1
|
Donlon J, Kumari P, Varghese SP, Bai M, Florentin OD, Frost ED, Banks J, Vadlapatla N, Kam O, Shad MU, Rahman S, Abulseoud OA, Stone TW, Koola MM. Integrative Pharmacology in the Treatment of Substance Use Disorders. J Dual Diagn 2024; 20:132-177. [PMID: 38117676 DOI: 10.1080/15504263.2023.2293854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The detrimental physical, mental, and socioeconomic effects of substance use disorders (SUDs) have been apparent to the medical community for decades. However, it has become increasingly urgent in recent years to develop novel pharmacotherapies to treat SUDs. Currently, practitioners typically rely on monotherapy. Monotherapy has been shown to be superior to no treatment at all for most substance classes. However, many randomized controlled trials (RCTs) have revealed that monotherapy leads to poorer outcomes when compared with combination treatment in all specialties of medicine. The results of RCTs suggest that monotherapy frequently fails since multiple dysregulated pathways, enzymes, neurotransmitters, and receptors are involved in the pathophysiology of SUDs. As such, research is urgently needed to determine how various neurobiological mechanisms can be targeted by novel combination treatments to create increasingly specific yet exceedingly comprehensive approaches to SUD treatment. This article aims to review the neurobiology that integrates many pathophysiologic mechanisms and discuss integrative pharmacology developments that may ultimately improve clinical outcomes for patients with SUDs. Many neurobiological mechanisms are known to be involved in SUDs including dopaminergic, nicotinic, N-methyl-D-aspartate (NMDA), and kynurenic acid (KYNA) mechanisms. Emerging evidence indicates that KYNA, a tryptophan metabolite, modulates all these major pathophysiologic mechanisms. Therefore, achieving KYNA homeostasis by harmonizing integrative pathophysiology and pharmacology could prove to be a better therapeutic approach for SUDs. We propose KYNA-NMDA-α7nAChRcentric pathophysiology, the "conductor of the orchestra," as a novel approach to treat many SUDs concurrently. KYNA-NMDA-α7nAChR pathophysiology may be the "command center" of neuropsychiatry. To date, extant RCTs have shown equivocal findings across comparison conditions, possibly because investigators targeted single pathophysiologic mechanisms, hit wrong targets in underlying pathophysiologic mechanisms, and tested inadequate monotherapy treatment. We provide examples of potential combination treatments that simultaneously target multiple pathophysiologic mechanisms in addition to KYNA. Kynurenine pathway metabolism demonstrates the greatest potential as a target for neuropsychiatric diseases. The investigational medications with the most evidence include memantine, galantamine, and N-acetylcysteine. Future RCTs are warranted with novel combination treatments for SUDs. Multicenter RCTs with integrative pharmacology offer a promising, potentially fruitful avenue to develop novel therapeutics for the treatment of SUDs.
Collapse
Affiliation(s)
- Jack Donlon
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Pooja Kumari
- Community Living Trent Highlands, Peterborough, Canada
| | - Sajoy P Varghese
- Addiction Recovery Treatment Services, Veterans Affairs Northern California Health Care System, University of California, Davis, Sacramento, California, USA
| | - Michael Bai
- Columbia University, New York, New York, USA
| | - Ori David Florentin
- Department of Psychiatry, Westchester Medical Center, Valhalla, New York, USA
| | - Emma D Frost
- Department of Neurology, Cooper University Health Care, Camden, New Jersey, USA
| | - John Banks
- Talkiatry Mental Health Clinic, New York, New York, USA
| | - Niyathi Vadlapatla
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia, USA
| | - Olivia Kam
- Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| | - Mujeeb U Shad
- Department of Psychiatry, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota, USA
| | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Alix School of Medicine at Mayo Clinic, Phoenix, Arizona, USA
| | - Trevor W Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
2
|
Asim M, Wang H, Chen X. Shedding light on cholecystokinin's role in hippocampal neuroplasticity and memory formation. Neurosci Biobehav Rev 2024; 159:105615. [PMID: 38437975 DOI: 10.1016/j.neubiorev.2024.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The hippocampus is a crucial brain region involved in the process of forming and consolidating memories. Memories are consolidated in the brain through synaptic plasticity, and a key mechanism underlying this process is called long-term potentiation (LTP). Recent research has shown that cholecystokinin (CCK) plays a role in facilitating the formation of LTP, as well as learning and memory consolidation. However, the specific mechanisms by which CCK is involved in hippocampal neuroplasticity and memory formation are complicated or poorly understood. This literature review aims to explore the role of LTP in memory formation, particularly in relation to hippocampal memory, and to discuss the implications of CCK and its receptors in the formation of hippocampal memories. Additionally, we will examine the circuitry of CCK in the hippocampus and propose potential CCK-dependent mechanisms of synaptic plasticity that contribute to memory formation.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
3
|
Socha J, Grochecki P, Smaga I, Jastrzębska J, Wronikowska-Denysiuk O, Marszalek-Grabska M, Slowik T, Kotlinski R, Filip M, Lubec G, Kotlinska JH. Social Interaction in Adolescent Rats with Neonatal Ethanol Exposure: Impact of Sex and CE-123, a Selective Dopamine Reuptake Inhibitor. Int J Mol Sci 2024; 25:1041. [PMID: 38256113 PMCID: PMC10816180 DOI: 10.3390/ijms25021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| |
Collapse
|
4
|
Tse D, Privitera L, Norton AC, Gobbo F, Spooner P, Takeuchi T, Martin SJ, Morris RGM. Cell-type-specific optogenetic stimulation of the locus coeruleus induces slow-onset potentiation and enhances everyday memory in rats. Proc Natl Acad Sci U S A 2023; 120:e2307275120. [PMID: 37931094 PMCID: PMC10655220 DOI: 10.1073/pnas.2307275120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.
Collapse
Affiliation(s)
- Dorothy Tse
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
- Department of Psychology, Edge Hill University, OmskirkL39 4QP, United Kingdom
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
- School of Systems Medicine, University of Dundee, DundeeDD1 4HN, United Kingdom
- Barts and the London School of Medicine, Institute of Health Sciences Education, Queen Mary University of London Malta Campus, VictoriaVCT 2570, Malta
| | - Anna C. Norton
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Patrick Spooner
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| | - Tomonori Takeuchi
- Danish Research Institute of Translational Neuroscience, Nordic-European Molecular Biology Laboratory Partnership for Molecular Medicine, Aarhus University, Aarhus8000, Denmark
- Center for Proteins in Memory, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Aarhus8000, Denmark
| | - Stephen J. Martin
- School of Systems Medicine, University of Dundee, DundeeDD1 4HN, United Kingdom
| | - Richard G. M. Morris
- Centre for Discovery Brain Sciences, Edinburgh Neuroscience, University of Edinburgh, EdinburghEH8 9JZ, United Kingdom
| |
Collapse
|
5
|
Kim HH, Lee SH, Ho WK, Eom K. Dopamine Receptor Supports the Potentiation of Intrinsic Excitability and Synaptic LTD in Temporoammonic-CA1 Synapse. Exp Neurobiol 2022; 31:361-375. [PMID: 36631845 PMCID: PMC9841748 DOI: 10.5607/en22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Dopaminergic projection to the hippocampus from the ventral tegmental area or locus ceruleus has been considered to play an essential role in the acquisition of novel information. Hence, the dopaminergic modulation of synaptic plasticity in the hippocampus has been widely studied. We examined how the D1 and D2 receptors influenced the mGluR5-mediated synaptic plasticity of the temporoammonic-CA1 synapses and showed that the dopaminergic modulation of the temporoammonic-CA1 synapses was expressed in various ways. Our findings suggest that the dopaminergic system in the hippocampal CA1 region regulates the long-term synaptic plasticity and processing of the novel information.
Collapse
Affiliation(s)
- Hye-Hyun Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea,Neuroscience Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea,Neuroscience Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea,Neuroscience Research Center, Seoul National University College of Medicine, Seoul 03080, Korea,Won-Kyung Ho, TEL: 82-2-740-8226, FAX: 82-2-763-9667, e-mail:
| | - Kisang Eom
- Department of Physiology, School of Medicine, Keimyung University, Daegu 42601, Korea,To whom correspondence should be addressed. Kisang Eom, TEL: 82-53-258-7416, FAX: 82-53-258-7412, e-mail:
| |
Collapse
|
6
|
Acute gut inflammation reduces neural activity and spine maturity in hippocampus but not basolateral amygdala. Sci Rep 2022; 12:20169. [PMID: 36418891 PMCID: PMC9684565 DOI: 10.1038/s41598-022-24245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Gastrointestinal tract (gut) inflammation increases stress and threat-coping behaviors, which are associated with altered activity in fear-related neural circuits, such as the basolateral amygdala and hippocampus. It remains to be determined whether inflammation from the gut affects neural activity by altering dendritic spines. We hypothesized that acute inflammation alters dendritic spines in a brain region-specific manner. Here we show that acute gut inflammation (colitis) evoked by dextran sodium sulfate (DSS) did not affect the overall spine density in the CA1 region of hippocampus, but increased the relative proportion of immature spines to mature spines on basal dendrites of pyramidal neurons. In contrast, in animals with colitis, no changes in spine density or composition on dendrites of pyramidal cells was observed in the basolateral amygdala. Rather, we observed decreased spine density on dendrites of stellate neurons, but not the relative proportions of mature vs immature spines. We used cFos expression evoked by the forced swim task as a measure of neural activity during stress and found no effect of DSS on the density of cFos immunoreactive neurons in basolateral amygdala. In contrast, fewer CA1 neurons expressed cFos in mice with colitis, relative to controls. Furthermore, CA1 cFos expression negatively correlated with active stress-coping in the swim task and was negatively correlated with gut inflammation. These data reveal that the effects of acute gut inflammation on synaptic remodeling depend on brain region, neuronal phenotype, and dendrite location. In the hippocampus, a shift to immature spines and hypoactivity are more strongly related to colitis-evoked behavioral changes than is remodeling in basolateral amygdala.
Collapse
|
7
|
Lehr AB, Luboeinski J, Tetzlaff C. Neuromodulator-dependent synaptic tagging and capture retroactively controls neural coding in spiking neural networks. Sci Rep 2022; 12:17772. [PMID: 36273097 PMCID: PMC9588040 DOI: 10.1038/s41598-022-22430-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 01/19/2023] Open
Abstract
Events that are important to an individual's life trigger neuromodulator release in brain areas responsible for cognitive and behavioral function. While it is well known that the presence of neuromodulators such as dopamine and norepinephrine is required for memory consolidation, the impact of neuromodulator concentration is, however, less understood. In a recurrent spiking neural network model featuring neuromodulator-dependent synaptic tagging and capture, we study how synaptic memory consolidation depends on the amount of neuromodulator present in the minutes to hours after learning. We find that the storage of rate-based and spike timing-based information is controlled by the level of neuromodulation. Specifically, we find better recall of temporal information for high levels of neuromodulation, while we find better recall of rate-coded spatial patterns for lower neuromodulation, mediated by the selection of different groups of synapses for consolidation. Hence, our results indicate that in minutes to hours after learning, the level of neuromodulation may alter the process of synaptic consolidation to ultimately control which type of information becomes consolidated in the recurrent neural network.
Collapse
Affiliation(s)
- Andrew B. Lehr
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Jannik Luboeinski
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- grid.7450.60000 0001 2364 4210Department of Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Department of Computational Synaptic Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules 2022; 12:biom12070881. [PMID: 35883437 PMCID: PMC9312958 DOI: 10.3390/biom12070881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson’s and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.
Collapse
|
9
|
Krzystyniak A, Wesierska M, Petrazzo G, Gadecka A, Dudkowska M, Bielak-Zmijewska A, Mosieniak G, Figiel I, Wlodarczyk J, Sikora E. Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging (Albany NY) 2022; 14:572-595. [PMID: 35042834 PMCID: PMC8833137 DOI: 10.18632/aging.203835] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Aging is associated with cognitive decline and accumulation of senescent cells in various tissues and organs. Senolytic agents such as dasatinib and quercetin (D+Q) in combination have been shown to target senescent cells and ameliorate symptoms of aging-related disorders in mouse models. However, the mechanisms by which senolytics improve cognitive impairments have not been fully elucidated particularly in species other than mice. To study the effect of senolytics on aging-related multifactorial cognitive dysfunctions we tested the spatial memory of male Wistar rats in an active allothetic place avoidance task. Here we report that 8 weeks treatment with D+Q alleviated learning deficits and memory impairment observed in aged animals. Furthermore, treatment with D+Q resulted in a reduction of the peripheral inflammation measured by the levels of serum inflammatory mediators (including members of senescent cell secretome) in aged rats. Significant improvements in cognitive abilities observed in aged rats upon treatment with D+Q were associated with changes in the dendritic spine morphology of the apical dendritic tree from the hippocampal CA1 neurons and changes in the level of histone H3 trimethylation at lysine 9 and 27 in the hippocampus. The beneficial effects of D+Q on learning and memory in aged rats were long-lasting and persisted at least 5 weeks after the cessation of the drugs administration. Our results expand and provide new insights to the existing knowledge associated with effects of senolytics on alleviating age-related associated cognitive dysfunctions.
Collapse
Affiliation(s)
- Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Malgorzata Wesierska
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Gregory Petrazzo
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Agnieszka Gadecka
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
10
|
Schmalz JT, Kumar G. A computational model of dopaminergic modulation of hippocampal Schaffer collateral-CA1 long-term plasticity. J Comput Neurosci 2021; 50:51-90. [PMID: 34431067 DOI: 10.1007/s10827-021-00793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 10/20/2022]
Abstract
Dopamine plays a critical role in modulating the long-term synaptic plasticity of the hippocampal Schaffer collateral-CA1 pyramidal neuron synapses (SC-CA1), a widely accepted cellular model of learning and memory. Limited results from hippocampal slice experiments over the last four decades have shown that the timing of the activation of dopamine D1/D5 receptors relative to a high/low-frequency stimulation (HFS/LFS) in SC-CA1 synapses regulates the modulation of HFS/LFS-induced long-term potentiation/depression (LTP/LTD) in these synapses. However, the existing literature lacks a complete picture of how various concentrations of D1/D5 agonists and the relative timing between the activation of D1/D5 receptors and LTP/LTD induction by HFS/LFS, affect the spatiotemporal modulation of SC-CA1 synaptic dynamics. In this paper, we have developed a computational model, a first of its kind, to make quantitative predictions of the temporal dose-dependent modulation of the HFS/LFS induced LTP/LTD in SC-CA1 synapses by various D1/D5 agonists. Our model combines the biochemical effects with the electrical effects at the electrophysiological level. We have estimated the model parameters from the published electrophysiological data, available from diverse hippocampal CA1 slice experiments, in a Bayesian framework. Our modeling results demonstrate the capability of our model in making quantitative predictions of the available experimental results under diverse HFS/LFS protocols. The predictions from our model show a strong nonlinear dependency of the modulated LTP/LTD by D1/D5 agonists on the relative timing between the activated D1/D5 receptors and the HFS/LFS protocol and the applied concentration of D1/D5 agonists.
Collapse
|
11
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Fatahi Z, Zeinaddini-Meymand A, Karimi S, Khodagholi F, Haghparast A. Impairment of cost-benefit decision making in morphine-dependent rats is partly mediated via the alteration of BDNF and p-CREB levels in the nucleus accumbens. Pharmacol Biochem Behav 2020; 194:172952. [PMID: 32428531 DOI: 10.1016/j.pbb.2020.172952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/09/2023]
Abstract
The ability to choose goals based on decision usefulness or the time required to reach the goals chosen are important aspects of decision making. There is considerable evidence in the literature indicating the fact that drug abuse affects different aspects of cognition. In the current study, we assessed the effects of morphine dependence and its withdrawal on cost-benefit decision making and furthermore the involvement of BDNF and p-CREB in the nucleus accumbens, a key brain area involved in decision making was measured. Different groups of male Wistar rats were trained in an effort-based and/or delay-based form of cost-benefit T-maze decision-making task. Thereafter, the animals were morphine dependent and the percentage of the high reward preference was evaluated. After behavioral tests, the BDNF level, and p-CREB/CREB ratio were measured by Western blot analysis. The results showed that during effort-based but not delay-based decision making, BDNF and p-CREB levels increased. During effort-based decision making in morphine dependent rats, BDNF decreased but there was no significant change in p-CREB. Besides, during delay-based decision making in the morphine dependent group, both BDNF and p-CREB did not show any significant change. These findings revealed that BDNF and p-CREB/CREB ratio in the NAc are essential factors for effort-based but not delay-based decision making. In addition, impairment of effort-based decision making in morphine dependent rats is related to the decrease of BDNF level but not p-CREB/CREB ratio in the NAc. However, delay-based decision making defects in morphine dependent rats did not associate with the change in BDNF and p-CREB levels in the NAc.
Collapse
Affiliation(s)
- Zahra Fatahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Zeinaddini-Meymand
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
The effects of Engelhardtia chrysolepis Hance on long-term memory and potential dopamine involvement in mice. Behav Pharmacol 2020; 30:596-604. [PMID: 31503068 DOI: 10.1097/fbp.0000000000000495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Engelhardtia chrysolepis Hance (ECH) is a perennial plant used in traditional medicine. A major active ingredient of ECH is astilbin (ASB), which has recently been shown to have neuroprotective effects as well as to affect catecholamine neurotransmissions in brain areas such as the prefrontal cortex. In this study, we investigated the effects of ECH and ASB on long-term memory in mice using a battery of behavioral tests. Acute ECH treatments dose-dependently facilitated nonspatial, but not spatial, memory. ECH treatments also upregulated expression of tyrosine hydroxylase, the enzyme mediating catecholamine synthesis, in neuroblastoma cell culture. Acute ASB treatments similarly improved nonspatial memory, whereas chronic ASB treatments improved both nonspatial and spatial memory. In accordance with such behavioral effects, the increased ratio of tissue concentrations of dopamine metabolites over dopamine in striatal regions was observed in mice with chronic ASB treatments. These results suggest that ECH and its active ingredient ASB may facilitate long-term memory by modulating catecholamine transmission.
Collapse
|
14
|
Brzdak P, Wójcicka O, Zareba-Koziol M, Minge D, Henneberger C, Wlodarczyk J, Mozrzymas JW, Wójtowicz T. Synaptic Potentiation at Basal and Apical Dendrites of Hippocampal Pyramidal Neurons Involves Activation of a Distinct Set of Extracellular and Intracellular Molecular Cues. Cereb Cortex 2020; 29:283-304. [PMID: 29228131 DOI: 10.1093/cercor/bhx324] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
In the central nervous system, several forms of experience-dependent plasticity, learning and memory require the activity-dependent control of synaptic efficacy. Despite substantial progress in describing synaptic plasticity, mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Here we studied the functional and molecular aspects of hippocampal circuit plasticity by analyzing excitatory synapses at basal and apical dendrites of mouse hippocampal pyramidal cells (CA1 region) in acute brain slices. In the past decade, activity of metalloproteinases (MMPs) has been implicated as a widespread and critical factor in plasticity mechanisms at various projections in the CNS. However, in the present study we discovered that in striking contrast to apical dendrites, synapses located within basal dendrites undergo MMP-independent synaptic potentiation. We demonstrate that synapse-specific molecular pathway allowing MMPs to rapidly upregulate function of NMDARs in stratum radiatum involved protease activated receptor 1 and intracellular kinases and GTPases activity. In contrast, MMP-independent scaling of synaptic strength in stratum oriens involved dopamine D1/D5 receptors and Src kinases. Results of this study reveal that 2 neighboring synaptic systems differ significantly in extracellular and intracellular cascades that control synaptic gain and provide long-searched transduction pathways relevant for MMP-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland.,Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Olga Wójcicka
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Zareba-Koziol
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Minge
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, UK
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland.,Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Çetereisi D, Kramvis I, Gebuis T, van der Loo RJ, Gouwenberg Y, Mansvelder HD, Li KW, Smit AB, Spijker S. Gpr158 Deficiency Impacts Hippocampal CA1 Neuronal Excitability, Dendritic Architecture, and Affects Spatial Learning. Front Cell Neurosci 2019; 13:465. [PMID: 31749686 PMCID: PMC6843000 DOI: 10.3389/fncel.2019.00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
G-protein-coupled receptor 158 (Gpr158) is highly expressed in striatum, hippocampus and prefrontal cortex. It gained attention as it was implicated in physiological responses to stress and depression. Recently, Gpr158 has been shown to act as a pathway-specific synaptic organizer in the hippocampus, required for proper mossy fiber-CA3 neurocircuitry establishment, structure, and function. Although rodent Gpr158 expression is highest in CA3, considerable expression occurs in CA1 especially after the first postnatal month. Here, we combined hippocampal-dependent behavioral paradigms with subsequent electrophysiological and morphological analyses from the same group of mice to assess the effects of Gpr158 deficiency on CA1 physiology and function. We demonstrate deficits in spatial memory acquisition and retrieval in the Morris water maze paradigm, along with deficits in the acquisition of extinction memory in the passive avoidance test in Gpr158 KO mice. Electrophysiological recordings from CA1 pyramidal neurons revealed normal basal excitatory and inhibitory synaptic transmission, however, Schaffer collateral stimulation yielded dramatically reduced post-synaptic currents. Interestingly, intrinsic excitability of CA1 pyramidals was found increased, potentially acting as a compensatory mechanism to the reductions in Schaffer collateral-mediated drive. Both ex vivo and in vitro, neurons deficient for or with lowered levels of Gpr158 exhibited robust reductions in dendritic architecture and complexity, i.e., reduced length, surface, bifurcations, and branching. This effect was localized in the apical but not basal dendrites of adult CA1 pyramidals, indicative of compartment-specific alterations. A significant positive correlation between spatial memory acquisition and extent of complexity of CA1 pyramidals was found. Taken together, we provide first evidence of significant disruptions in hippocampal CA1 neuronal dendritic architecture and physiology, driven by Gpr158 deficiency. Importantly, the hippocampal neuronal morphology deficits appear to support the impairments in spatial memory acquisition observed in Gpr158 KO mice.
Collapse
Affiliation(s)
- Demirhan Çetereisi
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Ioannis Kramvis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Titia Gebuis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Rolinka J. van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Yvonne Gouwenberg
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
16
|
Soluble Aβ Oligomers Impair Dipolar Heterodendritic Plasticity by Activation of mGluR in the Hippocampal CA1 Region. iScience 2018; 6:138-150. [PMID: 30240608 PMCID: PMC6137707 DOI: 10.1016/j.isci.2018.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/05/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
Soluble Aβ oligomers (oAβs) contribute importantly to synaptotoxicity in Alzheimer disease (AD), but the mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Nearly all studies of the effects of oAβs on hippocampal synaptic plasticity have only examined homosynaptic plasticity. Here we stimulated the Schaffer collaterals and then simultaneously recorded in stratum radiatum (apical dendrites) and stratum oriens (basal dendrites) of CA1 neurons. We found that the apical dendrites are significantly more vulnerable to oAβ-mediated synaptic dysfunction: the heterosynaptic basal dendritic long-term potentiation (LTP) remained unchanged, whereas the homosynaptic apical LTP was impaired. However, the heterosynaptic basal dendritic plasticity induced by either spaced 10-Hz bursts or low-frequency (1-Hz) stimulation was disrupted by oAβs in a mGluR5-dependent manner. These results suggest that different firing patterns in the same neurons may be selectively altered by soluble oAβs in an early phase of AD, before frank neurodegeneration.
Collapse
|
17
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Sharma M, Razali NB, Sajikumar S. Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons. Cereb Cortex 2018; 27:3161-3171. [PMID: 27252354 DOI: 10.1093/cercor/bhw170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic regulations play an important role in regulating the learning and memory processes. G9a/G9a-like protein (GLP) lysine dimethyltransferase complex controls a prominent histone H3 lysine9 dimethylation (H3K9me2) that results in transcriptional silencing of the chromatin. Here, we report that the inhibition of G9a/GLP complex by either of the substrate competitive inhibitors UNC 0638 or BIX 01294 reinforces protein synthesis-independent long-term potentiation (early-LTP) to protein synthesis-dependent long-term potentiation (late-LTP). The reinforcement effect was observed if the inhibitors were present during the induction of early-LTP and in addition when G9a/GLP complex inhibition was carried out by priming of synapses within an interval of 30 min before or after the induction of early-LTP. Surprisingly, the reinforced LTP by G9a/GLP complex inhibition was able to associate with a weak plasticity event from nearby independent synaptic populations, resulting in synaptic tagging/capture (STC). We have identified brain-derived neurotrophic factor (BDNF) as a critical plasticity protein that maintains G9a/GLP complex inhibition-mediated LTP facilitation and its STC. Our study reveals an epigenetic mechanism for promoting plasticity and associativity by G9a/GLP complex inhibition, and it may engender a promising epigenetic target for enhancing memory in neural networks.
Collapse
Affiliation(s)
- Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Nuralyah Bte Razali
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Singapore.,Neurobiology/Aging Program, #04-44, 28 Medical Drive, Life Sciences Institute (LSI), National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
19
|
Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Res Rev 2018; 42:86-99. [PMID: 29339150 DOI: 10.1016/j.arr.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Abstract
The rapid developments in science have led to an increase in human life expectancy and thus, ageing and age-related disorders/diseases have become one of the greatest concerns in the 21st century. Cognitive abilities tend to decline as we get older. This age-related cognitive decline is mainly attributed to aberrant changes in synaptic plasticity and neuronal connections. Recent studies show that alterations in Ca2+ homeostasis underlie the increased vulnerability of neurons to age-related processes like cognitive decline and synaptic dysfunctions. Dysregulation of Ca2+ can lead to dramatic changes in neuronal functions. We discuss in this review, the recent advances on the potential role of dysregulated Ca2+ homeostasis through altered function of L-type voltage gated Ca2+ channels (LTCC) in ageing, with an emphasis on cognitive decline. This review therefore focuses on age-related changes mainly in the hippocampus, and with mention of other brain areas, that are important for learning and memory. This review also highlights age-related memory deficits via synaptic alterations and neuroinflammation. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate age-related disorders like cognitive decline.
Collapse
|
20
|
Guo F, Zhao J, Zhao D, Wang J, Wang X, Feng Z, Vreugdenhil M, Lu C. Dopamine D4 receptor activation restores CA1 LTP in hippocampal slices from aged mice. Aging Cell 2017; 16:1323-1333. [PMID: 28975698 PMCID: PMC5676052 DOI: 10.1111/acel.12666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 01/22/2023] Open
Abstract
Normal aging is characterized with a decline in hippocampal memory functions that is associated with changes in long-term potentiation (LTP) of the CA3-to-CA1 synapse. Age-related deficit of the dopaminergic system may contribute to impairment of CA1 LTP. Here we assessed how the modulation of CA1 LTP by dopamine is affected by aging and how it is dependent on the Ca2+ source. In slices from adult mice, the initial slope of the field potential showed strong LTP, but in slices from aged mice LTP was impaired. Dopamine did not affect LTP in adult slices, but enhanced LTP in aged slices. The dopamine D1/D5 receptor (D1R/D5R) agonist SKF-81297 did not affect LTP in adult but caused a relative small increase in LTP in aged slices; however, although there was no difference in dopamine D4 receptor (D4R) expression, the D4R agonist PD168077 increased LTP in aged slices to a magnitude similar to that in adult slices. The N-Methyl-D-aspartate receptor antagonist D-AP5 reduced LTP in adult slices, but not in aged slices. However, in the presence of D-AP5, PD168077 completely blocked LTP in aged slices. The voltage-dependent calcium channel (VDCC) blocker nifedipine reduced LTP in adult slices, but surprisingly enhanced LTP in aged slices. Furthermore, in the presence of nifedipine, PD168077 caused a strong enhancement of LTP in aged slices to a magnitude exceeding LTP in adult slices. Our results indicate that the full rescue of impaired LTP in aging by the selective D4R activation and that a large potentiation role on LTP by co-application of D4R agonist and VDCC blocker may provide novel strategies for the intervention of cognitive decline of aging and age-related diseases.
Collapse
Affiliation(s)
- Fangli Guo
- Key Lab of Brain Research of Henan ProvinceDepartment of Physiology and NeurobiologyXinxiang Medical UniversityXinxiangChina
| | - Jianhua Zhao
- Department of Neurology1st Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Dandan Zhao
- Key Lab of Brain Research of Henan ProvinceDepartment of Physiology and NeurobiologyXinxiang Medical UniversityXinxiangChina
| | - Jiangang Wang
- Key Lab of Brain Research of Henan ProvinceDepartment of Physiology and NeurobiologyXinxiang Medical UniversityXinxiangChina
| | - Xiaofang Wang
- Key Lab of Brain Research of Henan ProvinceDepartment of Physiology and NeurobiologyXinxiang Medical UniversityXinxiangChina
| | - Zhiwei Feng
- Key Lab of Brain Research of Henan ProvinceDepartment of Physiology and NeurobiologyXinxiang Medical UniversityXinxiangChina
| | - Martin Vreugdenhil
- Department of PsychologyXinxiang Medical UniversityXinxiangChina
- Department of Health SciencesBirmingham City UniversityBirminghamUK
| | - Chengbiao Lu
- Key Lab of Brain Research of Henan ProvinceDepartment of Physiology and NeurobiologyXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
21
|
Extinction of Contextual Cocaine Memories Requires Ca v1.2 within D1R-Expressing Cells and Recruits Hippocampal Ca v1.2-Dependent Signaling Mechanisms. J Neurosci 2017; 37:11894-11911. [PMID: 29089442 DOI: 10.1523/jneurosci.2397-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
Exposure to cocaine-associated contextual cues contributes significantly to relapse. Extinction of these contextual associations, which involves a new form of learning, reduces cocaine-seeking behavior; however, the molecular mechanisms underlying this process remain largely unknown. We report that extinction, but not acquisition, of cocaine conditioned place preference (CPP) in male mice increased Cav1.2 L-type Ca2+ channel mRNA and protein in postsynaptic density (PSD) fractions of the hippocampus, a brain region involved in drug-context associations. Moreover, viral-mediated deletion of Cav1.2 in the dorsal hippocampus attenuated extinction of cocaine CPP. Molecular studies examining downstream Cav1.2 targets revealed that extinction recruited calcium/calmodulin (Ca2+/CaMK)-dependent protein kinase II (CaMKII) to the hippocampal PSD. This occurred in parallel with an increase in phosphorylation of the AMPA GluA1 receptor subunit at serine 831 (S831), a CaMKII site, along with an increase in total PSD GluA1. The necessity of S831 GluA1 was further demonstrated by the lack of extinction in S831A GluA1 phosphomutant mice. Of note hippocampal GluA1 levels remained unaltered at the PSD, but were reduced near the PSD and at perisynaptic sites of dendritic spines in extinction-resistant S831A mutant mice. Finally, conditional knock-out of Cav1.2 in dopamine D1 receptor (D1R)-expressing cells resulted in attenuation of cocaine CPP extinction and lack of extinction-dependent changes in hippocampal PSD CaMKII expression and S831 GluA1 phosphorylation. In summary, we demonstrate an essential role for the hippocampal Cav1.2/CaMKII/S831 GluA1 pathway in cocaine CPP extinction, with data supporting contribution of hippocampal D1R-expressing cells in this process. These findings demonstrate a novel role for Cav1.2 channels in extinction of contextual cocaine-associated memories.SIGNIFICANCE STATEMENT Continued drug-seeking behavior, a defining characteristic of cocaine addiction, can be precipitated by contextual cues, yet the molecular mechanisms required for extinction of these context-specific memories remain poorly understood. Here, we have uncovered a novel and selective role of the Cav1.2 L-type Ca2+ channel and its downstream signaling pathway in the hippocampus that mediate extinction of cocaine conditioned place preference (CPP). We additionally provide evidence that supports a role of Cav1.2 within dopamine D1 receptor-expressing cells of the hippocampus for extinction of cocaine CPP. Therefore, these findings reveal a previously unknown role of Cav1.2 channels within the hippocampus and in D1 receptor-expressing cells in extinction of cocaine-associated memories, providing a framework for further exploration of mechanisms underlying extinction of cocaine-seeking behavior.
Collapse
|
22
|
Basu R, Duan X, Taylor MR, Martin EA, Muralidhar S, Wang Y, Gangi-Wellman L, Das SC, Yamagata M, West PJ, Sanes JR, Williams ME. Heterophilic Type II Cadherins Are Required for High-Magnitude Synaptic Potentiation in the Hippocampus. Neuron 2017; 96:160-176.e8. [PMID: 28957665 DOI: 10.1016/j.neuron.2017.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 11/26/2022]
Abstract
Hippocampal CA3 neurons form synapses with CA1 neurons in two layers, stratum oriens (SO) and stratum radiatum (SR). Each layer develops unique synaptic properties but molecular mechanisms that mediate these differences are unknown. Here, we show that SO synapses normally have significantly more mushroom spines and higher-magnitude long-term potentiation (LTP) than SR synapses. Further, we discovered that these differences require the Type II classic cadherins, cadherins-6, -9, and -10. Though cadherins typically function via trans-cellular homophilic interactions, our results suggest presynaptic cadherin-9 binds postsynaptic cadherins-6 and -10 to regulate mushroom spine density and high-magnitude LTP in the SO layer. Loss of these cadherins has no effect on the lower-magnitude LTP typically observed in the SR layer, demonstrating that cadherins-6, -9, and -10 are gatekeepers for high-magnitude LTP. Thus, Type II cadherins may uniquely contribute to the specificity and strength of synaptic changes associated with learning and memory.
Collapse
Affiliation(s)
- Raunak Basu
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Xin Duan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94117, USA
| | - Matthew R Taylor
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - E Anne Martin
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shruti Muralidhar
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yueqi Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Luke Gangi-Wellman
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sujan C Das
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter J West
- Department of Pharmacology and Toxicology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Megan E Williams
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Shivarama Shetty M, Sajikumar S. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Res Rev 2017; 35:22-35. [PMID: 28065806 DOI: 10.1016/j.arr.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
Abstract
Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging.
Collapse
|
24
|
Edelmann E, Cepeda-Prado E, Leßmann V. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons. Front Synaptic Neurosci 2017; 9:7. [PMID: 28352224 PMCID: PMC5348504 DOI: 10.3389/fnsyn.2017.00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the brain. We hypothesize that resolving the subcellular location of t-LTP and t-LTD mechanisms that are regulated by distinct neuromodulator systems will be essential to reach a more cohesive understanding of synaptic plasticity in memory formation.
Collapse
Affiliation(s)
- Elke Edelmann
- Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany
| | | | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany
| |
Collapse
|
25
|
Shetty MS, Sharma M, Sajikumar S. Chelation of hippocampal zinc enhances long-term potentiation and synaptic tagging/capture in CA1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell 2017; 16:136-148. [PMID: 27633878 PMCID: PMC5242293 DOI: 10.1111/acel.12537] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with decline in cognitive functions, prominently in the memory consolidation and association capabilities. Hippocampus plays a crucial role in the formation and maintenance of long‐term associative memories, and a significant body of evidence shows that impairments in hippocampal function correlate with aging‐related memory loss. A number of studies have implicated alterations in hippocampal synaptic plasticity, such as long‐term potentiation (LTP), in age‐related cognitive decline although exact mechanisms underlying are not completely clear. Zinc deficiency and the resultant adverse effects on cognition have been well studied. However, the role of excess of zinc in synaptic plasticity, especially in aging, is not addressed well. Here, we have investigated the hippocampal zinc levels and the impairments in synaptic plasticity, such as LTP and synaptic tagging and capture (STC), in the CA1 region of acute hippocampal slices from 82‐ to 84‐week‐old male Wistar rats. We report increased zinc levels in the hippocampus of aged rats and also deficits in the tetani‐induced and dopaminergic agonist‐induced late‐LTP and STC. The observed deficits in synaptic plasticity were restored upon chelation of zinc using a cell‐permeable chelator. These data suggest that functional plasticity and associativity can be successfully established in aged neural networks by chelating zinc with cell‐permeable chelating agents.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| | - Mahima Sharma
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| | - Sreedharan Sajikumar
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore; Block MD9, 2 Medical Drive Singapore 117 597 Singapore
- Neurobiology/Aging Program; Life Sciences Institute (LSI); National University of Singapore; #04-44, 28 Medical Drive Singapore 117 456 Singapore
| |
Collapse
|
26
|
Shetty MS, Sajikumar S. Differential involvement of Ca 2+/calmodulin-dependent protein kinases and mitogen-activated protein kinases in the dopamine D1/D5 receptor-mediated potentiation in hippocampal CA1 pyramidal neurons. Neurobiol Learn Mem 2016; 138:111-120. [PMID: 27470093 DOI: 10.1016/j.nlm.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
Abstract
Dopaminergic neurotransmission modulates and influences hippocampal CA1 synaptic plasticity, learning and long-term memory mechanisms. Investigating the mechanisms involved in the slow-onset potentiation induced by the dopamine D1/D5 receptor agonists in hippocampal CA1 region, we have reported recently that it could play a role in regulating synaptic cooperation and competition. We have also shown that a sustained activation of MEK/MAP kinase pathway was involved in the maintenance of this long-lasting potentiation (Shivarama Shetty, Gopinadhan, & Sajikumar, 2016). However, the molecular aspects of the induction of dopaminergic slow-onset potentiation are not known. Here, we investigated the involvement of MEK/MAPK pathway and Ca2+-calmodulin-dependent protein kinases (CaMKII and CaMKIV) in the induction and maintenance phases of the D1/D5 receptor-mediated slow-onset potentiation. We report differential involvement of these kinases in a dose-dependent manner wherein at weaker levels of dopaminergic activation, both CaMKII and MEK1/2 activation is necessary for the establishment of potentiation and with sufficiently stronger dopaminergic activation, the role of CaMKII becomes dispensable whereas MEK activation remains crucial for the long-lasting potentiation. The results are interesting in view of the involvement of the hippocampal dopaminergic system in a variety of cognitive abilities including memory formation and also in neurological diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Block MD9, 2 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Neurobiology/Aging Program, 28 Medical Drive, Life Sciences Institute, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Block MD9, 2 Medical Drive, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Neurobiology/Aging Program, 28 Medical Drive, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
27
|
Basal dendritic length is reduced in the rat hippocampus following bilateral vestibular deafferentation. Neurobiol Learn Mem 2016; 131:56-60. [DOI: 10.1016/j.nlm.2016.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
|
28
|
Abstract
Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.
Collapse
Affiliation(s)
- Ivan Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane R. G. Furini
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jociane C. Myskiw
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Silkis IG. The contribution of dopamine to the functioning of the hippocampus during spatial learning (a hypothetical mechanism). NEUROCHEM J+ 2016. [DOI: 10.1134/s181971241601013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Mellström B, Kastanauskaite A, Knafo S, Gonzalez P, Dopazo XM, Ruiz-Nuño A, Jefferys JGR, Zhuo M, Bliss TVP, Naranjo JR, DeFelipe J. Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice. Mol Brain 2016; 9:22. [PMID: 26928278 PMCID: PMC4772309 DOI: 10.1186/s13041-016-0204-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Background Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca2+-binding protein that regulates Ca2+ homeostasis through gene regulation and protein-protein interactions. It has been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory. However, the possible role of DREAM in spine plasticity has not been reported. Results Here we show that potentiating DREAM activity, by overexpressing daDREAM, reduced dendritic basal arborization and spine density in CA1 pyramidal neurons and increased spine density in dendrites in dentate gyrus granule cells. These microanatomical changes are accompanied by significant modifications in the expression of specific genes encoding the cytoskeletal proteins Arc, Formin 1 and Gelsolin in daDREAM hippocampus. Conclusions Our results strongly suggest that DREAM plays an important role in structural plasticity in the hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0204-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Asta Kastanauskaite
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Biomedical Technology Center, Politecnica University Madrid, Madrid, Spain.
| | - Shira Knafo
- Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Present address: IkerBasque Basque Foundation for Science and BioCruces, Health Research Institute, Bizkaia, Spain.
| | - Paz Gonzalez
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Ana Ruiz-Nuño
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | - John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Tim V P Bliss
- MRC National Institutes for Medical Research, Mill Hill, London, UK.
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Javier DeFelipe
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Biomedical Technology Center, Politecnica University Madrid, Madrid, Spain.
| |
Collapse
|
31
|
Chen F, du Jardin KG, Waller JA, Sanchez C, Nyengaard JR, Wegener G. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus. Eur Neuropsychopharmacol 2016; 26:234-245. [PMID: 26711685 DOI: 10.1016/j.euroneuro.2015.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition.
Collapse
Affiliation(s)
- Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark.
| | - Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark
| | - Jessica A Waller
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ 07652-1431, USA
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, DK-8240 Risskov, Denmark; Centre for Pharmaceutical Excellence, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
32
|
Li SB, Du D, Hasan MT, Köhr G. D4 Receptor Activation Differentially Modulates Hippocampal Basal and Apical Dendritic Synapses in Freely Moving Mice. Cereb Cortex 2016; 26:647-55. [PMID: 25270308 DOI: 10.1093/cercor/bhu229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activation of D4 receptors (D4Rs) has been shown to improve cognitive performance, potentially affecting synaptic strength. We investigated the D4R agonist PD 168077 (PD) in hippocampal CA1 of freely moving mice. We electrically stimulated in stratum oriens (OR) or radiatum (RAD) and evoked local field potentials (LFPs). Intraperitoneally injected PD dose-dependently and reversibly attenuated LFPs for longer time in basal (OR) than apical (RAD) dendrites. High-frequency stimulation induced LTP that was stronger and more stable in OR than RAD. LTP lasted at least 4 h during which the paired-pulse ratio remained reduced. A PD concentration not affecting synaptic transmission was sufficient to reduce LTP in OR but not in RAD. A PD concentration reducing synaptic transmission reduced the early phase LTP in OR additionally and the late phase LTP in RAD exclusively. Furthermore, cell type-specific expression of mCherry in DATCre mice generated fluorescence in dorsal CA1 that was highest in lacunosum moleculare and similar in OR/RAD, indicating that midbrain dopaminergic fibers distribute evenly in OR/RAD. Together, the D4R-mediated modulation of hippocampal synaptic transmission and plasticity is stronger in OR than RAD. This could affect information processing in CA1 neurons, since signals arriving via basal and apical afferents are distinct.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Dan Du
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin 12101, Germany
| | - Georg Köhr
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
33
|
Chai AP, Ma WP, Wang LP, Cao J, Xu L, Yang YX, Mao RR. Chronic constant light-induced hippocampal late-phase long-term potentiation impairment in vitro is attenuated by antagonist of D1/D5 receptors. Brain Res 2015; 1622:72-80. [DOI: 10.1016/j.brainres.2015.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/05/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
|
34
|
Shivarama Shetty M, Gopinadhan S, Sajikumar S. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation. Hippocampus 2015; 26:137-50. [PMID: 26194339 PMCID: PMC5054950 DOI: 10.1002/hipo.22497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/30/2022]
Abstract
Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long‐term plasticity, a cellular correlate of associative long‐term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long‐term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long‐term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5‐receptor‐mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co‐operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal‐regulated kinases‐1 and 2 (ERK1/2) as signal integrators and dose‐sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration‐dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long‐term associative memory in neural networks. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| | - Suma Gopinadhan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
35
|
Johnson SL, Carver CS, Joormann J, Cuccaro M. A genetic analysis of the validity of the Hypomanic Personality Scale. Bipolar Disord 2015; 17:331-9. [PMID: 25219588 DOI: 10.1111/bdi.12251] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Studies of mania risk have increasingly relied on measures of subsyndromal tendencies to experience manic symptoms. The measures of mania risk employed in those studies have been shown to predict manic onset, to show familial associations, and to demonstrate expected correlations with psychosocial variables related to bipolar disorder. However, little work has been conducted to validate such measures against biologically relevant indices, or to consider whether early adversity, which has been shown to be highly elevated among those with bipolar disorder, is related to higher scores on mania risk measures. This study tested whether a well-used, self-report measure of vulnerability to mania is associated with several candidate genes that have previously been linked with bipolar disorder or with early adversity. Interactions of genes with early adversity in the prediction of mania vulnerability were also tested. METHODS Undergraduate students from the University of Miami (Coral Gables, FL, USA) (N = 305) completed the Hypomanic Personality Scale and the Risky Families Scale, and provided blood for genotyping. RESULTS Findings indicated that the Hypomanic Personality Scale was related to a number of dopamine-relevant polymorphisms and with early adversity. A polymorphism of ANKK1 appeared to specifically increase mania risk in the context of early adversity. CONCLUSIONS These results provide additional support for the validity of the Hypomanic Personality Scale.
Collapse
Affiliation(s)
- Sheri L Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Center for Advanced Study in the Behavioral Sciences, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
36
|
Ramachandran B, Ahmed S, Dean C. Long-term depression is differentially expressed in distinct lamina of hippocampal CA1 dendrites. Front Cell Neurosci 2015; 9:23. [PMID: 25767434 PMCID: PMC4341561 DOI: 10.3389/fncel.2015.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/13/2015] [Indexed: 11/26/2022] Open
Abstract
Information storage in CA1 hippocampal pyramidal neurons is compartmentalized in proximal vs. distal apical dendrites, cell bodies, and basal dendrites. This compartmentalization is thought to be essential for synaptic integration. Differences in the expression of long-term potentiation (LTP) in each of these compartments have been described, but less is known regarding potential differences in long-term depression (LTD). Here, to directly compare LTD expression in each compartment and to bypass possible differences in input-specificity and stimulation of presynaptic inputs, we used global application of NMDA to induce LTD. We then examined LTD expression in each dendritic sub-region—proximal and distal apical, and basal dendrites—and in cell bodies. Interestingly, we found that distal apical dendrites exhibited the greatest magnitude of LTD of all areas tested and this LTD was maintained, whereas LTD in proximal apical dendrites was not maintained. In basal dendrites, LTD was also maintained, but the magnitude of LTD was less than in distal apical dendrites. Blockade of inhibition blocked LTD maintenance in both distal apical and basal dendrites. Population spikes recorded from the cell body layer correlated with apical dendrite field EPSP (fEPSP), where LTD was maintained in distal dendrites and decayed in proximal dendrites. On the other hand, LTD of basal dendrite fEPSPs was maintained but population spike responses were not. Thus E-S coupling was distinct in basal and apical dendrites. Our data demonstrate cell autonomous differential information processing in somas and dendritic sub-regions of CA1 pyramidal neurons in the hippocampus, where LTD expression is intrinsic to distinct dendritic regions, and does not depend on the nature of stimulation and input specificity.
Collapse
Affiliation(s)
- Binu Ramachandran
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Saheeb Ahmed
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| | - Camin Dean
- Trans-synaptic Signaling Group, European Neuroscience Institute Goettingen, Germany
| |
Collapse
|
37
|
Ramachandran B, Ahmed S, Zafar N, Dean C. Ethanol inhibits long-term potentiation in hippocampal CA1 neurons, irrespective of lamina and stimulus strength, through neurosteroidogenesis. Hippocampus 2014; 25:106-18. [PMID: 25155179 DOI: 10.1002/hipo.22356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 11/09/2022]
Abstract
Ethanol inhibits memory encoding and the induction of long-term potentiation (LTP) in CA1 neurons of the hippocampus. Hippocampal LTP at Schaffer collateral synapses onto CA1 pyramidal neurons has been widely studied as a cellular model of learning and memory, but there is striking heterogeneity in the underlying molecular mechanisms in distinct regions and in response to distinct stimuli. Basal and apical dendrites differ in terms of innervation, input specificity, and molecular mechanisms of LTP induction and maintenance, and different stimuli determine distinct molecular pathways of potentiation. However, lamina or stimulus-dependent effects of ethanol on LTP have not been investigated. Here, we tested the effect of acute application of 60 mM ethanol on LTP induction in distinct dendritic compartments (apical versus basal) of CA1 neurons, and in response to distinct stimulation paradigms (single versus repeated, spaced high frequency stimulation). We found that ethanol completely blocks LTP in apical dendrites, whereas it reduces the magnitude of LTP in basal dendrites. Acute ethanol treatment for just 15 min altered pre- and post-synaptic protein expression. Interestingly, ethanol increases the neurosteroid allopregnanolone, which causes ethanol-dependent inhibition of LTP, more prominently in apical dendrites, where ethanol has greater effects on LTP. This suggests that ethanol has general effects on fundamental properties of synaptic plasticity, but the magnitude of its effect on LTP differs depending on hippocampal sub-region and stimulus strength.
Collapse
Affiliation(s)
- Binu Ramachandran
- Trans-Synaptic Signaling Group, European Neuroscience Institute (ENI), Grisebachstrasse 5, 37077, Goettingen, Germany
| | | | | | | |
Collapse
|
38
|
Fan W, Fu T. Somatostatin modulates LTP in hippocampal CA1 pyramidal neurons: Differential activation conditions in apical and basal dendrites. Neurosci Lett 2014; 561:1-6. [DOI: 10.1016/j.neulet.2013.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
|
39
|
Hawkins RD. Possible contributions of a novel form of synaptic plasticity in Aplysia to reward, memory, and their dysfunctions in mammalian brain. Learn Mem 2013; 20:580-91. [PMID: 24049187 PMCID: PMC3768196 DOI: 10.1101/lm.031237.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies in Aplysia have identified a new variation of synaptic plasticity in which modulatory transmitters enhance spontaneous release of glutamate, which then acts on postsynaptic receptors to recruit mechanisms of intermediate- and long-term plasticity. In this review I suggest the hypothesis that similar plasticity occurs in mammals, where it may contribute to reward, memory, and their dysfunctions in several psychiatric disorders. In Aplysia, spontaneous release is enhanced by activation of presynaptic serotonin receptors, but presynaptic D1 dopamine receptors or nicotinic acetylcholine receptors could play a similar role in mammals. Those receptors enhance spontaneous release of glutamate in hippocampus, entorhinal cortex, prefrontal cortex, ventral tegmental area, and nucleus accumbens. In all of those brain areas, glutamate can activate postsynaptic receptors to elevate Ca2+ and engage mechanisms of early-phase long-term potentiation (LTP), including AMPA receptor insertion, and of late-phase LTP, including protein synthesis and growth. Thus, presynaptic receptors and spontaneous release may contribute to postsynaptic mechanisms of plasticity in brain regions involved in reward and memory, and could play roles in disorders that affect plasticity in those regions, including addiction, Alzheimer’s disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| |
Collapse
|
40
|
Group I metabotropic glutamate receptors modulate late phase long-term potentiation in hippocampal CA1 pyramidal neurons: comparison of apical and basal dendrites. Neurosci Lett 2013; 553:132-7. [PMID: 23978512 DOI: 10.1016/j.neulet.2013.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/11/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022]
Abstract
The hippocampal long-term potentiation (LTP) at Schaffer collateral synapses onto CA1 pyramidal neurons has been widely studied as a cellular model of activity-dependent enhancement of synaptic transmission. The apical (stratum radiatum) and basal dendrites (stratum oriens) of hippocampal CA1 pyramidal neurons differ in LTP induction and maintenance. Here, the role of mGlu receptors in the induction and maintenance of late-LTP was investigated, in comparison of these two compartments. My results show that mGlu1 receptor modulates late-LTP in apical dendrites and basal dendrites, whereas mGlu5 receptor modulates late-LTP only in apical dendrites.
Collapse
|
41
|
Calabresi P, Castrioto A, Di Filippo M, Picconi B. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. Lancet Neurol 2013; 12:811-21. [DOI: 10.1016/s1474-4422(13)70118-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Molecular signatures and mechanisms of long-lasting memory consolidation and storage. Neurobiol Learn Mem 2013; 106:40-7. [PMID: 23831672 DOI: 10.1016/j.nlm.2013.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/27/2022]
Abstract
A body of evidence emerged in the last decade regarding late posttraining memory processing. Most of this new information comes from aversively motivated learning tasks that mainly depend on hippocampus, amygdala and insular cortex, and points to the involvement of long-lasting changes in gene expression and protein synthesis in late stages of memory consolidation and storage. Here, we describe recent advances in this field and discuss how recurrent rounds of macromolecular synthesis and its regulation might impact long-term memory storage.
Collapse
|