1
|
Jin B, W Gongwer M, A DeNardo L. Developmental changes in brain-wide fear memory networks. Neurobiol Learn Mem 2025; 219:108037. [PMID: 40032133 DOI: 10.1016/j.nlm.2025.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Memory retrieval involves coordinated activity across multiple brain regions. Yet how the organization of memory networks evolves throughout development remains poorly understood. In this study, we compared whole-brain functional networks that are active during contextual fear memory recall in infant, juvenile, and adult mice. Our analyses revealed that long-term memory networks change significantly across postnatal development. Infant fear memory networks are dense and heterogeneous, whereas adult networks are sparse and have a small-world topology. While hippocampal subregions were highly connected nodes at all ages, the cortex gained many functional connections across development. Different functional connections matured at different rates, but their developmental timing fell into three major categories: stepwise change between two ages, linear change across all ages, or inverted-U, with elevated functional connectivity in juveniles. Our work highlights how a subset of brain regions likely maintain important roles in fear memory encoding, but the functional connectivity of fear memory networks undergoes significant reorganization across development. Together, these results provide a blueprint for studying how correlated cellular activity in key areas distinctly regulates memory storage and retrieval across development.
Collapse
Affiliation(s)
- Benita Jin
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Program in Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael W Gongwer
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Tzakis N, Ethier-Gagnon M, Epp T, Holahan MR. Assessment of cFos labeling in the hippocampus and anterior cingulate cortex following recent and remote re-exposure to an unreinforced open field in preadolescent and postadolescent rats. Behav Brain Res 2025; 476:115284. [PMID: 39393683 DOI: 10.1016/j.bbr.2024.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Spatial tasks are often goal-directed or reward-facilitated confounding the assessment of "pure" recent and remote spatial memories. The current work re-exposed preadolescent and postadolescent male rats to a non-reinforced, free exploration task to investigate cFos patterns within the hippocampus and anterior cingulate cortex (ACC) associated with recent and remote periods. Male rats were exposed to an open field task for one, 30 min session on postnatal day (P) 20, 25, or 50 and re-exposed for 30 min at either a recent (24 hours) or remote (3 weeks) timepoint. Distance traveled in the open field was measured as well as cFos labeling. In the P20 age group, there was elevated exploration at the 24-hour and 3-week tests compared to training and compared to the other age groups. In the hippocampus CA1, cFos levels were higher after the remote test than the recent test in the P20 group but higher after the recent test than remote test in the P25 and P50 groups. cFos labeling in the ACC was higher in all remote-tested groups compared to the recent-tested groups across all ages. In the P20, the 24-hour test was associated with less CA1 activity than the other age groups supporting the hypothesis that the hippocampus is not fully developed at this time point. In the P20 group, the remote representation of this task did not seem to be complete as there continued to be CA1 activity along with ACC activity following the remote test associated with elevated exploration. These results indicate the utility of unreinforced spatial navigation tasks for exploring systems consolidation processes over the lifespan and show that a fully developed hippocampus is required for optimal systems consolidation.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Tanisse Epp
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
3
|
Rosenkranz JA. Developmental Shifts in Amygdala Function. Curr Top Behav Neurosci 2024. [PMID: 39546164 DOI: 10.1007/7854_2024_538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mammals have evolved with strategies to optimize survival and thrive in their native environment. This includes both physical and behavioral adaptations, and extends to their social environment. However, within a social context, the roles of an animal change across development, and their behavior and biology must update to match these changes. The amygdala has a key role in social and emotional processing and expression, and displays developmental changes in early juvenile, adolescent, and adult transitions. Furthermore, the amygdala is highly sensitive to the social environment. This chapter will describe the primary amygdala developmental changes, how this maps onto major changes in social and emotional domains, and propose a framework where developmental stage of intra-amygdala circuits and its regulation by cortical inputs biases the animal toward developmentally appropriate social and emotional behavior. This developmental plasticity also presents an opportunity for retuning the developmental trajectory in the presence of ongoing challenges during maturation, such as constant threat or resource scarcity, so there can be realignment of behavior to match environmental demands.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Brain Science Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
4
|
Jin B, Gongwer MW, Kearney BP, Ohanian L, Holden-Wingate L, Le B, Darmawan A, Nakayama Y, Mora SAR, DeNardo LA. A developmental brain-wide screen identifies retrosplenial cortex as a key player in the emergence of persistent memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574554. [PMID: 38260633 PMCID: PMC10802387 DOI: 10.1101/2024.01.07.574554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Memories formed early in life are short-lived while those formed later persist. Recent work revealed that infant memories are stored in a latent state. But why they fail to be retrieved is poorly understood. Here we investigated brain-wide circuit mechanisms underlying infantile amnesia. We performed a screen that combined contextual fear conditioning, activity-dependent neuronal tagging at different postnatal ages, tissue clearing and light sheet microscopy. We observed striking developmental changes in regional activity patterns between infant, juvenile, and adult mice, including changes in the retrosplenial cortex (RSP) that aligned with the emergence of persistent memory. We then performed a series of targeted investigations of RSP structure and function across development. Chronic chemogenetic reactivation of tagged RSP ensembles during the week after learning enhanced memory in adults and juveniles, but not in infants. However, after 33 days, reactivating infant-tagged RSP ensembles recovered forgotten memories. Changes in the developmental functions of RSP memory ensembles were accompanied by changes in dendritic spine density and the likelihood that those ensembles could be reactivated by contextual cues. These studies show that RSP ensembles store latent infant memories, reveal the time course of RSP functional maturation, and suggest that immature RSP functional networks contribute to infantile amnesia.
Collapse
|
5
|
Lanjewar AL, Levitt P, Eagleson KL. Developmental and molecular contributions to contextual fear memory emergence in mice. Neuropsychopharmacology 2024; 49:1392-1401. [PMID: 38438594 PMCID: PMC11251045 DOI: 10.1038/s41386-024-01835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Cognitive impairment is a common phenotype of neurodevelopmental disorders, but how these deficits arise remains elusive. Determining the onset of discrete cognitive capabilities facilitates studies in probing mechanisms underlying their emergence. The present study analyzed the emergence of contextual fear memory persistence (7-day memory retention) and remote memory (30-day memory retention). There was a rapid transition from postnatal day (P) 20 to P21, in which memory persistence emerged in C57Bl/6 J male and female mice. Remote memory was present at P23, but expression was not robust compared to pubertal and adult mice. Previous studies reported that following deletion of the MET receptor tyrosine kinase (MET), there are fear memory deficits in adult mice and the timing of critical period plasticity is altered in the developing visual cortex, positioning MET as a regulator for onset of contextual fear memory. Sustaining Met past the normal window of peak cortical expression or deleting Met, however, did not alter the timing of emergence of persistence or remote memory capabilities during development. Fear memory in young adults, however, was disrupted. Remarkably, compared to homecage controls, the number of FOS-expressing infragranular neurons in medial prefrontal cortex (mPFC) did not increase from contextual memory formation recall of fear conditioning at P35 but exhibited enhanced activation at P90 in male and female mice. Additionally, MET-expressing neurons were preferentially recruited at P90 compared to P35 during fear memory expression. The studies demonstrate a developmental profile of contextual fear memory capabilities. Further, developmental disruption of Met leads to a delayed functional deficit that arises in young adulthood, correlated with an increase of mPFC neuron activation during fear memory recall.
Collapse
Affiliation(s)
- Alexandra L Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, USA.
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Kathie L Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Chan D, Baker KD, Richardson R. The impact of chronic fluoxetine treatment in adolescence or adulthood on context fear memory and perineuronal nets. Dev Psychobiol 2024; 66:e22501. [PMID: 38807259 DOI: 10.1002/dev.22501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Selective serotonin reuptake inhibitors, such as fluoxetine (Prozac), are commonly prescribed pharmacotherapies for anxiety. Fluoxetine may be a useful adjunct because it can reduce the expression of learned fear in adult rodents. This effect is associated with altered expression of perineuronal nets (PNNs) in the amygdala and hippocampus, two brain regions that regulate fear. However, it is unknown whether fluoxetine has similar effects in adolescents. Here, we investigated the effect of fluoxetine exposure during adolescence or adulthood on context fear memory and PNNs in the basolateral amygdala (BLA), the CA1 subregion of the hippocampus, and the medial prefrontal cortex in rats. Fluoxetine impaired context fear memory in adults but not in adolescents. Further, fluoxetine increased the number of parvalbumin (PV)-expressing neurons surrounded by a PNN in the BLA and CA1, but not in the medial prefrontal cortex, at both ages. Contrary to previous reports, fluoxetine did not shift the percentage of PNNs toward non-PV cells in either the BLA or CA1 in the adults, or adolescents. These findings demonstrate that fluoxetine differentially affects fear memory in adolescent and adult rats but does not appear to have age-specific effects on PNNs.
Collapse
Affiliation(s)
- Diana Chan
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kathryn D Baker
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| | - Rick Richardson
- School of Psychology, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Premachandran H, Wilkin J, Arruda-Carvalho M. Minimizing Variability in Developmental Fear Studies in Mice: Toward Improved Replicability in the Field. Curr Protoc 2024; 4:e1040. [PMID: 38713136 DOI: 10.1002/cpz1.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In rodents, the first weeks of postnatal life feature remarkable changes in fear memory acquisition, retention, extinction, and discrimination. Early development is also marked by profound changes in brain circuits underlying fear memory processing, with heightened sensitivity to environmental influences and stress, providing a powerful model to study the intersection between brain structure, function, and the impacts of stress. Nevertheless, difficulties related to breeding and housing young rodents, preweaning manipulations, and potential increased variability within that population pose considerable challenges to developmental fear research. Here we discuss several factors that may promote variability in studies examining fear conditioning in young rodents and provide recommendations to increase replicability. We focus primarily on experimental conditions, design, and analysis of rodent fear data, with an emphasis on mouse studies. The convergence of anatomical, synaptic, physiological, and behavioral changes during early life may increase variability, but careful practice and transparency in reporting may improve rigor and consensus in the field. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- These authors contributed equally to this work
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Bevandić J, Chareyron LJ, Bachevalier J, Cacucci F, Genzel L, Newcombe NS, Vargha-Khadem F, Ólafsdóttir HF. Episodic memory development: Bridging animal and human research. Neuron 2024; 112:1060-1080. [PMID: 38359826 PMCID: PMC11129319 DOI: 10.1016/j.neuron.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Loïc J Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Bachevalier
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Lanjewar AL, Levitt P, Eagleson KL. Developmental and molecular contributions to contextual fear memory emergence in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.03.527024. [PMID: 36778231 PMCID: PMC9915741 DOI: 10.1101/2023.02.03.527024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cognitive impairment is a common phenotype of neurodevelopmental disorders, but how these deficits arise remains elusive. Determining the onset of discrete cognitive capabilities facilitates studies in probing mechanisms underlying their emergence. The present study analyzed the emergence of contextual fear memory persistence (7-day memory retention) and remote memory (30-day memory retention). There was a rapid transition from postnatal day (P) 20 to P21, in which memory persistence emerged in C57Bl/6J male and female mice. Remote memory was present at P23, but expression was not robust compared to pubertal and adult mice. Previous studies reported that following deletion of the MET receptor tyrosine kinase (MET), there are fear memory deficits in adult mice and the timing of critical period plasticity is altered in the developing visual cortex, positioning MET as a regulator for onset of contextual fear memory. Sustaining Met past the normal window of peak cortical expression or deleting Met, however, did not alter the timing of emergence of persistence or remote memory capabilities during development. Fear memory in young adults, however, was disrupted. Remarkably, compared to homecage controls, the number of FOS-expressing infragranular neurons in medial prefrontal cortex (mPFC) did not increase from contextual memory formation recall of fear conditioning at P35 but exhibited enhanced activation at P90 in male and female mice. Additionally, MET-expressing neurons were preferentially recruited at P90 compared to P35 during fear memory expression. The studies demonstrate a developmental profile of contextual fear memory capabilities. Further, developmental disruption of Met leads to a delayed functional deficit that arises in young adulthood, correlated with an increase of mPFC neuron activation during fear memory recall.
Collapse
Affiliation(s)
- Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Kathie L. Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Klune CB, Goodpaster CM, Gongwer MW, Gabriel CJ, Chen R, Jones NS, Schwarz LA, DeNardo LA. Developmentally distinct architectures in top-down circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.555010. [PMID: 37693480 PMCID: PMC10491090 DOI: 10.1101/2023.08.27.555010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in learning, mood and decision making, including in how individuals respond to threats 1-6 . mPFC undergoes a uniquely protracted development, with changes in synapse density, cortical thickness, long-range connectivity, and neuronal encoding properties continuing into early adulthood 7-21 . Models suggest that before adulthood, the slow-developing mPFC cannot adequately regulate activity in faster-developing subcortical centers 22,23 . They propose that during development, the enhanced influence of subcortical systems underlies distinctive behavioural strategies of juveniles and adolescents and that increasing mPFC control over subcortical structures eventually allows adult behaviours to emerge. Yet it has remained unclear how a progressive strengthening of top-down control can lead to nonlinear changes in behaviour as individuals mature 24,25 . To address this discrepancy, here we monitored and manipulated activity in the developing brain as animals responded to threats, establishing direct causal links between frontolimbic circuit activity and the behavioural strategies of juvenile, adolescent and adult mice. Rather than a linear strengthening of mPFC synaptic connectivity progressively regulating behaviour, we uncovered multiple developmental switches in the behavioural roles of mPFC circuits targeting the basolateral amygdala (BLA) and nucleus accumbens (NAc). We show these changes are accompanied by axonal pruning coinciding with functional strengthening of synaptic connectivity in the mPFC-BLA and mPFC-NAc pathways, which mature at different rates. Our results reveal how developing mPFC circuits pass through distinct architectures that may make them optimally adapted to the demands of age-specific challenges.
Collapse
|
11
|
Velasquez F, Dickson C, Kloc ML, Schneur CA, Barry JM, Holmes GL. Optogenetic modulation of hippocampal oscillations ameliorates spatial cognition and hippocampal dysrhythmia following early-life seizures. Neurobiol Dis 2023; 178:106021. [PMID: 36720444 DOI: 10.1016/j.nbd.2023.106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
There is increasing human and animal evidence that brain oscillations play a critical role in the development of spatial cognition. In rat pups, disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Early-life seizures are associated with long-term deficits in spatial cognition and aberrant hippocampal oscillatory activity. Here we asked whether modulation of hippocampal rhythms following early-life seizures can reverse or improve hippocampal connectivity and spatial cognition. We used optogenetic stimulation of the medial septum to induce physiological 7 Hz theta oscillations in the hippocampus during the critical period of spatial cognition following early-life seizures. Optogenetic stimulation of the medial septum in control and rats subjected to early-life seizures resulted in precisely regulated frequency-matched hippocampal oscillations. Rat pups receiving active blue light stimulation performed better than the rats receiving inert yellow light in a test of spatial cognition. The improvement in spatial cognition in these rats was associated with a faster theta frequency and higher theta power, coherence and phase locking value in the hippocampus than rats with early-life seizures receiving inert yellow light. These findings indicate that following early life seizures, modification of hippocampal rhythms may be a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Conor Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
12
|
Bulovaite E, Qiu Z, Kratschke M, Zgraj A, Fricker DG, Tuck EJ, Gokhale R, Koniaris B, Jami SA, Merino-Serrais P, Husi E, Mendive-Tapia L, Vendrell M, O'Dell TJ, DeFelipe J, Komiyama NH, Holtmaat A, Fransén E, Grant SGN. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 2022; 110:4057-4073.e8. [PMID: 36202095 PMCID: PMC9789179 DOI: 10.1016/j.neuron.2022.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
Collapse
Affiliation(s)
- Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maximilian Kratschke
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Adrianna Zgraj
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David G Fricker
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eleanor J Tuck
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Shekib A Jami
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
13
|
Ryan TJ, Frankland PW. Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 2022; 23:173-186. [PMID: 35027710 DOI: 10.1038/s41583-021-00548-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
One leading hypothesis suggests that memories are stored in ensembles of neurons (or 'engram cells') and that successful recall involves reactivation of these ensembles. A logical extension of this idea is that forgetting occurs when engram cells cannot be reactivated. Forms of 'natural forgetting' vary considerably in terms of their underlying mechanisms, time course and reversibility. However, we suggest that all forms of forgetting involve circuit remodelling that switches engram cells from an accessible state (where they can be reactivated by natural recall cues) to an inaccessible state (where they cannot). In many cases, forgetting rates are modulated by environmental conditions and we therefore propose that forgetting is a form of neuroplasticity that alters engram cell accessibility in a manner that is sensitive to mismatches between expectations and the environment. Moreover, we hypothesize that disease states associated with forgetting may hijack natural forgetting mechanisms, resulting in reduced engram cell accessibility and memory loss.
Collapse
Affiliation(s)
- Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. .,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland. .,Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria, Australia. .,Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| | - Paul W Frankland
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada. .,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Ohana O, Alberini CM, Donato F. Introduction to the special issue on the ontogeny of hippocampal functions. Hippocampus 2022; 32:69-72. [PMID: 35005808 PMCID: PMC9303776 DOI: 10.1002/hipo.23406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ora Ohana
- Institute for Molecular and Cellular Cognition, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Flavio Donato
- Biozentrum of the University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Abrous DN, Koehl M, Lemoine M. A Baldwin interpretation of adult hippocampal neurogenesis: from functional relevance to physiopathology. Mol Psychiatry 2022; 27:383-402. [PMID: 34103674 PMCID: PMC8960398 DOI: 10.1038/s41380-021-01172-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Hippocampal adult neurogenesis has been associated to many cognitive, emotional, and behavioral functions and dysfunctions, and its status as a selected effect or an "appendix of the brain" has been debated. In this review, we propose to understand hippocampal neurogenesis as the process underlying the "Baldwin effect", a particular situation in evolution where fitness does not rely on the natural selection of genetic traits, but on "ontogenetic adaptation" to a changing environment. This supports the view that a strong distinction between developmental and adult hippocampal neurogenesis is made. We propose that their functions are the constitution and the lifelong adaptation, respectively, of a basic repertoire of cognitive and emotional behaviors. This lifelong adaptation occurs through new forms of binding, i.e., association or dissociation of more basic elements. This distinction further suggests that a difference is made between developmental vulnerability (or resilience), stemming from dysfunctional (or highly functional) developmental hippocampal neurogenesis, and adult vulnerability (or resilience), stemming from dysfunctional (or highly functional) adult hippocampal neurogenesis. According to this hypothesis, developmental and adult vulnerability are distinct risk factors for various mental disorders in adults. This framework suggests new avenues for research on hippocampal neurogenesis and its implication in mental disorders.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000, Bordeaux, France.
| | - Muriel Koehl
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000 Bordeaux, France
| | - Maël Lemoine
- grid.412041.20000 0001 2106 639XUniversity Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
16
|
Developmental emergence of persistent memory for contextual and auditory fear in mice. Learn Mem 2021; 28:414-421. [PMID: 34663694 DOI: 10.1101/lm.053471.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/30/2021] [Indexed: 02/02/2023]
Abstract
The ability to generate memories that persist throughout a lifetime (that is, memory persistence) emerges in early development across species. Although it has been shown that persistent fear memories emerge between late infancy and adolescence in mice, it is unclear exactly when this transition takes place, and whether two major fear conditioning tasks, contextual and auditory fear, share the same time line of developmental onset. Here, we compared the ontogeny of remote contextual and auditory fear in C57BL/6J mice across early life. Mice at postnatal day (P)15, 21, 25, 28, and 30 underwent either contextual or auditory fear training and were tested for fear retrieval 1 or 30 d later. We found that mice displayed 30-d memory for context- and tone-fear starting at P25. We did not find sex differences in the ontogeny of either type of fear memory. Furthermore, 30-d contextual fear retrieval led to an increase in the number of c-Fos positive cells in the prelimbic region of the prefrontal cortex only at an age in which the contextual fear memory was successfully retrieved. These data delineate a precise time line for the emergence of persistent contextual and auditory fear memories in mice and suggest that the prelimbic cortex is only recruited for remote memory recall upon the onset of memory persistence.
Collapse
|
17
|
Nadel L. Some implications of postnatal hippocampal development. Hippocampus 2021; 32:98-107. [PMID: 34133050 DOI: 10.1002/hipo.23369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
It is well established that in most species, the hippocampus shows extensive postnatal development. This delayed maturation has a number of implications, which can be thought of in three categories. First, the late maturation has the direct effect of depriving the developing organism of at least some of the functions of the hippocampus, in particular place learning, context coding and in humans, episodic memory. Second, such learning that does occur very early in life, prior to hippocampal maturation, will largely bear the imprint and properties of those brain systems that, unlike the hippocampus, are fully functional early in life. Third, the active state of development of hippocampus in the first weeks and months of life render this structure susceptible to disruption by environmental and/or chromosomal factors. In this article, I discuss my efforts, with many colleagues over the past 40 years, to understand each of these implications.
Collapse
Affiliation(s)
- Lynn Nadel
- Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
19
|
Harmon-Jones SK, Cowan CS, Shnier N, Richardson R. Is good memory always a good thing? An early offset of infantile amnesia predicts anxiety-like behavior throughout development in rats. Behav Res Ther 2020; 135:103763. [DOI: 10.1016/j.brat.2020.103763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023]
|
20
|
Crane AL, Meuthen D, Thapa H, Ferrari MCO, Brown GE. Early-life and parental predation risk shape fear acquisition in adult minnows. Anim Cogn 2020; 24:471-481. [PMID: 33125574 DOI: 10.1007/s10071-020-01439-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Exposure to predation risk can induce a fearful baseline state, as well as fear reactions toward novel situations (i.e., neophobia). Some research indicates that risk exposure during sensitive periods makes adults more prone to acquiring long-term fearful phenotypes. However, chronic risk can also lead to ignoring threats in order to maintain other activities. We sought to assess how a relatively long period of low risk, experienced either early in life or by the previous generation, influences fear behaviour acquired from a short period of high risk as adults. We used fathead minnows as study subjects and simulated predation risk with repeated exposures to conspecific chemical alarm cues. The period of high risk experienced by adults induced typical fear behaviour (baseline freezing and neophobia), whereas the early-life low-risk period 1 year prior caused only a reduction in baseline foraging. We found no evidence that the early-life risk significantly altered the fear acquired from the adult-risk period. However, in a second experiment, a low-risk period during the parental generation interacted with a high-risk period experienced by the adult offspring. The combination of both risk periods heightened baseline freezing despite parental risk having little effect independently. Hence, our study provides evidence that parental risk exposure can lead to an additive intergenerational effect on fear acquisition in minnows.
Collapse
Affiliation(s)
- Adam L Crane
- Department of Biology, Concordia University, Montreal, Canada.
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, Canada.,Institute of Evolutionary Biology and Ecology, University of Bonn, Bonn, Germany
| | - Himal Thapa
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Maud C O Ferrari
- Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Canada
| | - Grant E Brown
- Department of Biology, Concordia University, Montreal, Canada
| |
Collapse
|
21
|
Premachandran H, Zhao M, Arruda-Carvalho M. Sex Differences in the Development of the Rodent Corticolimbic System. Front Neurosci 2020; 14:583477. [PMID: 33100964 PMCID: PMC7554619 DOI: 10.3389/fnins.2020.583477] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, a growing body of research has shown sex differences in the prevalence and symptomatology of psychopathologies, such as depression, anxiety, and fear-related disorders, all of which show high incidence rates in early life. This has highlighted the importance of including female subjects in animal studies, as well as delineating sex differences in neural processing across development. Of particular interest is the corticolimbic system, comprising the hippocampus, amygdala, and medial prefrontal cortex. In rodents, these corticolimbic regions undergo dynamic changes in early life, and disruption to their normative development is believed to underlie the age and sex-dependent effects of stress on affective processing. In this review, we consolidate research on sex differences in the hippocampus, amygdala, and medial prefrontal cortex across early development. First, we briefly introduce current principles on sexual differentiation of the rodent brain. We then showcase corticolimbic regional sex differences in volume, morphology, synaptic organization, cell proliferation, microglia, and GABAergic signaling, and explain how these differences are influenced by perinatal and pubertal gonadal hormones. In compiling this research, we outline evidence of what and when sex differences emerge in the developing corticolimbic system, and illustrate how temporal dynamics of its maturational trajectory may differ in male and female rodents. This will help provide insight into potential neural mechanisms underlying sex-specific critical windows for stress susceptibility and behavioral emergence.
Collapse
Affiliation(s)
| | - Mudi Zhao
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
22
|
Kloc ML, Velasquez F, Niedecker RW, Barry JM, Holmes GL. Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Brain Stimul 2020; 13:1535-1547. [PMID: 32871261 DOI: 10.1016/j.brs.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hippocampal oscillations play a critical role in the ontogeny of allocentric memory in rodents. During the critical period for memory development, hippocampal theta is the driving force behind the temporal coordination of neuronal ensembles underpinning spatial memory. While known that hippocampal oscillations are necessary for normal spatial cognition, whether disrupted hippocampal oscillatory activity during the critical period impairs long-term spatial memory is unknown. Here we investigated whether disruption of normal hippocampal rhythms during the critical period have enduring effects on allocentric memory in rodents. OBJECTIVE/HYPOTHESIS We hypothesized that disruption of hippocampal oscillations via artificial regulation of the medial septum during the critical period for memory development results in long-standing deficits in spatial cognition. METHODS After demonstrating that pan-neuronal medial septum (MS) optogenetic stimulation (465 nm activated) regulated hippocampal oscillations in weanling rats we used a random pattern of stimulation frequencies to disrupt hippocampal theta rhythms for either 1Hr or 5hr a day between postnatal (P) days 21-25. Non-stimulated and yellow light-stimulated (590 nm) rats served as controls. At P50-60 all rats were tested for spatial cognition in the active avoidance task. Rats were then sacrificed, and the MS and hippocampus assessed for cell loss. Power spectrum density of the MS and hippocampus, coherences and voltage correlations between MS and hippocampus were evaluated at baseline for a range of stimulation frequencies from 0.5 to 110 Hz and during disruptive hippocampal stimulation. Unpaired t-tests and ANOVA were used to compare oscillatory parameters, behavior and cell density in all animals. RESULTS Non-selective optogenetic stimulation of the MS in P21 rats resulted in precise regulation of hippocampal oscillations with 1:1 entrainment between stimulation frequency (0.5-110 Hz) and hippocampal local field potentials. Across bandwidths MS stimulation increased power, coherence and voltage correlation at all frequencies whereas the disruptive stimulation increased power and reduced coherence and voltage correlations with most statistical measures highly significant (p < 0.001, following correction for false detection). Rats receiving disruptive hippocampal stimulation during the critical period for memory development for either 1Hr or 5hr had marked impairment in spatial learning as measured in active avoidance test compared to non-stimulated or yellow light-control rats (p < 0.001). No cell loss was measured between the blue-stimulated and non-stimulated or yellow light-stimulated controls in either the MS or hippocampus. CONCLUSION The results demonstrated that robust regulation of hippocampal oscillations can be achieved with non-selective optogenetic stimulation of the MS in rat pups. A disruptive hippocampal stimulation protocol, which markedly increases power and reduces coherence and voltage correlations between the MS and hippocampus during the critical period of memory development, results in long-standing spatial cognitive deficits. This spatial cognitive impairment is not a result of optogenetic stimulation-induced cell loss.
Collapse
Affiliation(s)
- Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Rhys W Niedecker
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
23
|
Hippocampal and anterior cingulate cortex contribution to the processing of recently-acquired and remotely stored spatial memories in rats trained during preadolescence. Neurobiol Learn Mem 2020; 173:107271. [PMID: 32565407 DOI: 10.1016/j.nlm.2020.107271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
Abstract
Preadolescent development is characterized by a reorganization of connectivity within and between brain regions that coincides with the emergence of more complex behaviors. The hippocampus is one such region that undergoes extensive preadolescent remodeling and as this process continues, spatial memory functions emerge. The current work investigated whether preadolescent spatial memories persist beyond 24 h and stabilize into the postadolescent period as remote memories supported by cortical networks in the anterior cingulate cortex (ACC). Male Long Evans rats were trained on the Morris water maze at different time frames from postnatal day (P) 18-26 and compared to P50 rats. Testing occurred at either a recent (24 h) or remote (3 weeks) timepoint. Spatial learning was evident in all age groups (P18, P20, P22, P24 and P50) across the 3 training days but only the P22 and P24 groups showed spatial learning that matched the P50 group. In light of this, the only group to show intact remote (3 week) memory was the P50 group. Spaced training in the P18 group did not improve retention at the recent or remote testing intervals. The P18 and P50 groups tested at 24 h showed more CA1 hippocampal c-Fos labeling than groups tested at 3 weeks. The P50 group tested at 3 weeks showed elevated c-Fos labeling in the anterior cingulate (ACC) compared to the P18 group tested at 3 weeks and the P50 group tested at 24 h. Spaced training in the P18 group was associated with elevated c-Fos labeling in the ACC at the 3-week test. Groups trained at P20, 22, and 24 showed more c-Fos labelling in the ACC than in the CA1. Results suggest that while spatial information processing emerges around P18/P20, remote spatial retention and the neural substrates that support retention are not in place until after P26 in rats.
Collapse
|
24
|
Investigation of GluA1 and GluA2 AMPA receptor subtype distribution in the hippocampus and anterior cingulate cortex of Long Evans rats during development. IBRO Rep 2020; 8:91-100. [PMID: 32300670 PMCID: PMC7152689 DOI: 10.1016/j.ibror.2020.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Preadolescent development is characterized by a reorganization of connectivity within and between brain regions that coincides with the emergence of complex behaviors. During the preadolescent period, the rodent hippocampus and regions of the frontal cortex are remodelled as the brain strengthens active connections and eliminates others. In the developing and mature brain, changes in the properties of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAr)-mediated synaptic responses contribute to experience-dependent changes in neural organization and function. AMPAr are made up of 4 subunits, of which GluA1 and GluA2 have been shown to play the most prominent role in functional plasticity. In this study, we sought to determine whether levels of these two subunits changed during the course of pre-adolescent development in the hippocampus and anterior cingulate cortex (ACC). To investigate the developmental changes in GluA1 and GluA2 AMPAr subunits, Western blotting and immunohistochemistry were performed on the ACC and hippocampus from P18 - P30 and compared to adult (P50) levels and distribution. Within the hippocampus, protein levels of GluA1 and GluA2 peaked around P26-30 whereby localized staining in the dentate gyrus reflected this pattern. GluA1 and GluA2 levels within the ACC showed little variation during this developmental period. These results indicate that changes in AMPAr subunits within the hippocampus coincide with developmental modifications that underlie the shift from juvenile- to adult-like capabilities. However, changes in AMPAr distribution in the ACC might not mediate changes that reflect preadolescent developmental shifts.
Collapse
|
25
|
Reichelt AC, Hare DJ, Bussey TJ, Saksida LM. Perineuronal Nets: Plasticity, Protection, and Therapeutic Potential. Trends Neurosci 2019; 42:458-470. [DOI: 10.1016/j.tins.2019.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
|
26
|
Ramsaran AI, Schlichting ML, Frankland PW. The ontogeny of memory persistence and specificity. Dev Cogn Neurosci 2019; 36:100591. [PMID: 30316637 PMCID: PMC6969236 DOI: 10.1016/j.dcn.2018.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
Interest in the ontogeny of memory blossomed in the twentieth century following the initial observations that memories from infancy and early childhood are rapidly forgotten. The intense exploration of infantile amnesia in subsequent years has led to a thorough characterization of its psychological determinants, although the neurobiology of memory persistence has long remained elusive. By contrast, other phenomena in the ontogeny of memory like infantile generalization have received relatively less attention. Despite strong evidence for reduced memory specificity during ontogeny, infantile generalization is poorly understood from psychological and neurobiological perspectives. In this review, we examine the ontogeny of memory persistence and specificity in humans and nonhuman animals at the levels of behavior and the brain. To this end, we first describe the behavioral phenotypes associated with each phenomenon. Looking into the brain, we then discuss neurobiological mechanisms in the hippocampus that contribute to the ontogeny of memory. Hippocampal neurogenesis and critical period mechanisms have recently been discovered to underlie amnesia during early development, and at the same time, we speculate that similar processes may contribute to the early bias towards memory generalization.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada
| | | | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada; Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, M5G 1M1, Canada.
| |
Collapse
|
27
|
Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc Natl Acad Sci U S A 2018; 115:12531-12536. [PMID: 30442670 DOI: 10.1073/pnas.1810125115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early postnatal development, sensory regions of the brain undergo periods of heightened plasticity which sculpt neural networks and lay the foundation for adult sensory perception. Such critical periods were also postulated for learning and memory but remain elusive and poorly understood. Here, we present evidence that the activity-regulated and memory-linked gene Arc/Arg3.1 is transiently up-regulated in the hippocampus during the first postnatal month. Conditional removal of Arc/Arg3.1 during this period permanently alters hippocampal oscillations and diminishes spatial learning capacity throughout adulthood. In contrast, post developmental removal of Arc/Arg3.1 leaves learning and network activity patterns intact. Long-term memory storage continues to rely on Arc/Arg3.1 expression throughout life. These results demonstrate that Arc/Arg3.1 mediates a critical period for spatial learning, during which Arc/Arg3.1 fosters maturation of hippocampal network activity necessary for future learning and memory storage.
Collapse
|
28
|
Caldwell KK, Solomon ER, Smoake JJW, Djatche de Kamgaing CD, Allan AM. Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice. Neurobiol Learn Mem 2018; 156:1-16. [PMID: 30316893 DOI: 10.1016/j.nlm.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE. METHODS Mouse dams consumed either 10% (w/v) ethanol in 0.066% (w/v) saccharin (SAC) or 0.066% (w/v) SAC alone using a limited (4-h) access, drinking-in-the-dark paradigm. Male and female offspring (∼180-days of age) were trained using a delay conditioning procedure and contextual fear responses (freezing behavior) were measured 24 h later. Hippocampal formation tissue and blood were collected from three behavioral groups of animals: 20 min following conditioning (conditioning only group), 20 min following the re-exposure to the context (conditioning plus re-exposure group), and behaviorally naïve (naïve group) mice. Plasma corticosterone levels were measured by enzyme immunoassay. Immunoblotting techniques were used to measure protein levels of the GR, MR, ERK1 and ERK2 in nuclear and membrane fractions prepared from the hippocampal formation. RESULTS Adult SAC control male and female mice displayed similar levels of contextual fear. However, significant sex differences were observed in freezing exhibited during the conditioning session. Compared to same-sex SAC controls, male and female PAE mice demonstrated context fear deficits While plasma corticosterone concentrations were elevated in PAE males and females relative to their respective SAC naïve controls, plasma corticosterone concentrations in the conditioning only and conditioning plus re-exposure groups were similar in SAC and PAE animals. Relative to the respective naïve group, nuclear GR protein levels were increased in SAC, but not PAE, male hippocampal formation in the conditioning only group. In contrast, no difference was observed between nuclear GR levels in the naïve and conditioning plus re-exposure groups. In females, nuclear GR levels were significantly reduced by PAE but there was no effect of behavioral group or interaction between prenatal treatment and behavioral group. In males, nuclear MR levels were significantly elevated in the SAC conditioning plus re-exposure group compared to SAC naïve mice. In PAE females, nuclear MR levels were elevated in both the conditioning only and conditioning plus re-exposure groups relative to the naïve group. Levels of activated ERK2 (phospho-ERK2 expressed relative to total ERK2) protein were elevated in SAC, but not PAE, males following context re-exposure, and a significant interaction between prenatal exposure group and behavioral group was found. No main effects or interactions of behavioral group and prenatal treatment on nuclear ERK2 were found in female mice. These findings suggest a sex difference in which molecular pathways are activated during fear conditioning in mice. CONCLUSIONS In PAE males, the deficits in contextual fear were associated with the loss of responsiveness of hippocampal formation nuclear GR, MR and ERK2 to signals generated by fear conditioning and context re-exposure. In contrast, the contextual fear deficit in PAE female mice does not appear to be associated with activity-dependent changes in GR and MR levels or ERK2 activation during training or memory recall, although an overall reduction in nuclear GR levels may play a role. These studies add to a growing body of literature demonstrating that, at least partially, different mechanisms underlie learning, memory formation and memory recall in males and females and that these pathways are differentially affected by PAE.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jane J W Smoake
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chrys D Djatche de Kamgaing
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Annamneedi A, Caliskan G, Müller S, Montag D, Budinger E, Angenstein F, Fejtova A, Tischmeyer W, Gundelfinger ED, Stork O. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance. Brain Struct Funct 2018; 223:3423-3445. [PMID: 29915867 PMCID: PMC6132633 DOI: 10.1007/s00429-018-1692-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 05/30/2018] [Indexed: 01/05/2023]
Abstract
Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.
Collapse
Affiliation(s)
- Anil Annamneedi
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gürsel Caliskan
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Sabrina Müller
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Eike Budinger
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Frank Angenstein
- Special Laboratory Noninvasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Functional Neuroimaging Group, German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Tischmeyer
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Special Laboratory Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Eckart D. Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Molecular Neuroscience, Medical School, Otto von Guericke University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
30
|
Guskjolen A, Kenney JW, de la Parra J, Yeung BRA, Josselyn SA, Frankland PW. Recovery of "Lost" Infant Memories in Mice. Curr Biol 2018; 28:2283-2290.e3. [PMID: 29983316 DOI: 10.1016/j.cub.2018.05.059] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
Hippocampus-dependent, event-related memories formed in early infancy in human and non-human animals are rapidly forgotten. Recently we found that high levels of hippocampal neurogenesis contribute to accelerated rates of forgetting during infancy. Here, we ask whether these memories formed in infancy are permanently erased (i.e., storage failure) or become progressively inaccessible with time (i.e., retrieval failure). To do this, we developed an optogenetic strategy that allowed us to permanently express channelrhodopsin-2 (ChR2) in neuronal ensembles that were activated during contextual fear encoding in infant mice. We then asked whether reactivation of ChR2-tagged ensembles in the dentate gyrus was sufficient for memory recovery in adulthood. We found that optogenetic stimulation of tagged dentate gyrus neurons recovered "lost" infant memories up to 3 months following training and that memory recovery was associated with broader reactivation of tagged hippocampal and cortical neuronal ensembles.
Collapse
Affiliation(s)
- Axel Guskjolen
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Justin W Kenney
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Juan de la Parra
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Bi-Ru Amy Yeung
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Sheena A Josselyn
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
| | - Paul W Frankland
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
31
|
Absence of fear renewal and functional connections between prefrontal cortex and hippocampus in infant mice. Neurobiol Learn Mem 2018; 152:1-9. [DOI: 10.1016/j.nlm.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022]
|
32
|
Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Kim BH, Chao W, Arancio O, Suh J, Polsky B, McMillan J, Edagwa B, Gendelman HE, Potash MJ, Volsky DJ. EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS Pathog 2018; 14:e1007061. [PMID: 29879225 PMCID: PMC5991655 DOI: 10.1371/journal.ppat.1007061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/29/2018] [Indexed: 02/06/2023] Open
Abstract
Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication.
Collapse
Affiliation(s)
- Chao-Jiang Gu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alejandra Borjabad
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jennifer Kelschenbach
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Wei Chao
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Jin Suh
- Department of Medicine, St. Joseph’s Regional Medical Center, Paterson, New Jersey, United States of America
| | - Bruce Polsky
- Department of Medicine, NYU Winthrop Hospital, Mineola, New York, United States of America
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mary Jane Potash
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David J. Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
33
|
Infantile Amnesia Is Related to Developmental Immaturity of the Maintenance Mechanisms for Long-Term Potentiation. Mol Neurobiol 2018; 56:907-919. [PMID: 29804230 DOI: 10.1007/s12035-018-1119-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/11/2018] [Indexed: 01/11/2023]
Abstract
Infantile amnesia (IA) refers to the inability of adults to recall episodic memories from infancy or early childhood. While several hypotheses have been proposed to explain the occurrence of IA, the neurobiological and molecular bases for this accelerated forgetting phenomenon remain elusive. Using hippocampus-dependent object-location memory and contextual fear conditioning tasks, we confirmed that infant mice trained at postnatal day 20 (P20) displayed deficits in long-term memory retention compared to adult (P60) mice. The percentage of CA1 pyramidal neurons expressing phosphorylated cAMP-responsive element-binding protein after fear conditioning was significantly lower in P20 than P60 mice. P20 mice exhibited attenuated basal excitatory synaptic transmission and early-phase long-term potentiation (E-LTP) at Schaffer collateral-CA1 synapses compared to P60 mice, but conversely, P20 mice have a greater susceptibility to induce time-dependent reversal of LTP by low-frequency afferent stimulation than P60 mice. The protein levels of GluN2B subunit of N-methyl-D-aspartate receptors (NMDARs), protein kinase Mζ (PKMζ), and protein phosphatase 2B (PP2B) in hippocampal CA1 region were significantly higher in P20 than P60 mice. We also found that the levels of calcium/calmodulin-dependent protein kinase II α autophosphorylation at Thr286, GluA1 phosphorylation at Ser831, and PKMζ protein biosynthesis occurred during the ensuing maintenance of E-LTP were significantly lower in P20 than P60 mice. Pharmacological blockade of GluN2B-containing NMDARs or PP2B effectively restored deficits of E-LTP and long-term memory retention observed in P20 mice. Altogether, these findings suggest that developmental immaturity of the maintenance mechanisms for E-LTP is linked to the occurrence of IA.
Collapse
|
34
|
Colon L, Odynocki N, Santarelli A, Poulos AM. Sexual differentiation of contextual fear responses. ACTA ACUST UNITED AC 2018; 25:230-240. [PMID: 29661835 PMCID: PMC5903402 DOI: 10.1101/lm.047159.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
Development and sex differentiation impart an organizational influence on the neuroanatomy and behavior of mammalian species. Prior studies suggest that brain regions associated with fear motivated defensive behavior undergo a protracted and sex-dependent development. Outside of adult animals, evidence for developmental sex differences in conditioned fear is sparse. Here, we examined in male and female Long-Evans rats how developmental age and sex affect the long-term retention and generalization of Pavlovian fear responses. Experiments 1 and 2 describe under increasing levels of aversive learning (three and five trials) the long-term retrieval of cued and context fear in preadolescent (P24 and P33), periadolescent (P37), and adult (P60 and P90) rats. Experiments 3 and 4 examined contextual processing under minimal aversive learning (1 trial) procedures in infant (P19, P21), preadolescent (P24), and adult (P60) rats. Here, we found that male and female rats display a divergent developmental trajectory in the expression of context-mediated freezing, such that context fear expression in males tends to increase toward adulthood, while females displayed an opposite pattern of decreasing context fear expression toward adulthood. Longer (14 d) retention intervals produced an overall heightened context fear expression relative to shorter (1 d) retention intervals an observation consistent with fear incubation. Male, but not Female rats showed increasing generalization of context fear across development. Collectively, these findings provide an initial demonstration that sexual differentiation of contextual fear conditioning emerges prior to puberty and follows a distinct developmental trajectory toward adulthood that strikingly parallels sex differences in the etiology and epidemiology of anxiety and trauma- and stressor-related disorders.
Collapse
Affiliation(s)
- Lorianna Colon
- Department of Psychology and Center for Neuroscience, University at Albany, State University of New York, Albany, New York, USA
| | - Natalie Odynocki
- Department of Psychology and Center for Neuroscience, University at Albany, State University of New York, Albany, New York, USA
| | - Anthony Santarelli
- Department of Psychology and Center for Neuroscience, University at Albany, State University of New York, Albany, New York, USA
| | - Andrew M Poulos
- Department of Psychology and Center for Neuroscience, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
35
|
Robinson-Drummer PA, Chakraborty T, Heroux NA, Rosen JB, Stanton ME. Age and experience dependent changes in Egr-1 expression during the ontogeny of the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 150:1-12. [PMID: 29452227 DOI: 10.1016/j.nlm.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which acquisition of the contextual representation and association of the retrieved contextual memory with an immediate foot-shock are separated by 24 h. During the CPFE, learning- related expression patterns of the early growth response-1 gene (Egr-1) vary based on training phase and brain sub-region in adult and adolescent rats (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014; Chakraborty, Asok, Stanton, & Rosen, 2016). The current experiments extended our previous findings by examining Egr-1 expression in infant (PD17) and juvenile (PD24) rats during the CPFE using preexposure protocols involving single-exposure (SE) or multiple-exposure (ME) to context. Following a 5 min preexposure to the training context (i.e. the SE protocol), Egr-1 expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC) and lateral nucleus of the amygdala (LA) was differentially increased in PD24 rats relative to PD17 rats. In contrast, increased Egr-1 expression following an immediate foot-shock (2s, 1.5 mA) did not differ between PD17 and PD24 rats, and was not learning-related. Interestingly, increasing the number of exposures to the training chamber on the preexposure day (i.e. ME protocol) altered training-day expression such that a learning-related increase in expression was observed in the mPFC in PD24 but not PD17 rats. Together, these results illustrate a clear maturation of Egr-1 expression that is both age- and experience-dependent. In addition, the data suggest that regional activity and plasticity within the mPFC on the preexposure but not the training day may contribute to the ontogenetic profile of the effect. Further studies are necessary to elucidate the causal role of sub-region-specific neuroplasticity in the ontogeny of the CPFE.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - T Chakraborty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - J B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
36
|
Xia F, Yiu A, Stone SSD, Oh S, Lozano AM, Josselyn SA, Frankland PW. Entorhinal Cortical Deep Brain Stimulation Rescues Memory Deficits in Both Young and Old Mice Genetically Engineered to Model Alzheimer's Disease. Neuropsychopharmacology 2017; 42:2493-2503. [PMID: 28540926 PMCID: PMC5686482 DOI: 10.1038/npp.2017.100] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline. Deep brain stimulation (DBS) has been used to treat a variety of brain disorders and shows promise in alleviating cognitive symptoms in some AD patients (Laxton et al, 2010). We previously showed that DBS of the entorhinal cortex (EC) enhances spatial memory formation in normal (wild-type) mice (Stone et al, 2011). Here we tested the effects of EC-DBS on the progressive cognitive deficits in a genetically-based mouse model of AD. TgCRND8 (Tg) transgenic mice express human amyloid precursor protein harboring the Swedish and Indiana familial AD mutations. These mice exhibit age-related increases in Aβ production, plaque deposition, as well as contextual fear and spatial memory impairments. Here, we found EC stimulation in young mice (6 weeks old) rescued the early contextual fear and spatial memory deficits and decreased subsequent plaque load in Tg mice. Moreover, stimulation in older mice (6 months old) was also sufficient to rescue the memory deficits in Tg mice. The memory enhancement induced by DBS emerged gradually (over the course of weeks) and was both persistent and specific to hippocampal-based memories. These results provide further support for the development of novel therapeutics aimed to resolve the cognitive decline and memory impairment in AD using DBS of hippocampal afferents.
Collapse
Affiliation(s)
- Frances Xia
- Department of Physiology, University of Toronto, Toronto, ON, Canada,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Adelaide Yiu
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Scellig S D Stone
- Harvard Medical School, Boston, MA, USA,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Soojin Oh
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, ON, Canada
| | - Sheena A Josselyn
- Department of Physiology, University of Toronto, Toronto, ON, Canada,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada,Department of Psychology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada, Tel: +(416) 813-7654, E-mail: or
| | - Paul W Frankland
- Department of Physiology, University of Toronto, Toronto, ON, Canada,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada,Department of Psychology, University of Toronto, Toronto, ON, Canada,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada,Program in Neurosciences and Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada, Tel: +(416) 813-7654, E-mail: or
| |
Collapse
|
37
|
Debiec J, Sullivan RM. The neurobiology of safety and threat learning in infancy. Neurobiol Learn Mem 2017; 143:49-58. [PMID: 27826033 PMCID: PMC5418109 DOI: 10.1016/j.nlm.2016.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
What an animal needs to learn to survive is altered dramatically as they change from dependence on the parent for protection to independence and reliance on self-defense. This transition occurs in most altricial animals, but our understanding of the behavioral neurobiology has mostly relied on the infant rat. The transformation from dependence to independence occurs over three weeks in pups and is accompanied by complex changes in responses to both natural and learned threats and the supporting neural circuitry. Overall, in early life, the threat system is quiescent and learning is biased towards acquiring attachment related behaviors to support attachment to the caregiver and proximity seeking. Caregiver-associated cues learned in infancy have the ability to provide a sense of safety throughout lifetime. This attachment/safety system is activated by learning involving presumably pleasurable stimuli (food, warmth) but also painful stimuli (tailpinch, moderate shock). At about the midway point to independence, pups begin to have access to the adult-like amygdala-dependent threat system and amygdala-dependent responses to natural dangers such as predator odors. However, pups have the ability to switch between the infant and adult-like system, which is controlled by maternal presence and modification of stress hormones. Specifically, if the pup is alone, it will learn fear but if with the mother it will learn attachment (10-15days of age). As pups begin to approach weaning, pups lose access to the attachment system and rely only on the amygdala-dependent threat system. However, pups learning system is complex and exhibits flexibility that enables the mother to override the control of the attachment circuit, since newborn pups may acquire threat responses from the mother expressing fear in their presence. Together, these data suggest that the development of pups' threat learning system is not only dependent upon maturation of the amygdala, but it is also exquisitely controlled by the environment. Most notably the mother can switch pup learning between attachment to threat learning in a moment's notice. This enables the mother to navigate pup's learning about the world and what is threatening and what is safe.
Collapse
Affiliation(s)
- Jacek Debiec
- Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, New York University Langone Medical Center, United States.
| |
Collapse
|
38
|
Pattwell SS, Bath KG. Emotional learning, stress, and development: An ever-changing landscape shaped by early-life experience. Neurobiol Learn Mem 2017; 143:36-48. [PMID: 28458034 PMCID: PMC5540880 DOI: 10.1016/j.nlm.2017.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
The capacity to learn to associate cues with negative outcomes is a highly adaptive process that appears to be conserved across species. However, when the cue is no longer a valid predictor of danger, but the emotional response persists, this can result in maladaptive behaviors, and in humans contribute to debilitating emotional disorders. Over the past several decades, work in neuroscience, psychiatry, psychology, and biology have uncovered key processes underlying, and structures governing, emotional responding and learning, as well as identified disruptions in the structural and functional integrity of these brain regions in models of pathology. In this review, we highlight some of this elegant body of work as well as incorporate emerging findings from the field of developmental neurobiology to emphasize how development contributes to changes in the ability to learn and express emotional responses, and how early experiences, such as stress, shape the development and functioning of these circuits.
Collapse
Affiliation(s)
- Siobhan S Pattwell
- Department of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States
| |
Collapse
|
39
|
Rosinger ZJ, Jacobskind JS, Park SG, Justice NJ, Zuloaga DG. Distribution of corticotropin-releasing factor receptor 1 in the developing mouse forebrain: A novel sex difference revealed in the rostral periventricular hypothalamus. Neuroscience 2017; 361:167-178. [PMID: 28823817 DOI: 10.1016/j.neuroscience.2017.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. CRFR1 increased with age in several regions including the medial amygdala, arcuate nucleus, paraventricular hypothalamus, medial septum, CA1 hippocampal area, and the lateral habenula. Regions showing decreased CRFR1 expression with increased age include the intermediate portion of the periventricular hypothalamic nucleus, and CA3 hippocampal area. We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.
Collapse
Affiliation(s)
| | | | - Shannon G Park
- University at Albany, Department of Psychology, Albany, NY 12222, USA
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, USA.
| |
Collapse
|
40
|
Oxytocin in the amygdala and not the prefrontal cortex enhances fear and impairs extinction in the juvenile rat. Neurobiol Learn Mem 2017; 141:179-188. [DOI: 10.1016/j.nlm.2017.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/06/2023]
|
41
|
Optogenetic Examination of Prefrontal-Amygdala Synaptic Development. J Neurosci 2017; 37:2976-2985. [PMID: 28193691 DOI: 10.1523/jneurosci.3097-16.2017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 11/21/2022] Open
Abstract
A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network.SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations.
Collapse
|
42
|
Guskjolen A, Josselyn SA, Frankland PW. Age-dependent changes in spatial memory retention and flexibility in mice. Neurobiol Learn Mem 2016; 143:59-66. [PMID: 27988313 DOI: 10.1016/j.nlm.2016.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 11/26/2022]
Abstract
In humans, memories for events happening early in life are forgotten more rapidly than those for events later in life. This form of accelerated forgetting in infancy is also observed in non-human species, and has been most extensively characterized in rats. Here we expand the characterization of infantile forgetting to mice, a species where a broader range of genetic tools can be used to understand the neurobiological mechanisms underlying this form of forgetting. Using a hidden platform version of the water maze task, we first assessed retention in mice that ranged in age from 15 to 150days-old at the beginning of training. All groups exhibited spatial memory when tested one day after training. However, only mice that were 20days or older at the time of training could remember one month later. Second, forgetting in younger cohorts of mice was not due to weaker encoding, since when younger mice were over-trained, such that their performance exceeded that of adult mice, they still exhibited forgetting. Third, in young mice, presentation of a reminder one month following training led to memory recovery, indicating that forgetting was due to a retrieval, rather than storage, deficit. Fourth, younger mice exhibited superior reversal learning compared to older mice, raising the possibility that a by-product of infantile forgetting might be greater flexibility.
Collapse
Affiliation(s)
- Axel Guskjolen
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
43
|
Slouzkey I, Maroun M. PI3-kinase cascade has a differential role in acquisition and extinction of conditioned fear memory in juvenile and adult rats. ACTA ACUST UNITED AC 2016; 23:723-731. [PMID: 27918278 PMCID: PMC5110989 DOI: 10.1101/lm.041806.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/25/2016] [Indexed: 11/24/2022]
Abstract
The basolateral amygdala (BLA), medial prefrontal cortex (mPFC) circuit, plays a crucial role in acquisition and extinction of fear memory. Extinction of aversive memories is mediated, at least in part, by the phosphoinositide-3 kinase (PI3K)/Akt pathway in adult rats. There is recent interest in the neural mechanisms that mediate fear and extinction in juvenile animals and whether these mechanisms are distinctive from those in adult animals. In the present study, we examined (1) changes in phosphorylation of Akt in the BLA and mPFC after fear conditioning and extinction in juvenile and adult rats and (2) the effect of BLA and mPFC localized inhibition of the PI3K following acquisition and extinction of contextual fear memory. Our results show that Akt phosphorylation is increased following acquisition of contextual fear learning in the BLA but not in the mPFC in adult and juvenile rats. Extinction learning was not associated with changes in Akt phosphorylation. Although there were no differences in the pattern of phosphorylation of Akt either in adult or juvenile rats, microinjection of the PI3K inhibitor, LY294002, into the BLA or mPFC elicited differential effects on fear memory acquisition and extinction, depending on the site and timing of the microinjection, as well as on the age of the animal. These results suggest that PI3K/Akt has a differential role in formation, retrieval, and extinction of contextual fear memory in juvenile and adult animals, and point to developmental differences between adult and juvenile rats in mechanisms of extinction.
Collapse
Affiliation(s)
- Ilana Slouzkey
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
44
|
Hunt PS, Burk JA, Barnet RC. Adolescent transitions in reflexive and non-reflexive behavior: Review of fear conditioning and impulse control in rodent models. Neurosci Biobehav Rev 2016; 70:33-45. [PMID: 27339692 PMCID: PMC5074887 DOI: 10.1016/j.neubiorev.2016.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/03/2016] [Accepted: 06/18/2016] [Indexed: 01/11/2023]
Abstract
Adolescence is a time of critical brain changes that pave the way for adult learning processes. However, the extent to which learning in adolescence is best characterized as a transitional linear progression from childhood to adulthood, or represents a period that differs from earlier and later developmental stages, remains unclear. Here we examine behavioral literature on associative fear conditioning and complex choice behavior with rodent models. Many aspects of fear conditioning are intact by adolescence and do not differ from adult patterns. Sufficient evidence, however, suggests that adolescent learning cannot be characterized simply as an immature precursor to adulthood. Across different paradigms assessing choice behavior, literature suggests that adolescent animals typically display more impulsive patterns of responding compared to adults. The extent to which the development of basic conditioning processes serves as a scaffold for later adult decision making is an additional research area that is important for theory, but also has widespread applications for numerous psychological conditions.
Collapse
|
45
|
Jones CE, Monfils MH. Post-retrieval extinction in adolescence prevents return of juvenile fear. ACTA ACUST UNITED AC 2016; 23:567-75. [PMID: 27634147 PMCID: PMC5026207 DOI: 10.1101/lm.043281.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022]
Abstract
Traumatic experiences early in life can contribute to the development of mood and anxiety disorders that manifest during adolescence and young adulthood. In young rats exposed to acute fear or stress, alterations in neural development can lead to enduring behavioral abnormalities. Here, we used a modified extinction intervention (retrieval+extinction) during late adolescence (post-natal day 45 [p45]), in rats, to target auditory Pavlovian fear associations acquired as juveniles (p17 and p25). The effects of adolescent intervention were examined by assessing freezing as adults during both fear reacquisition and social transmission of fear from a cagemate. Rats underwent testing or training at three time points across development: juvenile (p17 or p25), adolescent (p45), and adult (p100). Retrieval+extinction during late adolescence prevented social reinstatement and recovery over time of fears initially acquired as juveniles (p17 and p25, respectively). Adolescence was the only time point tested here where retrieval+extinction prevented fear recall of associations acquired 20+ days earlier.
Collapse
Affiliation(s)
- Carolyn E Jones
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712-1043, USA
| | - Marie-H Monfils
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712-1043, USA
| |
Collapse
|
46
|
Brown KL, Freeman JH. Retention of eyeblink conditioning in periweanling and adult rats. Dev Psychobiol 2016; 58:1055-1065. [PMID: 27279383 DOI: 10.1002/dev.21439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/26/2016] [Indexed: 11/06/2022]
Abstract
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory, though nothing is known regarding developmental differences in retention between periweanling and adult rats. The present study examined retention of eyeblink conditioning in periweanling (postnatal day 24 at the start of training) and adult rats 1, 7, or 28 days after acquisition. Retention was assessed by (1) a conditional stimulus (CS)-alone test session followed by (2) CS-unconditional stimulus (US) reacquisition tests. Conditional response (CR) levels at acquisition were comparable in most respects between ages, and robust CR levels were present at the start of retention tests for both ages in the 1 day group, with CR percentages at block 1 of reacquisition higher in periweanlings relative to adults. At the 7 day retention test there was a trend toward significance for higher CR percentages at the CS-alone test in adults relative to periweanlings, though there were no age differences at reacquisition testing. When testing occurred 28 days after acquisition, however, periweanlings showed fewer CRs relative to adults during reacquisition despite low CR levels in both ages throughout the CS-alone test. Furthermore, periweanlings in the 28 day group required more trials at reacquisition than all other groups to exceed CR levels from their first acquisition session. These findings are consistent with rapid forgetting in the young commonly referred to as "infantile amnesia." The well-characterized eyeblink preparation may be useful for future studies investigating neural mechanisms responsible for rapid forgetting in developing animals.
Collapse
Affiliation(s)
- Kevin L Brown
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - John H Freeman
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| |
Collapse
|
47
|
Bath K, Manzano-Nieves G, Goodwill H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Horm Behav 2016; 82:64-71. [PMID: 27155103 PMCID: PMC5308418 DOI: 10.1016/j.yhbeh.2016.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 12/22/2022]
Abstract
Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning.
Collapse
Affiliation(s)
- K Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States.
| | - G Manzano-Nieves
- Department of Neuroscience, Brown University, Providence, RI, 02912, United States
| | - H Goodwill
- Department of Neuroscience, Brown University, Providence, RI, 02912, United States
| |
Collapse
|
48
|
Ehrlich DE, Josselyn SA. Plasticity-related genes in brain development and amygdala-dependent learning. GENES BRAIN AND BEHAVIOR 2015; 15:125-43. [PMID: 26419764 DOI: 10.1111/gbb.12255] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life.
Collapse
Affiliation(s)
- D E Ehrlich
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.,Department of Otolaryngology, NYU Langone School of Medicine, New York, NY, USA
| | - S A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Casey BJ, Glatt CE, Lee FS. Treating the Developing versus Developed Brain: Translating Preclinical Mouse and Human Studies. Neuron 2015; 86:1358-68. [PMID: 26087163 DOI: 10.1016/j.neuron.2015.05.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Behaviors and underlying brain circuits show characteristic changes across the lifespan that produce sensitive windows of vulnerability and resilience to psychopathology. Understanding the developmental course of these changes may inform which treatments are best at what ages. Focusing on behavioral domains and neurobiological substrates conserved from mouse to human supports reciprocal hypothesis generation and testing that leverages the strengths of each system in understanding their development. Introducing human genetic variants into mice can further define effects of individual variation on normative development, how they contribute to risk and resilience for mental illness, and inform personalized treatment opportunities. This article emphasizes the period of adolescence, when there is a peak in the emergence of mental illness, anxiety disorders in particular. We present cross-species studies relating fear learning to anxiety across development and discuss how clinical treatments can be optimized for individuals and targeted to the biological states of the developing brain.
Collapse
Affiliation(s)
- B J Casey
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Charles E Glatt
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
50
|
Shen AN, Pope DA, Hutsell BA, Newland MC. Spatial discrimination reversal and incremental repeated acquisition in adolescent and adult BALB/c mice. Behav Processes 2015; 118:59-70. [PMID: 26051193 DOI: 10.1016/j.beproc.2015.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/09/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
Adolescence is characterized by neural and behavior development that includes increases in novel experiences and impulsive choice. Experimental rodent models can characterize behavior phenotypes that typify adolescence. The present experiment was designed to characterize differences between adolescent (post-natal day (PND) 34-60) and adult (PND 70-96) BALB/c mice using a response-initiated spatial discrimination reversal (SDR) and incremental repeated acquisition of response chains (IRA) procedures. During SDR, adolescents omitted more trials and were slower to initiate trials than adults, but the age groups did not differ on accuracy and perseveration measures. During IRA, adolescents displayed poorer overall performance (measured by progress quotient), lower accuracy at individual chain links, and completed fewer long response chains (>3 links) than adults. In both procedures (SDR and IRA), the poorer performance of adolescents appeared to be related to the use of a response device that was spatially removed from reinforcer delivery. These results indicate that SDR and IRA performance can be established during the brief rodent adolescent period but that these two age groups' performances differ. We hypothesize that adolescent behavior is more sensitive than adult behavior to the spatiotemporal distance between response device and location of reinforcer delivery.
Collapse
Affiliation(s)
| | - Derek A Pope
- Department of Psychology, Behavioral Toxicology Lab, Auburn University, USA
| | - Blake A Hutsell
- Department of Psychology, Behavioral Toxicology Lab, Auburn University, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University, USA
| | | |
Collapse
|