1
|
Kupke J, Oliveira AMM. The molecular and cellular basis of memory engrams: Mechanisms of synaptic and systems consolidation. Neurobiol Learn Mem 2025; 219:108057. [PMID: 40258487 DOI: 10.1016/j.nlm.2025.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
The capacity to record and store life experiences for periods ranging from days to a lifetime is what allows an individual to adapt and survive. Memory consolidation is the process that drives the stabilization and long-term storage of memory and takes place at two levels - synaptic and systems. Recently, several studies have provided insight into the processes that drive synaptic and systems consolidation through the characterization of the molecular, functional and structural changes of memory engram cells at distinct time points of the memory consolidation process. In this review we summarize and discuss these recent findings that have allowed a significant step forward in our understanding of how episodic memory is formed and stored in engram cells of the hippocampus and the medial prefrontal cortex.
Collapse
Affiliation(s)
- Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany; Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany.
| |
Collapse
|
2
|
N'Diaye M, Ducourneau EG, Bakoyiannis I, Potier M, Lafenetre P, Ferreira G. Obesogenic diet induces sex-specific alterations of contextual fear memory and associated hippocampal activity in mice. Cereb Cortex 2024; 34:bhae254. [PMID: 38934712 DOI: 10.1093/cercor/bhae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
In addition to metabolic and cardiovascular disorders, obesity is associated with cognitive deficits in humans and animal models. We have previously shown that obesogenic high-fat and sugar diet intake during adolescence (adoHFSD) impairs hippocampus (HPC)-dependent memory in rodents. These results were obtained in males only and it remains to evaluate whether adoHFSD has similar effect in females. Therefore, here, we investigated the effects of adoHFSD consumption on HPC-dependent contextual fear memory and associated brain activation in male and female mice. Exposure to adoHFSD increased fat mass accumulation and glucose levels in both males and females but impaired contextual fear memory only in males. Compared with females, contextual fear conditioning induced higher neuronal activation in the dorsal and ventral HPC (CA1 and CA3 subfields) as well as in the medial prefrontal cortex in males. Also, adoHFSD-fed males showed enhanced c-Fos expression in the dorsal HPC, particularly in the dentate gyrus, and in the basolateral amygdala compared with the other groups. Finally, chemogenetic inactivation of the dorsal HPC rescued adoHFSD-induced memory deficits in males. Our results suggest that males are more vulnerable to the effects of adoHFSD on HPC-dependent aversive memory than females, due to overactivation of the dorsal HPC.
Collapse
Affiliation(s)
- Matéo N'Diaye
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Eva-Gunnel Ducourneau
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Ioannis Bakoyiannis
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Mylène Potier
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Pauline Lafenetre
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Guillaume Ferreira
- NutriNeuro Lab, FoodCircus Team, Université de Bordeaux, UMR 1286 INRAE, Bordeaux INP, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
3
|
Sayegh FJP, Mouledous L, Macri C, Pi Macedo J, Lejards C, Rampon C, Verret L, Dahan L. Ventral tegmental area dopamine projections to the hippocampus trigger long-term potentiation and contextual learning. Nat Commun 2024; 15:4100. [PMID: 38773091 PMCID: PMC11109191 DOI: 10.1038/s41467-024-47481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.
Collapse
Affiliation(s)
- Fares J P Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France.
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Catherine Macri
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Juliana Pi Macedo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Leite AKO, Farias CP, Schmidt BE, Teixeira L, Rieder AS, Furini CRG, Wyse ATS. The Post-conditioning Acute Strength Exercise Facilitates Contextual Fear Memory Consolidation Via Hippocampal N-methyl-D-aspartate-receptors. Neuroscience 2023; 535:88-98. [PMID: 37925051 DOI: 10.1016/j.neuroscience.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The benefits of aerobic exercises for memory are known, but studies of strength training on memory consolidation are still scarce. Exercise stimulates the release of metabolites and myokines that reaching the brain stimulate the activation of NMDA-receptors and associated pathways related to cognition and synaptic plasticity. The aim of the present study was to investigate whether the acute strength exercise could promote the consolidation of a weak memory. We also investigated whether the effects of strength exercise on memory consolidation and on the BDNF and synapsin I levels depends on the activation of NMDA-receptors. Male Wistar rats were submitted to strength exercise session after a weak training in contextual fear conditioning paradigm to investigate the induction of memory consolidation. To investigate the participation of NMDA-receptors animals were submitted to contextual fear training and strength exercise and infused with MK801 or saline immediately after exercise. To investigate the participation of NMDA-receptors in BDNF and synapsin I levels the animals were submitted to acute strength exercise and infused with MK801 or saline immediately after exercise (in absence of behavior experiment). Results showed that exercise induced the consolidation of a weak memory and this effect was dependent on the activation of NMDA-receptors. The hippocampal overexpression of BDNF and Synapsin I through exercise where NMDA-receptors dependent. Our findings showed that strength exercise strengthened fear memory consolidation and modulates the overexpression of BDNF and synapsin I through the activation of NMDA-receptors dependent signaling pathways.
Collapse
Affiliation(s)
- Ana Karla Oliveira Leite
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Clarissa Penha Farias
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Bianca Estefani Schmidt
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucas Teixeira
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alessandra Schmitt Rieder
- Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Postgraduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse's Lab), Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Machado Batista Sohn J, Cardoso NC, Raymundi AM, Prickaerts J, Stern CAJ. Phosphodiesterase 4 inhibition after retrieval switches the memory fate favoring extinction instead of reconsolidation. Sci Rep 2023; 13:20384. [PMID: 37990053 PMCID: PMC10663466 DOI: 10.1038/s41598-023-47717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Phosphodiesterase 4 (PDE4), an enzyme expressed in the dorsal hippocampus (DH), hydrolyzes the cAMP, limiting the PKA-induced CREB phosphorylation (pCREB) and BDNF expression. Depending on the brain region, PKA and pCREB mediate reconsolidation or extinction, whereas BDNF is mainly related to extinction facilitation. The mechanisms underpinning the switch between reconsolidation and extinction are relatively unknown. Here, we tested the hypothesis that PDE4 might control these processes. We showed in Wistar rats submitted to contextual fear conditioning that PDE4 inhibition with roflumilast (ROF) within the DH, after a short retrieval, did not change freezing behavior after one day (TestA1). After 10 days, the ROF-treated group significantly reduced the expression of freezing behavior. This effect depended on retrieval, Test A1 exposure, and reinstated after a remainder foot shock, suggesting an extinction facilitation. The ROF effect depended on PKA after retrieval or, protein synthesis after Test A1. After retrieval, ROF treatment did not change the pCREB/CREB ratio in the DH. It enhanced proBDNF expression without changing pre-proBDNF or mature BDNF in the DH after Test A1. The results suggest that the inhibition of PDE4 in the DH after a short retrieval changes the memory sensibility from reconsolidation to extinction via regulating proBDNF expression.
Collapse
Affiliation(s)
- Jeferson Machado Batista Sohn
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
6
|
Huang T, Lee S, Lee T, Yun S, Kim Y, Yang H. Smart Farming Enhances Bioactive Compounds Content of Panax ginseng on Moderating Scopolamine-Induced Memory Deficits and Neuroinflammation. PLANTS (BASEL, SWITZERLAND) 2023; 12:640. [PMID: 36771724 PMCID: PMC9920294 DOI: 10.3390/plants12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Korean ginseng (Panax ginseng) is a traditional herbal supplement known to have a variety of pharmacological activities. A smart farm system could provide potential standardization of ginseng seedlings after investigating plant metabolic responses to various parameters in order to design optimal conditions. This research was performed to investigate the effect of smart-farmed ginseng on memory improvement in a scopolamine-induced memory deficit mouse model and an LPS-induced microglial cell model. A smart farming system was applied to culture ginseng. The administration of its extract (S2 extract) under specific culture conditions significantly attenuated cognitive and spatial memory deficits by regulating AKT/ERK/CREB signaling, as well as the cortical inflammation associated with suppression of COX-2 and NLRP3 induced by scopolamine. In addition, S2 extract improved the activation of iNOS and COX-2, and the secretion of NO in LPS-induced BV-2 microglia. Based on the HPLC fingerprint and in vitro data, ginsenosides Rb2 and Rd were found to be the main contributors to the anti-inflammatory effects of the S2 extract. Our findings suggest that integrating a smart farm system may enhance the metabolic productivity of ginseng and provides evidence of its potential impact on natural bioactive compounds of medicinal plants with beneficial qualities, such as ginsenosides Rb2 and Rd.
Collapse
Affiliation(s)
- Tianqi Huang
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
- Korea Institute of Science and Technology (KIST) School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sangbin Lee
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Teamin Lee
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| | - Seungbeom Yun
- R&D Center, BTC Corporation, Technology Development Center, Gyeonggi Technopark, 705, Ansan 15588, Republic of Korea
| | - Yongduk Kim
- R&D Center, BTC Corporation, Technology Development Center, Gyeonggi Technopark, 705, Ansan 15588, Republic of Korea
| | - Hyunok Yang
- Department of Integrative Biological Sciences and Industry and Convergence Research Center for Natural Products, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
7
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
8
|
Ojea Ramos S, Feld M, Fustiñana MS. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front Mol Neurosci 2022; 15:988790. [PMID: 36277495 PMCID: PMC9580372 DOI: 10.3389/fnmol.2022.988790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022] Open
Abstract
The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.
Collapse
Affiliation(s)
- Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Feld
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | |
Collapse
|
9
|
Sardoo AM, Zhang S, Ferraro TN, Keck TM, Chen Y. Decoding brain memory formation by single-cell RNA sequencing. Brief Bioinform 2022; 23:6713514. [PMID: 36156112 PMCID: PMC9677489 DOI: 10.1093/bib/bbac412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
To understand how distinct memories are formed and stored in the brain is an important and fundamental question in neuroscience and computational biology. A population of neurons, termed engram cells, represents the physiological manifestation of a specific memory trace and is characterized by dynamic changes in gene expression, which in turn alters the synaptic connectivity and excitability of these cells. Recent applications of single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) are promising approaches for delineating the dynamic expression profiles in these subsets of neurons, and thus understanding memory-specific genes, their combinatorial patterns and regulatory networks. The aim of this article is to review and discuss the experimental and computational procedures of sc/snRNA-seq, new studies of molecular mechanisms of memory aided by sc/snRNA-seq in human brain diseases and related mouse models, and computational challenges in understanding the regulatory mechanisms underlying long-term memory formation.
Collapse
Affiliation(s)
- Atlas M Sardoo
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Thomas M Keck
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA,Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Yong Chen
- Corresponding author. Yong Chen, Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA. Tel.: +1 856 256 4500; E-mail:
| |
Collapse
|
10
|
Cox WR, Faliagkas L, Besseling A, van der Loo RJ, Spijker S, Kindt M, Rao-Ruiz P. Interfering With Contextual Fear Memories by Post-reactivation Administration of Propranolol in Mice: A Series of Null Findings. Front Behav Neurosci 2022; 16:893572. [PMID: 35832291 PMCID: PMC9272000 DOI: 10.3389/fnbeh.2022.893572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Post-reactivation amnesia of contextual fear memories by blockade of noradrenergic signaling has been shown to have limited replicability in rodents. This is usually attributed to several boundary conditions that gate the destabilization of memory during its retrieval. How these boundary conditions can be overcome, and what neural mechanisms underlie post-reactivation changes in contextual fear memories remain largely unknown. Here, we report a series of experiments in a contextual fear-conditioning paradigm in mice, that were aimed at solving these issues. We first attempted to obtain a training paradigm that would consistently result in contextual fear memory that could be destabilized upon reactivation, enabling post-retrieval amnesia by the administration of propranolol. Unexpectedly, our attempts were unsuccessful to this end. Specifically, over a series of experiments in which we varied different parameters of the fear acquisition procedure, at best small and inconsistent effects were observed. Additionally, we found that propranolol did not alter retrieval-induced neural activity, as measured by the number of c-Fos+ cells in the hippocampal dentate gyrus. To determine whether propranolol was perhaps ineffective in interfering with reactivated contextual fear memories, we also included anisomycin (i.e., a potent and well-known amnesic drug) in several experiments, and measures of synaptic glutamate receptor subunit GluA2 (i.e., a marker of memory destabilization). No post-retrieval amnesia by anisomycin and no altered GluA2 expression by reactivation was observed, suggesting that the memories did not undergo destabilization. The null findings are surprising, given that the training paradigms we implemented were previously shown to result in memories that could be modified upon reactivation. Together, our observations illustrate the elusive nature of reactivation-dependent changes in non-human fear memory.
Collapse
Affiliation(s)
- Wouter R. Cox
- Department of Psychology, Clinical Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Leonidas Faliagkas
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Amber Besseling
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rolinka J. van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Merel Kindt
- Department of Psychology, Clinical Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Priyanka Rao-Ruiz
| |
Collapse
|
11
|
Faucher P, Huguet C, Mons N, Micheau J. Acute pre-learning stress selectively impairs hippocampus-dependent fear memory consolidation: Behavioral and molecular evidence. Neurobiol Learn Mem 2022; 188:107585. [PMID: 35021061 DOI: 10.1016/j.nlm.2022.107585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Despite compelling evidence that stress or stress-related hormones influence fear memory consolidation processes, the understanding of molecular mechanisms underlying the effects of stress is still fragmentary. The release of corticosterone in response to pre-learning stress exposure has been demonstrated to modulate positively or negatively memory encoding and/or consolidation according to many variables such as stress intensity, the emotional valence of the learned material or the interval between stressful episode and learning experience. Here, we report that contextual but not cued fear memory consolidation was selectively impaired in male mice exposed to a 50 min-period of restraint stress just before the unpaired fear conditioning session. In addition to behavioral impairment, acute stress down-regulated activated/phosphorylated ERK1/2 (pERK1/2) in dorsal hippocampal area CA1 in mice sacrificed 60 min and 9 h after unpaired conditioning. In lateral amygdala, although acute stress by itself increased the level of pERK1/2 it nevertheless blocked the peak of pERK1/2 that was normally observed 15 min after unpaired conditioning. To examine whether stress-induced corticosterone overflow was responsible of these detrimental effects, the corticosterone synthesis inhibitor, metyrapone, was administered 30 min before stress exposure. Metyrapone abrogated the stress-induced contextual fear memory deficits but did not alleviate the effects of stress on pERK1/2 and its downstream target phosphorylated CREB (pCREB) in hippocampus CA1 and lateral amygdala. Collectively, our observations suggest that consolidation of hippocampus-dependent memory and the associated signaling pathway are particularly sensitive to stress. However, behavioral normalization by preventive metyrapone treatment was not accompanied by renormalization of the canonical signaling pathway. A new avenue would be to consider surrogate mechanisms involving proper metyrapone influence on both nongenomic and genomic actions of glucocorticoid receptors.
Collapse
Affiliation(s)
- Pierre Faucher
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Célia Huguet
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Nicole Mons
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Jacques Micheau
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
12
|
Chaaya N, Wang J, Jacques A, Beecher K, Chaaya M, Battle AR, Johnson LR, Chehrehasa F, Belmer A, Bartlett SE. Contextual Fear Memory Maintenance Changes Expression of pMAPK, BDNF and IBA-1 in the Pre-limbic Cortex in a Layer-Specific Manner. Front Neural Circuits 2021; 15:660199. [PMID: 34295224 PMCID: PMC8291085 DOI: 10.3389/fncir.2021.660199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating and chronic fear-based disorder. Pavlovian fear conditioning protocols have long been utilised to manipulate and study these fear-based disorders. Contextual fear conditioning (CFC) is a particular Pavlovian conditioning procedure that pairs fear with a particular context. Studies on the neural mechanisms underlying the development of contextual fear memories have identified the medial prefrontal cortex (mPFC), or more specifically, the pre-limbic cortex (PL) of the mPFC as essential for the expression of contextual fear. Despite this, little research has explored the role of the PL in contextual fear memory maintenance or examined the role of neuronal mitogen-activated protein kinase (pMAPK; ERK 1/2), brain-derived neurotrophic factor (BDNF), and IBA-1 in microglia in the PL as a function of Pavlovian fear conditioning. The current study was designed to evaluate how the maintenance of two different long-term contextual fear memories leads to changes in the number of immune-positive cells for two well-known markers of neural activity (phosphorylation of MAPK and BDNF) and microglia (IBA-1). Therefore, the current experiment is designed to assess the number of immune-positive pMAPK and BDNF cells, microglial number, and morphology in the PL following CFC. Specifically, 2 weeks following conditioning, pMAPK, BDNF, and microglia number and morphology were evaluated using well-validated antibodies and immunohistochemistry (n = 12 rats per group). A standard CFC protocol applied to rats led to increases in pMAPK, BDNF expression and microglia number as compared to control conditions. Rats in the unpaired fear conditioning (UFC) procedure, despite having equivalent levels of fear to context, did not have any change in pMAPK, BDNF expression and microglia number in the PL compared to the control conditions. These data suggest that alterations in the expression of pMAPK, BDNF, and microglia in the PL can occur for up to 2 weeks following CFC. Together the data suggest that MAPK, BDNF, and microglia within the PL of the mPFC may play a role in contextual fear memory maintenance.
Collapse
Affiliation(s)
- Nicholas Chaaya
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael Chaaya
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew Raymond Battle
- Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Luke R Johnson
- Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Center for the Study of Traumatic Stress, Department of Psychiatry, USU School of Medicine, Bethesda, MD, United States
| | - Fatemeh Chehrehasa
- Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Olevska A, Spanagel R, Bernardi RE. Impaired contextual fear conditioning in RasGRF2 mutant mice is likely Ras-ERK-dependent. Neurobiol Learn Mem 2021; 181:107435. [PMID: 33831510 DOI: 10.1016/j.nlm.2021.107435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Ras/Raf/MEK/ERK (Ras-ERK) signaling has been shown to play an important role in fear acquisition. However, little information is known regarding the mechanisms that contribute to the regulation of this pathway in terms of the learning of conditioned fears. Ras Guanine Nucleotide Releasing Factor 2 (RasGRF2) is one of two guanine nucleotide exchange factors (GEF) that regulates the Ras-ERK signaling pathway in a Ca2+-dependent manner via control of the cycling of Ras isoforms between an inactive and active state. Here we sought to determine the role of RasGRF2 on contextual fear conditioning in RasGRF2 knockout (KO) and their wild type (WT) counterparts. Male KO and WT mice underwent a single session of contextual fear conditioning (12 min, 4 unsignaled shocks), followed by either daily 12-min retention trials or the molecular analysis of Ras activation and pERK1/2 activity. KO mice showed an impaired acquisition of contextual fear, as demonstrated by reduced freezing during fear conditioning and 24-hr retention tests relative to WT mice. Ras analysis following fear conditioning demonstrated a reduction in Ras activation in the hippocampus as well as a reduction in pERK1/2 in the CA1 region of the hippocampus in KO mice, suggesting that the decrease in fear conditioning in KO mice is at least in part due to the impairment of Ras-ERK signaling in the hippocampus during learning. These data indicate a role for RasGRF2 in contextual fear conditioning in mice that may be Ras-ERK-dependent.
Collapse
Affiliation(s)
- Anastasia Olevska
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
| |
Collapse
|
14
|
Soleimanpour E, Bergado Acosta JR, Landgraf P, Mayer D, Dankert E, Dieterich DC, Fendt M. Regulation of CREB Phosphorylation in Nucleus Accumbens after Relief Conditioning. Cells 2021; 10:238. [PMID: 33530478 PMCID: PMC7912172 DOI: 10.3390/cells10020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Relief learning is the association of environmental cues with the cessation of aversive events. While there is increasing knowledge about the neural circuitry mediating relief learning, the respective molecular pathways are not known. Therefore, the aim of the present study was to examine different putative molecular pathways underlying relief learning. To this purpose, male rats were subjected either to relief conditioning or to a pseudo conditioning procedure. Forty-five minutes or 6 h after conditioning, samples of five different brain regions, namely the prefrontal cortex, nucleus accumbens (NAC), dorsal striatum, dorsal hippocampus, and amygdala, were collected. Using quantitative Western blots, the expression level of CREB, pCREB, ERK1/2, pERK1/2, CaMKIIα, MAP2K, PKA, pPKA, Akt, pAkt, DARPP-32, pDARPP-32, 14-3-3, and neuroligin2 were studied. Our analyses revealed that relief conditioned rats had higher CREB phosphorylation in NAC 6 h after conditioning than pseudo conditioned rats. The data further revealed that this CREB phosphorylation was mainly induced by dopamine D1 receptor-mediated activation of PKA, however, other kinases, downstream of the NMDA receptor, may also contribute. Taken together, the present study suggests that CREB phosphorylation, induced by a combination of different molecular pathways downstream of dopamine D1 and NMDA receptors, is essential for the acquisition and consolidation of relief learning.
Collapse
Affiliation(s)
- Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Jorge R. Bergado Acosta
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Evelyn Dankert
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Daniela C. Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
15
|
Kornhuber J, Zoicas I. Social Fear Memory Requires Two Stages of Protein Synthesis in Mice. Int J Mol Sci 2020; 21:ijms21155537. [PMID: 32748831 PMCID: PMC7432563 DOI: 10.3390/ijms21155537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that long-term consolidation of newly acquired information, including information related to social fear, require de novo protein synthesis. However, the temporal dynamics of protein synthesis during the consolidation of social fear memories is unclear. To address this question, mice received a single systemic injection with the protein synthesis inhibitor, anisomycin, at different time-points before or after social fear conditioning (SFC), and memory was assessed 24 h later. We showed that anisomycin impaired the consolidation of social fear memories in a time-point-dependent manner. Mice that received anisomycin 20 min before, immediately after, 6 h, or 8 h after SFC showed reduced expression of social fear, indicating impaired social fear memory, whereas anisomycin caused no effects when administered 4 h after SFC. These results suggest that consolidation of social fear memories requires two stages of protein synthesis: (1) an initial stage starting during or immediately after SFC, and (2) a second stage starting around 6 h after SFC and lasting for at least 5 h.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany
- Correspondence: ; Tel.: +49-9131-85-46005
| |
Collapse
|
16
|
Tripathi S, Verma A, Jha SK. Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus. Front Cell Neurosci 2020; 14:89. [PMID: 32362814 PMCID: PMC7181388 DOI: 10.3389/fncel.2020.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an essential role in hippocampal-dependent memory consolidation. Increased neurogenesis enhances learning, whereas its ablation causes memory impairment. In contrast, few reports suggest that neurogenesis reduces after learning. Although the interest in exploring the role of adult neurogenesis in learning has been growing, the evidence is still limited. The role of the trace- and delay-appetitive-conditioning on AHN and its underlying mechanism are not known. The consolidation of trace-conditioned memory requires the hippocampus, but delay-conditioning does not. Moreover, the dorsal hippocampus (DH) and ventral hippocampus (VH) may have a differential role in these two conditioning paradigms. Here, we have investigated the changes in: (A) hippocampal cell proliferation and their progression towards neuronal lineage; and (B) expression of Arc, Erk1, Erk2, and CREB proteins in the DH and VH after trace- and delay-conditioning in the rat. The number of newly generated cells significantly increased in the trace-conditioned but did not change in the delay-conditioned animals compared to the control group. Similarly, the expression of Arc protein significantly increased in the DH but not in the VH after trace-conditioning. Nonetheless, it remains unaltered in the delay-conditioned group. The expression of pErk1, pErk2, and pCREB also increased in the DH after trace-conditioning. Whereas, the expression of only pErk1 pErk2 and pCREB proteins increased in the VH after delay-conditioning. Our results suggest that appetitive trace-conditioning enhances AHN. The increased DH neuronal activation and pErk1, pErk2, and pCREB in the DH may be playing an essential role in learning-induced cell-proliferation after appetitive trace-conditioning.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anita Verma
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Sushil K Jha
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
18
|
Javad-Moosavi BZ, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. Activation and Inactivation of Nicotinic Receptnors in the Dorsal Hippocampal Region Restored Negative Effects of Total (TSD) and REM Sleep Deprivation (RSD) on Memory Acquisition, Locomotor Activity and Pain Perception. Neuroscience 2020; 433:200-211. [PMID: 32200080 DOI: 10.1016/j.neuroscience.2020.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Sleep deprivation (SD) is a common issue in today's society. Sleep is essential for proper cognitive functions, including learning and memory. Furthermore, sleep disorders can alter pain information processing. Meanwhile, hippocampal nicotinic receptors have a role in modulating pain and memory. The goal of this study is to investigate the effect of dorsal hippocampal (CA1) nicotinic receptors on behavioral changes induced by Total (TSD) and REM Sleep Deprivation (RSD). A modified water box and multi-platform apparatus were used to induce TSD and RSD, respectively. To investigate the interaction between nicotinic receptors and hippocampus-dependent memory, nicotinic receptor agonist (nicotine) or antagonist (mecamylamine) was injected into the CA1 region. The results showed, nicotine at the doses of 0.001 and 0.1 µg/rat and mecamylamine at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, while both at the doses of 0.01 and 0.1 µg/rat enhanced locomotor activity. Additionally, all doses used for both drugs did not alter pain perception. Also, 24 h TSD or RSD attenuated memory acquisition with no effect on locomotor activity and only TSD induced an analgesic effect. Intra-CA1 administration of subthreshold dose of nicotine (0.0001 µg/rat) and mecamylamine (0.001 µg/rat) did not alter memory acquisition, pain perception and locomotor activity in sham of TSD/RSD rats. Both drugs reversed all behavioral changes induced by TSD. Furthermore, both drugs reversed the effect of RSD on memory acquisition, while only mecamylamine reversed the effect of RSD on locomotor activity. In conclusion, CA1 nicotinic receptors play a significant role in TSD/RSD-induced behavioral changes.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
19
|
Bridi M, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Porcari GS, Lejards C, Hahn CG, Giese KP, Havekes R, Spruston N, Abel T. Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. JCI Insight 2020; 5:92385. [PMID: 32069266 DOI: 10.1172/jci.insight.92385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of 2 classes of regulatory complexes: permissive coactivators and silencing corepressors. Much work has focused on coactivator complexes, but little is known about the corepressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the corepressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the postsynaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the metabotropic glutamate receptor 1α (mGluR1α) and mGluR5 dependence of long-term potentiation, and increases activation of ERK in the hippocampus after learning. Our studies define a critical role for corepressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.
Collapse
Affiliation(s)
| | | | | | | | - Anamika Banerjee
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Nelson Spruston
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, Virginia, USA
| | | |
Collapse
|
20
|
Raven F, Bolsius YG, Renssen LV, Meijer EL, Zee EA, Meerlo P, Havekes R. Elucidating the role of protein synthesis in hippocampus‐dependent memory consolidation across the day and night. Eur J Neurosci 2020; 54:6972-6981. [PMID: 31965655 PMCID: PMC8596627 DOI: 10.1111/ejn.14684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023]
Abstract
It is widely acknowledged that de novo protein synthesis is crucial for the formation and consolidation of long‐term memories. While the basal activity of many signaling cascades that modulate protein synthesis fluctuates in a circadian fashion, it is unclear whether the temporal dynamics of protein synthesis‐dependent memory consolidation vary depending on the time of day. More specifically, it is unclear whether protein synthesis inhibition affects hippocampus‐dependent memory consolidation in rodents differentially across the day (i.e., the inactive phase with an abundance of sleep) and night (i.e., the active phase with little sleep). To address this question, male and female C57Bl6/J mice were trained in a contextual fear conditioning task at the beginning or the end of the light phase. Animals received a single systemic injection with the protein synthesis inhibitor anisomycin or vehicle directly, 4, 8 hr, or 11.5 hr following training, and memory was assessed after 24 hr. Here, we show that protein synthesis inhibition impaired the consolidation of context–fear memories selectively when the protein synthesis inhibitor was administered at the first three time points, irrespective of timing of training. Even though the basal activity of signaling pathways regulating de novo protein synthesis may fluctuate across the 24‐hr cycle, these results suggest that the temporal dynamics of protein synthesis‐dependent memory consolidation are similar for day‐time and night‐time learning.
Collapse
Affiliation(s)
- Frank Raven
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Youri G. Bolsius
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Lara V. Renssen
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Elroy L. Meijer
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Eddy A. Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Peter Meerlo
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| |
Collapse
|
21
|
Tripodi M, Bhandari K, Chowdhury A, Mukherjee A, Caroni P. Parvalbumin Interneuron Plasticity for Consolidation of Reinforced Learning. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:25-35. [PMID: 31289139 DOI: 10.1101/sqb.2018.83.037630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Parvalbumin (PV) basket cells are widespread local interneurons that inhibit principal neurons and each other through perisomatic boutons. They enhance network function and regulate local ensemble activities, particularly in the γ range. Organized network activity is critically important for long-term memory consolidation during a late time window 11-15 h after acquisition. Here, we discuss the role of learning-related plasticity in PV neurons for long-term memory consolidation. The plasticity can lead to enhanced (high-PV) or reduced (low-PV) expression of PV/GAD67. High-PV plasticity is induced upon definite reinforced learning in early-born PV basket cells, whereas low-PV plasticity is induced upon provisional reinforced learning in late-born PV basket cells. The plasticity is first detectable 6 h after acquisition, at the end of a time window for memory specification through experience, and is critically important 11-15 h after acquisition for enhanced network activity and long-term memory consolidation. High- and low-PV plasticity appear to regulate activity in distinct local networks of principal neurons and PV basket cells. These findings suggest how flexibility and stability in learning and memory might be implemented through parallel circuits and networks.
Collapse
Affiliation(s)
- Matteo Tripodi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Komal Bhandari
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Ananya Chowdhury
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Arghya Mukherjee
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
22
|
Teng L, Chen W, Yin C, Zhang H, Zhao Q. Dexmedetomidine Improves Cerebral Ischemia-Reperfusion Injury in Rats via Extracellular Signal-Regulated Kinase/Cyclic Adenosine Monophosphate Response Element Binding Protein Signaling Pathway. World Neurosurg 2019; 127:e624-e630. [DOI: 10.1016/j.wneu.2019.03.232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/26/2022]
|
23
|
Engram-specific transcriptome profiling of contextual memory consolidation. Nat Commun 2019; 10:2232. [PMID: 31110186 PMCID: PMC6527697 DOI: 10.1038/s41467-019-09960-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P = 6.2 × 10−13), including Atf3 (P = 2.4 × 10−41), Penk (P = 1.3 × 10−15), and Kcnq3 (P = 3.1 × 10−12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory. The molecular mechanisms underlying contextual fear memory consolidation by sparse dentate gyrus (DG) neuronal populations remain unclear. Here using unbiased RNA sequencing of DG engram neurons the authors identify persistent transcriptome modifications during memory consolidation, in which CREB-dependent transcription features prominently
Collapse
|
24
|
Chaaya N, Jacques A, Belmer A, Beecher K, Ali SA, Chehrehasa F, Battle AR, Johnson LR, Bartlett SE. Contextual Fear Conditioning Alter Microglia Number and Morphology in the Rat Dorsal Hippocampus. Front Cell Neurosci 2019; 13:214. [PMID: 31139053 PMCID: PMC6527886 DOI: 10.3389/fncel.2019.00214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Contextual fear conditioning is a Pavlovian conditioning paradigm capable of rapidly creating fear memories to contexts, such as rooms or chambers. Contextual fear conditioning protocols have long been utilized to evaluate how fear memories are consolidated, maintained, expressed, recalled, and extinguished within the brain. These studies have identified the lateral portion of the amygdala and the dorsal portion of the hippocampus as essential for contextual fear memory consolidation. The current study was designed to evaluate how two different contextual fear memories alter amygdala and hippocampus microglia, brain derived neurotrophic factor (BDNF), and phosphorylated cyclic-AMP response element binding (pCREB). We find rats provided with standard contextual fear conditioning to have more microglia and more cells expressing BDNF in the dentate gyrus as compared to a context only control group. Additionally, standard contextual fear conditioning altered microglia morphology to become amoeboid in shape – a common response to central nervous system insult, such as traumatic brain injury, infection, ischemia, and more. The unpaired fear conditioning procedure (whereby non-reinforced and non-overlapping auditory tones were provided at random intervals during conditioning), despite producing equivalent levels of fear as the standard procedure, did not alter microglia, BDNF or pCREB number in any dorsal hippocampus or lateral amygdala brain regions. Despite this, the unpaired fear conditioning protocol produced some alterations in microglia morphology, but less compared to rats provided with standard contextual fear conditioning. Results from this study demonstrate that contextual fear conditioning is capable of producing large alterations to dentate gyrus plasticity and microglia, whereas unpaired fear conditioning only produces minor changes to microglia morphology. These data show, for the first time, that Pavlovian fear conditioning protocols can induce similar responses as trauma, infection or other insults within the central nervous system.
Collapse
Affiliation(s)
- Nicholas Chaaya
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Syed A Ali
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Andrew R Battle
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Luke R Johnson
- Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.,Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University School of Medicine, Bethesda, MD, United States
| | - Selena E Bartlett
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Liao Y, Bae HJ, Zhang J, Kwon Y, Koo B, Jung IH, Kim HM, Park JH, Lew JH, Ryu JH. The Ameliorating Effects of Bee Pollen on Scopolamine-Induced Cognitive Impairment in Mice. Biol Pharm Bull 2019; 42:379-388. [DOI: 10.1248/bpb.b18-00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yulan Liao
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Yubeen Kwon
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - Bokyung Koo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
| | | | - Jong Hun Park
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jae Hwan Lew
- Graduate School of East-West Medical Science, Kyung Hee University
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University
- Department of Oriental Pharmaceutical Science, Kyung Hee University
| |
Collapse
|
26
|
Gisquet-Verrier P, Riccio DC. Memory Integration as a Challenge to the Consolidation/Reconsolidation Hypothesis: Similarities, Differences and Perspectives. Front Syst Neurosci 2019; 12:71. [PMID: 30687031 PMCID: PMC6337075 DOI: 10.3389/fnsys.2018.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023] Open
Abstract
We recently proposed that retrograde amnesia does not result from a disruption of the consolidation/reconsolidation processes but rather to the integration of the internal state induced by the amnesic treatment within the initial memory. Accordingly, the performance disruption induced by an amnesic agent does not result from a disruption of the memory fixation process, but from a difference in the internal state present during the learning phase (or reactivation) and at the later retention test: a case of state-dependency. In the present article, we will review similarities and differences these two competing views may have on memory processing. We will also consider the consequences the integration concept may have on the way memory is built, maintained and retrieved, as well as future research perspectives that such a new view may generate.
Collapse
Affiliation(s)
- Pascale Gisquet-Verrier
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
27
|
Serita T, Miyahara M, Tanimizu T, Takahashi S, Oishi S, Nagayoshi T, Tsuji R, Inoue H, Uehara M, Kida S. Dietary magnesium deficiency impairs hippocampus-dependent memories without changes in the spine density and morphology of hippocampal neurons in mice. Brain Res Bull 2019; 144:149-157. [DOI: 10.1016/j.brainresbull.2018.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 11/26/2022]
|
28
|
Chaaya N, Jacques A, Belmer A, Richard DJ, Bartlett SE, Battle AR, Johnson LR. Localization of Contextual and Context Removed Auditory Fear Memory within the Basolateral Amygdala Complex. Neuroscience 2018; 398:231-251. [PMID: 30552931 DOI: 10.1016/j.neuroscience.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023]
Abstract
Debilitating and persistent fear memories can rapidly form in humans following exposure to traumatic events. Fear memories can also be generated and studied in animals via Pavlovian fear conditioning. The current study was designed to evaluate basolateral amygdala complex (BLC) involvement following the formation of different fear memories (two contextual fear memories and one adjusted auditory fear memory). Fear memories were created in the same context with five 1.0 mA (0.50 s) foot-shocks and, where necessary, five auditory tones (5 kHz, 75 dB, 20 s). The adjusted auditory fear conditioning protocol was employed to remove background contextual fear and produce isolated auditory fear memories. Immunofluorescent labeling was utilized to identify neurons expressing immediate early genes (IEGs). We found the two contextual fear conditioning (CFC) procedures to produce similar levels of fear-related freezing to context. Contextual fear memories produced increases in BLC IEG expression with distinct and separate patterns of expression. These data suggest contextual fear memories created in slightly altered contexts, can produce unique patterns of amygdala activation. The adjusted auditory fear conditioning procedure produced memories to a tone, but not to a context. This group, where no contextual fear was present, had a significant reduction in BLC IEG expression. These data suggest background contextual fear memories, created in standard auditory fear conditioning protocols, contribute significantly to increases in amygdala activation.
Collapse
Affiliation(s)
- N Chaaya
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - A Jacques
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia
| | - A Belmer
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - D J Richard
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Australia
| | - S E Bartlett
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - A R Battle
- Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; School of Biomedical Science, Queensland University of Technology, Brisbane, Australia; The University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia
| | - L R Johnson
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, Brisbane, Australia; Center for the Study of Traumatic Stress, Department of Psychiatry, USU School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
29
|
Caldwell KK, Solomon ER, Smoake JJW, Djatche de Kamgaing CD, Allan AM. Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice. Neurobiol Learn Mem 2018; 156:1-16. [PMID: 30316893 DOI: 10.1016/j.nlm.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE. METHODS Mouse dams consumed either 10% (w/v) ethanol in 0.066% (w/v) saccharin (SAC) or 0.066% (w/v) SAC alone using a limited (4-h) access, drinking-in-the-dark paradigm. Male and female offspring (∼180-days of age) were trained using a delay conditioning procedure and contextual fear responses (freezing behavior) were measured 24 h later. Hippocampal formation tissue and blood were collected from three behavioral groups of animals: 20 min following conditioning (conditioning only group), 20 min following the re-exposure to the context (conditioning plus re-exposure group), and behaviorally naïve (naïve group) mice. Plasma corticosterone levels were measured by enzyme immunoassay. Immunoblotting techniques were used to measure protein levels of the GR, MR, ERK1 and ERK2 in nuclear and membrane fractions prepared from the hippocampal formation. RESULTS Adult SAC control male and female mice displayed similar levels of contextual fear. However, significant sex differences were observed in freezing exhibited during the conditioning session. Compared to same-sex SAC controls, male and female PAE mice demonstrated context fear deficits While plasma corticosterone concentrations were elevated in PAE males and females relative to their respective SAC naïve controls, plasma corticosterone concentrations in the conditioning only and conditioning plus re-exposure groups were similar in SAC and PAE animals. Relative to the respective naïve group, nuclear GR protein levels were increased in SAC, but not PAE, male hippocampal formation in the conditioning only group. In contrast, no difference was observed between nuclear GR levels in the naïve and conditioning plus re-exposure groups. In females, nuclear GR levels were significantly reduced by PAE but there was no effect of behavioral group or interaction between prenatal treatment and behavioral group. In males, nuclear MR levels were significantly elevated in the SAC conditioning plus re-exposure group compared to SAC naïve mice. In PAE females, nuclear MR levels were elevated in both the conditioning only and conditioning plus re-exposure groups relative to the naïve group. Levels of activated ERK2 (phospho-ERK2 expressed relative to total ERK2) protein were elevated in SAC, but not PAE, males following context re-exposure, and a significant interaction between prenatal exposure group and behavioral group was found. No main effects or interactions of behavioral group and prenatal treatment on nuclear ERK2 were found in female mice. These findings suggest a sex difference in which molecular pathways are activated during fear conditioning in mice. CONCLUSIONS In PAE males, the deficits in contextual fear were associated with the loss of responsiveness of hippocampal formation nuclear GR, MR and ERK2 to signals generated by fear conditioning and context re-exposure. In contrast, the contextual fear deficit in PAE female mice does not appear to be associated with activity-dependent changes in GR and MR levels or ERK2 activation during training or memory recall, although an overall reduction in nuclear GR levels may play a role. These studies add to a growing body of literature demonstrating that, at least partially, different mechanisms underlie learning, memory formation and memory recall in males and females and that these pathways are differentially affected by PAE.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jane J W Smoake
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chrys D Djatche de Kamgaing
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
30
|
Medina JH, Viola H. ERK1/2: A Key Cellular Component for the Formation, Retrieval, Reconsolidation and Persistence of Memory. Front Mol Neurosci 2018; 11:361. [PMID: 30344477 PMCID: PMC6182090 DOI: 10.3389/fnmol.2018.00361] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022] Open
Abstract
Extracellular regulated kinase 1/2 (ERK1/2) has been strongly implicated in several cellular processes. In the brain ERK1/2 activity has been primarily involved in long-term memory (LTM) formation and expression. Here, we review earlier evidence and describe recent developments of ERK1/2 signaling in memory processing focusing the attention on the role of ERK1/2 in memory retrieval and reconsolidation, and in the maintenance of the memory trace including mechanisms involving the protection of labile memories. In addition, relearning requires ERK1/2 activity in selected brain regions. Its involvement in distinct memory stages points at ERK1/2 as a core element in memory processing and as one likely target to treat memory impairments associated with neurological disorders.
Collapse
Affiliation(s)
- Jorge H Medina
- Instituto de Biología Celular y Neurociencias (IBCN) "Dr Eduardo De Robertis", CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Haydee Viola
- Instituto de Biología Celular y Neurociencias (IBCN) "Dr Eduardo De Robertis", CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Dr. Hector Maldonado" (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Chaaya N, Battle AR, Johnson LR. An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus. Neurosci Biobehav Rev 2018; 92:43-54. [DOI: 10.1016/j.neubiorev.2018.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
|
32
|
Memory reconsolidation and extinction of fear conditioning induced different Arc/Arg3.1 expression. Neuroreport 2018; 29:1036-1045. [DOI: 10.1097/wnr.0000000000001069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Coelho CAO, Ferreira TL, Kramer-Soares JC, Sato JR, Oliveira MGM. Network supporting contextual fear learning after dorsal hippocampal damage has increased dependence on retrosplenial cortex. PLoS Comput Biol 2018; 14:e1006207. [PMID: 30086129 PMCID: PMC6097702 DOI: 10.1371/journal.pcbi.1006207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/17/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023] Open
Abstract
Hippocampal damage results in profound retrograde, but no anterograde amnesia in contextual fear conditioning (CFC). Although the content learned in the latter have been discussed, alternative regions supporting CFC learning were seldom proposed and never empirically addressed. Here, we employed network analysis of pCREB expression quantified from brain slices of rats with dorsal hippocampal lesion (dHPC) after undergoing CFC session. Using inter-regional correlations of pCREB-positive nuclei between brain regions, we modelled functional networks using different thresholds. The dHPC network showed small-world topology, equivalent to SHAM (control) network. However, diverging hubs were identified in each network. In a direct comparison, hubs in both networks showed consistently higher centrality values compared to the other network. Further, the distribution of correlation coefficients was different between the groups, with most significantly stronger correlation coefficients belonging to the SHAM network. These results suggest that dHPC network engaged in CFC learning is partially different, and engage alternative hubs. We next tested if pre-training lesions of dHPC and one of the new dHPC network hubs (perirhinal, Per; or disgranular retrosplenial, RSC, cortices) would impair CFC. Only dHPC-RSC, but not dHPC-Per, impaired CFC. Interestingly, only RSC showed a consistently higher centrality in the dHPC network, suggesting that the increased centrality reflects an increased functional dependence on RSC. Our results provide evidence that, without hippocampus, the RSC, an anatomically central region in the medial temporal lobe memory system might support CFC learning and memory.
Collapse
Affiliation(s)
- Cesar A. O. Coelho
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, São Paulo, Brazil
| | - Tatiana L. Ferreira
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, São Bernardo do Campo, São Paulo, Brazil
| | - Juliana C. Kramer-Soares
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, São Paulo, Brazil
| | - João R. Sato
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, São Bernardo do Campo, São Paulo, Brazil
| | - Maria Gabriela M. Oliveira
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Hypoxia-Induced Neuroinflammation and Learning-Memory Impairments in Adult Zebrafish Are Suppressed by Glucosamine. Mol Neurobiol 2018; 55:8738-8753. [PMID: 29589284 DOI: 10.1007/s12035-018-1017-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
This study investigated changes in neuroinflammation and cognitive function in adult zebrafish exposed to acute hypoxia and protective effects of glucosamine (GlcN) against hypoxia-induced brain damage. The survival rate of zebrafish following exposure to hypoxia was improved by GlcN pretreatment. Moreover, hypoxia-induced upregulation of neuroglobin, NOS2α, glial fibrillary acidic protein, and S100β in zebrafish was suppressed by GlcN. Hypoxia stimulated cell proliferation in the telencephalic ventral domain and in cerebellum subregions. GlcN decreased the number of bromodeoxyuridine (BrdU)-positive cells in the telencephalon region, but not in cerebellum regions. Transient motor neuron defects, assessed by measuring the locomotor and exploratory activity of zebrafish exposed to hypoxia recovered quickly. GlcN did not affect hypoxia-induced motor activity changes. In passive avoidance tests, hypoxia impaired learning and memory ability, deficits that were rescued by GlcN. A learning stimulus increased the nuclear translocation of phosphorylated cAMP response element binding protein (p-CREB), an effect that was greatly inhibited by hypoxia. GlcN restored nuclear p-CREB after a learning trial in hypoxia-exposed zebrafish. The neurotransmitters, γ-aminobutyric acid and glutamate, were increased after hypoxia in the zebrafish brain, and GlcN further increased their levels. In contrast, acetylcholine levels were reduced by hypoxia and restored by GlcN. Acetylcholinesterase inhibitor physostigmine partially reversed the impaired learning and memory of hypoxic zebrafish. This study represents the first examination of the molecular mechanisms underlying hypoxia-induced memory and learning defects in a zebrafish model. Our results further suggest that GlcN-associated hexosamine metabolic pathway could be an important therapeutic target for hypoxic brain damage.
Collapse
|
35
|
Huang B, Li Y, Cheng D, He G, Liu X, Ma L. β-Arrestin–biased β-adrenergic signaling promotes extinction learning of cocaine reward memory. Sci Signal 2018; 11:11/512/eaam5402. [PMID: 29317519 DOI: 10.1126/scisignal.aam5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bing Huang
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Youxing Li
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Deqin Cheng
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guanhong He
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xing Liu
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
36
|
How Do Microtubule Dynamics Relate to the Hallmarks of Learning and Memory? J Neurosci 2018; 36:5911-3. [PMID: 27251613 DOI: 10.1523/jneurosci.0920-16.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022] Open
|
37
|
Nagayoshi T, Isoda K, Mamiya N, Kida S. Hippocampal calpain is required for the consolidation and reconsolidation but not extinction of contextual fear memory. Mol Brain 2017; 10:61. [PMID: 29258546 PMCID: PMC5735908 DOI: 10.1186/s13041-017-0341-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Memory consolidation, reconsolidation, and extinction have been shown to share similar molecular signatures, including new gene expression. Calpain is a Ca2+-dependent protease that exerts its effects through the proteolytic cleavage of target proteins. Neuron-specific conditional deletions of calpain 1 and 2 impair long-term potentiation in the hippocampus and spatial learning. Moreover, recent studies have suggested distinct roles of calpain 1 and 2 in synaptic plasticity. However, the role of hippocampal calpain in memory processes, especially memory consolidation, reconsolidation, and extinction, is still unclear. In the current study, we demonstrated the critical roles of hippocampal calpain in the consolidation, reconsolidation, and extinction of contextual fear memory in mice. We examined the effects of pharmacological inhibition of calpain in the hippocampus on these memory processes, using the N-Acetyl-Leu-Leu-norleucinal (ALLN; calpain 1 and 2 inhibitor). Microinfusion of ALLN into the dorsal hippocampus impaired long-term memory (24 h memory) without affecting short-term memory (2 h memory). Similarly, this pharmacological blockade of calpain in the dorsal hippocampus also disrupted reactivated memory but did not affect memory extinction. Importantly, the systemic administration of ALLN inhibited the induction of c-fos in the hippocampus, which is observed when memory is consolidated. Our observations showed that hippocampal calpain is required for the consolidation and reconsolidation of contextual fear memory. Further, the results suggested that calpain contributes to the regulation of new gene expression that is necessary for these memory processes as a regulator of Ca2+-signal transduction pathway.
Collapse
Affiliation(s)
- Taikai Nagayoshi
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kiichiro Isoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nori Mamiya
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
38
|
Zhu H, Zhou Y, Liu Z, Chen X, Li Y, Liu X, Ma L. β1-Adrenoceptor in the Central Amygdala Is Required for Unconditioned Stimulus-Induced Drug Memory Reconsolidation. Int J Neuropsychopharmacol 2017; 21:267-280. [PMID: 29216351 PMCID: PMC5838817 DOI: 10.1093/ijnp/pyx104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/01/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Drug memories become labile and reconsolidated after retrieval by presentation of environmental cues (conditioned stimulus) or drugs (unconditioned stimulus). Whether conditioned stimulus and unconditioned stimulus retrieval trigger different memory reconsolidation processes is not clear. METHODS Protein synthesis inhibitor or β-adrenergic receptor (β-AR) antagonist was systemically administrated or intra-central amygdala infused immediately after cocaine reexposure in cocaine-conditioned place preference or self-administration mice models. β-ARs were selectively knocked out in the central amygdala to further confirm the role of β-adrenergic receptor in cocaine reexposure-induced memory reconsolidation of cocaine-conditioned place preference. RESULTS Cocaine reexposure triggered de novo protein synthesis dependent memory reconsolidation of cocaine-conditioned place preference. Cocaine-priming-induced reinstatement was also impaired with post cocaine retrieval manipulation, in contrast to the relapse behavior with post context retrieval manipulation. Cocaine retrieval, but not context retrieval, induced central amygdala activation. Protein synthesis inhibitor or β1-adrenergic receptor antagonist infused in the central amygdala after cocaine retrieval, but not context retrieval, inhibited memory reconsolidation and reinstatement. β1-adrenergic receptor knockout in the central amygdala suppressed cocaine retrieval-triggered memory reconsolidation and reinstatement of cocaine conditioned place preference. β1-adrenergic receptor antagonism after cocaine retrieval also impaired reconsolidation and reinstatement of cocaine self-administration. CONCLUSIONS Cocaine reward memory triggered by unconditioned stimulus retrieval is distinct from conditioned stimulus retrieval. Unconditioned stimulus retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. Post unconditioned stimulus retrieval manipulation can prevent drug memory reconsolidation and relapse to cocaine, thus providing a potential strategy for the prevention of substance addiction. SIGNIFICANCE STATEMENT It is well known that drug memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS and US retrieval trigger different memory reconsolidation processes is unknown. In this study, we found that US retrieval, but not CS retrieval, triggered memory reconsolidation of cocaine-conditioned place preference dependent on β1-AR and de novo protein synthesis in the central amygdala. Furthermore, cocaine priming-induced reinstatement was impaired with post US retrieval manipulation in contrast to the relapse behavior with post CS retrieval manipulation. In cocaine self-administration, β1-AR antagonism after US retrieval also impaired reconsolidation and reinstatement. Our study indicates that reconsolidation of cocaine reward memory triggered by US retrieval is distinct from CS retrieval. US retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala.
Collapse
Affiliation(s)
- Huiwen Zhu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, and Pharmacology Research Center, Fudan University, Shanghai, China
| | - Yiming Zhou
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, and Pharmacology Research Center, Fudan University, Shanghai, China
| | - Zhiyuan Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, and Pharmacology Research Center, Fudan University, Shanghai, China
| | - Xi Chen
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, and Pharmacology Research Center, Fudan University, Shanghai, China
| | - Yanqing Li
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, and Pharmacology Research Center, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, and Pharmacology Research Center, Fudan University, Shanghai, China,Correspondence: Lan Ma, PhD, The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, 138 Yixueyuan Road, Shanghai, China; Xing Liu, MD, Pharmacology Research Center, Fudan University, 220 Handan Road, Shanghai, China (; )
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, and Pharmacology Research Center, Fudan University, Shanghai, China,Correspondence: Lan Ma, PhD, The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, 138 Yixueyuan Road, Shanghai, China; Xing Liu, MD, Pharmacology Research Center, Fudan University, 220 Handan Road, Shanghai, China (; )
| |
Collapse
|
39
|
Sunkaria A, Yadav A, Bhardwaj S, Sandhir R. Postnatal Proteasome Inhibition Promotes Amyloid-β Aggregation in Hippocampus and Impairs Spatial Learning in Adult Mice. Neuroscience 2017; 367:47-59. [DOI: 10.1016/j.neuroscience.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
|
40
|
Acute nicotine disrupts consolidation of contextual fear extinction and alters long-term memory-associated hippocampal kinase activity. Neurobiol Learn Mem 2017; 145:143-150. [PMID: 29017931 DOI: 10.1016/j.nlm.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/15/2017] [Accepted: 10/06/2017] [Indexed: 01/26/2023]
Abstract
Previous research has shown that acute nicotine, an agonist of nAChRs, impaired fear extinction. However, the effects of acute nicotine on consolidation of contextual fear extinction memories and associated cell signaling cascades are unknown. Therefore, we examined the effects of acute nicotine injections before (pre-extinction) and after (post-extinction) contextual fear extinction on behavior and the phosphorylation of dorsal and ventral hippocampal ERK1/2 and JNK1 and protein levels on the 1st and 3rd day of extinction. Our results showed that acute nicotine administered prior to extinction sessions downregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but not dorsal hippocampus, and JNK1 in both dorsal and ventral hippocampus on the 3rd extinction day. These effects were absent on the 1st day of extinction. We also showed that acute nicotine administered immediately and 30 min, but not 6 h, following extinction impaired contextual fear extinction suggesting that acute nicotine disrupts consolidation of contextual fear extinction memories. Finally, acute nicotine injections immediately after extinction sessions upregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but did not affect JNK1. These results show that acute nicotine impairs contextual fear extinction potentially by altering molecular processes responsible for the consolidation of extinction memories.
Collapse
|
41
|
Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory. J Neurosci 2017; 37:6661-6672. [PMID: 28592692 DOI: 10.1523/jneurosci.3298-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/09/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022] Open
Abstract
The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets.SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes.
Collapse
|
42
|
Dong N, Feng ZP. Inverse Relationship between Basal Pacemaker Neuron Activity and Aversive Long-Term Memory Formation in Lymnaea stagnalis. Front Cell Neurosci 2017; 10:297. [PMID: 28101006 PMCID: PMC5209385 DOI: 10.3389/fncel.2016.00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Learning and memory formation are essential physiological functions. While quiescent neurons have long been the focus of investigations into the mechanisms of memory formation, there is increasing evidence that spontaneously active neurons also play key roles in this process and possess distinct rules of activity-dependent plasticity. In this study, we used a well-defined aversive learning model of aerial respiration in the mollusk Lymnaea stagnalis (L. stagnalis) to study the role of basal firing activity of the respiratory pacemaker neuron Right Pedal Dorsal 1 (RPeD1) as a determinant of aversive long-term memory (LTM) formation. We investigated the relationship between basal aerial respiration behavior and RPeD1 firing activity, and examined aversive LTM formation and neuronal plasticity in animals exhibiting different basal aerial respiration behavior. We report that animals with higher basal aerial respiration behavior exhibited early responses to operant conditioning and better aversive LTM formation. Early behavioral response to the conditioning procedure was associated with biphasic enhancements in the membrane potential, spontaneous firing activity and gain of firing response, with an early phase spanning the first 2 h after conditioning and a late phase that is observed at 24 h. Taken together, we provide the first evidence suggesting that lower neuronal activity at the time of learning may be correlated with better memory formation in spontaneously active neurons. Our findings provide new insights into the diversity of cellular rules of plasticity underlying memory formation.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
43
|
Yanai S, Toyohara J, Ishiwata K, Ito H, Endo S. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier. Neuropharmacology 2016; 116:247-259. [PMID: 27979612 DOI: 10.1016/j.neuropharm.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-18F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan; Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Fukushima 963-8052, Japan; Department of Biofunctional Imaging, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Ito
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan.
| |
Collapse
|
44
|
Huckleberry KA, Ferguson LB, Drew MR. Behavioral mechanisms of context fear generalization in mice. ACTA ACUST UNITED AC 2016; 23:703-709. [PMID: 27918275 PMCID: PMC5110986 DOI: 10.1101/lm.042374.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022]
Abstract
There is growing interest in generalization of learned contextual fear, driven in part by the hypothesis that mood and anxiety disorders stem from impaired hippocampal mechanisms of fear generalization and discrimination. However, there has been relatively little investigation of the behavioral and procedural mechanisms that might control generalization of contextual fear. We assessed the relative contribution of different contextual features to context fear generalization and characterized how two common conditioning protocols—foreground (uncued) and background (cued) contextual fear conditioning—affected context fear generalization. In one experiment, mice were fear conditioned in context A, and then tested for contextual fear both in A and in an alternate context created by changing a subset of A's elements. The results suggest that floor configuration and odor are more salient features than chamber shape. A second experiment compared context fear generalization in background and foreground context conditioning. Although foreground conditioning produced more context fear than background conditioning, the two procedures produced equal amounts of generalized fear. Finally, results indicated that the order of context tests (original first versus alternate first) significantly modulates context fear generalization, perhaps because the original and alternate contexts are differentially sensitive to extinction. Overall, results demonstrate that context fear generalization is sensitive to procedural variations and likely reflects the operation of multiple interacting psychological and neural mechanisms.
Collapse
Affiliation(s)
- Kylie A Huckleberry
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | - Laura B Ferguson
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
45
|
Xu Y, Tian Y, Tian Y, Li X, Zhao P. Autophagy activation involved in hypoxic-ischemic brain injury induces cognitive and memory impairment in neonatal rats. J Neurochem 2016; 139:795-805. [PMID: 27659442 DOI: 10.1111/jnc.13851] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
Hypoxic-ischemic brain injury (HIBI) in neonates can lead to lifelong cognitive and memory impairment, but protective strategies are lacking at present. It has been demonstrated that autophagy plays a critical role in HIBI, while the function of autophagy in cognitive and memory impairment induced by HIBI in neonates has not been tested. In this study, we tested the impact of autophagy on the impairment of cognitive function and memory in HIBI neonatal rats by using a Morris water maze and investigated its possible mechanisms, which were established as HIBI model by ligating the left common carotid artery in neonatal rats, followed by 2-h hypoxia. The expression of microtubule-associated protein 1 light chain 3 (LC3)-II increased in HI group 24 h after HI in neonatal rats, while Sequestosome 1 (P62/SQSTM1), phosphorylated cAMP-response element-binding protein (p-CREB) decreased (compared with the sham group, p < 0.05), which were shown in the same left hippocampus CA3 region by immunofluorescence analysis. Brain injury of neonatal rats was aggravated significantly at 7 day after HI, coinciding with the results of Morris water maze. An autophagy inhibitor, 3-methyladenine (3-MA) pretreatment significantly attenuated the increase of LC3II and the loss of P62/SQSTM1 and p-CREB, ameliorated neuronal death, and improved the results of Morris water maze. Our results demonstrate that HIBI in neonatal rats induced excessive autophagy flux, which aggravated brain injury and induced cognitive and memory impairment during adolescence. Inhibition of autophagy reversed the results partly and improved the function of spatial learning and memory by attenuating the reduction of p-CREB. The use of autophagy modulators in the immature brain would create new opportunities for protective strategies clinically in the future.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ye Tian
- Department of orthopedics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
46
|
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 2016; 23:515-33. [PMID: 27634143 PMCID: PMC5026208 DOI: 10.1101/lm.042192.116] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
47
|
Inaba H, Kai D, Kida S. N-glycosylation in the hippocampus is required for the consolidation and reconsolidation of contextual fear memory. Neurobiol Learn Mem 2016; 135:57-65. [PMID: 27343988 DOI: 10.1016/j.nlm.2016.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/14/2023]
Abstract
Memory consolidation and reconsolidation have been shown to require new gene expression. N-glycosylation, one of the major post-translational modifications, is known to play essential or regulatory roles in protein function. A previous study suggested that N-glycosylation is required for the maintenance of long-term potentiation in hippocampal CA1 neurons. However, the role of de novo N-glycosylation in learning and memory, such as memory consolidation and reconsolidation, still remains unclear. Here, we show critical roles for N-glycosylation in the consolidation and reconsolidation of contextual fear memory in mice. We examined the effects of pharmacological inhibition of N-glycosylation in the hippocampus on these memory processes using three different inhibitors (tunicamycin, 1-deoxynojirimycin, and swainsonine) that block the enzymatic activity required for N-glycosylation at different steps. Microinfusions of the N-glycosylation inhibitors into the dorsal hippocampus impaired long-term memory (LTM) formation without affecting short-term memory (STM). Similarly, this pharmacological blockade of N-glycosylation in the dorsal hippocampus also disrupted post-reactivation LTM after retrieval without affecting post-reactivation STM. Additionally, a microinfusion of swainsonine blocked c-fos induction in the hippocampus, which is observed when memory is consolidated. Our observations showed that N-glycosylation is required for the consolidation and reconsolidation of contextual fear memory and suggested that N-glycosylation contributes to the new gene expression necessary for these memory processes.
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Daisuke Kai
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
48
|
Mao X, Hao S, Zhu Z, Zhang H, Wu W, Xu F, Liu B. Procyanidins protects against oxidative damage and cognitive deficits after traumatic brain injury. Brain Inj 2016; 29:86-92. [PMID: 25279568 DOI: 10.3109/02699052.2014.968621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PRIMARY OBJECTIVE Oxidative stress is the principal factor in traumatic brain injury (TBI) that initiates the events that result in protracted neuronal dysfunction and remodeling. Importantly, antioxidants can protect the brain against oxidative damage and modulate the capacity of the brain to cope with synaptic dysfunction and cognitive impairment. RESEARCH DESIGN To date, however, no studies have investigated the effects of procyanidins (PC) on cognitive deficits after TBI. METHODS AND PROCEDURES In the present study, rats with controlled cortical impact (CCI) were used to investigate the protective effects of procyanidins. MAIN OUTCOMES AND RESULTS The results showed that procyanidins reduced the level of malondialdehyde (MDA) and elevated the level of glutathione (GSH) and the activity of superoxide dismutase (SOD). In addition, treatment with procyanidins, which elevated the levels of brain-derived neurotropic factor (BDNF), phosphorylation-cAMP-response element binding protein (pCREB), total CREB, and cyclic AMP (cAMP), improved cognitive performance in the Morris water maze after TBI. CONCLUSIONS These results suggest that procyanidins appear to counteract oxidative damage and behavioral dysfunction after TBI through antioxidant activity and the up-regulation of cAMP/CREB signaling.
Collapse
Affiliation(s)
- Xiang Mao
- a Department of Neurosurgery , The First Affiliated Hospital of Anhui Medical University , No. 218 Jixi Road, Shushan District , Hefei, Anhui , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Genetic Demonstration of a Role for Stathmin in Adult Hippocampal Neurogenesis, Spinogenesis, and NMDA Receptor-Dependent Memory. J Neurosci 2016; 36:1185-202. [PMID: 26818507 DOI: 10.1523/jneurosci.4541-14.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED Neurogenesis and memory formation are essential features of the dentate gyrus (DG) area of the hippocampus, but to what extent the mechanisms responsible for both processes overlap remains poorly understood. Stathmin protein, whose tubulin-binding and microtubule-destabilizing activity is negatively regulated by its phosphorylation, is prominently expressed in the DG. We show here that stathmin is involved in neurogenesis, spinogenesis, and memory formation in the DG. tTA/tetO-regulated bitransgenic mice, expressing the unphosphorylatable constitutively active Stathmin4A mutant (Stat4A), exhibit impaired adult hippocampal neurogenesis and reduced spine density in the DG granule neurons. Although Stat4A mice display deficient NMDA receptor-dependent memory in contextual discrimination learning, which is dependent on hippocampal neurogenesis, their NMDA receptor-independent memory is normal. Confirming NMDA receptor involvement in the memory deficits, Stat4A mutant mice have a decrease in the level of synaptic NMDA receptors and a reduction in learning-dependent CREB-mediated gene transcription. The deficits in neurogenesis, spinogenesis, and memory in Stat4A mice are not present in mice in which tTA/tetO-dependent transgene transcription is blocked by doxycycline through their life. The memory deficits are also rescued within 3 d by intrahippocampal infusion of doxycycline, further indicating a role for stathmin expressed in the DG in contextual memory. Our findings therefore point to stathmin and microtubules as a mechanistic link between neurogenesis, spinogenesis, and NMDA receptor-dependent memory formation in the DG. SIGNIFICANCE STATEMENT In the present study, we aimed to clarify the role of stathmin in neuronal and behavioral functions. We characterized the neurogenic, behavioral, and molecular consequences of the gain-of-function stathmin mutation using a bitransgenic mouse expressing a constitutively active form of stathmin. We found that stathmin plays an important role in adult hippocampal neurogenesis and spinogenesis. In addition, stathmin mutation led to impaired NMDA receptor-dependent and neurogenesis-associated memory and did not affect NMDA receptor-independent memory. Moreover, biochemical analysis suggested that stathmin regulates the synaptic transport of NMDA receptors, which in turn influence CREB-mediated gene transcription machinery. Overall, these data suggest that stathmin is an important molecule for neurogenesis, spinogenesis, and NMDA receptor-dependent learning and memory.
Collapse
|
50
|
Cossio R, Carreira MB, Vásquez CE, Britton GB. Sex differences and estrous cycle effects on foreground contextual fear conditioning. Physiol Behav 2016; 163:305-311. [PMID: 27195460 DOI: 10.1016/j.physbeh.2016.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo Cossio
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama
| | - María B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama
| | - Carol E Vásquez
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama; Department of Biotechnology, AcharyaNagarjuna University, Guntur, India
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panama.
| |
Collapse
|