1
|
Teixeira SK, Pontes R, Zuleta LFG, Wang J, Xu D, Hildebrand S, Russell J, Zhan X, Choi M, Tang M, Li X, Ludwig S, Beutler B, Krieger JE. Genetic determinants of blood pressure and heart rate identified through ENU-induced mutagenesis with automated meiotic mapping. SCIENCE ADVANCES 2024; 10:eadj9797. [PMID: 38427739 PMCID: PMC10906923 DOI: 10.1126/sciadv.adj9797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.
Collapse
Affiliation(s)
- Samantha K. Teixeira
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Pontes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Fernando G. Zuleta
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose E. Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Teixeira SK, Pereira AC, Krieger JE. Genetics of Resistant Hypertension: the Missing Heritability and Opportunities. Curr Hypertens Rep 2018; 20:48. [PMID: 29779058 DOI: 10.1007/s11906-018-0852-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF THE REVIEW Blood pressure regulation in humans has long been known to be a genetically determined trait. The identification of causal genetic modulators for this trait has been unfulfilling at the least. Despite the recent advances of genome-wide genetic studies, loci associated with hypertension or blood pressure still explain a very low percentage of the overall variation of blood pressure in the general population. This has precluded the translation of discoveries in the genetics of human hypertension to clinical use. Here, we propose the combined use of resistant hypertension as a trait for mapping genetic determinants in humans and the integration of new large-scale technologies to approach in model systems the multidimensional nature of the problem. RECENT FINDINGS New large-scale efforts in the genetic and genomic arenas are paving the way for an increased and granular understanding of genetic determinants of hypertension. New technologies for whole genome sequence and large-scale forward genetic screens can help prioritize gene and gene-pathways for downstream characterization and large-scale population studies, and guided pharmacological design can be used to drive discoveries to the translational application through better risk stratification and new therapeutic approaches. Although significant challenges remain in the mapping and identification of genetic determinants of hypertension, new large-scale technological approaches have been proposed to surpass some of the shortcomings that have limited progress in the area for the last three decades. The incorporation of these technologies to hypertension research may significantly help in the understanding of inter-individual blood pressure variation and the deployment of new phenotyping and treatment approaches for the condition.
Collapse
Affiliation(s)
- Samantha K Teixeira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Jose E Krieger
- Laboratorio de Genetica e Cardiologia Molecular, Faculdade Medicina da Universidade de São Paulo, Instituto do Coracao (InCor) HC.FMUSP, Av Dr Eneas C Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
3
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
4
|
Chao Z, Liuyang T, Nan L, Qi C, Zhongqi C, Yang L, Yuqi L. Mitochondrial tRNA mutation with high-salt stimulation on cardiac damage: underlying mechanism associated with change of Bax and VDAC. Am J Physiol Heart Circ Physiol 2016; 311:H1248-H1257. [PMID: 27638882 DOI: 10.1152/ajpheart.00874.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/21/2016] [Indexed: 12/31/2022]
Abstract
Mitochondrial transfer RNA (tRNA) mutation with high-salt stimulation can cause high blood pressure. However, the underlying mechanisms remain unclear. In the present study, we examined the potential molecular mechanisms of cardiac damage caused by mitochondrial tRNA mutation with high-salt stimulation in spontaneously hypertensive rats (SHR). Unanesthetized, 44-wk-old, male, SHR were divided into four groups: SHR, SHR with high-salt stimulation for 8 wk (SHR + NaCl), SHR carrying tRNA mutations (SHR + M), and SHR + M with high-salt stimulation for 8 wk (SHR + M + NaCl). Healthy Wistar-Kyoto (WKY) rats were used as controls. Left ventricular mass and interventricular septum were highest in the SHR + M + NaCl group ( P < 0.05), while ejection fraction was lowest in the SHR + M + NaCl group ( P < 0.05). Hematoxylin and eosin staining showed myocardial cell hypertrophy with interstitial fibrosis and localized inflammatory cell infiltration, in the hypertensive groups, particularly in the SHR + M + NaCl group. Electron microscopy showed different degrees of mitochondrial cavitation in heart tissue of the hypertensive groups, which was highest in the SHR + M + NaCl group. In hypertensive animals, levels of reactive oxygen species were highest in the SHR + M + NaCl group ( P < 0.05). Expression of the voltage-dependent anion channel (VDAC) and the apoptosis regulator Bax were highest in the SHR + M + NaCl group ( P < 0.05), which also showed evidence of VDAC and Bax colocalization ( P < 0.05). Overall, these data suggest that mitochondrial tRNA mutation with high-salt stimulation can aggravate cardiac damage, potentially because of increased expression and interaction between Bax and VDAC and increased reactive oxygen species formation and initiation of apoptosis.
Collapse
Affiliation(s)
- Zhu Chao
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tian Liuyang
- Medical College of Nan Kai University, Tianjing, China; and
| | - Li Nan
- Medical College of Nan Kai University, Tianjing, China; and
| | - Chen Qi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Cai Zhongqi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Yang
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Institute of Geriatric Cardiology, and Chinese PLA General Hospital, Beijing, China
| | - Liu Yuqi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
5
|
Šedová L, Pravenec M, Křenová D, Kazdová L, Zídek V, Krupková M, Liška F, Křen V, Šeda O. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model. PLoS One 2016; 11:e0152708. [PMID: 27031336 PMCID: PMC4816345 DOI: 10.1371/journal.pone.0152708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/17/2016] [Indexed: 11/17/2022] Open
Abstract
Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.
Collapse
Affiliation(s)
- Lucie Šedová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and the General Teaching Hospital, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and the General Teaching Hospital, Prague, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Drahomíra Křenová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and the General Teaching Hospital, Prague, Czech Republic
| | - Ludmila Kazdová
- Department of Metabolism and Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Václav Zídek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Krupková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and the General Teaching Hospital, Prague, Czech Republic
| | - František Liška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and the General Teaching Hospital, Prague, Czech Republic
| | - Vladimír Křen
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and the General Teaching Hospital, Prague, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and the General Teaching Hospital, Prague, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Collett JA, Hart AK, Patterson E, Kretzer J, Osborn JL. Renal angiotensin II type 1 receptor expression and associated hypertension in rats with minimal SHR nuclear genome. Physiol Rep 2013; 1:e00104. [PMID: 24303176 PMCID: PMC3841040 DOI: 10.1002/phy2.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/06/2013] [Accepted: 09/03/2013] [Indexed: 01/23/2023] Open
Abstract
Angiotensin II (AII) has been linked as a causal factor in several experimental models of hypertension (HT) including Okamoto spontaneously hypertensive rats (SHR). The transmission and expression of AII type 1 receptors (AT1r) in SHR and the development of genetic HT remain unknown. It is hypothesized that tissue-specific expression of renin–angiotensin system (RAS) genes derived from SHR are linked to HT in offspring of SHR crossed with Brown Norway (BN) rats. Hypertensive female progeny of BN/SHR matings was backcrossed with founder BN males to generate the F1 and five backcross generations (BN/SHR-mtSHR). Progeny were phenotyped according to normotension (NT: systolic arterial pressure [SAP] ≤ 124 mmHg), borderline hypertension (BHT: 124 ≤ SAP < 145 mmHg), and HT (SAP ≥ 145 mmHg). Six generations produced more HT (n = 88; 46%) than NT (n = 21; 11%) offspring. The mRNA expression of the RAS was evaluated in NT (n = 20) and HT (n = 20) BN/SHR-mtSHR across several generations. Quantitative real-time polymerase chain reaction analysis of kidney tissue showed increased expression of AII, type 1 receptors (Agtr1a) (∼2.5-fold) in HT versus NT rats, while other members of both the renal and systemic RAS pathway were not different. Western blot analysis from kidney homogenates showed that AT1r protein levels were higher (P < 0.05) in backcross generation 3 (BC3) HT versus NT rats. Evaluation of SAP as a function of AT1r expression by linear regression indicated positive correlation (P < 0.05) in kidney of BC3 BN/SHR-mtSHR rats. Thus, elevated kidney AT1r expression may be involved in the development of HT in BN/SHR-mtSHR rats.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Biology, University of Kentucky Lexington, Kentucky
| | | | | | | | | |
Collapse
|
7
|
Kotlo K, Bhattacharyya S, Yang B, Feferman L, Tejaskumar S, Linhardt R, Danziger R, Tobacman JK. Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin. Glycoconj J 2013; 30:667-76. [PMID: 23385884 DOI: 10.1007/s10719-013-9468-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.
Collapse
Affiliation(s)
- Kumar Kotlo
- University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Krieger JE. Mapping genes for hypertension using experimental models: a challenging and unanticipated very long journey. Physiol Genomics 2011; 43:99-100; author reply 101-2. [PMID: 21317351 DOI: 10.1152/physiolgenomics.00233.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
|
10
|
Aneas I, Rodrigues MV, Pauletti BA, Silva GJJ, Carmona R, Cardoso L, Kwitek AE, Jacob HJ, Soler JMP, Krieger JE. Congenic strains provide evidence that four mapped loci in chromosomes 2, 4, and 16 influence hypertension in the SHR. Physiol Genomics 2009; 37:52-7. [PMID: 19126752 DOI: 10.1152/physiolgenomics.90299.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To dissect the genetic architecture controlling blood pressure (BP) regulation in the spontaneously hypertensive rat (SHR) we derived congenic rat strains for four previously mapped BP quantitative trait loci (QTLs) in chromosomes 2, 4, and 16. Target chromosomal regions from the Brown Norway rat (BN) averaging 13-29 cM were introgressed by marker-assisted breeding onto the SHR genome in 12 or 13 generations. Under normal salt intake, QTLs on chromosomes 2a, 2c, and 4 were associated with significant changes in systolic BP (13, 20, and 15 mmHg, respectively), whereas the QTL on chromosome 16 had no measurable effect. On high salt intake (1% NaCl in drinking water for 2 wk), the chromosome 16 QTL had a marked impact on SBP, as did the QTLs on chromosome 2a and 2c (18, 17, and 19 mmHg, respectively), but not the QTL on chromosome 4. Thus these four QTLs affected BP phenotypes differently: 1) in the presence of high salt intake (chromosome 16), 2) only associated with normal salt intake (chromosome 4), and 3) regardless of salt intake (chromosome 2c and 2a). Moreover, salt sensitivity was abrogated in congenics SHR.BN2a and SHR.BN16. Finally, we provide evidence for the influence of genetic background on the expression of the mapped QTLs individually or as a group. Collectively, these data reveal previously unsuspected nuances of the physiological roles of each of the four mapped BP QTLs in the SHR under basal and/or salt loading conditions unforeseen by the analysis of the F2 cross.
Collapse
Affiliation(s)
- Ivy Aneas
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kriegel AJ, Greene AS. Substitution of Brown Norway chromosome 16 preserves cardiac function with aging in a salt-sensitive Dahl consomic rat. Physiol Genomics 2008; 36:35-42. [PMID: 18940898 DOI: 10.1152/physiolgenomics.00054.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Determination of the genetic factors that control the progression of left ventricular hypertrophy (LVH) to heart failure has been difficult despite extensive study in animal models. Here we have characterized a consomic rat model of LVH resulting from the introgression of chromosome 16 from the normotensive Brown Norway (BN) rat onto the genetic background of the Dahl salt-sensitive (SS/Mcwi) rat by marker assisted breeding. The SS-16BN/Mcwi consomic rats are normotensive but display LVH equivalent to the hypertensive SS/Mcwi rats at early ages. In this study we tracked the development of LVH by echocardiography and analyzed changes in cardiac function and morphology with aging in the SS-16BN/Mcwi, SS/Mcwi, and BN to determine if the consomic SS-16BN/Mcwi was a model of hypertrophic cardiomyopathy (HCM). Aging SS-16BN/Mcwi rats showed no evidence of heart failure or impaired cardiac function upon extensive analysis of left ventricle function by echocardiography and pressure-volume relationships, while their parental SS/Mcwi experienced deterioration in function between 18 and 36 wk of age. In addition aging SS-16BN/Mcwi did not exhibit tissue remodeling common to pathological hypertrophy and HCM such as increased fibrosis and reduced capillary density in the myocardium. In fact, SS-16BN/Mcwi were better protected from developing LV fibrosis with age than either the hypertensive SS/Mcwi or normotensive BN parental strains. This suggests that a gene or genes on chromosome 16 may be involved with both blood pressure regulation and preservation of cardiac function with aging.
Collapse
Affiliation(s)
- A J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
12
|
Spirin V, Schmidt S, Pertsemlidis A, Cooper RS, Cohen JC, Sunyaev SR. Common single-nucleotide polymorphisms act in concert to affect plasma levels of high-density lipoprotein cholesterol. Am J Hum Genet 2007; 81:1298-303. [PMID: 17952847 DOI: 10.1086/522497] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 08/03/2007] [Indexed: 11/03/2022] Open
Abstract
The identification of DNA sequence variants underlying human complex phenotypes remains a significant challenge for several reasons: individual variants can have small phenotypic effects or low population frequencies, and multiple allelic variants may act in concert to affect a trait. We evaluated the combined effect of allelic variants in seven genes involved in high-density lipoprotein (HDL) metabolism, using forward stepwise regression. Analysis of all known common single-nucleotide polymorphisms (SNPs) in the seven candidate genes revealed four variants that were associated with incremental changes in HDL cholesterol levels in three independent samples. Conversely, analysis of 660 polymorphisms in eight genes that do not appear to be involved in HDL metabolism did not identify any associations with plasma HDL-cholesterol levels. These data indicate that several common SNPs act in concert to influence plasma levels of HDL cholesterol.
Collapse
Affiliation(s)
- Victor Spirin
- Genetics Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Cowley AW, Jacob HJ. Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Am J Physiol Renal Physiol 2007; 293:F1905-14. [PMID: 17898042 DOI: 10.1152/ajprenal.00012.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the genetic basis for hypertension and renal disease phenotypes in Fawn Hooded hypertensive (FHH) rats using chromosome substitution strains (consomic rats) in which each of the 20 autosomes as well as the X and Y chromosomes were transferred from the normal Brown Norway (BN) rat onto the FHH genetic background. Male and female rats of each of the parental and consomic strains were maintained for 2 wk on high-salt (8.0% NaCl) chow with N(G)-nitro-l-arginine methyl ester (l-NAME) in the drinking water (12.5 mg/l) to induce hypertension and renal disease. Mean arterial blood pressure (MAP) was significantly higher (by over 60 mmHg) in the male FHH compared with BN rats. Urinary protein and albumin excretion rates were increased by 15- and 40-fold, respectively, in the male FHH compared with the BN. Plasma renin activity was 10-fold higher in the FHH than the BN. Similar significant differences were observed between the female FHH and BN, but the degree of hypertension and proteinuria was of a lesser magnitude. Substitution of chromosome 20 from the BN to the FHH attenuated the development of l-NAME-induced hypertension, normalized plasma renin activity, and decreased plasma creatinine in male rats. In female rats, substitution of chromosome 15 decreased MAP and urinary protein excretion. Urinary excretion of albumin in males was decreased by substitution of chromosomes 1, 15, 16, and 18 from the BN into the FHH genetic background. The present data indicate that genes that can modify l-NAME-induced hypertension and proteinuria are on chromosomes 1, 15, 16, 18, and 20.
Collapse
Affiliation(s)
- David L Mattson
- Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Silva GJJ, Pereira AC, Krieger EM, Krieger JE. Genetic mapping of a new heart rate QTL on chromosome 8 of spontaneously hypertensive rats. BMC MEDICAL GENETICS 2007; 8:17. [PMID: 17419875 PMCID: PMC1865373 DOI: 10.1186/1471-2350-8-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 04/09/2007] [Indexed: 01/19/2023]
Abstract
Background Tachycardia is commonly observed in hypertensive patients, predominantly mediated by regulatory mechanisms integrated within the autonomic nervous system. The genetic loci and genes associated with increased heart rate in hypertension, however, have not yet been identified. Methods An F2 intercross of Spontaneously Hypertensive Rats (SHR) × Brown Norway (BN) linkage analysis of quantitative trait loci mapping was utilized to identify candidate genes associated with an increased heart rate in arterial hypertension. Results Basal heart rate in SHR was higher compared to that of normotensive BN rats (365 ± 3 vs. 314 ± 6 bpm, p < 0.05 for SHR and BN, respectively). A total genome scan identified one quantitative trait locus in a 6.78 cM interval on rat chromosome 8 (8q22–q24) that was responsible for elevated heart rate. This interval contained 241 genes, of which 65 are known genes. Conclusion Our data suggest that an influential genetic region located on the rat chromosome 8 contributes to the regulation of heart rate. Candidate genes that have previously been associated with tachycardia and/or hypertension were found within this QTL, strengthening our hypothesis that these genes are, potentially, associated with the increase in heart rate in a hypertension rat model.
Collapse
Affiliation(s)
- Gustavo JJ Silva
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Alexandre C Pereira
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - Eduardo M Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
| | - José E Krieger
- Department of Medicine-LIM13, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, 10o andar, 05403-000, São Paulo, SP, Brazil
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo, Brazil, Av. Dr. Enéas de Carvalho Aguiar, 44 São Paulo, Brazil
| |
Collapse
|
15
|
Soler JMP, Pereira AC, Tôrres CH, Krieger JE. Gene by environment QTL mapping through multiple trait analyses in blood pressure salt-sensitivity: identification of a novel QTL in rat chromosome 5. BMC MEDICAL GENETICS 2006; 7:47. [PMID: 16716221 PMCID: PMC1522018 DOI: 10.1186/1471-2350-7-47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 05/22/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND The genetic mechanisms underlying interindividual blood pressure variation reflect the complex interplay of both genetic and environmental variables. The current standard statistical methods for detecting genes involved in the regulation mechanisms of complex traits are based on univariate analysis. Few studies have focused on the search for and understanding of quantitative trait loci responsible for gene x environmental interactions or multiple trait analysis. Composite interval mapping has been extended to multiple traits and may be an interesting approach to such a problem. METHODS We used multiple-trait analysis for quantitative trait locus mapping of loci having different effects on systolic blood pressure with NaCl exposure. Animals studied were 188 rats, the progenies of an F2 rat intercross between the hypertensive and normotensive strain, genotyped in 179 polymorphic markers across the rat genome. To accommodate the correlational structure from measurements taken in the same animals, we applied univariate and multivariate strategies for analyzing the data. RESULTS We detected a new quantitative train locus on a region close to marker R589 in chromosome 5 of the rat genome, not previously identified through serial analysis of individual traits. In addition, we were able to justify analytically the parametric restrictions in terms of regression coefficients responsible for the gain in precision with the adopted analytical approach. CONCLUSION Future work should focus on fine mapping and the identification of the causative variant responsible for this quantitative trait locus signal. The multivariable strategy might be valuable in the study of genetic determinants of interindividual variation of antihypertensive drug effectiveness.
Collapse
Affiliation(s)
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo, Brazil
| | - César H Tôrres
- Mathematics and Statistics Institute, University of São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo, Brazil
| |
Collapse
|
16
|
Nestor AL, Cicila GT, Karol SE, Langenderfer KM, Hollopeter SL, Allison DC. Linkage analysis of neointimal hyperplasia and vascular wall transformation after balloon angioplasty. Physiol Genomics 2006; 25:286-93. [PMID: 16434542 DOI: 10.1152/physiolgenomics.00135.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neointimal hyperplasia (NIH), a result of vascular injury, is due to the migration and proliferation of smooth muscle cells through the media and internal elastic lamina leading to vascular occlusion. We used a rat model to find the genetic regions controlling NIH after endothelial denudation in two divergent inbred strains of rats. The Brown Norway (BN) and spontaneously hypertensive rat (SHR) strains have a 2.5-fold difference in injury-induced NIH. A population of 301 F2(SHR × BN) rats underwent a standard vascular injury followed by phenotyping 8 wk after injury to identify quantitative trait loci (QTL) responsible for this strain difference. Interval mapping identified two %NIH QTL on rat chromosomes 3 and 6 [logarithm of odds (LOD) scores 2.5, 2.2] and QTL for other injured vascular wall changes on rat chromosomes 3, 4, and 15 (LOD scores 2.0–4.6). Also, QTL for control vessel media width (MW) and media area (MA) were found on chromosome 6 with LOD scores of 2.3 and 2.5, suggesting that linkage exists between these control vessel parameters and NIH production. These results represent the first genetic analysis for the identification of NIH QTL and QTL associated with the vascular injury response.
Collapse
Affiliation(s)
- Andrea L Nestor
- Department of Surgery, Medical University of Ohio, Toledo, Ohio 43614-5804, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Hooper-van Veen T, Berkhof J, Polman CH, Uitdehaag BMJ. Analysing the effect of candidate genes on complex traits: an application in multiple sclerosis. Immunogenetics 2006; 58:347-54. [PMID: 16612628 DOI: 10.1007/s00251-006-0116-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 03/22/2006] [Indexed: 11/29/2022]
Abstract
The conventional approach of candidate gene studies in complex diseases is to look at the effect of one gene at a time. However, as the outcome of chronic diseases is influenced by a large number of alleles, simultaneous analysis is needed. We demonstrate the application of multivariate regression and cluster analysis to a multiple sclerosis (MS) dataset with genotypes for 489 patients at 11 candidate genes selected on their involvement in the immune response. Using multivariate regression, we observed that different sets of genes were associated with different disease characteristics that reflect different aspects of disease. Out of 15 polymorphisms, we identified one that contributed to the severity of disease. In addition, the set of 15 polymorphisms was predictive for yearly increase in lesion volume as seen on T1-weighted MRI (p=0.044). From this set, no individual polymorphisms could be identified after adjustment for multiple hypotheses testing. By means of a cluster analysis, we aimed to identify subgroups of patients with different pathogenic subtypes of MS on the basis of their genetic profile. We constructed genetic profiles from the genotypes at the 11 candidate genes. The approach proved to be feasible. We observed three clusters in the sample of patients. In this study, we observed no significant differences in the usual clinical and MRI outcome measures between the different clusters. However, a number of consistent trends indicated that this clustering might be related to the course of disease. With a larger number of genes regulating the course of disease, we may be able to identify clinically relevant clusters. The analyses are easily implemented and will be applicable to candidate gene studies of complex traits in general.
Collapse
Affiliation(s)
- Tineke Hooper-van Veen
- Deparment of Molecular Cell Biology and Immunology, VU University Medical Centre, De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
18
|
Pereira AC, Sposito AC, Mota GF, Cunha RS, Herkenhoff FL, Mill JG, Krieger JE. Endothelial nitric oxide synthase gene variant modulates the relationship between serum cholesterol levels and blood pressure in the general population: New evidence for a direct effect of lipids in arterial blood pressure. Atherosclerosis 2006; 184:193-200. [PMID: 15916766 DOI: 10.1016/j.atherosclerosis.2005.03.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 02/16/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND A causal relationship between plasma cholesterol and blood pressure remains poorly understood. It has been postulated that the decrease in nitric oxide (NO) availability is a potential mechanism by which hypercholesterolemia may stimulate blood pressure elevation. However, evidence supporting the role of the L-arginine-NO pathway on the relationship between hypertension and hypercholesterolemia is still lacking. METHODS AND RESULTS We tested for an association of the expressed NO synthase (eNOS) Glu298Asp gene variant and plasma levels of lipids and lipoproteins in the determination of systolic blood pressure levels in a 1577 individuals randomly selected from the general population. Significant interactions could be disclosed either between the Glu298Asp gene variant and total-cholesterol (p = 0.02), log-transformed triglycerides (p = 0.004) or non-HDL-cholesterol (p = 0.003) in the determination of systolic blood pressure. In addition, although the presence of the AspAsp genotype did not significantly increase the risk of hypertension in individuals in the 50% lowest percentile of total-cholesterol, presence of this genotype significantly increased the risk of hypertension in individuals in the 50% highest percentile. Finally, in a multiple logistic regression model adjusting for age, sex, diabetes, ethnicity, smoking status and BMI, the AspAsp genotype significantly increased the risk of hypertension only in individuals with total-cholesterol above 209 mg/dL (p = 0.05, odds ratios (OR) = 2.0). CONCLUSION Taken together, these results provide evidence supporting the role of the eNOS Glu298Asp gene variant in modulating blood pressure through a relationship with lipid levels.
Collapse
Affiliation(s)
- A C Pereira
- Heart Institute (InCor), São Paulo University Medical School, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Eliopoulos V, Dutil J, Deng Y, Grondin M, Deng AY. Severe hypertension caused by alleles from normotensive Lewis for a quantitative trait locus on chromosome 2. Physiol Genomics 2005; 22:70-5. [PMID: 15827238 DOI: 10.1152/physiolgenomics.00019.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pursuing fully a suggestion from linkage analysis that there might be a quantitative trait locus (QTL) for blood pressure (BP) in a chromosome (Chr) 2 region of the Dahl salt-sensitive rat (DSS), four congenic strains were made by replacing various fragments of DSS Chr 2 with those of Lewis (LEW). Consequently, a BP QTL was localized to a segment of around 3 cM or near 3 Mb on Chr 2 by comparative congenics. The BP-augmenting alleles of this QTL originated from the LEW rat, a normotensive strain compared with DSS. The dissection of a QTL with such a paradoxical effect illustrated the power of congenics in unearthing a gene hidden in the context of the whole animal system, presumably by interactions with other genes. The locus for the angiotensin II receptor AT-1B ( Agtr1b) is not supported as a candidate gene for the QTL because a congenic strain harboring it did not have an effect on BP. There are ∼19 known and unknown genes present in the QTL interval. Among them, no standout candidate genes are reputed to affect BP. Thus the QTL will likely represent a novel gene for BP regulation.
Collapse
Affiliation(s)
- Vasiliki Eliopoulos
- Research Centre-Centre Hospitalier de l'Université de Montréal (CHUM), Hôtel Dieu, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
20
|
Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T, Peng J, Pelinkova K, Tremblay J, Hamet P, Kren V. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol Genomics 2005; 21:243-52. [PMID: 15728334 DOI: 10.1152/physiolgenomics.00230.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The polydactylous rat strain (PD/Cub) is a highly inbred (F > 90) genetic model of metabolic syndrome. The aim of this study was to analyze the genetic architecture of the metabolic derangements found in the PD/Cub strain and to assess its dynamics in time and in response to diet and medication. We derived a PD/Cub × BN/Cub (Brown Norway) F2 intercross population of 149 male rats and performed metabolic profiling and genotyping and multiple levels of genetic linkage and statistical analyses at five different stages of ontogenesis and after high-sucrose diet feeding and dexamethasone administration challenges. The interval mapping analysis of 83 metabolic and morphometric traits revealed over 50 regions genomewide with significant or suggestive linkage to one or more of the traits in the segregating PD/Cub × BN/Cub population. The multiple interval mapping showed that, in addition to “single” quantitative train loci, there are more than 30 pairs of loci across the whole genome significantly influencing the variation of particular traits in an epistatic fashion. This study represents the first whole genome analysis of metabolic syndrome in the PD/Cub model and reveals several new loci previously not connected to the genetics of insulin resistance and dyslipidemia. In addition, it attempts to present the concept of “dynamic genetic architecture” of metabolic syndrome attributes, evidenced by shifts in the genetic determination of syndrome features during ontogenesis and during adaptation to the dietary and pharmacological influences.
Collapse
Affiliation(s)
- Ondrej Seda
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dutil J, Eliopoulos V, Tremblay J, Hamet P, Charron S, Deng AY. Multiple Quantitative Trait Loci for Blood Pressure Interacting Epistatically and Additively on Dahl Rat Chromosome 2. Hypertension 2005; 45:557-64. [PMID: 15738349 DOI: 10.1161/01.hyp.0000158841.71658.5e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our previous work demonstrated 2 quantitative trait loci (QTLs), C2QTL1 and C2QTL2, for blood pressure (BP) located on chromosome (Chr) 2 of Dahl salt-sensitive (DSS) rats. However, for a lack of markers, the 2 congenic strains delineating C2QTL1 and C2QTL2 could not be separated. The position of the C2QTL1 was only inferred by comparing 2 congenic strains, one having and another lacking a BP effect. Furthermore, it was not known how adjacent QTLs would interact with one another on Chr 2. In the current investigation, first, a critical chromosome marker was developed to separate 2 C2QTLs. Second, a congenic substrain was created to cover a chromosome fragment thought to harbor C2QTL1. Finally, a series of congenic strains was produced to systematically and comprehensively cover the entire Chr 2 segment containing C2QTL2 and other regions previously untested. Consequently, a total of 3 QTLs were discovered, with C2QTL3 located between C2QTL1 and C2QTL2. C2QTL1, C2QTL2, and C2QTL3 reside in chromosome segments of 5.7 centiMorgan (cM), 3.5 cM, and 1.5 cM, respectively. C2QTL1 interacted epistatically with either C2QTL2 or C2QTL3, whereas C2QTL2 and C2QTL3 showed additive effects to each other. These results suggest that BP QTLs closely linked in a segment interact epistatically and additively to one another on Chr 2.
Collapse
Affiliation(s)
- Julie Dutil
- Research Centre-CHUM, 3840 rue St. Urbain, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Hinojos CA, Boerwinkle E, Fornage M, Doris PA. Combined Genealogical, Mapping, and Expression Approaches to Identify Spontaneously Hypertensive Rat Hypertension Candidate Genes. Hypertension 2005; 45:698-704. [PMID: 15710778 DOI: 10.1161/01.hyp.0000156498.78896.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Allelic expression in genes has become recognized as a heritable trait by which phenotypes are generated. We have examined gene expression in the rat kidney using genome-wide microarray technology (Affymetrix). Gene expression was determined across 4 rat strains, 3 hypertensive spontaneously hypertensive rat (SHR) substrains (SHR-A3, SHR-B2, and SHR-C), and a normotensive strain (Wistar-Kyoto [WKY]). Expression measurements were made in multiple animals from all strains at 4 time points (4 weeks, 8 weeks, 12 weeks, and 18 weeks of age), covering the prehypertensive period in SHR (4 weeks), and the period of rapidly rising blood pressure (8 and 12 weeks) and of sustained hypertension (18 weeks). Regression analysis revealed a close relationship across all strains during the first 3 time points, after which SHR-A3 became a substantial outlier. SHR-B2 and SHR-C demonstrated a very close relationship in gene expression at all times but also showed increased differences compared with the other strains at 18 weeks of age. We identified genes that were consistently different in expression, comparing all SHR substrains at each time point with WKY. The resulting list of genes was compared with blood pressure quantitative trait loci reported for SHR to refine a number of genes consistently differentially expressed between SHR substrains and WKY, persistently differentially expressed across multiple time points, and located in SHR blood pressure–determinative regions of the genome. Genealogical relationships and SHR substrain intercrosses suggest that genes responsible for heritable hypertension in SHR are shared across SHR substrains. The present approach identifies a number of genes that may influence blood pressure in SHR by virtue of allelic effects on gene expression.
Collapse
Affiliation(s)
- Cruz A Hinojos
- Institute for Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Dutil J, Eliopoulos V, Marchand EL, Devlin AM, Tremblay J, Prithiviraj K, Hamet P, Migneault A, deBlois D, Deng AY. A quantitative trait locus for aortic smooth muscle cell number acting independently of blood pressure: implicating the angiotensin receptor AT1B gene as a candidate. Physiol Genomics 2005; 21:362-9. [PMID: 15741507 DOI: 10.1152/physiolgenomics.00063.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular hyperplasia may be involved in the remodeling of vasculature. It was unknown whether there were genetic determinants for aortic smooth muscle cell number (SMCN) and, if so, whether they acted independently of those for blood pressure (BP). To unravel this issue, we utilized congenic strains previously constructed for BP studies. These strains were made by replacing various chromosome 2 segments of the Dahl salt-sensitive (S) rat with those of the Milan normotensive rat (MNS). We measured and compared SMCN in aortic cross-sectional areas and BPs of these strains. Consequently, a quantitative trait locus (QTL) for SMCN was localized to a chromosome region not containing a BP QTL, but harboring the locus for the angiotensin II receptor AT1B (Agtr1b). Agtr1b became a candidate for the SMCN QTL because 1) two significant mutations were found in the coding region between S and all congenic strains possessing the MNS alleles, and 2) contractile responses to angiotensin II were significantly and selectively reduced in congenic rats harboring the MNS alleles of the SMCN QTL compared with S rats. The current investigation presents the first line of evidence that a QTL for aortic SMCN exists, and it acts independently of QTLs for BP. The relevant congenic strains developed therein potentially provide novel mammalian models for the studies of vascular remodeling disorders.
Collapse
Affiliation(s)
- Julie Dutil
- Research Centre-Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ariyarajah A, Palijan A, Dutil J, Prithiviraj K, Deng Y, Deng AY. Dissecting quantitative trait loci into opposite blood pressure effects on Dahl rat chromosome 8 by congenic strains. J Hypertens 2004; 22:1495-502. [PMID: 15257171 DOI: 10.1097/01.hjh.0000133720.94075.6f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our previous linkage analyses showed that there was likely a quantitative trait locus (QTL) for blood pressure (BP) on chromosome 8 (Chr 8) in the strain comparison between the Dahl salt-sensitive (S) and the Lewis (LEW) rats. The current work is to delineate the chromosome interval harboring this QTL by using congenic strains with different chromosome substitutions. METHODS Two congenic strains were produced by replacing different segments of the S rats with the homologous segments of the LEW rats. A genome-wide marker screening was utilized to accelerate this process. The two strains generated are designated as C8S.L1 and C8S.L2, respectively. BPs of the rats were measured by telemetry. RESULTS C8S.L1 showed a BP lower than that of S rats. In contrast, C8S.L2 did not have chromosome overlaps with C8S.L1, but unexpectedly, exhibited a BP-raising effect, higher than that of S rats. CONCLUSION There are at least two QTLs present in a section of Chr 8 that possess opposite BP effects. The current congenic work reveals not only the presence of QTLs, but the complexity of QTLs on BP. The novel congenic strain with hypertension more severe than S provides a new model for studies in elucidating physiological mechanisms controlling BP.
Collapse
Affiliation(s)
- Anita Ariyarajah
- Research Centre-CHUM, Hôtel Dieu, 3840 rue St Urbain, Montréal, Québec, H2W 1T8, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Schrijver HM, Hooper-van Veen T, van Belzen MJ, Crusius JBA, Peña AS, Barkhof F, Polman CH, Uitdehaag BMJ. Polymorphisms in the genes encoding interferon-gamma and interferon-gamma receptors in multiple sclerosis. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2004; 31:133-40. [PMID: 15182327 DOI: 10.1111/j.1365-2370.2004.00456.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome screens suggest that several genes, each contributing to a small extent, are involved in multiple sclerosis (MS) susceptibility. Simultaneous analysis of related genes may improve the power to detect such small effects. Interferon-gamma (IFN-gamma), mediating its effects through the IFN-gamma receptor, is a pleiotropic, pro-inflammatory cytokine for which a detrimental effect on the course of MS has been reported. The role of IFN-gamma receptor 1 (IFNGR1) and IFN-gamma receptor 2 (IFNGR2) gene polymorphisms has not been studied in MS, and, for the IFNG gene polymorphism there is only one previous study, which incorporates clinical, but not imaging, data. The aim of this study was to investigate whether polymorphisms in the IFNG and IFNGR1 and IFNGR2 genes are associated with susceptibility to MS, or disease characteristics, as defined by clinical and imaging criteria. Genotypes for IFNG, IFNGR1 and IFNGR2 were determined in 509 patients with MS and in 193 healthy controls. Patient files were reviewed for disease course, age at onset of disease, and rate of progression. Serial magnetic resonance imaging (MRI) data were available for 107 patients. No significant differences in the distribution of IFNG, IFNGR1 and IFNGR2 genotype and allele frequencies were found between patients and controls. A progressive, as opposed to a relapsing, onset was significantly more frequent in carriers of the IFNGR2 allele Arg64 (P = 0.028). Moreover, IFNGR2 allele Arg64 carriers had a lower black hole ratio than non-carriers (P = 0.016). No other associations with clinical parameters, such as age at onset or rate of progression, or with imaging parameters, were observed. The IFNG intron 1 gene polymorphism studied is unlikely to play a major role in MS susceptibility or disease course. The IFNGR1 and IFNGR2 gene polymorphisms studied do not exert an important influence on MS susceptibility, but allele IFNGR2*Arg64 may be associated with a progressive disease onset.
Collapse
Affiliation(s)
- H M Schrijver
- Department of Neurology, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hooper-van Veen T, Schrijver HM, Zwiers A, Crusius JBA, Knol DL, Kalkers NF, Laine ML, Barkhof F, Peña AS, Polman CH, Uitdehaag BMJ. The interleukin-1 gene family in multiple sclerosis susceptibility and disease course. Mult Scler 2004; 9:535-9. [PMID: 14664464 DOI: 10.1191/1352458503ms974oa] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of presumed autoimmune origin with a considerable polygenic influence. We have previously observed that a specific allele combination in genes of the interleukin-1 (IL-1) family influenced the progression rate in MS. We have considerably expanded our patient population (492 MS patients and 228 controls). In the present study, we investigated the role of the IL-IA--889, IL-1B--511, IL-1B f3953 and IL-1RN VNTR gene polymorphisms in MS. In addition, we performed preliminary analyses on longitudinal magnetic resonance imaging (MRI) data. We found no associations between the polymorphisms and susceptibility to MS or clinical features. In addition, we observed no significant effect of the polymorphisms on brain or lesion volumes, Based on our data and those from the literature, one can conclude that there is currently no evidence to support a role for the IL-1 genes in MS.
Collapse
|
27
|
Abstract
The Cannon lecture this year illustrates how knowledge of DNA sequences of complex living organisms is beginning to shape the landscape of physiology in the 21st century. Enormous challenges and opportunities now exist for physiologists to relate the galaxy of genes to normal and pathological functions. The first extensive genomic systems biology map for cardiovascular and renal function was completed last year as well as a new hypothesis-generating tool ("physiological profiling") that enables us to hypothesize relationships between specific genes responsible for the regulation of regulatory pathways. Techniques of chromosomal substitution (consomic and congenic rats) are beginning to confirm statistical results from linkage analysis studies, narrow the regions of genetic interest for positional cloning, and provide genetically well-defined control strains for physiological studies. Patterns of gene expression identified by microarray and mapping of expressed genes to chromosomal sites are adding to the understanding of systems physiology. The previously unimaginable goal of connecting approximately 36,000 genes to the complex functions of mammalian systems is indeed well underway.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
28
|
Kato N, Mashimo T, Nabika T, Cui ZH, Ikeda K, Yamori Y. Genome-wide searches for blood pressure quantitative trait loci in the stroke-prone spontaneously hypertensive rat of a Japanese colony. J Hypertens 2003; 21:295-303. [PMID: 12569259 DOI: 10.1097/00004872-200302000-00020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Although several quantitative trait loci for blood pressure have been reported in stroke-prone spontaneously hypertensive rats (SHRSP), the results are not always concordant among different crosses. To evaluate potential confounding factors in linkage analysis, we performed genome-wide screens in F2 populations derived from SHRSP and Wistar-Kyoto rats of a Japanese colony. METHODS Two F cohorts were independently produced: F2-1 (110 male and 110 female rats), and F2-2 (174 male and 184 female rats). Blood pressure was measured longitudinally (from 2 to 5 months of age and 1 month after salt-loading) in F2-1, while it was measured at 13 weeks of age in F2-2. Subsequent to an initial screen with 251 markers in F2-1 male progeny, 170 markers were selected and characterized in the remaining populations. RESULTS When 578 rats were analyzed together, markers from five chromosomal regions showed significant linkage to blood pressure at 13 weeks of age. The strongest and the most consistent linkage was found on rat chromosome 1 (a maximal log of the odds score reached 8.3). In the other regions, the degree of linkage was more prominent in either of sexes. Some evidence of age-specific and sex-specific linkage was detected in five additional regions in the F2-1 cohort. In the Japanese colony, however, there was no significant linkage to several chromosomal regions previously reported in other SHRSP colonies. CONCLUSIONS Our data provide solid evidence of a chromosome-1 linkage and demonstrate the importance of aging, sex, and dietary manipulation in linkage analysis. Also, the combination of parental rat strains seems to be critical when searching for blood pressure quantitative trait loci.
Collapse
Affiliation(s)
- Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, International Medical Center of Japan, Toyama, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Pereira AC, Mota GFA, Cunha RS, Herbenhoff FL, Mill JG, Krieger JE. Angiotensinogen 235T allele "dosage" is associated with blood pressure phenotypes. Hypertension 2003; 41:25-30. [PMID: 12511525 DOI: 10.1161/01.hyp.0000047465.97065.15] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genetic mechanisms underlying interindividual blood pressure variation among humans may reflect, at least in part, clustering of functional gene variants belonging to complex blood pressure control systems. In this study, we investigated the association of specific functional gene variants of the renin-angiotensin system, ACE (I/D) and angiotensinogen (M/T) genes, with blood pressure phenotypes (systolic, mean, diastolic, and pulse pressure), in an ethnically mixed urban population in Brazil. Individuals (n=1421) were randomly selected from the general population of the Vitoria City Metropolitan area. Neither gender, age, smoking status, total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol, or diabetes was associated with ACE or AGT polymorphism in univariate analysis. No association was found between ACE variants and blood pressure phenotypes. However, a statistically significant association was revealed between the AGT 235T variant and all blood pressure phenotypes, consistent with an additive/codominant mode of action even after adjustment for age and gender (P<0.01). Genotypic analysis contemplating both ACE and AGT variants in the same model did not show any significant interaction between both genetic polymorphisms. In addition, the AGT 235T allele was significantly associated with hypertension in a recessive model, which remained as an independent risk factor for hypertension even after adjustment for age, gender, and ethnicity (OR, 1.33; 95% CI, 1.04 to 1.70). Taken together, these data indicate a linear relation between AGT 235T allele number ("dosage") and blood pressure in an ethnically mixed urban population and confirmed its role as an independent risk factor for hypertension for men and women when in homozygosity.
Collapse
Affiliation(s)
- Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Garrett MR, Joe B, Dene H, Rapp JP. Identification of blood pressure quantitative trait loci that differentiate two hypertensive strains. J Hypertens 2002; 20:2399-406. [PMID: 12473864 DOI: 10.1097/00004872-200212000-00019] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To describe genetic loci that differentiate blood pressures in two genetically hypertensive strains, the Dahl salt-sensitive (S) rat and the Albino Surgery (AS) rat. METHODS A genome scan was performed using 222 genetic markers on an F2 population derived from two hypertensive strains, S and AS. The F2 rats were fed 8% NaCl for 5 weeks before blood pressure measurements were taken. RESULTS Three blood pressure quantitative trait loci (QTL) were detected, one on each of rat chromosomes (RNO) 2, 4 and 8. The QTL on RNO4, unlike those on RNO2 and RNO8, was not detected in any of the previous seven linkage analyses reported with the S rat as one of the parental strains. Interactions between genetic loci throughout the genome were sought and interactions involving RNO4 with RNO8 and RNO4 with RNO14 were found. Including the new RNO4 locus identified in the present study, 16 distinct regions of the S rat genome have been demonstrated, by linkage analyses, to harbour loci that control blood pressure in the S rat. CONCLUSIONS Increased blood pressure in two hypertensive strains, S and AS, is differentially regulated by genetic factors present on RNOs 2, 4 and 8. Therefore, of the 16 distinct genomic regions known to harbour blood pressure QTL in S rats, 13 are likely to contain blood pressure alleles that function similarly in the S rat and the AS rat, whereas three regions differentiate the two strains.
Collapse
Affiliation(s)
- Michael R Garrett
- Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo 43614, USA.
| | | | | | | |
Collapse
|
31
|
Alemayehu A, Breen L, Krenova D, Printz MP. Reciprocal rat chromosome 2 congenic strains reveal contrasting blood pressure and heart rate QTL. Physiol Genomics 2002; 10:199-210. [PMID: 12209022 DOI: 10.1152/physiolgenomics.00065.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence exists implying multiple blood pressure quantitative trait loci (QTL) on rat chromosome 2. To examine this possibility, four congenic strains and nine substrains were developed with varying size chromosome segments introgressed from the spontaneously hypertensive rat (SHR/lj) and normotensive Wistar-Kyoto rat (WKY/lj) onto the reciprocal genetic background. Cardiovascular phenotyping was conducted with telemetry over extended periods during standard salt (0.7%) and high-salt (8%) diets. Our results are consistent with at least three independent pressor QTL: transfer of SHR/lj alleles to WKY/lj reveals pressor QTL within D2Rat21-D2Rat27 and D2Mgh10-D2Rat62, whereas transfer of WKY/lj D2Rat161-D2Mit8 to SHR/lj reveals a depressor locus. Our results also suggest a depressor QTL in SHR/lj located within D2Rat161-D2Mgh10. Introgressed WKY/lj segments also reveal a heart rate QTL within D2Rat40-D2Rat50 which abolished salt-induced bradycardia, dependent upon adjoining SHR/lj alleles. This study confirms the presence of multiple blood pressure QTL on chromosome 2. Taken together with our other studies, we conclude that rat chromosome 2 is rich in alleles for cardiovascular and behavioral traits and for coordinated coupling between behavior and cardiovascular responses.
Collapse
Affiliation(s)
- Adamu Alemayehu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636, USA
| | | | | | | |
Collapse
|
32
|
Kendziorski CM, Cowley AW, Greene AS, Salgado HC, Jacob HJ, Tonellato PJ. Mapping baroreceptor function to genome: a mathematical modeling approach. Genetics 2002; 160:1687-95. [PMID: 11973321 PMCID: PMC1462065 DOI: 10.1093/genetics/160.4.1687] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To gain information about the genetic basis of a complex disease such as hypertension, blood pressure averages are often obtained and used as phenotypes in genetic mapping studies. In contrast, direct measurements of physiological regulatory mechanisms are not often obtained, due in large part to the time and expense required. As a result, little information about the genetic basis of physiological controlling mechanisms is available. Such information is important for disease diagnosis and treatment. In this article, we use a mathematical model of blood pressure to derive phenotypes related to the baroreceptor reflex, a short-term controller of blood pressure. The phenotypes are then used in a quantitative trait loci (QTL) mapping study to identify a potential genetic basis of this controller.
Collapse
Affiliation(s)
- C M Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Moujahidine M, Dutil J, Hamet P, Deng AY. Congenic mapping of a blood pressure QTL on chromosome 16 of Dahl rats. Mamm Genome 2002; 13:153-6. [PMID: 11919686 DOI: 10.1007/bf02684020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Accepted: 11/27/2001] [Indexed: 10/22/2022]
Abstract
A Chromosome (Chr) 16 segment of the Dahl salt-sensitive (S) rat was shown by linkage to contain a blood pressure (BP) quantitative trait locus (QTL). To verify and further narrow down the region harboring the QTL, we made two congenic strains by replacing two segments of the S rats with the homologous segments of the Lewis (LEW) rats. The construction of these congenic strains was facilitated by a genome-wide marker screening. The two congenic strains contained a segment in common, and BPs of both were significantly lower than that of the S strain. Consequently, a BP QTL could be localized to the overlapping region of about 49.4 centiRay (cR) including the telomere on a radiation hybrid map. Heart weights, left and right ventricular weights, kidney weights, and aortic weights over length were all significantly decreased in the congenic strains compared with the S strain. Thus, there appeared to exist an association between the effects of the QTL on BP and on cardiac, renal, and vascular hypertrophy.
Collapse
Affiliation(s)
- Myriam Moujahidine
- Research Centre, Centre Hospitalier de l'Universite de Montreal (CHUM), 7-132 Pavillon Jeanne Mance, 3840, rue St. Urbain, Montreal, Quebec, H2W 1T8, Canada
| | | | | | | |
Collapse
|
34
|
de Wolf ID, Fielmich-Bouman XM, van Oost BA, Beynen AC, Kren V, Pravenec M, van Zutphen LF, van Lith HA. Genetic and correlation analysis of hepatic copper content in the rat. Biochem Biophys Res Commun 2001; 289:1247-51. [PMID: 11741328 DOI: 10.1006/bbrc.2001.6092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirty recombinant inbred (RI) strains derived from the spontaneous hypertensive rat (SHR/OlaIpcv) and the Brown Norway (BN-Lx/Cub) progenitors were used to search for quantitative trait loci (QTLs) that are responsible for differences in liver copper between these two strains. The heritability of liver copper concentration (expressed as microg/g liver wet wt and microg/g liver dry wt) and liver copper store (microg/whole liver) was estimated to be 57, 57, and 46%, respectively. In a total genome scan of the RI strains, involving over 600 genetic markers, suggestive association was found between liver copper store (microg/whole liver) and the D16Wox9 marker on chromosome 16 (lod score = 2.8), and between liver copper concentration (microg/g dry wt) and the D10Cebrp1016s2 marker on chromosome 10 (lod score = 3.0). These putative QTLs are responsible for nearly 34 and 40% of the additive genetic variability for liver copper store and concentration, respectively.
Collapse
Affiliation(s)
- I D de Wolf
- Department of Laboratory Animal Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Barnard R, Kelly G, Manzetti SO, Harris EL. Neither the New Zealand genetically hypertensive strain nor Dahl salt-sensitive strain has an A1079T transversion in the alpha1 isoform of the Na(+),K(+)-ATPase gene. Hypertension 2001; 38:786-92. [PMID: 11641287 DOI: 10.1161/hy1001.091782] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A putative 1079A-->T mutation in the alpha1 isoform of the Na(+), K(+)-ATPase (Atp1a1) gene of the Dahl salt-sensitive rat inbred by John Rapp (SS/Jr) strain was projected to cause a conformation change in the membrane hydrophobic region of the protein product, possibly resulting in hypertension. The existence of the mutation was challenged, but the challenge was apparently rebutted. The New Zealand genetically hypertensive (GH) rat is known to have a blood pressure quantitative trait locus on chromosome 2 containing the gene for the ATPase. Thus, we sought to determine whether the GH rat carried the 1079A-->T transversion. We chose a method, first nucleotide change analysis, that can detect point mutations in a mixed population of polymerase chain reaction (PCR) products, even in the presence of PCR bias, and confirmed our analysis by restriction enzyme digestion of PCR products. To ensure the validity of our analyses, we used site-directed mutagenesis to create positive controls containing the mutation. Surprisingly, we found that neither the GH nor the SS/Jr strain had the A1079T transversion. Indeed, the transversion was not found in any strain tested. As an incidental observation, we have sequenced the intron preceding the exon containing the putative A1079T transversion. Within this intron, a single-base C/T polymorphism was observed at base 132. Our results definitively eliminate the putative A1079T transversion in Atp1a1 as a causative factor underlying hypertension in the GH, spontaneously hypertensive, and SS/Jr rat strains and indicate that alternative candidate genes in the region defined by the chromosome 2 hypertension quantitative trait locus should be examined.
Collapse
Affiliation(s)
- R Barnard
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Göran Levan
- Department of Cell and Molecular Biology-Genetics at Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
37
|
Zicha J, Negrin CD, Dobesová Z, Carr F, Vokurková M, McBride MW, Kunes J, Dominiczak AF. Altered Na+-K+ pump activity and plasma lipids in salt-hypertensive Dahl rats: relationship to Atp1a1 gene. Physiol Genomics 2001; 6:99-104. [PMID: 11459925 DOI: 10.1152/physiolgenomics.2001.6.2.99] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genetic variant of the gene for the alpha(1)-isoform of Na(+)-K(+)-ATPase (Atp1a1) was suggested to be involved in the pathogenesis of salt hypertension in Dahl rats through altered Na(+):K(+) coupling ratio. We studied Na(+)-K(+) pump activity in erythrocytes of Dahl salt-sensitive (SS/Jr) rats in relation to plasma lipids and blood pressure (BP) and the linkage of polymorphic microsatellite marker D2Arb18 (located within intron 1 and exon 2 of Atp1a1 gene) with various phenotypes in 130 SS/Jr x SR/Jr F(2) rats. Salt-hypertensive SS/Jr rats had higher erythrocyte Na(+) content, enhanced ouabain-sensitive (OS) Na(+) and Rb(+) transport, and higher Na(+):Rb(+) coupling ratio of the Na(+)-K(+) pump. BP of F(2) hybrids correlated with erythrocyte Na(+) content, OS Na(+) extrusion, and OS Na(+):Rb(+) coupling ratio, but not with OS Rb(+) uptake. In F(2) hybrids there was a significant association indicating suggestive linkage (P < 0.005, LOD score 2.5) of an intragenic marker D2Arb18 with pulse pressure but not with mean arterial pressure or any parameter of Na(+)-K(+) pump activity (including its Na(+):Rb(+) coupling ratio). In contrast, plasma cholesterol, which was elevated in salt-hypertensive Dahl rats and which correlated with BP in F(2) hybrids, was also positively associated with OS Na(+) extrusion. The abnormal Na(+):K(+) stoichiometry of the Na(+)-K(+) pump is a consequence of elevated erythrocyte Na(+) content and suppressed OS Rb(+):K(+) exchange. In conclusion, abnormal cholesterol metabolism but not the Atp1a1 gene locus might represent an important factor for both high BP and altered Na(+)-K(+) pump function in salt-hypertensive Dahl rats.
Collapse
Affiliation(s)
- J Zicha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Center for Experimental Research of Cardiovascular Diseases, CZ-142 20 Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dutil J, Deng AY. Further chromosomal mapping of a blood pressure QTL in Dahl rats on chromosome 2 using congenic strains. Physiol Genomics 2001; 6:3-9. [PMID: 11395541 DOI: 10.1152/physiolgenomics.2001.6.1.3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both linkage and use of congenic strains have shown that a region on rat chromosome 2 (Chr 2) of Dahl salt-sensitive rats (S) contained a quantitative trait locus (QTL) for blood pressure (BP). A congenic strain was made by replacing a segment of the S rat by the homologous region of the Milan normotensive (MNS) rat. Since the region was roughly 80 cM in size, a further reduction is required toward the final identification of the QTL. Currently, three congenic substrains were made by replacing smaller sections within the 80 cM. Each strain contains a specific region of MNS in the S genetic background. Two of the three congenic strains shared a segment in common, and both showed a BP-lowering effect. One of the three congenic strains carried a unique segment and had the same BP as S. Deducing the fragment shared in the two substrains having an effect, the BP QTL has to be present in a region of roughly 15 cM. In contrast to BP, heart rates of all the congenic rats were the same as that of the S rat. Thus BP and the heart rate are under the control of independent genetic determinants.
Collapse
Affiliation(s)
- J Dutil
- Research Centre, Centre Hospitalier de l'Université de Montreal, Montreal, Quebec, H2W 1T8, Canada
| | | |
Collapse
|
39
|
Pravenec M, Zídek V, Musilová A, Vorlícek J, Kren V, St Lezin E, Kurtz TW. Genetic isolation of a blood pressure quantitative trait locus on chromosome 2 in the spontaneously hypertensive rat. J Hypertens 2001; 19:1061-4. [PMID: 11403354 DOI: 10.1097/00004872-200106000-00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Total genome scans of genetically segregating populations derived from the spontaneously hypertensive rat (SHR) and other rat models of hypertension have suggested the presence of quantitative trait loci (QTL) regulating blood pressure and cardiac mass on multiple chromosomes, including chromosome 2. The objective of the current study was to directly test for the presence of a blood pressure QTL on rat chromosome 2. DESIGN A new congenic strain was derived by replacing a segment of chromosome 2 in the SHR between D2Rat171 and D2Arb24 with the corresponding chromosome segment from the normotensive Brown Norway rat. Arterial pressures were directly monitored in conscious rats by radiotelemetry. RESULTS We found that the SHR congenic strain (SHR-2) carrying a segment of chromosome 2 from the Brown Norway rat had significantly lower systolic and diastolic blood pressures than the SHR progenitor strain. The attenuation of hypertension in the SHR-2 congenic strain versus the SHR progenitor strain was accompanied by significant amelioration of cardiac hypertrophy. CONCLUSIONS These findings demonstrate that gene(s) with major effects on blood pressure exist in the differential segment of chromosome 2 trapped within the new SHR.BN congenic strain.
Collapse
Affiliation(s)
- M Pravenec
- Institute of Physiology and Center for Integrated Genomics, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Experimental models of human disease are frequently used to investigate the pathophysiology of disease as well as the mechanisms of action of therapeutics. However, as long as models have been used there have been debates about the utility of experimental models and their applicability for human disease on the phenotypic and genomic level. The recent advances in molecular genetics and genomics have provided powerful tools to study the genetics of multifactorial diseases, such as hypertension. However, studies of such diseases in humans remain challenging in part due to lack of statistical power and genetic heterogeneity within patient populations. For hypertension, various rat models have been developed and used for the identification of susceptibility loci for genetic hypertension. With the advent of "comparative genomics," the application of genetic studies to both human and animal model systems allows for a new paradigm, where comparative genomics can be used to bridge between model utility and clinical relevance. This review discusses recent approaches in genetics to facilitate gene discovery for polygenic disorders with specific focus on how comparative mapping can be used to select target regions in the human genome for large-scale association studies and linkage disequilibrium testing in clinical populations.
Collapse
Affiliation(s)
- M Stoll
- Medical College of Wisconsin, Human & Molecular Genetics Research Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
41
|
Nebert DW, Dalton TP, Stuart GW, Carvan MJ. "Gene-swap knock-in" cassette in mice to study allelic differences in human genes. Ann N Y Acad Sci 2001; 919:148-70. [PMID: 11083106 DOI: 10.1111/j.1749-6632.2000.tb06876.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic differences in environmental toxicity and cancer susceptibility among individuals in a human population often reflect polymorphisms in the genes encoding drug-metabolizing enzymes (DMEs), drug transporters, and receptors that control DME levels. This field of study is called "ecogenetics", and a subset of this field--concerning genetic variability in response to drugs--is termed "pharmacogenetics". Although human-mouse differences might be 3- to perhaps 10-fold, human interindividual differences can be as great as 20-fold or more than 40-fold. It would be helpful, therefore, to study toxicokinetics/pharmacokinetics of particular environmental agents and drugs in mice containing these "high-" and "low-extreme" human alleles. We hope to use transgenic "knock-in" technology in order to insert human alleles in place of the orthologous mouse gene. However, the knock-in of each gene has normally been a separate event requiring the following: (a) construction of the targeting vector, (b) transfection into embryonic stem (ES) cells, (c) generation of a targeted mouse having germline transmission of the construct, and (d) backcross breeding of the knock-in mouse (at least 6-8 times) to produce a suitable genetically homogeneous background (i.e., to decrease "experimental noise"). These experiments require 1 1/2 to 2 years to complete, making this very powerful technology inefficient for routine applications. If, on the other hand, the initial knock-in targeting vector might include sequences that would allow the knocked-in gene to be exchanged (quickly and repeatedly) for one new allele after another, then testing distinctly different human polymorphic alleles in transgenic mice could be accomplished in a few months instead of several years. This "gene-swapping" technique will soon be done by zygotic injection of a "human allele cassette" into the sperm or fertilized ovum of the parental knock-in mouse inbred strain or by the cloning of whole mice from cumulus ovaricus cells or tail-snip fibroblasts containing the nucleus wherein each new human allele has already been "swapped." In mouse cells in culture using heterotypic lox sites, we and others have already succeeded in gene swapping, by exchanging one gene, including its regulatory regions, with a second gene (including its regulatory regions). It is anticipated that mouse lines carrying numerous human alleles will become commonplace early in the next millennium.
Collapse
Affiliation(s)
- D W Nebert
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, Ohio 45267-0056, USA.
| | | | | | | |
Collapse
|
42
|
Sugiyama F, Churchill GA, Higgins DC, Johns C, Makaritsis KP, Gavras H, Paigen B. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 2001; 71:70-7. [PMID: 11161799 DOI: 10.1006/geno.2000.6401] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the genetic control of salt-induced hypertension, we performed a quantitative trait locus analysis on male mice from a reciprocal backcross between the salt-sensitive C57BL/6J and the normotensive A/J inbred mouse strains after they were provided with water containing 1% salt for 2 weeks. Genome-wide scans performed on these mice and analyzed with a combination of conventional marker-based regressions and a novel simultaneous search for pairs revealed six significant quantitative trait loci associated with salt-induced blood pressure, two of which were interacting loci. These six loci, named Bpq1-6 for blood pressure quantitative trait loci, mapped to D1Mit334, D1Mit14, D4Mit164, D5Mit31, D6Mit15, and D15Mit13. Furthermore, five of these six loci were concordant with hypertension loci in rats, and four were concordant with hypertension loci in humans, suggesting that quantitative trait loci mapping in model organisms can be used to guide the search for human blood pressure genes.
Collapse
Affiliation(s)
- F Sugiyama
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Watelet LF, Moss AJ, Zareba W, Oakes D, Ryan D. Detection of a group of risk factors in coronary disease using a new carriership analysis approach. Am J Cardiol 2000; 86:1253-6, A6. [PMID: 11090802 DOI: 10.1016/s0002-9149(00)01213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carriership analysis is a statistical approach for detecting the average increase in risk (hazard ratio) for adverse time-dependent events per number of prespecified phenotypic or genotypic risk factors carried by subjects in limited-sized populations. This carriership approach was applied to phenotypic risk factor analysis in a postinfarction population, and simulated genetic modeling was performed to show how carriership analysis could be used to identify a group of oligogenic factors in common polygenic disorders.
Collapse
Affiliation(s)
- L F Watelet
- Department of Biostatistics, University of Rochester Medical Center, New York 14642, USA
| | | | | | | | | |
Collapse
|
44
|
Garrett MR, Saad Y, Dene H, Rapp JP. Blood pressure QTL that differentiate Dahl salt-sensitive and spontaneously hypertensive rats. Physiol Genomics 2000; 3:33-8. [PMID: 11015598 DOI: 10.1152/physiolgenomics.2000.3.1.33] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our purpose was to define quantitative trait loci (QTL) for blood pressure that differ between two widely used hypertensive rat strains, the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR). A genome scan was done on an F(2) (S x SHR) population fed 8% NaCl for 4 wk. Three blood pressure QTL were detected, one on each of rat chromosomes (chr) 3, 8, and 9. For the chr 3 QTL the SHR allele increased blood pressure, and for chr 8 and 9 the S allele increased blood pressure. The QTL on chr 9 was exceptionally strong, having a LOD score of 7.3 and accounting for 30% of the phenotypic variance and a difference of 40 mmHg between homozygotes. A review of the literature in conjunction with the present data suggests that S and SHR are not different for the previously described prominent blood pressure QTL on chr 1, 2, 10, and 13. QTL for body weight on chr 4, 12, 18, and 20, each with an effect of about 30 g, were incidentally observed.
Collapse
Affiliation(s)
- M R Garrett
- Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo, Ohio 43614-5804, USA
| | | | | | | |
Collapse
|
45
|
Cowley AW, Stoll M, Greene AS, Kaldunski ML, Roman RJ, Tonellato PJ, Schork NJ, Dumas P, Jacob HJ. Genetically defined risk of salt sensitivity in an intercross of Brown Norway and Dahl S rats. Physiol Genomics 2000; 2:107-15. [PMID: 11015589 DOI: 10.1152/physiolgenomics.2000.2.3.107] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genetic segregation analysis was performed to identify genes that cosegregate with arterial blood pressure traits reflective of salt sensitivity. A population of 113 F2 male rats was derived from an intercross of inbred SS/JrHsd/Mcw (Dahl salt-sensitive) and BN/SsN/Mcw (Brown Norway) rats. Rats were maintained on an 8% salt diet from the age of 9 to 13 wk, and arterial pressure was measured for 3 h daily during the 4th wk of high salt intake in unanesthetized rats using implanted arterial catheters. At the end of the 3rd day of high-salt pressure recordings, the arterial pressure response to salt depletion was determined 1.5 days following treatment with Lasix and a low-sodium (0. 4%) diet. A genome-wide scan using 265 polymorphic simple sequence length polymorphism (SSLP) markers found that seven arterial pressure phenotypes determined at different times and circumstances, and representing two distinct indexes of salt sensitivity, mapped to the same region of rat chromosome 18. The trait of salt sensitivity was strongly influenced by the presence of SS alleles in this region of chromosome 18, and those rats which were homozygote SS/SS exhibited a significantly greater reduction of mean arterial pressure following sodium depletion (29 +/- 2 mmHg) than homozygote BN/BN (17 +/- 3 mmHg) or heterozygotic (22 +/- 2 mmHg) rats. This region of rat chromosome 18 corresponds to the long arm of human chromosome 5 and a region of human chromosome 18 that has been linked to hypertension in humans. Given the unlikely chance of these different blood pressure traits mapping to the same region, we believe these data provide evidence that this region of rat chromosome 18 plays an important role in salt-induced hypertension.
Collapse
Affiliation(s)
- A W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nabika T, Kobayashi Y, Yamori Y. Congenic rats for hypertension: how useful are they for the hunting of hypertension genes? Clin Exp Pharmacol Physiol 2000; 27:251-6. [PMID: 10779121 DOI: 10.1046/j.1440-1681.2000.03242.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Linkage studies have revealed quantitative trait loci (QTL) for blood pressure in the rat genome using genetic hypertensive rat models. To identify the genes responsible for hypertension, the construction of congenic rats is essential. 2. To date, several congenic strains have been obtained from spontaneously hypertensive or Dahl salt-sensitive rats. The results of these studies should be interpreted according to whether the rats carry the whole QTL region or not. 3. After establishing congenic strains, three strategies are possible: (i) an orthodox positional cloning in which, using subcongenic strains, the QTL region is cut down to smaller fragments suitable for physical mapping; (ii) a positional candidate strategy in which candidate genes in the QTL regions are studied; or (iii) physiological studies in which intermediate phenotypes directly associated with the hypertension gene are explored. Several other experimental strategies are also available using congenic strains as new animal models for hypertension. 4. To make the most of advances in DNA technology, the precise evaluation of the phenotypic difference between congenic strains carrying different QTL or between a congenic and parental strain is critical.
Collapse
Affiliation(s)
- T Nabika
- Department of Laboratory Medicine, Shimane Medical University, Izumo, Japan.
| | | | | |
Collapse
|
47
|
Stoll M, Kwitek-Black AE, Cowley AW, Harris EL, Harrap SB, Krieger JE, Printz MP, Provoost AP, Sassard J, Jacob HJ. New target regions for human hypertension via comparative genomics. Genome Res 2000; 10:473-82. [PMID: 10779487 PMCID: PMC310887 DOI: 10.1101/gr.10.4.473] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Models of human disease have long been used to understand the basic pathophysiology of disease and to facilitate the discovery of new therapeutics. However, as long as models have been used there have been debates about the utility of these models and their ability to mimic clinical disease at the phenotypic level. The application of genetic studies to both humans and model systems allows for a new paradigm, whereby a novel comparative genomics strategy combined with phenotypic correlates can be used to bridge between clinical relevance and model utility. This study presents a comparative genomic map for "candidate hypertension loci in humans" based on translating QTLs between rat and human, predicting 26 chromosomal regions in the human genome that are very likely to harbor hypertension genes. The predictive power appears robust, as several of these regions have also been implicated in mouse, suggesting that these regions represent primary targets for the development of SNPs for linkage disequilibrium testing in humans and/or provide a means to select specific models for additional functional studies and the development of new therapeutics.
Collapse
Affiliation(s)
- M Stoll
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Křenová D, Šoltysová L, Pravenec M, Moisan MP, Kurtz WT, Křen V. Putative candidate genes for blood pressure control in the SHR.BN-RNO8 congenic substrains. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0939-8600(00)80029-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Abstract
Blood pressure is a quantitative trait that has a strong genetic component in humans and rats. Several selectively bred strains of rats with divergent blood pressures serve as an animal model for genetic dissection of the causes of inherited hypertension. The goal is to identify the genetic loci controlling blood pressure, i.e., the so-called quantitative trait loci (QTL). The theoretical basis for such genetic dissection and recent progress in understanding genetic hypertension are reviewed. The usual paradigm is to produce segregating populations derived from a hypertensive and normotensive strain and to seek linkage of blood pressure to genetic markers using recently developed statistical techniques for QTL analysis. This has yielded candidate QTL regions on almost every rat chromosome, and also some interactions between QTL have been defined. These statistically defined QTL regions are much too large to practice positional cloning to identify the genes involved. Most investigators are, therefore, fine mapping the QTL using congenic strains to substitute small segments of chromosome from one strain into another. Although impressive progress has been made, this process is slow due to the extensive breeding that is required. At this point, no blood pressure QTL have met stringent criteria for identification, but this should be an attainable goal given the recently developed genomic resources for the rat. Similar experiments are ongoing to look for genes that influence cardiac hypertrophy, stroke, and renal failure and that are independent of the genes for hypertension.
Collapse
Affiliation(s)
- J P Rapp
- Department of Physiology, Medical College of Ohio, Toledo, Ohio, USA.
| |
Collapse
|
50
|
van Lith H, den Bieman M, Levan G, Matsumoto K, Szpirer C, van Zupthen L. Report on rat chromosome 16. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0939-8600(99)80017-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|