IAG, DeGraffenreid D, Gamble T, Trainor PA. Chamaeleo calyptratus (veiled chameleon) chromosome-scale genome assembly and annotation provides insights into the evolution of reptiles and developmental mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611012. [PMID: 39282430 PMCID: PMC11398420 DOI: 10.1101/2024.09.03.611012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The family Chamaeleonidae comprises 228 species, boasting an extensive geographic spread and an array of evolutionary novelties and adaptations, but a paucity of genetic and molecular analyses. Veiled chameleon (Chamaeleo calyptratus) has emerged as a tractable research organism for the study of squamate early development and evolution. Here we report a chromosomal-level assembly and annotation of the veiled chameleon genome. We note a remarkable chromosomal conservation across squamates, but comparisons to more distant genomes reveal GC peaks correlating with ancestral chromosome fusion events. We subsequently identified the XX/XY region on chromosome 5, confirming environmental-independent sex determination in veiled chameleons. Furthermore, our analysis of the Hox gene family indicates that veiled chameleons possess the most complete set of 41 Hox genes, retained from an amniote ancestor. Lastly, the veiled chameleon genome has retained both ancestral paralogs of the Nodal gene, but is missing Dand5 and several other genes, recently associated with the loss of motile cilia during the establishment of left-right patterning. Thus, a complete veiled chameleon genome provides opportunities for novel insights into the evolution of reptilian genomes and the molecular mechanisms driving phenotypic variation and ecological adaptation.
Collapse
Affiliation(s)
| | - Andrew J Price
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sofia Robb
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Irán Andira Guzmán Méndez
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Institute of Marine Sciences and Limnology (El Carmen Station), National Autonomous University of Mexico, Ciudad del Carmen, Campeche, Mexico
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, USA
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
7
|
Wu J, Liu F, Jiao J, Luo H, Fan S, Liu J, Wang H, Cui N, Zhao N, Qu Q, Kuraku S, Huang Z, Xu L. Comparative genomics illuminates karyotype and sex chromosome evolution of sharks. CELL GENOMICS 2024; 4:100607. [PMID: 38996479 PMCID: PMC11406177 DOI: 10.1016/j.xgen.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Chondrichthyes is an important lineage to reconstruct the evolutionary history of vertebrates. Here, we analyzed genome synteny for six chondrichthyan chromosome-level genomes. Our comparative analysis reveals a slow evolutionary rate of chromosomal changes, with infrequent but independent fusions observed in sharks, skates, and chimaeras. The chondrichthyan common ancestor had a proto-vertebrate-like karyotype, including the presence of 18 microchromosome pairs. The X chromosome is a conversed microchromosome shared by all sharks, suggesting a likely common origin of the sex chromosome at least 181 million years ago. We characterized the Y chromosomes of two sharks that are highly differentiated from the X except for a small young evolutionary stratum and a small pseudoautosomal region. We found that shark sex chromosomes lack global dosage compensation but that dosage-sensitive genes are locally compensated. Our study on shark chromosome evolution enhances our understanding of shark sex chromosomes and vertebrate chromosome evolution.
Collapse
Affiliation(s)
- Jiahong Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fujiang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Jiao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shiyu Fan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiao Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongxiang Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ning Cui
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ning Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingming Qu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Shizuoka, Japan; Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Hayashi S, Abe T, Igawa T, Katsura Y, Kazama Y, Nozawa M. Sex chromosome cycle as a mechanism of stable sex determination. J Biochem 2024; 176:81-95. [PMID: 38982631 PMCID: PMC11289310 DOI: 10.1093/jb/mvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recent advances in DNA sequencing technology have enabled the precise decoding of genomes in non-model organisms, providing a basis for unraveling the patterns and mechanisms of sex chromosome evolution. Studies of different species have yielded conflicting results regarding the traditional theory that sex chromosomes evolve from autosomes via the accumulation of deleterious mutations and degeneration of the Y (or W) chromosome. The concept of the 'sex chromosome cycle,' emerging from this context, posits that at any stage of the cycle (i.e., differentiation, degeneration, or loss), sex chromosome turnover can occur while maintaining stable sex determination. Thus, understanding the mechanisms that drive both the persistence and turnover of sex chromosomes at each stage of the cycle is crucial. In this review, we integrate recent findings on the mechanisms underlying maintenance and turnover, with a special focus on several organisms having unique sex chromosomes. Our review suggests that the diversity of sex chromosomes in the maintenance of stable sex determination is underappreciated and emphasizes the need for more research on the sex chromosome cycle.
Collapse
Affiliation(s)
- Shun Hayashi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takuya Abe
- Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yukako Katsura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji, Fukui 910-1195, Japan
| | - Masafumi Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
9
|
Edwards SV, Cloutier A, Cockburn G, Driver R, Grayson P, Katoh K, Baldwin MW, Sackton TB, Baker AJ. A nuclear genome assembly of an extinct flightless bird, the little bush moa. SCIENCE ADVANCES 2024; 10:eadj6823. [PMID: 38781323 PMCID: PMC11809649 DOI: 10.1126/sciadv.adj6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
We present a draft genome of the little bush moa (Anomalopteryx didiformis)-one of approximately nine species of extinct flightless birds from Aotearoa, New Zealand-using ancient DNA recovered from a fossil bone from the South Island. We recover a complete mitochondrial genome at 249.9× depth of coverage and almost 900 megabases of a male moa nuclear genome at ~4 to 5× coverage, with sequence contiguity sufficient to identify more than 85% of avian universal single-copy orthologs. We describe a diverse landscape of transposable elements and satellite repeats, estimate a long-term effective population size of ~240,000, identify a diverse suite of olfactory receptor genes and an opsin repertoire with sensitivity in the ultraviolet range, show that the wingless moa phenotype is likely not attributable to gene loss or pseudogenization, and identify potential function-altering coding sequence variants in moa that could be synthesized for future functional assays. This genomic resource should support further studies of avian evolution and morphological divergence.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Glenn Cockburn
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Robert Driver
- Department of Biology, East Carolina University, E 5th Street, Greenville, NC 27605, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Kazutaka Katoh
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Maude W. Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Timothy B. Sackton
- Informatics Group, Harvard University, 38 Oxford Street, Cambridge, MA 02138, USA
| | - Allan J. Baker
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, ON M5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
| |
Collapse
|
10
|
Xu L, Ren Y, Wu J, Cui T, Dong R, Huang C, Feng Z, Zhang T, Yang P, Yuan J, Xu X, Liu J, Wang J, Chen W, Mi D, Irwin DM, Yan Y, Xu L, Yu X, Li G. Evolution and expression patterns of the neo-sex chromosomes of the crested ibis. Nat Commun 2024; 15:1670. [PMID: 38395916 PMCID: PMC10891136 DOI: 10.1038/s41467-024-46052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Bird sex chromosomes play a unique role in sex-determination, and affect the sexual morphology and behavior of bird species. Core waterbirds, a major clade of birds, share the common characteristics of being sexually monomorphic and having lower levels of inter-sexual conflict, yet their sex chromosome evolution remains poorly understood. Here, by we analyse of a chromosome-level assembly of a female crested ibis (Nipponia nippon), a typical core waterbird. We identify neo-sex chromosomes resulting from fusion of microchromosomes with ancient sex chromosomes. These fusion events likely occurred following the divergence of Threskiornithidae and Ardeidae. The neo-W chromosome of the crested ibis exhibits the characteristics of slow degradation, which is reflected in its retention of abundant gametologous genes. Neo-W chromosome genes display an apparent ovary-biased gene expression, which is largely driven by genes that are retained on the crested ibis W chromosome but lost in other bird species. These results provide new insights into the evolutionary history and expression patterns for the sex chromosomes of bird species.
Collapse
Affiliation(s)
- Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Tingting Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rong Dong
- Research Center for Qinling Giant Panda, Shaanxi Academy of Forestry, Xi'an, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiao Liu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China
| | - Da Mi
- Xi'an Haorui Genomics Technology Co., LTD, Xi'an, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yaping Yan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China.
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China.
| |
Collapse
|
11
|
O’Connor RE, Kretschmer R, Romanov MN, Griffin DK. A Bird's-Eye View of Chromosomic Evolution in the Class Aves. Cells 2024; 13:310. [PMID: 38391923 PMCID: PMC10886771 DOI: 10.3390/cells13040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.
Collapse
Affiliation(s)
- Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| |
Collapse
|
12
|
Xu X, Wang C, Xu C, Yuan J, Wang G, Wu Y, Huang C, Jing H, Yang P, Xu L, Peng S, Shan F, Xia X, Jin F, Hou F, Wang J, Mi D, Ren Y, Liu Y, Irwin DM, Li X, Chen W, Li G. Genomic evolution of island birds from the view of the Swinhoe's pheasant (Lophura swinhoii). Mol Ecol Resour 2024; 24:e13896. [PMID: 37955396 DOI: 10.1111/1755-0998.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Island endemic birds account for the majority of extinct vertebrates in the past few centuries. To date, the evolutionary characteristics of island endemic bird's is poorly known. In this research, we de novo assembled a high-quality chromosome-level reference genome for the Swinhoe's pheasant, which is a typical endemic island bird. Results of collinearity tests suggest rapid ancient chromosome rearrangement that may have contributed to the initial species radiation within Phasianidae, and a role for the insertions of CR1 transposable elements in rearranging chromosomes in Phasianidae. During the evolution of the Swinhoe's pheasant, natural selection positively selected genes involved in fecundity and body size functions, at both the species and population levels, which reflect genetic variation associated with island adaptation. We further tested for variation in population genomic traits between the Swinhoe's pheasant and its phylogenetically closely related mainland relative the silver pheasant, and found higher levels of genetic drift and inbreeding in the Swinhoe's pheasant genome. Divergent demographic histories of insular and mainland bird species during the last glacial period may reflect the differing impact of insular and continental climates on the evolution of species. Our research interprets the natural history and population genetic characteristics of the insular endemic bird the Swinhoe's pheasant, at a genome-wide scale, provides a broader perspective on insular speciation, and adaptive evolution and contributes to the genetic conservation of island endemic birds.
Collapse
Affiliation(s)
- Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chen Wang
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Chunzhong Xu
- Shanghai Wild Animal Park Development Co., Ltd, Shanghai, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guiqiang Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajiang Wu
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shiming Peng
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Fen Shan
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Xiaochao Xia
- Guangdong Wildlife Monitoring, Rescue and Conservation Center, Guangzhou, China
| | - Fuyuan Jin
- Guangdong Maoming Forest Park Administrative Office, Maoming, China
| | - Fanghui Hou
- Shanghai Wild Animal Park Development Co., Ltd, Shanghai, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Da Mi
- Xi'an Haorui Genomics Technology Co., Ltd, Xi'an, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, China
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Guangzhou Zoo, Guangzhou, China
| |
Collapse
|
13
|
Souza-Borges CH, Utsunomia R, Varani AM, Uliano-Silva M, Lira LVG, Butzge AJ, Gomez Agudelo JF, Manso S, Freitas MV, Ariede RB, Mastrochirico-Filho VA, Penaloza C, Barria A, Porto-Foresti F, Foresti F, Hattori R, Guiguen Y, Houston RD, Hashimoto DT. De novo assembly and characterization of a highly degenerated ZW sex chromosome in the fish Megaleporinus macrocephalus. Gigascience 2024; 13:giae085. [PMID: 39589439 PMCID: PMC11590113 DOI: 10.1093/gigascience/giae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/31/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Megaleporinus macrocephalus (piauçu) is a Neotropical fish within Characoidei that presents a well-established heteromorphic ZZ/ZW sex determination system and thus constitutes a good model for studying W and Z chromosomes in fishes. We used PacBio reads and Hi-C to assemble a chromosome-level reference genome for M. macrocephalus. We generated family segregation information to construct a genetic map, pool sequencing of males and females to characterize its sex system, and RNA sequencing to highlight candidate genes of M. macrocephalus sex determination. RESULTS The reference genome of M. macrocephalus is 1,282,030,339 bp in length and has a contig and scaffold N50 of 5.0 Mb and 45.03 Mb, respectively. In the sex chromosome, based on patterns of recombination suppression, coverage, FST, and sex-specific SNPs, we distinguished a putative W-specific region that is highly differentiated, a region where Z and W still share some similarities and is undergoing degeneration, and the PAR. The sex chromosome gene repertoire includes genes from the TGF-β family (amhr2, bmp7) and the Wnt/β-catenin pathway (wnt4, wnt7a), some of which are differentially expressed. CONCLUSIONS The chromosome-level genome of piauçu exhibits high quality, establishing a valuable resource for advancing research within the group. Our discoveries offer insights into the evolutionary dynamics of Z and W sex chromosomes in fish, emphasizing ongoing degenerative processes and indicating complex interactions between Z and W sequences in specific genomic regions. Notably, amhr2 and bmp7 are potential candidate genes for sex determination in M. macrocephalus.
Collapse
Affiliation(s)
| | - Ricardo Utsunomia
- School of Sciences, São Paulo State University (Unesp), Bauru, SP, 17033-360, Brazil
| | - Alessandro M Varani
- School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | | | - Lieschen Valeria G Lira
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Arno J Butzge
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - John F Gomez Agudelo
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Shisley Manso
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Milena V Freitas
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Raquel B Ariede
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | | | - Carolina Penaloza
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Agustín Barria
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Fábio Porto-Foresti
- School of Sciences, São Paulo State University (Unesp), Bauru, SP, 17033-360, Brazil
| | - Fausto Foresti
- Institute of Biosciences, São Paulo State University (Unesp), Botucatu, SP, 18618-689, Brazil
| | - Ricardo Hattori
- São Paulo Agency of Agribusiness and Technology (APTA), São Paulo, SP, 01037-010, Brazil
| | | | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Diogo Teruo Hashimoto
- Aquaculture Center of Unesp, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
14
|
Deviatiiarov R, Nagai H, Ismagulov G, Stupina A, Wada K, Ide S, Toji N, Zhang H, Sukparangsi W, Intarapat S, Gusev O, Sheng G. Dosage compensation of Z sex chromosome genes in avian fibroblast cells. Genome Biol 2023; 24:213. [PMID: 37730643 PMCID: PMC10510239 DOI: 10.1186/s13059-023-03055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
In birds, sex is genetically determined; however, the molecular mechanism is not well-understood. The avian Z sex chromosome (chrZ) lacks whole chromosome inactivation, in contrast to the mammalian chrX. To investigate chrZ dosage compensation and its role in sex specification, we use a highly quantitative method and analyze transcriptional activities of male and female fibroblast cells from seven bird species. Our data indicate that three fourths of chrZ genes are strictly compensated across Aves, similar to mammalian chrX. We also present a complete list of non-compensated chrZ genes and identify Ribosomal Protein S6 (RPS6) as a conserved sex-dimorphic gene in birds.
Collapse
Affiliation(s)
- Ruslan Deviatiiarov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation
| | - Hiroki Nagai
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Galym Ismagulov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Anastasia Stupina
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Kazuhiro Wada
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shinji Ide
- Kumamoto City Zoo and Botanical Garden, Kumamoto, Japan
| | - Noriyuki Toji
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Heng Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chonburi, Thailand
| | | | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
- Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation.
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
15
|
Luo H, Jiang X, Li B, Wu J, Shen J, Xu Z, Zhou X, Hou M, Huang Z, Ou X, Xu L. A high-quality genome assembly highlights the evolutionary history of the great bustard (Otis tarda, Otidiformes). Commun Biol 2023; 6:746. [PMID: 37463976 PMCID: PMC10354230 DOI: 10.1038/s42003-023-05137-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Conservation genomics often relies on non-invasive methods to obtain DNA fragments which limit the power of multi-omic analyses for threatened species. Here, we report multi-omic analyses based on a well-preserved great bustard individual (Otis tarda, Otidiformes) that was found dead in the mountainous region in Gansu, China. We generate a near-complete genome assembly containing only 18 gaps scattering in 8 out of the 40 assembled chromosomes. We characterize the DNA methylation landscape which is correlated with GC content and gene expression. Our phylogenomic analysis suggests Otidiformes and Musophagiformes are sister groups that diverged from each other 46.3 million years ago. The genetic diversity of great bustard is found the lowest among the four available Otidiformes genomes, possibly due to population declines during past glacial periods. As one of the heaviest migratory birds, great bustard possesses several expanded gene families related to cardiac contraction, actin contraction, calcium ion signaling transduction, as well as positively selected genes enriched for metabolism. Finally, we identify an extremely young evolutionary stratum on the sex chromosome, a rare case among birds. Together, our study provides insights into the conservation genomics, adaption and chromosome evolution of the great bustard.
Collapse
Affiliation(s)
- Haoran Luo
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinrui Jiang
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Boping Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiexin Shen
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zaoxu Xu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Minghao Hou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China.
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
Zhou Y, Zhan X, Jin J, Zhou L, Bergman J, Li X, Rousselle MMC, Belles MR, Zhao L, Fang M, Chen J, Fang Q, Kuderna L, Marques-Bonet T, Kitayama H, Hayakawa T, Yao YG, Yang H, Cooper DN, Qi X, Wu DD, Schierup MH, Zhang G. Eighty million years of rapid evolution of the primate Y chromosome. Nat Ecol Evol 2023; 7:1114-1130. [PMID: 37268856 DOI: 10.1038/s41559-022-01974-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/15/2022] [Indexed: 06/04/2023]
Abstract
The Y chromosome usually plays a critical role in determining male sex and comprises sequence classes that have experienced unique evolutionary trajectories. Here we generated 19 new primate sex chromosome assemblies, analysed them with 10 existing assemblies and report rapid evolution of the Y chromosome across primates. The pseudoautosomal boundary has shifted at least six times during primate evolution, leading to the formation of a Simiiformes-specific evolutionary stratum and to the independent start of young strata in Catarrhini and Platyrrhini. Different primate lineages experienced different rates of gene loss and structural and chromatin change on their Y chromosomes. Selection on several Y-linked genes has contributed to the evolution of male developmental traits across the primates. Additionally, lineage-specific expansions of ampliconic regions have further increased the diversification of the structure and gene composition of the Y chromosome. Overall, our comprehensive analysis has broadened our knowledge of the evolution of the primate Y chromosome.
Collapse
Affiliation(s)
| | | | | | - Long Zhou
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Juraj Bergman
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus C., Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus C., Denmark
| | - Xuemei Li
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Lan Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | | | | | - Qi Fang
- BGI-Shenzhen, Shenzhen, China
| | - Lukas Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Haruka Kitayama
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
- Japan Monkey Centre, Inuyama, Japan
| | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
- Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Xiaoguang Qi
- College of Life Sciences, Northwest University, Xi'an, China
| | - Dong-Dong Wu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | - Guojie Zhang
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Peona V, Kutschera VE, Blom MPK, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol 2023; 32:1288-1305. [PMID: 35488497 DOI: 10.1111/mec.16484] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
Satellite DNA (satDNA) is a fast-evolving portion of eukaryotic genomes. The homogeneous and repetitive nature of such satDNA causes problems during the assembly of genomes, and therefore it is still difficult to study it in detail in nonmodel organisms as well as across broad evolutionary timescales. Here, we combined the use of short- and long-read data to explore the diversity and evolution of satDNA between individuals of the same species and between genera of birds spanning ~40 millions of years of bird evolution using birds-of-paradise (Paradisaeidae) and crow (Corvus) species. These avian species highlighted the presence of a GC-rich Corvoidea satellitome composed of 61 satellite families and provided a set of candidate satDNA monomers for being centromeric on the basis of length, abundance, homogeneity and transcription. Surprisingly, we found that the satDNA of crow species rapidly diverged between closely related species while the satDNA appeared more similar between birds-of-paradise species belonging to different genera.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Mozes P K Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biological Sciences-Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
18
|
Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X, Liu J, Luo H, Yang C, Chen W, Guo Q, Xue L, Zhang X, Xu L, Chen M, Fu H, Chen Y, Yue Z, Fukagawa T, Liu S, Chang G, Xu L. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci U S A 2023; 120:e2216641120. [PMID: 36780517 PMCID: PMC9974502 DOI: 10.1073/pnas.2216641120] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.
Collapse
Affiliation(s)
- Zhen Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou350108, China
| | - Zaoxu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province745000, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou350108, China
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaoting Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou350002, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Li Xu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, 518054, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing100193, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
19
|
Mrnjavac A, Khudiakova KA, Barton NH, Vicoso B. Slower-X: reduced efficiency of selection in the early stages of X chromosome evolution. Evol Lett 2023; 7:4-12. [PMID: 37065438 PMCID: PMC10091493 DOI: 10.1093/evlett/qrac004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated.
Collapse
Affiliation(s)
- Andrea Mrnjavac
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Ksenia A Khudiakova
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Nicholas H Barton
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| |
Collapse
|
20
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
21
|
Barros CP, Derks MFL, Mohr J, Wood BJ, Crooijmans RPMA, Megens HJ, Bink MCAM, Groenen MAM. A new haplotype-resolved turkey genome to enable turkey genetics and genomics research. Gigascience 2022; 12:giad051. [PMID: 37489751 PMCID: PMC10360393 DOI: 10.1093/gigascience/giad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The domesticated turkey (Meleagris gallopavo) is a species of significant agricultural importance and is the second largest contributor, behind broiler chickens, to world poultry meat production. The previous genome is of draft quality and partly based on the chicken (Gallus gallus) genome. A high-quality reference genome of M. gallopavo is essential for turkey genomics and genetics research and the breeding industry. RESULTS By adopting the trio-binning approach, we were able to assemble a high-quality chromosome-level F1 assembly and 2 parental haplotype assemblies, leveraging long-read technologies and genome-wide chromatin interaction data (Hi-C). From a total of 40 chromosomes (2n = 80), we captured 35 chromosomes in a single scaffold, showing much improved genome completeness and continuity compared to the old assembly build. The 3 assemblies are of higher quality than the previous draft quality assembly and comparable to the chicken assemblies (GRCg7) shown by the largest contig N50 (26.6 Mb) and comparable BUSCO gene set completeness scores (96-97%). Comparative analyses confirm a previously identified large inversion of around 19 Mbp on the Z chromosome not found in other Galliformes. Structural variation between the parent haplotypes was identified, which poses potential new target genes for breeding. CONCLUSIONS We contribute a new high-quality turkey genome at the chromosome level, benefiting turkey genetics and other avian genomics research as well as the turkey breeding industry.
Collapse
Affiliation(s)
- Carolina P Barros
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Martijn F L Derks
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Jeff Mohr
- Hybrid Turkeys, 650 Riverbend Drive Suite C, Kitchener, ON N2K 3S2, Canada
| | - Benjamin J Wood
- Hybrid Turkeys, 650 Riverbend Drive Suite C, Kitchener, ON N2K 3S2, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | | | - Hendrik-Jan Megens
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Marco C A M Bink
- Hendrix Genetics Research, Technology & Services, Boxmeer, AC 5830, The Netherlands
| | - Martien A M Groenen
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
22
|
Hu L, Long J, Lin Y, Gu Z, Su H, Dong X, Lin Z, Xiao Q, Batbayar N, Bold B, Deutschová L, Ganusevich S, Sokolov V, Sokolov A, Patel HR, Waters PD, Graves JAM, Dixon A, Pan S, Zhan X. Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator. Nat Commun 2022; 13:6413. [PMID: 36302769 PMCID: PMC9613686 DOI: 10.1038/s41467-022-34138-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The Qinghai-Tibet Plateau (QTP), possesses a climate as cold as that of the Arctic, and also presents uniquely low oxygen concentrations and intense ultraviolet (UV) radiation. QTP animals have adapted to these extreme conditions, but whether they obtained genetic variations from the Arctic during cold adaptation, and how genomic mutations in non-coding regions regulate gene expression under hypoxia and intense UV environment, remain largely unknown. Here, we assemble a high-quality saker falcon genome and resequence populations across Eurasia. We identify female-biased hybridization with Arctic gyrfalcons in the last glacial maximum, that endowed eastern sakers with alleles conveying larger body size and changes in fat metabolism, predisposing their QTP cold adaptation. We discover that QTP hypoxia and UV adaptations mainly involve independent changes in non-coding genomic variants. Our study highlights key roles of gene flow from Arctic relatives during QTP hypothermia adaptation, and cis-regulatory elements during hypoxic response and UV protection.
Collapse
Affiliation(s)
- Li Hu
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Juan Long
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Yi Lin
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhongru Gu
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Han Su
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Xuemin Dong
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhenzhen Lin
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qian Xiao
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China ,grid.20513.350000 0004 1789 9964Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Nyambayar Batbayar
- Wildlife Science and Conservation Center, Union Building B-802, Ulaanbaatar, 14210 Mongolia
| | - Batbayar Bold
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China ,Wildlife Science and Conservation Center, Union Building B-802, Ulaanbaatar, 14210 Mongolia
| | - Lucia Deutschová
- grid.455051.0Raptor Protection of Slovakia, Trhová 54, SK-841 01, Bratislava, Slovakia
| | - Sergey Ganusevich
- Wild Animal Rescue Centre, Krasnostudencheskiy pr., 21-45, Moscow, 125422 Russia
| | - Vasiliy Sokolov
- grid.426536.00000 0004 1760 306XInstitute of Plant and Animal Ecology, Ural Division Russian Academy of Sciences, 202-8 Marta Street, Ekaterinburg, 620144 Russia
| | - Aleksandr Sokolov
- Arctic Research Station of the Institute of Plant and Animal Ecology, Ural Division Russian Academy of Sciences, 21 Zelenaya Gorka, Labytnangi, Yamalo-Nenetski District 629400 Russia
| | - Hardip R. Patel
- grid.1001.00000 0001 2180 7477The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | - Paul D. Waters
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW 2052 Australia
| | | | - Andrew Dixon
- Emirates Falconers’ Club, Al Mamoura Building (A), P.O. Box 47716, Muroor Road, Abu Dhabi, UAE ,grid.511767.30000 0004 5895 0922International Wildlife Consultants, P.O. Box 19, Carmarthen, SA33 5YL UK
| | - Shengkai Pan
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangjiang Zhan
- grid.9227.e0000000119573309Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.9227.e0000000119573309Cardiff University - Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, 100049 Beijing, China ,grid.9227.e0000000119573309Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
23
|
Ko BJ, Lee C, Kim J, Rhie A, Yoo DA, Howe K, Wood J, Cho S, Brown S, Formenti G, Jarvis ED, Kim H. Widespread false gene gains caused by duplication errors in genome assemblies. Genome Biol 2022; 23:205. [PMID: 36167596 PMCID: PMC9516828 DOI: 10.1186/s13059-022-02764-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 12/22/2022] Open
Abstract
Background False duplications in genome assemblies lead to false biological conclusions. We quantified false duplications in popularly used previous genome assemblies for platypus, zebra finch, and Anna’s Hummingbird, and their new counterparts of the same species generated by the Vertebrate Genomes Project, of which the Vertebrate Genomes Project pipeline attempted to eliminate false duplications through haplotype phasing and purging. These assemblies are among the first generated by the Vertebrate Genomes Project where there was a prior chromosomal level reference assembly to compare with. Results Whole genome alignments revealed that 4 to 16% of the sequences are falsely duplicated in the previous assemblies, impacting hundreds to thousands of genes. These lead to overestimated gene family expansions. The main source of the false duplications is heterotype duplications, where the haplotype sequences were relatively more divergent than other parts of the genome leading the assembly algorithms to classify them as separate genes or genomic regions. A minor source is sequencing errors. Ancient ATP nucleotide binding gene families have a higher prevalence of false duplications compared to other gene families. Although present in a smaller proportion, we observe false duplications remaining in the Vertebrate Genomes Project assemblies that can be identified and purged. Conclusions This study highlights the need for more advanced assembly methods that better separate haplotypes and sequence errors, and the need for cautious analyses on gene gains. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02764-1.
Collapse
Affiliation(s)
- Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | | | | | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Samara Brown
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Giulio Formenti
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Wilcox JJS, Arca-Ruibal B, Samour J, Mateuta V, Idaghdour Y, Boissinot S. Linked-Read Sequencing of Eight Falcons Reveals a Unique Genomic Architecture in Flux. Genome Biol Evol 2022; 14:evac090. [PMID: 35700227 PMCID: PMC9214253 DOI: 10.1093/gbe/evac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Falcons are diverse birds of cultural and economic importance. They have undergone major lineage-specific chromosomal rearrangements, resulting in greatly-reduced chromosome counts relative to other birds. Here, we use 10X Genomics linked reads to provide new high-contiguity genomes for two gyrfalcons, a saker falcon, a lanner falcon, three subspecies of peregrine falcons, and the common kestrel. Assisted by a transcriptome sequenced from 22 gyrfalcon tissues, we annotate these genomes for a variety of genomic features, estimate historical demography, and then investigate genomic equilibrium in the context of falcon-specific chromosomal rearrangements. We find that falcon genomes are not in AT-GC equilibrium with a bias in substitutions towards higher AT content; this bias is predominantly but not exclusively driven by hypermutability of CpG sites. Small indels and large structural variants were also biased towards insertions rather than deletions. Patterns of disequilibrium were linked to chromosomal rearrangements: falcons have lost GC content in regions that have fused to larger chromosomes from microchromosomes and gained GC content in regions of macrochromosomes that have translocated to microchromosomes. Inserted bases have accumulated on regions ancestrally belonging to microchromosomes, consistent with insertion-biased gene conversion. We also find an excess of interspersed repeats on regions of microchromosomes that have fused to macrochromosomes. Our results reveal that falcon genomes are in a state of flux. They further suggest that many of the key differences between microchromosomes and macrochromosomes are driven by differences in chromosome size, and indicate a clear role for recombination and biased-gene-conversion in determining genomic equilibrium.
Collapse
Affiliation(s)
- Justin J S Wilcox
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Jaime Samour
- Wildlife Management and Falcon Medicine and Breeding Consultancy, Abu Dhabi, United Arab Emirates
| | | | - Youssef Idaghdour
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Stéphane Boissinot
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
- Biology Program, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
25
|
Cuevas-Caballé C, Ferrer Obiol J, Vizueta J, Genovart M, Gonzalez-Solís J, Riutort M, Rozas J. The First Genome of the Balearic Shearwater (Puffinus mauretanicus) Provides a Valuable Resource for Conservation Genomics and Sheds Light on Adaptation to a Pelagic lifestyle. Genome Biol Evol 2022; 14:evac067. [PMID: 35524941 PMCID: PMC9117697 DOI: 10.1093/gbe/evac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
The Balearic shearwater (Puffinus mauretanicus) is the most threatened seabird in Europe and a member of the most speciose group of pelagic seabirds, the order Procellariiformes, which exhibit extreme adaptations to a pelagic lifestyle. The fossil record suggests that human colonisation of the Balearic Islands resulted in a sharp decrease of the Balearic shearwater population size. Currently, populations of the species continue to be decimated mainly due to predation by introduced mammals and bycatch in longline fisheries, with some studies predicting its extinction by 2070. Here, using a combination of short and long reads, we generate the first high-quality reference genome for the Balearic shearwater, with a completeness amongst the highest across available avian species. We used this reference genome to study critical aspects relevant to the conservation status of the species and to gain insights into the adaptation to a pelagic lifestyle of the order Procellariiformes. We detected relatively high levels of genome-wide heterozygosity in the Balearic shearwater despite its reduced population size. However, the reconstruction of its historical demography uncovered an abrupt population decline potentially linked to a reduction of the neritic zone during the Penultimate Glacial Period (∼194-135 ka). Comparative genomics analyses uncover a set of candidate genes that may have played an important role into the adaptation to a pelagic lifestyle of Procellariiformes, including those for the enhancement of fishing capabilities, night vision, and the development of natriuresis. The reference genome obtained will be the crucial in the future development of genetic tools in conservation efforts for this Critically Endangered species.
Collapse
Affiliation(s)
- Cristian Cuevas-Caballé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Joan Ferrer Obiol
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Department of Environmental Science and Policy, Università degli Studi di Milano (UniMi), Milan, Italy
| | - Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meritxell Genovart
- Mediterranean Institute for Advanced Studies (IMEDEA), CSIC-UIB & Centre for Advanced Studies of Blanes (CEAB), CSIC, Esporles, Spain
| | - Jacob Gonzalez-Solís
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|
26
|
Huang Z, De O Furo I, Liu J, Peona V, Gomes AJB, Cen W, Huang H, Zhang Y, Chen D, Xue T, Zhang Q, Yue Z, Wang Q, Yu L, Chen Y, Suh A, de Oliveira EHC, Xu L. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat Commun 2022; 13:944. [PMID: 35177601 PMCID: PMC8854603 DOI: 10.1038/s41467-022-28585-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The karyotype of most birds has remained considerably stable during more than 100 million years' evolution, except for some groups, such as parrots. The evolutionary processes and underlying genetic mechanism of chromosomal rearrangements in parrots, however, are poorly understood. Here, using chromosome-level assemblies of four parrot genomes, we uncover frequent chromosome fusions and fissions, with most of them occurring independently among lineages. The increased activities of chromosomal rearrangements in parrots are likely associated with parrot-specific loss of two genes, ALC1 and PARP3, that have known functions in the repair of double-strand breaks and maintenance of genome stability. We further find that the fusion of the ZW sex chromosomes and chromosome 11 has created a pair of neo-sex chromosomes in the ancestor of parrots, and the chromosome 25 has been further added to the sex chromosomes in monk parakeet. Together, the combination of our genomic and cytogenetic analyses characterizes the complex evolutionary history of chromosomal rearrangements and sex chromosomes in parrots.
Collapse
Affiliation(s)
- Zhen Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Ivanete De O Furo
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, PA, Brazil
- Laboratório de Citogenômica e Mutagênese Ambiental, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Jing Liu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Valentina Peona
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | | | - Wan Cen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Hao Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Duo Chen
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Ting Xue
- Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, Fujian, China
| | - Qiujin Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics; International Cancer Center; and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, China
| | - Quanxi Wang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
| | - Lingyu Yu
- Annoroad Gene Technology Co., Ltd, Beijing, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Alexander Suh
- Department of Organismal Biology, Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
- School of Biological Sciences, Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Edivaldo H C de Oliveira
- Programa de Pós-graduação em Genética e Biologia Molecular, PPGBM, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Luohao Xu
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
27
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Waters PD, Patel HR, Ruiz-Herrera A, Álvarez-González L, Lister NC, Simakov O, Ezaz T, Kaur P, Frere C, Grützner F, Georges A, Graves JAM. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad Sci U S A 2021; 118:e2112494118. [PMID: 34725164 PMCID: PMC8609325 DOI: 10.1073/pnas.2112494118] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.
Collapse
Affiliation(s)
- Paul D Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hardip R Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1010 Vienna, Austria
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | - Celine Frere
- Global Change Ecology Research Group, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Frank Grützner
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia;
- School of Life Sciences, La Trobe University, Bundoora, VIC 3068, Australia
| |
Collapse
|
29
|
Okuno M, Mizushima S, Kuroiwa A, Itoh T. Analysis of Sex Chromosome Evolution in the Clade Palaeognathae from Phased Genome Assembly. Genome Biol Evol 2021; 13:6413640. [PMID: 34718546 PMCID: PMC8599748 DOI: 10.1093/gbe/evab242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Birds in the clade Palaeognathae, excluding Tinamiformes, have morphologically conserved karyotypes and less differentiated ZW sex chromosomes compared with those of other birds. In particular, the sex chromosomes of the ostrich and emu have exceptionally large recombining pseudoautosomal regions (PARs), whereas non-PARs are classified into two strata according to the date of their origins: stratum 0 and stratum 1 (S1). However, the construction and analysis of the genome sequences in these regions in the clade Palaeognathae can be challenging because assembling the S1 region is difficult owing to low sequence diversity between gametologs (Z-linked and W-linked sequences). We addressed this issue by applying the Platanus-allee assembler and successfully constructed the haplotype-resolved (phased) assembly for female emu, cassowary, and ostrich using only sequence read data derived from the Illumina platform. Comparative genomic and phylogenetic analyses based on assembled Z-linked and W-linked sequences confirmed that the S1 region of emu and cassowary formed in their common ancestor. Moreover, the interspersed repetitive sequence landscapes in the S1 regions of female emu showed an expansion of younger repetitive elements in the W-linked S1 region, suggesting an interruption in homologous recombination in the S1 region. These results provide novel insights into the trajectory of sex chromosome evolution in the clade Palaeognathae and suggest that the Illumina-based phased assembly method is an effective approach for elucidating the evolutionary process underlying the transition from homomorphic to differentiated sex chromosomes.
Collapse
Affiliation(s)
- Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shusei Mizushima
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asato Kuroiwa
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
30
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
31
|
Peona V, Palacios-Gimenez OM, Blommaert J, Liu J, Haryoko T, Jønsson KA, Irestedt M, Zhou Q, Jern P, Suh A. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200186. [PMID: 34304594 PMCID: PMC8310711 DOI: 10.1098/rstb.2020.0186] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
It is a broadly observed pattern that the non-recombining regions of sex-limited chromosomes (Y and W) accumulate more repeats than the rest of the genome, even in species like birds with a low genome-wide repeat content. Here, we show that in birds with highly heteromorphic sex chromosomes, the W chromosome has a transposable element (TE) density of greater than 55% compared to the genome-wide density of less than 10%, and contains over half of all full-length (thus potentially active) endogenous retroviruses (ERVs) of the entire genome. Using RNA-seq and protein mass spectrometry data, we were able to detect signatures of female-specific ERV expression. We hypothesize that the avian W chromosome acts as a refugium for active ERVs, probably leading to female-biased mutational load that may influence female physiology similar to the 'toxic-Y' effect in Drosophila males. Furthermore, Haldane's rule predicts that the heterogametic sex has reduced fertility in hybrids. We propose that the excess of W-linked active ERVs over the rest of the genome may be an additional explanatory variable for Haldane's rule, with consequences for genetic incompatibilities between species through TE/repressor mismatches in hybrids. Together, our results suggest that the sequence content of female-specific W chromosomes can have effects far beyond sex determination and gene dosage. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | | | - Julie Blommaert
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, People's Republic of China
- Department of Neuroscience and Development, University of Vienna, Vienna, Austria
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, People's Republic of China
- Department of Neuroscience and Development, University of Vienna, Vienna, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, People's Republic of China
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
32
|
Xue L, Gao Y, Wu M, Tian T, Fan H, Huang Y, Huang Z, Li D, Xu L. Telomere-to-telomere assembly of a fish Y chromosome reveals the origin of a young sex chromosome pair. Genome Biol 2021; 22:203. [PMID: 34253240 PMCID: PMC8273981 DOI: 10.1186/s13059-021-02430-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. RESULTS Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. CONCLUSIONS Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.
Collapse
Affiliation(s)
- Lingzhan Xue
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China.,Aquaculture and Genetic Breeding Laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350002, China
| | - Yu Gao
- College of Animal Science and Technology, Key Laboratory for Plateau Fishery Resources Conservation and Sustainable Utilization of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Meiying Wu
- Aquaculture and Genetic Breeding Laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350002, China
| | - Tian Tian
- Aquaculture and Genetic Breeding Laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350002, China
| | - Haiping Fan
- Freshwater Fisheries Research Institute of Fujian, Fuzhou, 350002, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhen Huang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China. .,Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fuzhou, 350117, Fujian, China.
| | - Dapeng Li
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, 430070, China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| | - Luohao Xu
- Department of Neurosciences and Developmental Biology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Driver RJ, Balakrishnan CN. Highly contiguous genomes improve the understanding of avian olfactory receptor repertoires. Integr Comp Biol 2021; 61:1281-1290. [PMID: 34180521 DOI: 10.1093/icb/icab150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/14/2022] Open
Abstract
Third generation (long read-based) sequencing technologies are reshaping our understanding of genome structure and function. One of the most persistent challenges in genome biology has been confidently reconstructing radiations of complex gene families. Olfactory receptors (ORs) represent just such a gene family with upwards of 1000s of receptors in some mammalian taxa. Whereas in birds olfaction was historically an overlooked sensory modality, new studies have revealed an important role for smell. Chromosome-level assemblies for birds allow a new opportunity to characterize patterns of OR diversity among major bird lineages. Previous studies of short read (second-generation) genome assemblies have associated OR gene family size with avian ecology, but such conclusions could be premature if new assembly methods reshape our understanding of avian OR evolution. Here we provide a fundamental characterization of OR repertoires in five recent genome assemblies, including the most recent assembly of golden-collared manakin (Manacus vitellinus). We find that short read-based assemblies systematically undercount the avian-specific gamma-c OR subfamily, a subfamily that comprises over 65% of avian OR diversity. Therefore, in contrast to previous studies we find a high diversity of gamma-c ORs across the avian tree of life. Building on these findings, ongoing sequencing efforts and improved genome assemblies will clarify the relationship between OR diversity and avian ecology.
Collapse
|