1
|
Wang B, Zhao M, Su Z, Jin B, Yang X, Zhang C, Guo B, Li J, Hong W, Liu J, Zhao Y, Hou Y, Lai F, Zhang W, Qin L, Zhang W, Luo J, Zheng R. RIIβ-PKA in GABAergic Neurons of Dorsal Median Hypothalamus Governs White Adipose Browning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205173. [PMID: 36529950 PMCID: PMC9929258 DOI: 10.1002/advs.202205173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The RIIβ subunit of cAMP-dependent protein kinase A (PKA) is expressed in the brain and adipose tissue. RIIβ-knockout mice show leanness and increased UCP1 in brown adipose tissue. The authors have previously reported that RIIβ reexpression in hypothalamic GABAergic neurons rescues the leanness. However, whether white adipose tissue (WAT) browning contributes to the leanness and whether RIIβ-PKA in these neurons governs WAT browning are unknown. Here, this work reports that RIIβ-KO mice exhibit a robust WAT browning. RIIβ reexpression in dorsal median hypothalamic GABAergic neurons (DMH GABAergic neurons) abrogates WAT browning. Single-cell sequencing, transcriptome sequencing, and electrophysiological studies show increased GABAergic activity in DMH GABAergic neurons of RIIβ-KO mice. Activation of DMH GABAergic neurons or inhibition of PKA in these neurons elicits WAT browning and thus lowers body weight. These findings reveal that RIIβ-PKA in DMH GABAergic neurons regulates WAT browning. Targeting RIIβ-PKA in DMH GABAergic neurons may offer a clinically useful way to promote WAT browning for treating obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Bingwei Wang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Miao Zhao
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhijie Su
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Baohua Jin
- Department of PharmacologyInstitution of Chinese Integrative MedicineHebei Medical UniversityShijiazhuang050017P. R. China
| | - Xiaoning Yang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Chenyu Zhang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Bingbing Guo
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jiebo Li
- Institute of Medical PhotonicsBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Weili Hong
- Institute of Medical PhotonicsBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Jiarui Liu
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Yun Zhao
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Yujia Hou
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Futing Lai
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Wei Zhang
- Department of PharmacologyInstitution of Chinese Integrative MedicineHebei Medical UniversityShijiazhuang050017P. R. China
| | - Lihua Qin
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Weiguang Zhang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jianyuan Luo
- Department of Medical GeneticsSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Ruimao Zheng
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Neuroscience Research InstituteKey Laboratory for Neuroscience of Ministry of EducationKey Laboratory for Neuroscience of National Health Commission of the People's Republic of ChinaPeking UniversityBeijing100191P. R. China
| |
Collapse
|
2
|
Kfir A, Awasthi R, Ghosh S, Kundu S, Paul B, Lamprecht R, Barkai E. A Cellular Mechanism of Learning-Induced Enhancement of Synaptic Inhibition: PKC-Dependent Upregulation of KCC2 Activation. Sci Rep 2020; 10:962. [PMID: 31969605 PMCID: PMC6976593 DOI: 10.1038/s41598-020-57626-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/18/2019] [Indexed: 01/23/2023] Open
Abstract
Long-term memory of complex olfactory learning is expressed by wide spread enhancement in excitatory and inhibitory synaptic transmission onto piriform cortex pyramidal neurons. A particularly interesting modification in synaptic inhibition is the hyperpolarization of the reversal potential of the fast post synaptic inhibitory potential (fIPSP). Here we study the mechanism underlying the maintenance of such a shift in the fIPSP. Blocking of the neuronal specific K+-Cl- co-transporter (KCC2) in neurons of trained rats significantly depolarized the averaged fIPSP reversal potential of the spontaneous miniature inhibitory post synaptic currents (mIPSCs), to the averaged pre-training level. A similar effect was obtained by blocking PKC, which was previously shown to upregulate KCC2. Accordingly, the level of PKC-dependent phosphorylation of KCC2, at the serine 940 site, was significantly increased after learning. In contrast, blocking two other key second messenger systems CaMKII and PKA, which have no phosphorylation sites on KCC2, had no effect on the fIPSP reversal potential. Importantly, the PKC inhibitor also reduced the averaged amplitude of the spontaneous miniature excitatory synaptic currents (mEPSCs) in neurons of trained rats only, to the pre-training level. We conclude that learning-induced hyper-polarization of the fIPSP reversal potential is mediated by PKC-dependent increase of KCC2 phosphorylation.
Collapse
Affiliation(s)
- Adi Kfir
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Richa Awasthi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sourav Ghosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sankhanava Kundu
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Blesson Paul
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
3
|
Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance. Neuroscience 2018; 381:105-114. [DOI: 10.1016/j.neuroscience.2018.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
|
4
|
Kwak KA, Lee SP, Yang JY, Park YS. Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease. Stem Cells Int 2018; 2018:6392986. [PMID: 29686714 PMCID: PMC5852851 DOI: 10.1155/2018/6392986] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene in the disease's pathogenesis. Stem cell-based therapies cast a new hope for AD treatment as a replacement or regeneration strategy. The results from recent preclinical studies regarding stem cell-based therapies are promising. Human clinical trials are now underway. However, a number of questions remain to be answered prior to safe and effective clinical translation. This review explores the pathophysiology of AD and summarizes the relevant stem cell research according to cell type. We also briefly summarize related clinical trials. Finally, future perspectives are discussed with regard to their clinical applications.
Collapse
Affiliation(s)
- Kyeong-Ah Kwak
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Young Yang
- Department of Dental Hygiene, Daejeon Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young-Seok Park
- Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Pinto CB, Saleh Velez FG, Lopes F, de Toledo Piza PV, Dipietro L, Wang QM, Mazwi NL, Camargo EC, Black-Schaffer R, Fregni F. SSRI and Motor Recovery in Stroke: Reestablishment of Inhibitory Neural Network Tonus. Front Neurosci 2017; 11:637. [PMID: 29200995 PMCID: PMC5696576 DOI: 10.3389/fnins.2017.00637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are currently widely used in the field of the neuromodulation not only because of their anti-depressive effects but also due to their ability to promote plasticity and enhance motor recovery in patients with stroke. Recent studies showed that fluoxetine promotes motor recovery after stroke through its effects on the serotonergic system enhancing motor outputs and facilitating long term potentiation, key factors in motor neural plasticity. However, little is known in regards of the exact mechanisms underlying these effects and several aspects of it remain poorly understood. In this manuscript, we discuss evidence supporting the hypothesis that SSRIs, and in particular fluoxetine, modulate inhibitory pathways, and that this modulation enhances reorganization and reestablishment of excitatory-inhibitory control; these effects play a key role in learning induced plasticity in neural circuits involved in the promotion of motor recovery after stroke. This discussion aims to provide important insights and rationale for the development of novel strategies for stroke motor rehabilitation.
Collapse
Affiliation(s)
- Camila B. Pinto
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Neuroscience and Behavior, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Faddi G. Saleh Velez
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Fernanda Lopes
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Polyana V. de Toledo Piza
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
- Department of Severe Patients, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Qing M. Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Nicole L. Mazwi
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Erica C. Camargo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Randie Black-Schaffer
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| | - Felipe Fregni
- Laboratory of Neuromodulation and Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
6
|
Crooke A, Huete-Toral F, Colligris B, Pintor J. The role and therapeutic potential of melatonin in age-related ocular diseases. J Pineal Res 2017; 63. [PMID: 28658514 DOI: 10.1111/jpi.12430] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/20/2022]
Abstract
The eye is continuously exposed to solar UV radiation and pollutants, making it prone to oxidative attacks. In fact, oxidative damage is a major cause of age-related ocular diseases including cataract, glaucoma, age-related macular degeneration, and diabetic retinopathy. As the nature of lens cells, trabecular meshwork cells, retinal ganglion cells, retinal pigment epithelial cells, and photoreceptors is postmitotic, autophagy plays a critical role in their cellular homeostasis. In age-related ocular diseases, this process is impaired, and thus, oxidative damage becomes irreversible. Other conditions such as low-grade chronic inflammation and angiogenesis also contribute to the development of retinal diseases (glaucoma, age-related macular degeneration and diabetic retinopathy). As melatonin is known to have remarkable qualities such as antioxidant/antinitridergic, mitochondrial protector, autophagy modulator, anti-inflammatory, and anti-angiogenic, it can represent a powerful tool to counteract all these diseases. The present review analyzes the role and therapeutic potential of melatonin in age-related ocular diseases, focusing on nitro-oxidative stress, autophagy, inflammation, and angiogenesis mechanisms.
Collapse
Affiliation(s)
- Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Basilio Colligris
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Group Ocupharm, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017; 16:634-643. [PMID: 28497576 PMCID: PMC5506442 DOI: 10.1111/acel.12605] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/19/2022] Open
Abstract
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| |
Collapse
|
8
|
Jammal L, Whalley B, Ghosh S, Lamrecht R, Barkai E. Physiological expression of olfactory discrimination rule learning balances whole-population modulation and circuit stability in the piriform cortex network. Physiol Rep 2016; 4:4/14/e12830. [PMID: 27449811 PMCID: PMC4962067 DOI: 10.14814/phy2.12830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/13/2016] [Indexed: 01/10/2023] Open
Abstract
Once trained, rats are able to execute particularly difficult olfactory discrimination tasks with exceptional accuracy. Such skill acquisition, termed "rule learning", is accompanied by a series of long-lasting modifications to three cellular properties which modulate pyramidal neuron activity in piriform cortex; intrinsic excitability, synaptic excitation, and synaptic inhibition. Here, we explore how these changes, which are seemingly contradictory at the single-cell level in terms of their effect on neuronal excitation, are manifested within the piriform cortical neuronal network to store the memory of the rule, while maintaining network stability. To this end, we monitored network activity via multisite extracellular recordings of field postsynaptic potentials (fPSPS) and with single-cell recordings of miniature inhibitory and excitatory synaptic events in piriform cortex slices. We show that although 5 days after rule learning the cortical network maintains its basic activity patterns, synaptic connectivity is strengthened specifically between spatially proximal cells. Moreover, while the enhancement of inhibitory and excitatory synaptic connectivity is nearly identical, strengthening of synaptic inhibition is equally distributed between neurons while synaptic excitation is particularly strengthened within a specific subgroup of cells. We suggest that memory for the acquired rule is stored mainly by strengthening excitatory synaptic connection between close pyramidal neurons and runaway synaptic activity arising from this change is prevented by a nonspecific enhancement of synaptic inhibition.
Collapse
Affiliation(s)
- Luna Jammal
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ben Whalley
- School of Chemistry, Food & Nutritional Sciences and Pharmacy, The University of Reading, Reading, UK
| | - Sourav Ghosh
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamrecht
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Scheyltjens I, Arckens L. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plast 2016; 2016:8723623. [PMID: 27403348 PMCID: PMC4923604 DOI: 10.1155/2016/8723623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/05/2022] Open
Abstract
The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning.
Collapse
Affiliation(s)
- Isabelle Scheyltjens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Ghosh S, Reuveni I, Barkai E, Lamprecht R. Calcium/calmodulin-dependent kinase II activity is required for maintaining learning-induced enhancement of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated synaptic excitation. J Neurochem 2016; 136:1168-1176. [DOI: 10.1111/jnc.13505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Sourav Ghosh
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Iris Reuveni
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Edi Barkai
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology; Faculty of Natural Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
11
|
Posluszny A, Liguz-Lecznar M, Turzynska D, Zakrzewska R, Bielecki M, Kossut M. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission. PLoS One 2015; 10:e0144415. [PMID: 26641862 PMCID: PMC4671550 DOI: 10.1371/journal.pone.0144415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022] Open
Abstract
Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.
Collapse
Affiliation(s)
- Anna Posluszny
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Danuta Turzynska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Renata Zakrzewska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maksymilian Bielecki
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Malgorzata Kossut
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
- * E-mail:
| |
Collapse
|
12
|
Saiz-Sanchez D, Flores-Cuadrado A, Ubeda-Bañon I, de la Rosa-Prieto C, Martinez-Marcos A. Interneurons in the human olfactory system in Alzheimer's disease. Exp Neurol 2015; 276:13-21. [PMID: 26616239 DOI: 10.1016/j.expneurol.2015.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 01/09/2023]
Abstract
The principal olfactory structures display Alzheimer's disease (AD) related pathology at early stages of the disease. Consequently, olfactory deficits are among the earliest symptoms. Reliable olfactory tests for accurate clinical diagnosis are rarely made. In addition, neuropathological analysis postmortem of olfactory structures is often not made. Therefore, the relationship between the clinical features and the underlying pathology is poorly defined. Traditionally, research into Alzheimer's disease has focused on the degeneration of cortical temporal projection neurons and cholinergic neurons. Recent evidence has demonstrated the neurodegeneration of interneuron populations in AD. This review provides an updated overview of the pathological involvement of interneuron populations in the human olfactory system in Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Saiz-Sanchez
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Isabel Ubeda-Bañon
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Carlos de la Rosa-Prieto
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 13005 Ciudad Real, Spain.
| |
Collapse
|
13
|
Persistent CaMKII activation mediates learning-induced long-lasting enhancement of synaptic inhibition. J Neurosci 2015; 35:128-39. [PMID: 25568108 DOI: 10.1523/jneurosci.2123-14.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Training rats in a particularly difficult olfactory-discrimination task results in acquisition of high skill to perform the task superbly, termed "rule learning" or "learning set." Such complex learning results in enhanced intrinsic neuronal excitability of piriform cortex pyramidal neurons, and in their excitatory synaptic interconnections. These changes, while subserving memory maintenance, must be counterbalanced by modifications that prevent overspreading of activity and uncontrolled synaptic strengthening. Indeed, we have previously shown that the average amplitude of GABAA-mediated miniature IPSCs (mIPSCs) in these neurons is enhanced for several days after learning, an enhancement mediated via a postsynaptic mechanism. To unravel the molecular mechanism of this long-term inhibition enhancement, we tested the role of key second-messenger systems in maintaining such long-lasting modulation. The calcium/calmodulin-dependent kinase II (CaMKII) blocker, KN93, significantly reduced the average mIPSC amplitude in neurons from trained rats only to the average pretraining level. A similar effect was obtained by the CaMKII peptide inhibitor, tatCN21. Such reduction resulted from decreased single-channel conductance and not in the number of activated channels. The PKC inhibitor, GF109203X, reduced the average mIPSC amplitude in neurons from naive, pseudo-trained, and trained animals, and the difference between the trained and control groups remained. Such reduction resulted from a decrease in the number of activated channels. The PKA inhibitor H89 dihydrochloride did not affect the average mIPSC amplitude in neurons from any of the three groups. We conclude that learning-induced enhancement of GABAA-mediated synaptic inhibition is maintained by persistent CaMKII activation.
Collapse
|
14
|
Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 2015; 47:e151. [PMID: 25766620 PMCID: PMC4351411 DOI: 10.1038/emm.2014.124] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 12/31/2022] Open
Abstract
Underlying cognitive declines in Alzheimer's disease (AD) are the result of neuron and neuronal process losses due to a wide range of factors. To date, all efforts to develop therapies that target specific AD-related pathways have failed in late-stage human trials. As a result, an emerging consensus in the field is that treatment of AD patients with currently available drug candidates might come too late, likely as a result of significant neuronal loss in the brain. In this regard, cell-replacement therapies, such as human embryonic stem cell- or induced pluripotent stem cell-derived neural cells, hold potential for treating AD patients. With the advent of stem cell technologies and the ability to transform these cells into different types of central nervous system neurons and glial cells, some success in stem cell therapy has been reported in animal models of AD. However, many more steps remain before stem cell therapies will be clinically feasible for AD and related disorders in humans. In this review, we will discuss current research advances in AD pathogenesis and stem cell technologies; additionally, the potential challenges and strategies for using cell-based therapies for AD and related disorders will be discussed.
Collapse
Affiliation(s)
- Leslie M Tong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Helen Fong
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Cohen Y, Wilson DA, Barkai E. Differential modifications of synaptic weights during odor rule learning: dynamics of interaction between the piriform cortex with lower and higher brain areas. Cereb Cortex 2015; 25:180-91. [PMID: 23960200 PMCID: PMC4415065 DOI: 10.1093/cercor/bht215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule.
Collapse
Affiliation(s)
- Yaniv Cohen
- Departments of Biology
- Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa31905, Israel,
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA and
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Donald A. Wilson
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA and
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Edi Barkai
- Departments of Biology
- Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa31905, Israel,
| |
Collapse
|
16
|
Arc visualization of odor objects reveals experience-dependent ensemble sharpening, separation, and merging in anterior piriform cortex in adult rat. J Neurosci 2014; 34:10206-10. [PMID: 25080582 DOI: 10.1523/jneurosci.1942-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visualization using the immediate early gene Arc revealed sparser and more robust odor representations in the anterior piriform cortex of adult rats when odor was associated with water reward over 2-3 d. Rewarded odor "mixtures" resulted in rats responding to either component odor similarly, and, correspondingly, the odor representations became more similar as indexed by increased overlap in piriform Arc-expressing (Arc(+)) pyramidal neurons. The increased overlap was consistent with the rats' generalization from component odors. Discriminating among highly similar odor mixtures for reward led to increased differentiation of the neural representations as indexed by a reduction in overlap for piriform Arc(+) pyramidal neurons after training. Similar odor mixture discrimination also required more trials to criterion. The visible reduction in the overlap of odor representations indexes pattern separation. The Arc visualization of odor representations in the anterior piriform network suggests that odor objects are widely distributed representations and can be rapidly modified by reward training in adult rats. We suggest that dynamic changes such as those observed here in piriform odor encoding are at the heart of perceptual learning and reflect the continuing plastic nature of mature associative cortex as an outcome of successful problem solving.
Collapse
|
17
|
Abstract
The ability of organisms to seamlessly ignore familiar, inconsequential stimuli improves their selective attention and response to salient features of the environment. Here, I propose that this fundamental but unexplained phenomenon substantially derives from the ability of any pattern of neural excitation to create an enhanced inhibitory (or "negative") image of itself through target-specific scaling of inhibitory inputs onto active excitatory neurons. Familiar stimuli encounter strong negative images and are therefore less likely to be transmitted to higher brain centers. Integrating historical and recent observations, the negative-image model described here provides a mechanistic framework for understanding habituation, which is connected to ideas on dynamic predictive coding. In addition, it suggests insights for understanding autism spectrum disorders.
Collapse
|
18
|
Oh MM, Disterhoft JF. Increased Excitability of Both Principal Neurons and Interneurons during Associative Learning. Neuroscientist 2014; 21:372-84. [PMID: 24946769 DOI: 10.1177/1073858414537382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we highlight several studies indicating that the modulation of intrinsic neuronal excitability is key for successful memory formation. Specifically, we will focus our discussion on our hypothesis that the postburst afterhyperpolarization (a key regulator of intrinsic excitability) is an essential cellular mechanism used by both principal and inhibitory neurons to change their neuronal activity as memory is formed. In addition, we propose that these intrinsic excitability changes occur first in principal neurons, followed by changes in inhibitory neurons, thus maintaining the balance of network activity among neurons for successful encoding and readout of memory.
Collapse
Affiliation(s)
- M Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
19
|
Kfir A, Ohad-Giwnewer N, Jammal L, Saar D, Golomb D, Barkai E. Learning-induced modulation of the GABAB-mediated inhibitory synaptic transmission: mechanisms and functional significance. J Neurophysiol 2014; 111:2029-38. [DOI: 10.1152/jn.00004.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex olfactory-discrimination (OD) learning results in a series of intrinsic and excitatory synaptic modifications in piriform cortex pyramidal neurons that enhance the circuit excitability. Such overexcitation must be balanced to prevent runway activity while maintaining the efficient ability to store memories. We showed previously that OD learning is accompanied by enhancement of the GABAA-mediated inhibition. Here we show that GABAB-mediated inhibition is also enhanced after learning and study the mechanism underlying such enhancement and explore its functional role. We show that presynaptic, GABAB-mediated synaptic inhibition is enhanced after learning. In contrast, the population-average postsynaptic GABAB-mediated synaptic inhibition is unchanged, but its standard deviation is enhanced. Learning-induced reduction in paired pulse facilitation in the glutamatergic synapses interconnecting pyramidal neurons was abolished by application of the GABAB antagonist CGP55845 but not by blocking G protein-gated inwardly rectifying potassium channels only, indicating enhanced suppression of excitatory synaptic release via presynaptic GABAB-receptor activation. In addition, the correlation between the strengths of the early (GABAA-mediated) and late (GABAB-mediated) synaptic inhibition was much stronger for each particular neuron after learning. Consequently, GABAB-mediated inhibition was also more efficient in controlling epileptic-like activity induced by blocking GABAA receptors. We suggest that complex OD learning is accompanied by enhancement of the GABAB-mediated inhibition that enables the cortical network to store memories, while preventing uncontrolled activity.
Collapse
Affiliation(s)
- Adi Kfir
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - Naama Ohad-Giwnewer
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - Luna Jammal
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - Drorit Saar
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| | - David Golomb
- Department of Physiology and Neurobiology, Faculty of Health Sciences, and the Zlotowski Center for Neuroscience, Ben-Gurion University, BeerSheva, Israel
| | - Edi Barkai
- Departments of Neurobiology and Biology, Faculty of Sciences, University of Haifa, Haifa, Israel; and
| |
Collapse
|
20
|
|
21
|
Zhang S, Roman G. Presynaptic inhibition of gamma lobe neurons is required for olfactory learning in Drosophila. Curr Biol 2013; 23:2519-27. [PMID: 24291093 DOI: 10.1016/j.cub.2013.10.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/09/2013] [Accepted: 10/17/2013] [Indexed: 11/25/2022]
Abstract
The loss of heterotrimeric G(o) signaling through the expression of pertussis toxin (PTX) within either the α/β or γ lobe mushroom body neurons of Drosophila results in the impaired aversive olfactory associative memory formation. Herein, we focus on the cellular effects of G(o) signaling in the γ lobe mushroom body neurons during memory formation. Expression of PTX in the γ lobes specifically inhibits G(o) activation, leading to poor olfactory learning and an increase in odor-elicited synaptic vesicle release. In the γ lobe neurons, training decreases synaptic vesicle release elicited by the unpaired conditioned stimulus -, while leaving presynaptic activation by the paired conditioned stimulus + unchanged. PTX expression in γ lobe neurons inhibits the generation of this differential synaptic activation by conditioned stimuli after negative reinforcement. Hyperpolarization of the γ lobe neurons or the inhibition of presynaptic activity through the expression of dominant negative dynamin transgenes ameliorated the memory impairment caused by PTX, indicating that the disinhibition of these neurons by PTX was responsible for the poor memory formation. The role for γ lobe inhibition, carried out by G(o) activation, indicates that an inhibitory circuit involving these neurons plays a positive role in memory acquisition. This newly uncovered requirement for inhibition of odor-elicited activity within the γ lobes is consistent with these neurons serving as comparators during learning, perhaps as part of an odor salience modification mechanism.
Collapse
Affiliation(s)
- Shixing Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Biology of Behavior Institute, University of Houston, Houston, TX 77204, USA
| | - Gregg Roman
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Biology of Behavior Institute, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
22
|
Cybulska-Klosowicz A, Posluszny A, Nowak K, Siucinska E, Kossut M, Liguz-Lecznar M. Interneurons containing somatostatin are affected by learning-induced cortical plasticity. Neuroscience 2013; 254:18-25. [PMID: 24055404 DOI: 10.1016/j.neuroscience.2013.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/15/2013] [Accepted: 09/09/2013] [Indexed: 01/21/2023]
Abstract
The maintenance of neural circuit stability is a dynamic process that requires the plasticity of many cellular and synaptic components. By changing the excitatory/inhibitory balance, inhibitory GABAergic plasticity can regulate excitability, and contribute to neural circuit function and refinement in learning and memory. Increased inhibitory GABAergic neurotransmission has been shown in brain structures involved in the learning process. Previously, we showed that classical conditioning in which tactile stimulation of one row of vibrissae (conditioned stimulus, CS) was paired with a tail shock (unconditioned stimulus, UCS) in adult mice results in the increased density of GABAergic interneurons and increased expression of glutamic acid decarboxylase (GAD)-67 in barrels of the "trained" row cortical representation. In inhibitory neurons of the rat cortex GAD co-localizes with several proteins and peptides. We found previously that the density of the parvalbumin (GAD+/Prv+)-containing subpopulation is not changed after conditioning. In the present study, we examined GABAergic somatostatin (Som)-, calbindin (CB)- and calretinin (CR)-positive interneurons in the cortical representation of "trained" vibrissae after training. Cells showing double immunostaining for GAD/Som, GAD/CR and GAD/CB were counted in the barrels representing vibrissae activated during the training and in control, untouched rows. We found a substantial increase of GAD/Som-containing cells in the trained row representation. No changes in the density of GAD/CR or GAD/CB neurons were observed. These results suggest that Som-containing interneurons are involved in learning-induced changes in the inhibitory cortical network.
Collapse
Affiliation(s)
- A Cybulska-Klosowicz
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
23
|
Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci 2013; 36:429-38. [PMID: 23648377 DOI: 10.1016/j.tins.2013.04.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/04/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Abstract
Increased understanding of the early stages of olfaction has lead to a renewed interest in the higher brain regions responsible for forming unified 'odor images' from the chemical components detected by the nose. The piriform cortex, which is one of the first cortical destinations of olfactory information in mammals, is a primitive paleocortex that is critical for the synthetic perception of odors. Here we review recent work that examines the cellular neurophysiology of the piriform cortex. Exciting new findings have revealed how the neurons and circuits of the piriform cortex process odor information, demonstrating that, despite its superficial simplicity, the piriform cortex is a remarkably subtle and intricate neural circuit.
Collapse
|
24
|
McKay BM, Oh MM, Disterhoft JF. Learning increases intrinsic excitability of hippocampal interneurons. J Neurosci 2013; 33:5499-506. [PMID: 23536065 PMCID: PMC3678545 DOI: 10.1523/jneurosci.4068-12.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/24/2013] [Accepted: 02/02/2013] [Indexed: 11/21/2022] Open
Abstract
Learning-related intrinsic excitability changes of pyramidal neurons via modulation of the postburst afterhyperpolarization (AHP) have been repeatedly demonstrated in multiple brain regions (especially the hippocampus), after a variety of learning tasks, and in multiple species. While exciting and important, the changes in pyramidal neurons are only a part of the neural circuitry involved in successful learning. For a more complete picture of the dynamic learning-related changes in the neural network, changes in inhibitory circuitry must also be systematically examined and characterized. Here we show in young adult rats and mice that learning the hippocampus-dependent trace eyeblink conditioning task induces enhanced inhibition onto CA1 pyramidal neurons mediated, in part, by an increase in intrinsic excitability of somatostatin-positive inhibitory neurons (SOMs). Furthermore, both CA1 pyramidal and SOM interneurons shared a common cellular mechanism (reduction in SK channel-mediated AHP) that led to the learning-induced increased intrinsic excitability.
Collapse
Affiliation(s)
- Bridget M. McKay
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - M. Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John F. Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
25
|
Jasinska M, Siucinska E, Jasek E, Litwin JA, Pyza E, Kossut M. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex. PLoS One 2013; 8:e54301. [PMID: 23457448 PMCID: PMC3573062 DOI: 10.1371/journal.pone.0054301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/10/2012] [Indexed: 01/16/2023] Open
Abstract
Associative fear learning, resulting from whisker stimulation paired with application of a mild electric shock to the tail in a classical conditioning paradigm, changes the motor behavior of mice and modifies the cortical functional representation of sensory receptors involved in the conditioning. It also induces the formation of new inhibitory synapses on double-synapse spines of the cognate barrel hollows. We studied density and distribution of polyribosomes, the putative structural markers of enhanced synaptic activation, following conditioning. By analyzing serial sections of the barrel cortex by electron microscopy and stereology, we found that the density of polyribosomes was significantly increased in dendrites of the barrel activated during conditioning. The results revealed fear learning-induced increase in the density of polyribosomes associated with both excitatory and inhibitory synapses located on dendritic spines (in both single- and double-synapse spines) and only with the inhibitory synapses located on dendritic shafts. This effect was accompanied by a significant increase in the postsynaptic density area of the excitatory synapses on single-synapse spines and of the inhibitory synapses on double-synapse spines containing polyribosomes. The present results show that associative fear learning not only induces inhibitory synaptogenesis, as demonstrated in the previous studies, but also stimulates local protein synthesis and produces modifications of the synapses that indicate their potentiation.
Collapse
Affiliation(s)
- Malgorzata Jasinska
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Ewa Siucinska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ewa Jasek
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Jan A. Litwin
- Department of Histology, Jagiellonian University Medical College, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Kossut
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Warsaw School of Social Psychology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
26
|
Impaired structural hippocampal plasticity is associated with emotional and memory deficits in the olfactory bulbectomized rat. Neuroscience 2013; 236:233-43. [PMID: 23357118 DOI: 10.1016/j.neuroscience.2013.01.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Disturbances in olfactory circuitry have been associated with depression in humans. The olfactory bulbectomized (OBX lesion) has been largely used as a model of depression-like behavior in the rat. However, quantitative neuronal rearrangements in key brain regions in this animal model have not been evaluated yet. Accordingly, we investigated changes in hippocampal plasticity as well as behavioral deficits in this animal model. OBX-induced behavioral deficits were studied in a battery of tests, namely the open field test (OFT), forced swim test (FST), and spatial memory disturbances in the Morris water maze (MWM). To characterize the neuronal remodeling, neuroanatomical rearrangements were investigated in the CA1 hippocampus and piriform cortex (PirC), brain regions receiving inputs from the olfactory bulbs and associated with emotional or olfactory processes. Additionally, cell proliferation and survival of newborn cells in the adult dentate gyrus (DG) of the hippocampus were also determined. OBX induced hyperlocomotion and enhanced rearing and grooming in the OFT, increased immobility in the FST as well as required a longer time to find the hidden platform in the MWM. OBX also induced dendritic atrophy in the hippocampus and PirC. In addition, cell proliferation was decreased while the survival remained unchanged in the DG of these animals. These various features are also observed in depressed subjects, adding further support to the validity and usefulness of this model to evaluate potential novel antidepressants.
Collapse
|
27
|
Andrews-Zwilling Y, Gillespie AK, Kravitz AV, Nelson AB, Devidze N, Lo I, Yoon SY, Bien-Ly N, Ring K, Zwilling D, Potter GB, Rubenstein JLR, Kreitzer AC, Huang Y. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS One 2012; 7:e40555. [PMID: 22792368 PMCID: PMC3390383 DOI: 10.1371/journal.pone.0040555] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/08/2012] [Indexed: 11/25/2022] Open
Abstract
Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.
Collapse
Affiliation(s)
- Yaisa Andrews-Zwilling
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Anna K. Gillespie
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Alexxai V. Kravitz
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Alexandra B. Nelson
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Nino Devidze
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Nga Bien-Ly
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Karen Ring
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Zwilling
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Gregory B. Potter
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - John L. R. Rubenstein
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Anatol C. Kreitzer
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hagiwara A, Pal SK, Sato TF, Wienisch M, Murthy VN. Optophysiological analysis of associational circuits in the olfactory cortex. Front Neural Circuits 2012; 6:18. [PMID: 22529781 PMCID: PMC3329886 DOI: 10.3389/fncir.2012.00018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 02/04/2023] Open
Abstract
Primary olfactory cortical areas receive direct input from the olfactory bulb, but also have extensive associational connections that have been mainly studied with classical anatomical methods. Here, we shed light on the functional properties of associational connections in the anterior and posterior piriform cortices (aPC and pPC) using optophysiological methods. We found that the aPC receives dense functional connections from the anterior olfactory nucleus (AON), a major hub in olfactory cortical circuits. The local recurrent connectivity within the aPC, long invoked in cortical autoassociative models, is sparse and weak. By contrast, the pPC receives negligible input from the AON, but has dense connections from the aPC as well as more local recurrent connections than the aPC. Finally, there are negligible functional connections from the pPC to aPC. Our study provides a circuit basis for a more sensory role for the aPC in odor processing and an associative role for the pPC.
Collapse
Affiliation(s)
- Akari Hagiwara
- Akari Hagiwara, Faculty of Medicine, Department of Biochemistry, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan. e-mail:
| | | | | | | | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, CambridgeMA, USA
| |
Collapse
|
29
|
Abstract
Fundamental aspects of mammalian brain evolution occurred in the context of viviparity and placentation brought about by the epigenetic regulation of imprinted genes. Since the fetal placenta hormonally primes the maternal brain, two genomes in one individual are transgenerationally co-adapted to ensure maternal care and nurturing. Advanced aspects of neocortical brain evolution has shown very few genetic changes between monkeys and humans. Although these lineages diverged at approximately the same time as the rat and mouse (20 million years ago), synonymous sequence divergence between the rat and mouse is double that when comparing monkey with human sequences. Paradoxically, encephalization of rat and mouse are remarkably similar, while comparison of the human and monkey shows the human cortex to be three times the size of the monkey. This suggests an element of genetic stability between the brains of monkey and man with a greater emphasis on epigenetics providing adaptable variability.
Collapse
Affiliation(s)
- Eric B Keverne
- Sub-Department of Animal Behavior, University of Cambridge, Madingley, Cambridge CB23 8AA, UK.
| |
Collapse
|
30
|
Selective degeneration of septal and hippocampal GABAergic neurons in a mouse model of amyloidosis and tauopathy. Neurobiol Dis 2012; 47:1-12. [PMID: 22426397 DOI: 10.1016/j.nbd.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/30/2012] [Accepted: 03/01/2012] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by brain accumulation of amyloid-β peptide and neurofibrillary tangles, which are believed to initiate a pathological cascade that results in progressive impairment of cognitive functions and eventual neuronal death. To obtain a mouse model displaying the typical AD histopathology of amyloidosis and tauopathy, we generated a triple-transgenic mouse line (TauPS2APP) by overexpressing human mutations of the amyloid precursor protein, presenilin2 and tau genes. Stereological analysis of TauPS2APP mice revealed significant neurodegeneration of GABAergic septo-hippocampal projection neurons as well as their target cells, the GABAergic hippocampal interneurons. In contrast, the cholinergic medial septum neurons remained unaffected. Moreover, the degeneration of hippocampal GABAergic interneurons was dependent on the hippocampal subfield and interneuronal subtype investigated, whereby the dentate gyrus and the NPY-positive interneurons, respectively, were most strongly affected. Neurodegeneration was also accompanied by a change in the mRNA expression of markers for inhibitory interneurons. In line with the loss of inhibitory neurons, we observed functional changes in TauPS2APP mice relative to WT mice, with strongly enhanced long-term potentiation in the medial-perforant pathway input to the dentate gyrus, and stereotypic hyperactivity. Our data indicate that inhibitory neurons are the targets of neurodegeneration in a mouse model of amyloidosis and tauopathy, thus pointing to a possible role of the inhibitory network in the pathophysiological and functional cascade of Alzheimer's disease.
Collapse
|
31
|
Saar D, Reuveni I, Barkai E. Mechanisms underlying rule learning-induced enhancement of excitatory and inhibitory synaptic transmission. J Neurophysiol 2012; 107:1222-9. [DOI: 10.1152/jn.00356.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Training rats to perform rapidly and efficiently in an olfactory discrimination task results in robust enhancement of excitatory and inhibitory synaptic connectivity in the rat piriform cortex, which is maintained for days after training. To explore the mechanisms by which such synaptic enhancement occurs, we recorded spontaneous miniature excitatory and inhibitory synaptic events in identified piriform cortex neurons from odor-trained, pseudo-trained, and naive rats. We show that olfactory discrimination learning induces profound enhancement in the averaged amplitude of AMPA receptor-mediated miniature synaptic events in piriform cortex pyramidal neurons. Such physiological modifications are apparent at least 4 days after learning completion and outlast learning-induced modifications in the number of spines on these neurons. Also, the averaged amplitude of GABAA receptor-mediated miniature inhibitory synaptic events was significantly enhanced following odor discrimination training. For both excitatory and inhibitory transmission, an increase in miniature postsynaptic current amplitude was evident in most of the recorded neurons; however, some neurons showed an exceptionally great increase in the amplitude of miniature events. For both excitatory and inhibitory transmission, the frequency of spontaneous synaptic events was not modified after learning. These results suggest that olfactory discrimination learning-induced enhancement of synaptic transmission in cortical neurons is mediated by postsynaptic modulation of AMPA receptor-dependent currents and balanced by long-lasting modulation of postsynaptic GABAA receptor-mediated currents.
Collapse
Affiliation(s)
- Drorit Saar
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iris Reuveni
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
32
|
Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity. Nat Neurosci 2011; 15:155-61. [PMID: 22101640 PMCID: PMC3245808 DOI: 10.1038/nn.2966] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/23/2011] [Indexed: 11/08/2022]
Abstract
Learning to adapt to a complex and fluctuating environment requires the ability to adjust neural representations of sensory stimuli. Through pattern completion processes, cortical networks can reconstruct familiar patterns from degraded input patterns, while pattern separation processes allow discrimination of even highly overlapping inputs. Here we show that the balance between pattern separation and completion is experience-dependent. Rats given extensive training with overlapping complex odorant mixtures show improved behavioral discrimination ability and enhanced cortical ensemble pattern separation. In contrast, behavioral training to disregard normally detectable differences between overlapping mixtures results in impaired cortical ensemble pattern separation (enhanced pattern completion) and impaired discrimination. This bidirectional effect was not found in the olfactory bulb, and may be due to plasticity within olfactory cortex itself. Thus pattern recognition, and the balance between pattern separation and completion, is highly malleable based on task demands and occurs in concert with changes in perceptual performance.
Collapse
|
33
|
Abstract
Natural odors, generally composed of many monomolecular components, are analyzed by peripheral receptors into component features and translated into spatiotemporal patterns of neural activity in the olfactory bulb. Here, we will discuss the role of the olfactory cortex in the recognition, separation and completion of those odor-evoked patterns, and how these processes contribute to odor perception. Recent findings regarding the neural architecture, physiology, and plasticity of the olfactory cortex, principally the piriform cortex, will be described in the context of how this paleocortical structure creates odor objects.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
34
|
Fletcher ML, Chen WR. Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation. Learn Mem 2010; 17:561-70. [PMID: 20980444 PMCID: PMC2981412 DOI: 10.1101/lm.941510] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/31/2010] [Indexed: 01/19/2023]
Abstract
The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of plasticity. As in other sensory systems, this plasticity can be controlled by centrifugal inputs from brain regions known to be involved in attention and learning processes. Specifically, both the bulb and cortex receive heavy inputs from cholinergic, noradrenergic, and serotonergic modulatory systems. These neuromodulators are shown to have profound effects on both odor processing and odor memory by acting on both inhibitory local interneurons and output neurons in both regions.
Collapse
Affiliation(s)
- Max L. Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Wei R. Chen
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Bekisz M, Garkun Y, Wabno J, Hess G, Wrobel A, Kossut M. Increased excitability of cortical neurons induced by associative learning: an ex vivo study. Eur J Neurosci 2010; 32:1715-25. [PMID: 20964731 DOI: 10.1111/j.1460-9568.2010.07453.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In adult mice, classical conditioning in which whisker stimulation is paired with an electric shock to the tail results in a decrease in the frequency of head movements, induces expansion of the cortical representation of stimulated vibrissae and enhances inhibitory synaptic interactions within the 'trained' barrels. We investigated whether such a simple associative learning paradigm also induced changes in neuronal excitability. Using whole-cell recordings from ex vivo slices of the barrel cortex we found that layer IV excitatory cells located in the cortical representation of the 'trained' row of vibrissae had a higher frequency of spikes recorded at threshold potential than neurons from the 'untrained' row and than cells from control animals. Additionally, excitatory cells within the 'trained' barrels were characterized by increased gain of the input-output function, lower amplitudes of fast after-hyperpolarization and decreased effect of blocking of BK channels by iberiotoxin. These findings provide new insight into the possible mechanism for enhanced intrinsic excitability of layer IV excitatory neurons. In contrast, the fast spiking inhibitory cells recorded in the same barrels did not change their intrinsic excitability after the conditioning procedure. The increased excitability of excitatory neurons within the 'trained' barrels may represent the counterpart of homeostatic plasticity, which parallels enhanced synaptic inhibition described previously. Together, the two mechanisms would contribute to increase the input selectivity within the conditioned cortical network.
Collapse
Affiliation(s)
- Marek Bekisz
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
36
|
Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A, Yoon SY, Zwilling D, Yan TX, Chen L, Huang Y. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 2010; 30:13707-17. [PMID: 20943911 PMCID: PMC2988475 DOI: 10.1523/jneurosci.4040-10.2010] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/23/2010] [Accepted: 08/26/2010] [Indexed: 01/22/2023] Open
Abstract
Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA(A) receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA(A) receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.
Collapse
Affiliation(s)
- Yaisa Andrews-Zwilling
- Gladstone Institute of Neurological Disease
- Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Nga Bien-Ly
- Gladstone Institute of Neurological Disease
- Biomedical Sciences Graduate Program, and
| | - Qin Xu
- Gladstone Institute of Neurological Disease
- Gladstone Institute of Cardiovascular Disease
| | - Gang Li
- Gladstone Institute of Neurological Disease
- Neurology, University of California, San Francisco, San Francisco, California 94158
| | | | | | - Daniel Zwilling
- Gladstone Institute of Neurological Disease
- Neurology, University of California, San Francisco, San Francisco, California 94158
| | | | | | - Yadong Huang
- Gladstone Institute of Neurological Disease
- Gladstone Institute of Cardiovascular Disease
- Biomedical Sciences Graduate Program, and
- Departments of Pathology and
- Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|