1
|
Downes KW, Zanetti G. Mechanisms of COPII coat assembly and cargo recognition in the secretory pathway. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00839-y. [PMID: 40133632 PMCID: PMC7617623 DOI: 10.1038/s41580-025-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
One third of all proteins in eukaryotes transit between the endoplasmic reticulum (ER) and the Golgi to reach their functional destination inside or outside of the cell. During export, secretory proteins concentrate at transitional zones of the ER known as ER exit sites, where they are packaged into transport carriers formed by the highly conserved coat protein complex II (COPII). Despite long-standing knowledge of many of the fundamental pathways that govern traffic in the early secretory pathway, we still lack a complete mechanistic model to explain how the various steps of COPII-mediated ER exit are regulated to efficiently transport diverse cargoes. In this Review, we discuss the current understanding of the mechanisms underlying COPII-mediated vesicular transport, highlighting outstanding knowledge gaps. We focus on how coat assembly and disassembly dictate carrier morphogenesis, how COPII selectively recruits a vast number of cargo and cargo adaptors, and finally discuss how COPII mechanisms in mammals might have adapted to enable transport of large proteins.
Collapse
Affiliation(s)
- Katie W Downes
- Institute of Structural and Molecular Biology, UCL, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
- The Francis Crick Institute, London, UK
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, UCL, London, UK.
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Williams RV, Guay KP, Hurlbut Lesk OA, Clerico EM, Hebert DN, Gierasch LM. Insights into the interaction between UGGT, the gatekeeper of folding in the ER, and its partner, the selenoprotein SEP15. Proc Natl Acad Sci U S A 2024; 121:e2315009121. [PMID: 39133860 PMCID: PMC11348098 DOI: 10.1073/pnas.2315009121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 08/29/2024] Open
Abstract
The enzyme UDP-glucose: glycoprotein glucosyltransferase (UGGT) is the gatekeeper of protein folding within the endoplasmic reticulum (ER). One-third of the human proteome traverses the ER where folding and maturation are facilitated by a complex protein homeostasis network. Both glycan modifications and disulfide bonds are of key importance in the maturation of these ER proteins. The actions of UGGT are intimately linked to the glycan code for folding and maturation of secretory proteins in the ER. UGGT selectively glucosylates the N-linked glycan of misfolded proteins so that they can reenter the lectin-folding chaperone cycle and be retained within the ER for further attempts at folding. An intriguing aspect of UGGT function is its interaction with its poorly understood cochaperone, the 15 kDa selenoprotein known as SELENOF or SEP15. This small protein contains a rare selenocysteine residue proposed to act as an oxidoreductase toward UGGT substrates. AlphaFold2 predictions of the UGGT1/SEP15 complex provide insight into this complex at a structural level. The predicted UGGT1/SEP15 interaction interface was validated by mutagenesis and coimmunoprecipitation experiments. These results serve as a springboard for models of the integrated action of UGGT1 and SEP15.
Collapse
Affiliation(s)
- Robert V. Williams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Kevin P. Guay
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
| | - Owen A. Hurlbut Lesk
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Eugenia M. Clerico
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
| | - Lila M. Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA01003
- Department of Chemistry, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
3
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Lin LL, Wang HH, Pederson B, Wei X, Torres M, Lu Y, Li ZJ, Liu X, Mao H, Wang H, Zhou LE, Zhao Z, Sun S, Qi L. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat Commun 2024; 15:1440. [PMID: 38365914 PMCID: PMC10873344 DOI: 10.1038/s41467-024-45633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD). Despite recent advances in both mouse models and humans, in vivo evidence for the importance of SEL1L in the ERAD complex formation and its (patho-)physiological relevance in mammals remains limited. Here we report that SEL1L variant p.Ser658Pro (SEL1LS658P) is a pathogenic hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Biochemical analyses reveal that SEL1LS658P variant not only reduces the protein stability of SEL1L, but attenuates the SEL1L-HRD1 interaction, likely via electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes reveal that SEL1L-HRD1 interaction is a prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L is required for the recruitment of E2 enzyme UBE2J1 as well as DERLIN to HRD1. These data not only establish the disease relevance of SEL1L-HRD1 ERAD, but also provide additional insight into the formation of a functional HRD1 ERAD complex.
Collapse
Affiliation(s)
- Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Huilun Helen Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Brent Pederson
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Mauricio Torres
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Hui Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Linyao Elina Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22908, USA.
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
5
|
Guay KP, Ke H, Canniff NP, George GT, Eyles SJ, Mariappan M, Contessa JN, Gershenson A, Gierasch LM, Hebert DN. ER chaperones use a protein folding and quality control glyco-code. Mol Cell 2023; 83:4524-4537.e5. [PMID: 38052210 PMCID: PMC10790639 DOI: 10.1016/j.molcel.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
N-glycans act as quality control tags by recruiting lectin chaperones to assist protein maturation in the endoplasmic reticulum. The location and composition of N-glycans (glyco-code) are key to the chaperone-selection process. Serpins, a class of serine protease inhibitors, fold non-sequentially to achieve metastable active states. Here, the role of the glyco-code in assuring successful maturation and quality control of two human serpins, alpha-1 antitrypsin (AAT) and antithrombin III (ATIII), is described. We find that AAT, which has glycans near its N terminus, is assisted by early lectin chaperone binding. In contrast, ATIII, which has more C-terminal glycans, is initially helped by BiP and then later by lectin chaperones mediated by UGGT reglucosylation. UGGT action is increased for misfolding-prone disease variants, and these clients are preferentially glucosylated on their most C-terminal glycan. Our study illustrates how serpins utilize N-glycan presence, position, and composition to direct their proper folding, quality control, and trafficking.
Collapse
Affiliation(s)
- Kevin P Guay
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Haiping Ke
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nathan P Canniff
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gracie T George
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen J Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Institute for Applied Life Sciences, Mass Spectrometry Center, University of Massachusetts Amherst, Amherst, MA, USA
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Joseph N Contessa
- Departments of Therapeutic Radiology and Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA; Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
6
|
Pereira C, Stalder D, Anderson GS, Shun-Shion AS, Houghton J, Antrobus R, Chapman MA, Fazakerley DJ, Gershlick DC. The exocyst complex is an essential component of the mammalian constitutive secretory pathway. J Cell Biol 2023; 222:e202205137. [PMID: 36920342 PMCID: PMC10041652 DOI: 10.1083/jcb.202205137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 03/16/2023] Open
Abstract
Secreted proteins fulfill a vast array of functions, including immunity, signaling, and extracellular matrix remodeling. In the trans-Golgi network, proteins destined for constitutive secretion are sorted into post-Golgi carriers which fuse with the plasma membrane. The molecular machinery involved is poorly understood. Here, we have used kinetic trafficking assays and transient CRISPR-KO to study biosynthetic sorting from the Golgi to the plasma membrane. Depletion of all canonical exocyst subunits causes cargo accumulation in post-Golgi carriers. Exocyst subunits are recruited to and co-localize with carriers. Exocyst abrogation followed by kinetic trafficking assays of soluble cargoes results in intracellular cargo accumulation. Unbiased secretomics reveals impairment of soluble protein secretion after exocyst subunit knockout. Importantly, in specialized cell types, the loss of exocyst prevents constitutive secretion of antibodies in lymphocytes and of leptin in adipocytes. These data identify exocyst as the functional tether of secretory post-Golgi carriers at the plasma membrane and an essential component of the mammalian constitutive secretory pathway.
Collapse
Affiliation(s)
- Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Amber S. Shun-Shion
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jack Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Daniel J. Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
8
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
9
|
Mouse tissue glycome atlas 2022 highlights inter-organ variation in major N-glycan profiles. Sci Rep 2022; 12:17804. [PMID: 36280747 PMCID: PMC9592591 DOI: 10.1038/s41598-022-21758-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 01/19/2023] Open
Abstract
This study presents "mouse tissue glycome atlas" representing the profiles of major N-glycans of mouse glycoproteins that may define their essential functions in the surface glycocalyx of mouse organs/tissues and serum-derived extracellular vesicles (exosomes). Cell surface glycocalyx composed of a variety of N-glycans attached covalently to the membrane proteins, notably characteristic "N-glycosylation patterns" of the glycocalyx, plays a critical role for the regulation of cell differentiation, cell adhesion, homeostatic immune response, and biodistribution of secreted exosomes. Given that the integrity of cell surface glycocalyx correlates significantly with maintenance of the cellular morphology and homeostatic immune functions, dynamic alterations of N-glycosylation patterns in the normal glycocalyx caused by cellular abnormalities may serve as highly sensitive and promising biomarkers. Although it is believed that inter-organs variations in N-glycosylation patterns exist, information of the glycan diversity in mouse organs/tissues remains to be elusive. Here we communicate for the first-time N-glycosylation patterns of 16 mouse organs/tissues, serum, and serum-derived exosomes of Slc:ddY mice using an established solid-phase glycoblotting platform for the rapid, easy, and high throughput MALDI-TOFMS-based quantitative glycomics. The present results elicited occurrence of the organ/tissue-characteristic N-glycosylation patterns that can be discriminated to each other. Basic machine learning analysis using this N-glycome dataset enabled classification between 16 mouse organs/tissues with the highest F1 score (69.7-100%) when neural network algorithm was used. A preliminary examination demonstrated that machine learning analysis of mouse lung N-glycome dataset by random forest algorithm allows for the discrimination of lungs among the different mouse strains such as the outbred mouse Slc:ddY, inbred mouse DBA/2Crslc, and systemic lupus erythematosus model mouse MRL-lpr/lpr with the highest F1 score (74.5-83.8%). Our results strongly implicate importance of "human organ/tissue glycome atlas" for understanding the crucial and diversified roles of glycocalyx determined by the organ/tissue-characteristic N-glycosylation patterns and the discovery research for N-glycome-based disease-specific biomarkers and therapeutic targets.
Collapse
|
10
|
Bindila L, Eid T, Mills JD, Hildebrand MS, Brennan GP, Masino SA, Whittemore V, Perucca P, Reid CA, Patel M, Wang KK, van Vliet EA. A companion to the preclinical common data elements for proteomics, lipidomics, and metabolomics data in rodent epilepsy models. A report of the TASK3-WG4 omics working group of the ILAE/AES joint translational TASK force. Epilepsia Open 2022. [PMID: 36259125 DOI: 10.1002/epi4.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/19/2022] [Indexed: 11/07/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various preclinical epilepsy research disciplines. This is the second in a two-part series of omics papers, with the other including genomics, transcriptomics, and epigenomics. The aim of the CDEs was to improve the standardization of experimental designs across a range of epilepsy research-related methods. We have generated CDE tables with key parameters and case report forms (CRFs) containing the essential contents of the study protocols for proteomics, lipidomics, and metabolomics of samples from rodent models and people with epilepsy. We discuss the important elements that need to be considered for the proteomics, lipidomics, and metabolomics methodologies, providing a rationale for the parameters that should be documented.
Collapse
Affiliation(s)
- Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - James D Mills
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Gary P Brennan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Life Sciences Center, Trinity College, Hartford, Connecticut, USA
| | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Piero Perucca
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Austin Health, Heidelberg, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Christopher A Reid
- Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research (NNBR), Department of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Cheng B, Wang Q, Wei Z, He Y, Li R, Liu G, Zeng S, Meng Z. MHBSt 167 induced autophagy promote cell proliferation and EMT by activating the immune response in L02 cells. Virol J 2022; 19:110. [PMID: 35761331 PMCID: PMC9235077 DOI: 10.1186/s12985-022-01840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hepatitis B virus can induce hepatocellular carcinoma (HCC) by inducing a host immune response against infected hepatocytes. C-terminally truncated middle surface protein (MHBSt) has been reported to contribute to HCC through transcriptional activation in epidemiology studies, while the underlying mechanism of MHBSt-induced HCC is unknown. METHODS In this study, a premature stop at codon 167 in MHBS (MHBSt167) was investigated into eukaryotic expression plasmid pcDNA3.1(-). MHBSt167 expressed plasmid was transfected into the L02 cell line, cell proliferation was analyzed by CCK-8 and high-content screening assays, the cell cycle was analyzed by flow cytometry, and epithelial-to-mesenchymal transition and autophagy were analyzed by immunoblotting and immunofluorescence. NF-κB activation and the MHBSt167-induced immune response were analyzed by immunoblotting and immunofluorescence. IFN-α, IFN-β and IL-1α expression were analyzed by qPCR. Autophagy inhibitors were used to analyze the relationship between the immune response and autophagy. RESULTS The results showed that MHBSt167 promoted L02 cell proliferation, accelerated cell cycle progression from the S to G2 phase and promoted epithelial-to-mesenchymal transition through ER-stress, leading to autophagy and NF-κB activation and increased immune-related factor expression. The MHBSt167-induced acceleration of cell proliferation and the cell cycle was abolished by autophagy or NF-κB inhibitors. CONCLUSION In summary, MHBSt167 could promote cell proliferation, accelerate cell cycle progression, induce EMT and activate autophagy through ER-stress to induce the host immune response, supporting a potential role of MHBSt167 in contributing to carcinogenesis.
Collapse
Affiliation(s)
- Bin Cheng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Qiong Wang
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Yulin He
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Ruiming Li
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Guohua Liu
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China
| | - Shaobo Zeng
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, Hubei, China.
| |
Collapse
|
12
|
King R, Gallagher PJ, Khoriaty R. The congenital dyserythropoieitic anemias: genetics and pathophysiology. Curr Opin Hematol 2022; 29:126-136. [PMID: 35441598 PMCID: PMC9021540 DOI: 10.1097/moh.0000000000000697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The congenital dyserythropoietic anemias (CDA) are hereditary disorders characterized by ineffective erythropoiesis. This review evaluates newly developed CDA disease models, the latest advances in understanding the pathogenesis of the CDAs, and recently identified CDA genes. RECENT FINDINGS Mice exhibiting features of CDAI were recently generated, demonstrating that Codanin-1 (encoded by Cdan1) is essential for primitive erythropoiesis. Additionally, Codanin-1 was found to physically interact with CDIN1, suggesting that mutations in CDAN1 and CDIN1 result in CDAI via a common mechanism. Recent advances in CDAII (which results from SEC23B mutations) have also been made. SEC23B was found to functionally overlap with its paralogous protein, SEC23A, likely explaining the absence of CDAII in SEC23B-deficient mice. In contrast, mice with erythroid-specific deletion of 3 or 4 of the Sec23 alleles exhibited features of CDAII. Increased SEC23A expression rescued the CDAII erythroid defect, suggesting a novel therapeutic strategy for the disease. Additional recent advances included the identification of new CDA genes, RACGAP1 and VPS4A, in CDAIII and a syndromic CDA type, respectively. SUMMARY Establishing cellular and animal models of CDA is expected to result in improved understanding of the pathogenesis of these disorders, which may ultimately lead to the development of new therapies.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Patrick J. Gallagher
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
King R, Lin Z, Balbin-Cuesta G, Myers G, Friedman A, Zhu G, McGee B, Saunders TL, Kurita R, Nakamura Y, Engel JD, Reddy P, Khoriaty R. SEC23A rescues SEC23B-deficient congenital dyserythropoietic anemia type II. SCIENCE ADVANCES 2021; 7:eabj5293. [PMID: 34818036 PMCID: PMC8612686 DOI: 10.1126/sciadv.abj5293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/04/2021] [Indexed: 05/12/2023]
Abstract
Congenital dyserythropoietic anemia type II (CDAII) results from loss-of-function mutations in SEC23B. In contrast to humans, SEC23B-deficient mice deletion do not exhibit CDAII but die perinatally with pancreatic degeneration. Here, we demonstrate that expression of the full SEC23A protein (the SEC23B paralog) from the endogenous regulatory elements of Sec23b completely rescues the SEC23B-deficient mouse phenotype. Consistent with these data, while mice with erythroid-specific deletion of either Sec23a or Sec23b do not exhibit CDAII, we now show that mice with erythroid-specific deletion of all four Sec23 alleles die in mid-embryogenesis with features of CDAII and that mice with deletion of three Sec23 alleles exhibit a milder erythroid defect. To test whether the functional overlap between the SEC23 paralogs is conserved in human erythroid cells, we generated SEC23B-deficient HUDEP-2 cells. Upon differentiation, these cells exhibited features of CDAII, which were rescued by increased expression of SEC23A, suggesting a novel therapeutic strategy for CDAII.
Collapse
Affiliation(s)
- Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Gregg Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Beth McGee
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas L. Saunders
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
McCaul N, Quandte M, Bontjer I, van Zadelhoff G, Land A, Crooks ET, Binley JM, Sanders RW, Braakman I. Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Rep 2021; 36:109646. [PMID: 34469718 DOI: 10.1016/j.celrep.2021.109646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Removal of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed co-translationally, we report two additional post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves folding fidelity by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine. Simultaneously, the signal peptide delays folding by tethering the N terminus to the membrane, until assembly with the C terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine are both highly conserved and important for viral fitness. Considering the ∼15% proteins with signal peptides and the frequency of N-to-C contacts in protein structures, these regulatory roles of signal peptides are bound to be more common in secretory-protein biogenesis.
Collapse
Affiliation(s)
- Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
15
|
The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates. Biomolecules 2021; 11:biom11081185. [PMID: 34439852 PMCID: PMC8393694 DOI: 10.3390/biom11081185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
All proteins are subject to quality control processes during or soon after their synthesis, and these cellular quality control pathways play critical roles in maintaining homeostasis in the cell and in organism health. Protein quality control is particularly vital for those polypeptides that enter the endoplasmic reticulum (ER). Approximately one-quarter to one-third of all proteins synthesized in eukaryotic cells access the ER because they are destined for transport to the extracellular space, because they represent integral membrane proteins, or because they reside within one of the many compartments of the secretory pathway. However, proteins that mature inefficiently are subject to ER-associated degradation (ERAD), a multi-step pathway involving the chaperone-mediated selection, ubiquitination, and extraction (or “retrotranslocation”) of protein substrates from the ER. Ultimately, these substrates are degraded by the cytosolic proteasome. Interestingly, there is an increasing number of native enzymes and metabolite and solute transporters that are also targeted for ERAD. While some of these proteins may transiently misfold, the ERAD pathway also provides a route to rapidly and quantitatively downregulate the levels and thus the activities of a variety of proteins that mature or reside in the ER.
Collapse
|
16
|
Imai K, Nakai K. Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences. Front Genet 2020; 11:607812. [PMID: 33324450 PMCID: PMC7723863 DOI: 10.3389/fgene.2020.607812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
At the time of translation, nascent proteins are thought to be sorted into their final subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting or targeting signals). Thus, it is interesting to computationally recognize these signals from the amino acid sequences of any given proteins and to predict their final subcellular localization with such information, supplemented with additional information (e.g., k-mer frequency). This field has a long history and many prediction tools have been released. Even in this era of proteomic atlas at the single-cell level, researchers continue to develop new algorithms, aiming at accessing the impact of disease-causing mutations/cell type-specific alternative splicing, for example. In this article, we overview the entire field and discuss its future direction.
Collapse
Affiliation(s)
- Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kenta Nakai
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 2020; 66:116-128. [PMID: 31838023 PMCID: PMC7325862 DOI: 10.1016/j.semcancer.2019.11.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Cancer cells encounter numerous stresses that pose a threat to their survival. Tumor microenviroment stresses that perturb protein homeostasis can produce endoplasmic reticulum (ER) stress, which can be counterbalanced by triggering the unfolded protein response (UPR) which is considered the canonical ER stress response. The UPR is characterized by three major proteins that lead to specific changes in transcriptional and translational programs in stressed cells. Activation of the UPR can induce apoptosis, but also can induce cytoprotective programs such as autophagy. There is increasing appreciation for the role that UPR-induced autophagy plays in supporting tumorigenesis and cancer therapy resistance. More recently several new pathways that connect cell stresses, components of the UPR and autophagy have been reported, which together can be viewed as non-canonical ER stress responses. Here we review recent findings on the molecular mechanisms by which canonical and non-canonical ER stress responses can activate cytoprotective autophagy and contribute to tumor growth and therapy resistance. Autophagy has been identified as a druggable pathway, however the components of autophagy (ATG genes) have proven difficult to drug. It may be the case that targeting the UPR or non-canonical ER stress programs can more effectively block cytoprotective autophagy to enhance cancer therapy. A deeper understanding of these pathways could provide new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Rauter T, Burgstaller S, Gottschalk B, Ramadani-Muja J, Bischof H, Hay JC, Graier WF, Malli R. ER-to-Golgi Transport in HeLa Cells Displays High Resilience to Ca 2+ and Energy Stresses. Cells 2020; 9:E2311. [PMID: 33080790 PMCID: PMC7603030 DOI: 10.3390/cells9102311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
One third of all human proteins are either transmembrane or soluble secretory proteins that first target the endoplasmic reticulum (ER). These proteins subsequently leave the ER and enter the Golgi apparatus via ER-Golgi intermediate vesicular structures. Live-cell imaging of cargos fused to fluorescent proteins (FPs) enables the high-resolution visualization and characterization of secretory transport processes. Here, we performed fluorescence time-lapse imaging to assess the Ca2+ and energy dependency of ER-to-Golgi transport in living HeLa cells, a cancer cell model which has been well investigated. Our data revealed that ER-to-Golgi transport remained highly efficient in the absence of ATP-generating substrates, despite clear reductions in cytosolic and mitochondrial ATP levels under these energy stress conditions. However, cell treatment with 2-deoxy-D-glucose (2-DG), which severely diminished subcellular ATP levels, abolished ER-to-Golgi transport. Interestingly, while 2-DG elevated cytosolic Ca2+ levels and reduced long-distance movements of glycosylphosphatidylinositol (GPI)-positive vesicles, robust short-term ER Ca2+ mobilizations, which strongly affected the motility of these vesicles, did not considerably impair ER-to-Golgi transport. In summary, we highlight that ER-to-Golgi transport in HeLa cells remains functional despite high energy and Ca2+ stress levels.
Collapse
Affiliation(s)
- Thomas Rauter
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
| | - Sandra Burgstaller
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- Interfaculty Institute of Cell Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
| | - Jeta Ramadani-Muja
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
| | - Helmut Bischof
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Jesse C. Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS 302A, Missoula, MT 59812-4824, USA;
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (T.R.); (S.B.); (B.G.); (J.R.-M.); (H.B.); (W.F.G.)
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
19
|
Kim S, Reddy P. Targeting Signal 3 Extracellularly and Intracellularly in Graft-Versus-Host Disease. Front Immunol 2020; 11:722. [PMID: 32411139 PMCID: PMC7198807 DOI: 10.3389/fimmu.2020.00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) holds curative potential for many hematological disorders. However, the pathophysiology of the desired graft-versus-tumor effect is linked to life-threatening complications of acute graft-versus-host disease (GVHD). Allogeneic donor T lymphocytes are essential for causing GVHD, and their activation relies on the coordination of TCR engagement and co-stimulation, also known as Signal 1 and Signal 2. In addition to these signals, a network of secreted cytokines by immune cells provides a third signal, Signal 3, that is critical for the initiation and maintenance of GVHD. Strategies to target Signal 3 in human diseases have shown therapeutic benefit for inflammatory disorders such as Rheumatoid Arthritis and Inflammatory Bowel Disease. However, despite our growing understanding of their role in GVHD, the success of targeting individual cytokines has been modest with some notable exceptions. This review aims to describe current approaches toward targeting Signal 3 in clinical GVHD, and to highlight emerging studies in immune cell biology that may be harnessed for better clinical translation.
Collapse
Affiliation(s)
- Stephanie Kim
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem 2020; 295:8401-8412. [PMID: 32358066 PMCID: PMC7307210 DOI: 10.1074/jbc.ra120.012964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog–specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.
Collapse
Affiliation(s)
- David B Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sean Studer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
21
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
22
|
Martínez J, Marmisolle I, Tarallo D, Quijano C. Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Front Endocrinol (Lausanne) 2020; 11:319. [PMID: 32528413 PMCID: PMC7256191 DOI: 10.3389/fendo.2020.00319] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Secretion is an energy consuming process that plays a relevant role in cell communication and adaptation to the environment. Among others, endocrine cells producing hormones, immune cells producing cytokines or antibodies, neurons releasing neurotransmitters at synapsis, and more recently acknowledged, senescent cells synthesizing and secreting multiple cytokines, growth factors and proteases, require energy to successfully accomplish the different stages of the secretion process. Calcium ions (Ca2+) act as second messengers regulating secretion in many of these cases. In this setting, mitochondria appear as key players providing ATP by oxidative phosphorylation, buffering Ca2+ concentrations and acting as structural platforms. These tasks also require the concerted actions of the mitochondrial dynamics machinery. These proteins mediate mitochondrial fusion and fission, and are also required for transport and tethering of mitochondria to cellular organelles where the different steps of the secretion process take place. Herein we present a brief overview of mitochondrial energy metabolism, mitochondrial dynamics, and the different steps of the secretion processes, along with evidence of the interaction between these pathways. We also analyze the role of mitochondria in secretion by different cell types in physiological and pathological settings.
Collapse
|
23
|
Depaoli MR, Hay JC, Graier WF, Malli R. The enigmatic ATP supply of the endoplasmic reticulum. Biol Rev Camb Philos Soc 2018; 94:610-628. [PMID: 30338910 PMCID: PMC6446729 DOI: 10.1111/brv.12469] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.
Collapse
Affiliation(s)
- Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS410, Missoula, MT 59812-4824, U.S.A
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
24
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
25
|
Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A 2018; 115:E7748-E7757. [PMID: 30065114 DOI: 10.1073/pnas.1805784115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Approximately one-third of the mammalian proteome is transported from the endoplasmic reticulum-to-Golgi via COPII-coated vesicles. SEC23, a core component of coat protein-complex II (COPII), is encoded by two paralogous genes in vertebrates (Sec23a and Sec23b). In humans, SEC23B deficiency results in congenital dyserythropoietic anemia type-II (CDAII), while SEC23A deficiency results in a skeletal phenotype (with normal red blood cells). These distinct clinical disorders, together with previous biochemical studies, suggest unique functions for SEC23A and SEC23B. Here we show indistinguishable intracellular protein interactomes for human SEC23A and SEC23B, complementation of yeast Sec23 by both human and murine SEC23A/B, and rescue of the lethality of sec23b deficiency in zebrafish by a sec23a-expressing transgene. We next demonstrate that a Sec23a coding sequence inserted into the murine Sec23b locus completely rescues the lethal SEC23B-deficient pancreatic phenotype. We show that SEC23B is the predominantly expressed paralog in human bone marrow, but not in the mouse, with the reciprocal pattern observed in the pancreas. Taken together, these data demonstrate an equivalent function for SEC23A/B, with evolutionary shifts in the transcription program likely accounting for the distinct phenotypes of SEC23A/B deficiency within and across species, a paradigm potentially applicable to other sets of paralogous genes. These findings also suggest that enhanced erythroid expression of the normal SEC23A gene could offer an effective therapeutic approach for CDAII patients.
Collapse
|
26
|
Rody WJ, Krokhin O, Spicer V, Chamberlain CA, Chamberlain M, McHugh KP, Wallet SM, Emory AK, Crull JD, Holliday LS. The use of cell culture platforms to identify novel markers of bone and dentin resorption. Orthod Craniofac Res 2018. [PMID: 28643914 DOI: 10.1111/ocr.12162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES 1) To test the hypothesis that there would be proteomic differences in the composition of exosomes isolated from osteoclasts and odontoclasts and 2) to determine the clinical usefulness of these in vitro biomarker candidates. MATERIALS AND METHODS Mouse bone marrow-derived precursors were cultured on either dentin or bone slices and allowed to mature and begin resorption. Exosomes were isolated from cell culture media and characterized by mass spectrometry. The proteomic data obtained from this in vitro study were compared with the data obtained from human samples in our previous work. RESULTS There was a difference in the proteomic composition of exosomes from osteoclasts and odontoclasts. A total of 40 exosomal proteins were only present in osteoclast media, whereas six unique exosomal proteins were identified in odontoclast supernatants. Approximately 50% of exosomal proteins released by clastic cells in vitro can be found in oral fluids. CONCLUSION Our data suggest that the mineralized matrix type plays a role in the final phenotypic characteristics of mouse clastic cells. Many in vitro biomarker candidates of bone and dentin resorption can also be found in human oral fluids, thus indicating that this approach may be a viable alternative in biomarker discovery.
Collapse
Affiliation(s)
- W J Rody
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - O Krokhin
- Manitoba Center for Proteomics, Winnipeg, MB, Canada
| | - V Spicer
- Manitoba Center for Proteomics, Winnipeg, MB, Canada
| | - C A Chamberlain
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - M Chamberlain
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - K P McHugh
- Department of Periodontology, University of Florida, Gainesville, FL, USA
| | - S M Wallet
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - A K Emory
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| | - J D Crull
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - L S Holliday
- Department of Orthodontics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
28
|
Hwang J, Walczak CP, Shaler TA, Olzmann JA, Zhang L, Elias JE, Kopito RR. Characterization of protein complexes of the endoplasmic reticulum-associated degradation E3 ubiquitin ligase Hrd1. J Biol Chem 2017; 292:9104-9116. [PMID: 28411238 PMCID: PMC5454095 DOI: 10.1074/jbc.m117.785055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Hrd1 is the core structural component of a large endoplasmic reticulum membrane-embedded protein complex that coordinates the destruction of folding-defective proteins in the early secretory pathway. Defining the composition, dynamics, and ultimately, the structure of the Hrd1 complex is a crucial step in understanding the molecular basis of glycoprotein quality control but has been hampered by the lack of suitable techniques to interrogate this complex under native conditions. In this study we used genome editing to generate clonal HEK293 (Hrd1.KI) cells harboring a homozygous insertion of a small tandem affinity tag knocked into the endogenous Hrd1 locus. We found that steady-state levels of tagged Hrd1 in these cells are indistinguishable from those of Hrd1 in unmodified cells and that the tagged variant is functional in supporting the degradation of well characterized luminal and membrane substrates. Analysis of detergent-solubilized Hrd1.KI cells indicates that the composition and stoichiometry of Hrd1 complexes are strongly influenced by Hrd1 expression levels. Analysis of affinity-captured Hrd1 complexes from these cells by size-exclusion chromatography, immunodepletion, and absolute quantification mass spectrometry identified two major high-molecular-mass complexes with distinct sets of interacting proteins and variable stoichiometries, suggesting a hitherto unrecognized heterogeneity in the functional units of Hrd1-mediated protein degradation.
Collapse
Affiliation(s)
| | | | | | | | - Lichao Zhang
- Chemical and Systems Biology, Stanford University, Stanford, California 94305 and
| | - Joshua E Elias
- Chemical and Systems Biology, Stanford University, Stanford, California 94305 and
| | | |
Collapse
|
29
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, et alKanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Show More Authors] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
30
|
Abstract
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
Collapse
Affiliation(s)
- Charles Barlowe
- Biochemistry Department, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
31
|
Abstract
Endoplasmic Reticulum (ER) is an organelle where most secretory and membrane proteins are synthesized, folded, and undergo further maturation. As numerous conditions can perturb such ER function, eukaryotic cells are equipped with responsive signaling pathways, widely referred to as the Unfolded Protein Response (UPR). Chronic conditions of ER stress that cannot be fully resolved by UPR, or conditions that impair UPR signaling itself, are associated with many metabolic and degenerative diseases. In recent years, Drosophila has been actively employed to study such connections between UPR and disease. Notably, the UPR pathways are largely conserved between Drosophila and humans, and the mediating genes are essential for development in both organisms, indicating their requirement to resolve inherent stress. By now, many Drosophila mutations are known to impose stress in the ER, and a number of these appear similar to those that underlie human diseases. In addition, studies have employed the strategy of overexpressing human mutations in Drosophila tissues to perform genetic modifier screens. The fact that the basic UPR pathways are conserved, together with the availability of many human disease models in this organism, makes Drosophila a powerful tool for studying human disease mechanisms. [BMB Reports 2015; 48(8): 445-453]
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
32
|
Kim J, Kagawa A, Kurasaki K, Ataie N, Cho IK, Li QX, Ng HL. Large-scale identification of membrane proteins with properties favorable for crystallization. Protein Sci 2015; 24:1756-63. [PMID: 26257393 DOI: 10.1002/pro.2766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022]
Abstract
Membrane protein crystallography is notoriously difficult due to challenges in protein expression and issues of degradation and structural stability. We have developed a novel method for large-scale screening of native sources for integral membrane proteins that have intrinsic biochemical properties favorable for crystallization. Highly expressed membrane proteins that are thermally stable and nonaggregating in detergent solutions were identified by mass spectrometry from Escherichia coli, Saccharomyces cerevisiae, and Sus scrofa cerebrum. Many of the membrane proteins identified had been crystallized previously, supporting the promise of the approach. Most identified proteins have known functions and include high-value targets such as transporters and ATPases. To validate the method, we recombinantly expressed and purified the yeast protein, Yop1, which is responsible for endoplasmic reticulum curvature. We demonstrate that Yop1 can be purified with the detergent dodecylmaltoside without aggregating.
Collapse
Affiliation(s)
- Jared Kim
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Allison Kagawa
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Kellie Kurasaki
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Niloufar Ataie
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Il Kyu Cho
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| | - Ho Leung Ng
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822.,University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, 96822
| |
Collapse
|
33
|
Chen W, Smeekens JM, Wu R. Systematic and site-specific analysis of N-sialoglycosylated proteins on the cell surface by integrating click chemistry and MS-based proteomics. Chem Sci 2015; 6:4681-4689. [PMID: 29142707 PMCID: PMC5667505 DOI: 10.1039/c5sc01124h] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 05/26/2015] [Indexed: 01/02/2023] Open
Abstract
Glycoproteins on the cell surface are ubiquitous and essential for cells to interact with the extracellular matrix, communicate with other cells, and respond to environmental cues. Although surface sialoglycoproteins can dramatically impact cell properties and represent different cellular statuses, global and site-specific analysis of sialoglycoproteins only on the cell surface is extraordinarily challenging. An effective method integrating metabolic labeling, copper-free click chemistry and mass spectrometry-based proteomics was developed to globally and site-specifically analyze surface N-sialoglycoproteins. Surface sialoglycoproteins metabolically labeled with a functional group were specifically tagged through copper-free click chemistry, which is ideal because it is quick, specific and occurs under physiological conditions. Sequentially tagged sialoglycoproteins were enriched for site-specific identification by mass spectrometry. Systematic and quantitative analysis of the surface N-sialoglycoproteome in cancer cells with distinctive invasiveness demonstrated many N-sialoglycoproteins up-regulated in invasive cells, the majority of which contained cell adhesion-related domains. This method is very effective to globally and site-specifically analyze N-sialoglycoproteins on the cell surface, and will have extensive applications in the biological and biomedical research communities. Site-specific information regarding surface sialoglycoproteins can serve as biomarkers for disease detection, targets for vaccine development and drug treatment.
Collapse
Affiliation(s)
- Weixuan Chen
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| | - Johanna M Smeekens
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , USA . ; ; Tel: +1-404-385-1515
| |
Collapse
|
34
|
Ma ZX, Leng YJ, Chen GX, Zhou PM, Ye D, Chen LQ. The THERMOSENSITIVE MALE STERILE 1 Interacts with the BiPs via DnaJ Domain and Stimulates Their ATPase Enzyme Activities in Arabidopsis. PLoS One 2015; 10:e0132500. [PMID: 26186593 PMCID: PMC4505944 DOI: 10.1371/journal.pone.0132500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
The Arabidopsis TMS1 encodes a heat shock protein identical to the Hsp40 protein AtERdj3A and plays important roles in the thermotolerance of pollen tubes and other plant tissues. Despite its importance to plant growth and reproduction, little has been known about its mechanisms underlying thermotolerance of plants. In this study, the relationship between TMS1 and the Hsp70 proteins, Binding Immunoglobulin Proteins (BiPs) was explored to understand the molecular mechanisms of TMS1 in thermotolerance of plants. The expression of TMS1 was induced not only by heat shock, but also by dithiothreitol (DTT) and L-azetidine-2-carboxylic acid (AZC), similarly to the three BiP genes, indicating that TMS1 may be involved in unfolded protein response (UPR). The firefly luciferase complementary imaging (LCI), GST pull-down and ATPase enzyme activity assays demonstrated that the DnaJ domain of TMS1 could interact with BiP1 and BiP3, and could stimulate their ATPase enzyme activities. In addition, the expression level of TMS1 was reduced in the bzip28 bzip60 double mutant. These results suggest that TMS1 may function at the downstream of bZIP28 and bZIP60 and be involved in termotolerance of plants, possibly by participating in refolding or degradation of unfolded and misfolded proteins through interaction with the BiPs.
Collapse
Affiliation(s)
- Zhao-Xia Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ya-Jun Leng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guang-Xia Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng-Min Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Center for Plant Gene Research (Beijing), Beijing, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Genome-wide RNAi screen reveals a role for multipass membrane proteins in endosome-to-golgi retrieval. Cell Rep 2014; 9:1931-1945. [PMID: 25464851 PMCID: PMC4542293 DOI: 10.1016/j.celrep.2014.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 10/17/2014] [Indexed: 11/22/2022] Open
Abstract
Endosome-to-Golgi retrieval is an essential membrane trafficking pathway required for many important physiological processes and linked to neurodegenerative disease and infection by bacterial and viral pathogens. The prototypical cargo protein for this pathway is the cation-independent mannose 6-phosphate receptor (CIMPR), which delivers lysosomal hydrolases to endosomes. Efficient retrieval of CIMPR to the Golgi requires the retromer complex, but other aspects of the endosome-to-Golgi retrieval pathway are poorly understood. Employing an image-based antibody-uptake assay, we conducted a genome-wide RNAi loss-of-function screen for novel regulators of this trafficking pathway and report ∼90 genes that are required for endosome-to-Golgi retrieval of a CD8-CIMPR reporter protein. Among these regulators of endosome-to-Golgi retrieval are a number of multipass membrane-spanning proteins, a class of proteins often overlooked with respect to a role in membrane trafficking. We further demonstrate a role for three multipass membrane proteins, SFT2D2, ZDHHC5, and GRINA, in endosome-to-Golgi retrieval.
Collapse
|
36
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones and oxidoreductases: critical regulators of tumor cell survival and immunorecognition. Front Oncol 2014; 4:291. [PMID: 25386408 PMCID: PMC4209815 DOI: 10.3389/fonc.2014.00291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/07/2014] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed “bulk flow,” ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER by their substrates. Solid tumors are characterized by the increased production of reactive oxygen species (ROS), combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response upregulate their target genes. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the folding of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an “eat-me” signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI), Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Tomás Gutiérrez
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
37
|
Heo S, Spoerk S, Birner-Gruenberger R, Lubec G. Gel-based mass spectrometric analysis of hippocampal transmembrane proteins using high resolution LTQ Orbitrap Velos Pro. Proteomics 2014; 14:2084-8. [DOI: 10.1002/pmic.201400077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/13/2014] [Accepted: 07/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Seok Heo
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| | - Stefan Spoerk
- Institute of Pathology; Medical University of Graz; Core Facility Mass Spectrometry; Center for Medical Research; BioTechMed Omics Center Graz; Graz Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology; Medical University of Graz; Core Facility Mass Spectrometry; Center for Medical Research; BioTechMed Omics Center Graz; Graz Austria
| | - Gert Lubec
- Department of Pediatrics; Medical University of Vienna; Vienna Austria
| |
Collapse
|
38
|
Absence of a red blood cell phenotype in mice with hematopoietic deficiency of SEC23B. Mol Cell Biol 2014; 34:3721-34. [PMID: 25071156 DOI: 10.1128/mcb.00287-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Congenital dyserythropoietic anemia type II (CDAII) is an autosomal recessive disease of ineffective erythropoiesis characterized by increased bi/multinucleated erythroid precursors in the bone marrow. CDAII results from mutations in SEC23B. The SEC23 protein is a core component of coat protein complex II-coated vesicles, which transport secretory proteins from the endoplasmic reticulum to the Golgi apparatus. Though the genetic defect underlying CDAII has been identified, the pathophysiology of this disease remains unknown. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration, with this early mortality limiting evaluation of the adult hematopoietic compartment. We now report that mice with SEC23B deficiency restricted to the hematopoietic compartment survive normally and do not exhibit anemia or other CDAII characteristics. We also demonstrate that SEC23B-deficient hematopoietic stem cells (HSC) do not exhibit a disadvantage at reconstituting hematopoiesis when compared directly to wild-type HSC in a competitive repopulation assay. Secondary bone marrow transplants demonstrated continued equivalence of SEC23B-deficient and WT HSC in their hematopoietic reconstitution potential. The surprising discordance in phenotypes between SEC23B-deficient mice and humans may reflect an evolutionary shift in SEC23 paralog function and/or expression, or a change in a specific COPII cargo critical for erythropoiesis.
Collapse
|
39
|
Nilsson I, Lara P, Hessa T, Johnson AE, von Heijne G, Karamyshev AL. The code for directing proteins for translocation across ER membrane: SRP cotranslationally recognizes specific features of a signal sequence. J Mol Biol 2014; 427:1191-201. [PMID: 24979680 DOI: 10.1016/j.jmb.2014.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
The signal recognition particle (SRP) cotranslationally recognizes signal sequences of secretory proteins and targets ribosome-nascent chain complexes to the SRP receptor in the endoplasmic reticulum membrane, initiating translocation of the nascent chain through the Sec61 translocon. Although signal sequences do not have homology, they have similar structural regions: a positively charged N-terminus, a hydrophobic core and a more polar C-terminal region that contains the cleavage site for the signal peptidase. Here, we have used site-specific photocrosslinking to study SRP-signal sequence interactions. A photoreactive probe was incorporated into the middle of wild-type or mutated signal sequences of the secretory protein preprolactin by in vitro translation of mRNAs containing an amber-stop codon in the signal peptide in the presence of the N(ε)-(5-azido-2 nitrobenzoyl)-Lys-tRNA(amb) amber suppressor. A homogeneous population of SRP-ribosome-nascent chain complexes was obtained by the use of truncated mRNAs in translations performed in the presence of purified canine SRP. Quantitative analysis of the photoadducts revealed that charged residues at the N-terminus of the signal sequence or in the early part of the mature protein have only a mild effect on the SRP-signal sequence association. However, deletions of amino acid residues in the hydrophobic portion of the signal sequence severely affect SRP binding. The photocrosslinking data correlate with targeting efficiency and translocation across the membrane. Thus, the hydrophobic core of the signal sequence is primarily responsible for its recognition and binding by SRP, while positive charges fine-tune the SRP-signal sequence affinity and targeting to the translocon.
Collapse
Affiliation(s)
- IngMarie Nilsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Patricia Lara
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Tara Hessa
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Arthur E Johnson
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden
| | - Andrey L Karamyshev
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA.
| |
Collapse
|
40
|
Sun B, Hood L. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 2014; 13:2705-14. [PMID: 24754784 PMCID: PMC4053080 DOI: 10.1021/pr500187g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The advent of proteomics technology
has transformed our understanding
of biological membranes. The challenges for studying membrane proteins
have inspired the development of many analytical and bioanalytical
tools, and the techniques of glycoproteomics have emerged as an effective
means to enrich and characterize membrane and plasma-membrane proteomes.
This Review summarizes the development of various glycoproteomics
techniques to overcome the hurdles formed by the unique structures
and behaviors of membrane proteins with a focus on N-glycoproteomics.
Example contributions of N-glycoproteomics to the understanding of
membrane biology are provided, and the areas that require future technical
breakthroughs are discussed.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | | |
Collapse
|
41
|
Merkley ED, Metz TO, Smith RD, Baynes JW, Frizzell N. The succinated proteome. MASS SPECTROMETRY REVIEWS 2014; 33:98-109. [PMID: 24115015 PMCID: PMC4038156 DOI: 10.1002/mas.21382] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/27/2013] [Indexed: 06/01/2023]
Abstract
The post-translational modifications (PTMs) of cysteine residues include oxidation, S-glutathionylation, S-nitrosylation, and succination, all of which modify protein function or turnover in response to a changing intracellular redox environment. Succination is a chemical modification of cysteine in proteins by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in 3T3 adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes in mice. Increased succination of proteins is also detected in the kidney of a fumarase deficient conditional knock-out mouse which develops renal cysts. A wide range of proteins are subject to succination, including enzymes, adipokines, cytoskeletal proteins, and ER chaperones with functional cysteine residues. There is also some overlap between succinated and glutathionylated proteins, suggesting that the same low pKa thiols are targeted by both. Succination of adipocyte proteins in diabetes increases as a result of nutrient excess derived mitochondrial stress and this is inhibited by uncouplers, which discharge the mitochondrial membrane potential (ΔΨm) and relieve the electron transport chain. 2SC therefore serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes, and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic PTM of proteins by proteomics approaches.
Collapse
Affiliation(s)
- Eric D. Merkley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - John W. Baynes
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, South Carolina
| | - Norma Frizzell
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, South Carolina
| |
Collapse
|
42
|
Baines AC, Adams EJ, Zhang B, Ginsburg D. Disruption of the Sec24d gene results in early embryonic lethality in the mouse. PLoS One 2013; 8:e61114. [PMID: 23596517 PMCID: PMC3626607 DOI: 10.1371/journal.pone.0061114] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.
Collapse
Affiliation(s)
- Andrea C. Baines
- Johns Hopkins Bayview Internal Medicine Residency Program, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth J. Adams
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Internal Medicine, Human Genetics, and Pediatrics and the Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proc Natl Acad Sci U S A 2013; 110:3393-8. [PMID: 23401531 DOI: 10.1073/pnas.1300328110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a constitutive process that identifies misfolded proteins in the ER and shuttles them to the cytosol, where they can be degraded by the proteasome. The accumulation of misfolded proteins can be catastrophic at both the cellular and organismal level. Although the players involved and mechanistic details of ERAD are being characterized, much remains to be learned. Because of the complexity of the pathway, experimental studies generally require labor-intensive biochemical techniques. Here, we report the development of a system to analyze ERAD based on mutants of split or intact Venus fluorescent protein for which fluorescence depends on enzymatic deglycosylation. We have generated variants that only become fluorescent when they are first glycosylated in the ER and subsequently deglycosylated after retrotranslocation into the cytosol. The E3 ubiquitin ligase HMG-coA reductase degradation 1 homolog (Hrd1) and, consistent with the demonstrated glycosylation/deglycosylation requirement, the cytosolic deglycosylating enzyme peptide:N'glycanase are both required for fluorescence. Furthermore, although these deglycosylation-dependent fluorescent proteins are themselves ERAD substrates, they can also be fused to additional ERAD substrates to interrogate substrate-specific pathways. To validate the system we performed a genomewide siRNA screen that successfully identified known ERAD factors such as Hrd1; homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1 (HERP); sel-1 suppressor of lin-12-like (SEL1L); and p97. These tools should greatly facilitate the identification of ERAD components and investigation of the mechanisms involved in this critical pathway.
Collapse
|
44
|
Vuckovic D, Dagley LF, Purcell AW, Emili A. Membrane proteomics by high performance liquid chromatography-tandem mass spectrometry: Analytical approaches and challenges. Proteomics 2013; 13:404-23. [DOI: 10.1002/pmic.201200340] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/24/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Dajana Vuckovic
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| | - Laura F. Dagley
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Victoria Australia
| | - Andrew Emili
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto ON Canada
| |
Collapse
|
45
|
Iwata Y, Koizumi N. Plant transducers of the endoplasmic reticulum unfolded protein response. TRENDS IN PLANT SCIENCE 2012; 17:720-7. [PMID: 22796463 DOI: 10.1016/j.tplants.2012.06.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/21/2012] [Accepted: 06/27/2012] [Indexed: 05/20/2023]
Abstract
The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response.
Collapse
Affiliation(s)
- Yuji Iwata
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
46
|
Abstract
The unfolded protein response (UPR) activates a set of genes to overcome accumulation of unfolded proteins in the endoplasmic reticulum (ER), a condition termed ER stress, and constitutes an essential part of ER protein quality control that ensures efficient maturation of secretory and membrane proteins in eukaryotes. Recent studies on Arabidopsis and rice identified the signaling pathway in which the ER membrane-localized ribonuclease IRE1 (inositol-requiring enzyme 1) catalyzes unconventional cytoplasmic splicing of mRNA, thereby producing the active transcription factor Arabidopsis bZIP60 (basic leucine zipper 60) and its ortholog in rice. Here we review recent findings identifying the molecular components of the plant UPR, including IRE1/bZIP60 and the membrane-bound transcription factors bZIP17 and bZIP28, and implicating its importance in several physiological phenomena such as pathogen response.
Collapse
Affiliation(s)
- Yuji Iwata
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
47
|
Abstract
In a complex multicellular organism, different cell types engage in specialist functions, and as a result, the secretory output of cells and tissues varies widely. Whereas some quiescent cell types secrete minor amounts of proteins, tissues like the pancreas, producing insulin and other hormones, and mature B cells, producing antibodies, place a great demand on their endoplasmic reticulum (ER). Our understanding of how protein secretion in general is controlled in the ER is now quite sophisticated. However, there remain gaps in our knowledge, particularly when applying insight gained from model systems to the more complex situations found in vivo. This article describes recent advances in our understanding of the ER and its role in preparing proteins for secretion, with an emphasis on glycoprotein quality control and pathways of disulfide bond formation.
Collapse
Affiliation(s)
- Adam M Benham
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
48
|
Hagiwara M, Nagata K. Redox-dependent protein quality control in the endoplasmic reticulum: folding to degradation. Antioxid Redox Signal 2012; 16:1119-28. [PMID: 22229892 DOI: 10.1089/ars.2011.4495] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Nascent polypeptides entering the endoplasmic reticulum (ER) are co- and post-translationally modified by N-glycosylation and the oxidation/isomerization of cysteine residues followed by folding with the aid of molecular chaperones. Only properly folded proteins reach their final destination. The oxidative environment in the ER enables ER-resident oxidoreductases to facilitate disulfide bond formation, which stabilizes protein structures. ER oxidoreductases involve in both the productive folding of newly synthesized proteins and ER-associated degradation (ERAD) of misfolded proteins. RECENT ADVANCES The ER luminal event of ERAD is composed of three major steps: the recognition and segregation of terminally misfolded proteins from folding intermediates, unfolding of misfolded substrates by oxidoreductases that cleave the disulfide bonds to enable the translocation of the substrates through the retrotranslocation channel, and transport of substrates to be degraded to the dislocon channel. The factors required for these three critical steps have been found to form a supramolecular complex in the ER. CRITICAL ISSUES This complex comprises EDEM1, a lectin-like molecule that recognizes mannose-trimming and segregates the identified substrates from the productive folding pathway into the degradation pathway; ER DnaJ (ERdj)5, a reductase that resides in the ER and reduces disulfides in misfolded proteins; and immunoglobulin heavy chain binding protein (BiP), an heat shock protein (Hsp)70 family molecular chaperone that recruits substrates to the dislocon channel after dissociation from the EDEM1/ERdj5 complex coupled with ATP hydrolysis. FUTURE DIRECTIONS The importance of disulfide bond reduction in misfolded proteins for retrotranslocation through the dislocon channel will be discussed by comparing the function of ERdj5 with that of other oxidoreductases in the ER.
Collapse
Affiliation(s)
- Masatoshi Hagiwara
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto-City, Japan
| | | |
Collapse
|
49
|
Abstract
Multiple diseases, hematologic and nonhematologic, result from defects in the early secretory pathway. Congenital dyserythropoietic anemia type II (CDAII) and combined deficiency of coagulation factors V and VIII (F5F8D) are the 2 known hematologic diseases that result from defects in the endoplasmic reticulum (ER)-to-Golgi transport system. CDAII is caused by mutations in the SEC23B gene, which encodes a core component of the coat protein complex II (COPII). F5F8D results from mutations in either LMAN1 (lectin mannose-binding protein 1) or MCFD2 (multiple coagulation factor deficiency protein 2), which encode the ER cargo receptor complex LMAN1-MCFD2. These diseases and their molecular pathogenesis are the focus of this review.
Collapse
|
50
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|