1
|
RNAi activation with homologous and heterologous sequences that induce resistance against the begomovirus Pepper golden mosaic virus (PepGMV). 3 Biotech 2021; 11:114. [PMID: 33604230 DOI: 10.1007/s13205-021-02653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/09/2021] [Indexed: 12/27/2022] Open
Abstract
This study compared the transcriptional changes in Nicotiana benthamiana plants treated with homologous sequences derived from Pepper golden mosaic virus (PepGMV) and heterologous sequences that derived from another begomovirus, Tomato chino La Paz virus (ToChLPV) prior to infection by PepGMV. The results of microarray analyses identified upregulated genes associated with RNAi such as DCL2, DCL4, AGO3, AGO7, AGO10, NRPD2B (Pol IV), DRB3, CMT3, RDR6. The components that participate in different RNAi pathways were identified, including methylation induced by both constructs, as well as the code of these genes in Arabidopsis thaliana and its counterpart in N. benthamiana through different genome assembly. The expression of these genes was validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR), where DCL3, DCL4, AGO1-1, AGO2, RDR6 and PPR1 showed increased expression during plant protection with the heterologous construct compared to those protected with the homologous construct. The results of this study confirmed the activation of the gene silencing mechanism at the transcriptional level with both constructs and established the possibility of their use as a protection system for both homologous and heterologous sequences.
Collapse
|
2
|
Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Cunningham FJ, Fan C, Landry MP. DNA nanostructures coordinate gene silencing in mature plants. Proc Natl Acad Sci U S A 2019; 116:7543-7548. [PMID: 30910954 PMCID: PMC6462094 DOI: 10.1073/pnas.1818290116] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Delivery of biomolecules to plants relies on Agrobacterium infection or biolistic particle delivery, the former of which is amenable only to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall, which is absent in mammalian cells and poses the dominant physical barrier to biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells; however, nanoparticle-mediated delivery without external mechanical aid remains unexplored for biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver siRNAs, and effectively silence a constitutively expressed gene in Nicotiana benthamiana leaves. We show that nanostructure internalization into plant cells and corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures and both details the design parameters of importance for plant cell internalization and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Honglu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Tianzheng Ye
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Abhishek J Aditham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Chinese Academy of Sciences Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720;
- Innovative Genomics Institute, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
3
|
Yang X, Yang M, Deng H, Ding Y. New Era of Studying RNA Secondary Structure and Its Influence on Gene Regulation in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:671. [PMID: 29872445 PMCID: PMC5972288 DOI: 10.3389/fpls.2018.00671] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/02/2018] [Indexed: 05/29/2023]
Abstract
The dynamic structure of RNA plays a central role in post-transcriptional regulation of gene expression such as RNA maturation, degradation, and translation. With the rise of next-generation sequencing, the study of RNA structure has been transformed from in vitro low-throughput RNA structure probing methods to in vivo high-throughput RNA structure profiling. The development of these methods enables incremental studies on the function of RNA structure to be performed, revealing new insights of novel regulatory mechanisms of RNA structure in plants. Genome-wide scale RNA structure profiling allows us to investigate general RNA structural features over 10s of 1000s of mRNAs and to compare RNA structuromes between plant species. Here, we provide a comprehensive and up-to-date overview of: (i) RNA structure probing methods; (ii) the biological functions of RNA structure; (iii) genome-wide RNA structural features corresponding to their regulatory mechanisms; and (iv) RNA structurome evolution in plants.
Collapse
Affiliation(s)
- Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Minglei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Hongjing Deng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
4
|
Kalinava N, Ni JZ, Peterman K, Chen E, Gu SG. Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in Caenorhabditis elegans. Epigenetics Chromatin 2017; 10:6. [PMID: 28228846 PMCID: PMC5311726 DOI: 10.1186/s13072-017-0114-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Germline nuclear RNAi in C. elegans is a transgenerational gene-silencing pathway that leads to H3K9 trimethylation (H3K9me3) and transcriptional silencing at the target genes. H3K9me3 induced by either exogenous double-stranded RNA (dsRNA) or endogenous siRNA (endo-siRNA) is highly specific to the target loci and transgenerationally heritable. Despite these features, the role of H3K9me3 in siRNA-mediated transcriptional silencing and inheritance of the silencing state at native target genes is unclear. In this study, we took combined genetic and whole-genome approaches to address this question. RESULTS Here we demonstrate that siRNA-mediated H3K9me3 requires combined activities of three H3K9 histone methyltransferases: MET-2, SET-25, and SET-32. set-32 single, met-2 set-25 double, and met-2 set-25;set-32 triple mutant adult animals all exhibit prominent reductions in H3K9me3 throughout the genome, with met-2 set-25;set-32 mutant worms losing all detectable H3K9me3 signals. Surprisingly, loss of high-magnitude H3K9me3 at the native nuclear RNAi targets has no effect on the transcriptional silencing state. In addition, the exogenous dsRNA-induced transcriptional silencing and heritable RNAi at oma-1, a well-established nuclear RNAi reporter gene, are completely resistant to the loss of H3K9me3. CONCLUSIONS Nuclear RNAi-mediated H3K9me3 in C. elegans requires multiple histone methyltransferases, including MET-2, SET-25, and SET-32. H3K9me3 is not essential for dsRNA-induced heritable RNAi or the maintenance of endo-siRNA-mediated transcriptional silencing in C. elegans. We propose that siRNA-mediated transcriptional silencing in C. elegans can be maintained by an H3K9me3-independent mechanism.
Collapse
Affiliation(s)
- Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Kimberly Peterman
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA.,Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854 USA
| |
Collapse
|
5
|
Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. SCIENCE ADVANCES 2016; 2:e1501340. [PMID: 26989783 PMCID: PMC4788475 DOI: 10.1126/sciadv.1501340] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/08/2015] [Indexed: 05/18/2023]
Abstract
Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.
Collapse
|
6
|
Ni JZ, Kalinava N, Chen E, Huang A, Trinh T, Gu SG. A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenetics Chromatin 2016; 9:3. [PMID: 26779286 PMCID: PMC4714518 DOI: 10.1186/s13072-016-0052-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023] Open
Abstract
Background Environmental stress-induced transgenerational epigenetic effects have been observed in various model organisms and human. The capacity and mechanism of such phenomena are poorly understood. In C. elegans, siRNA mediates transgenerational gene
silencing through the germline nuclear RNAi pathway. This pathway is also required to maintain the germline immortality when C. elegans is under heat stress. However, the underlying molecular mechanism is unknown. In this study, we investigated the impact of heat stress on chromatin, transcription, and siRNAs at the whole-genome level, and whether any of the heat-induced effects is transgenerationally heritable in either the wild-type or the germline nuclear RNAi mutant animals. Results We performed 12-generation temperature-shift experiments using the wild-type C. elegans and a mutant strain that lacks the germline-specific nuclear Argonaute protein HRDE-1/WAGO-9. By examining the mRNA, small RNA, RNA polymerase II, and H3K9 trimethylation profiles at the whole-genome level, we revealed an epigenetic role of HRDE-1 in repressing heat stress-induced transcriptional activation of over 280 genes. Many of these genes are in or near LTR (long-terminal repeat) retrotransposons. Strikingly, for some of these genes, the heat stress-induced transcriptional activation in the hrde-1 mutant intensifies in the late generations under the heat stress and is heritable for at least two generations after the mutant animals are shifted back to lower temperature. hrde-1 mutation also leads to siRNA expression changes of many genes. This effect on siRNA is dependent on both the temperature and generation. Conclusions Our study demonstrated that a large number of the endogenous targets of the germline nuclear RNAi pathway in C. elegans are sensitive to heat-induced transcriptional activation. This effect at certain genomic loci including LTR retrotransposons is transgenerational. Germline nuclear RNAi antagonizes this temperature effect at the transcriptional level and therefore may play a key role in heat stress response in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0052-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Alex Huang
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Thi Trinh
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA ; Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854 USA
| |
Collapse
|
7
|
Czarnecki O, Bryan AC, Jawdy SS, Yang X, Cheng ZM, Chen JG, Tuskan GA. Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana. PLANT METHODS 2016; 12:16. [PMID: 26889205 PMCID: PMC4756541 DOI: 10.1186/s13007-016-0116-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/08/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs or multiple transformation events that is often restricted by a lack of available transformation markers. RESULTS Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. CONCLUSIONS We present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.
Collapse
Affiliation(s)
- Olaf Czarnecki
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; KWS SAAT SE, Grimsehlstraße 31, 37555 Einbeck, Germany
| | - Anthony C Bryan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Zong-Ming Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
8
|
Ni JZ, Chen E, Gu SG. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. BMC Genomics 2014; 15:1157. [PMID: 25534009 PMCID: PMC4367959 DOI: 10.1186/1471-2164-15-1157] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/10/2014] [Indexed: 11/14/2022] Open
Abstract
Background Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive. Methods To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals. Results Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets. Conclusion Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1157) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Zhang S, Liu Y, Yu B. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 2014; 10:e1004841. [PMID: 25474114 PMCID: PMC4256206 DOI: 10.1371/journal.pgen.1004841] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/21/2014] [Indexed: 01/11/2023] Open
Abstract
The evolutionary conserved WD-40 protein PRL1 plays important roles in immunity and development. Here we show that PRL1 is required for the accumulation of microRNAs (miRNAs) and small interfering RNAs (siRNAs). PRL1 positively influences the processing of miRNA primary transcripts (pri-miRNAs) and double-stranded RNAs (dsRNAs). Furthermore, PRL1 interacts with the pri-miRNA processor, DCL1, and the dsRNA processors (DCL3 and DCL4). These results suggest that PRL1 may function as a general factor to promote the production of miRNAs and siRNAs. We also show that PRL1 is an RNA-binding protein and associates with pri-miRNAs in vivo. In addition, prl1 reduces pri-miRNA levels without affecting pri-miRNA transcription. These results suggest that PRL1 may stabilize pri-miRNAs and function as a co-factor to enhance DCL1 activity. We further reveal the genetic interaction of PRL1 with CDC5, which interacts with PRL1 and regulates transcription and processing of pri-miRNAs. Both miRNA and pri-miRNA levels are lower in cdc5 prl1 than those in either cdc5 or prl1. However, the processing efficiency of pri-miRNAs in cdc5 prl1 is similar to that in cdc5 and slightly lower than that in prl1. Based on these results, we propose that CDC5 and PRL1 cooperatively regulate pri-miRNA levels, which results in their synergistic effects on miRNA accumulation, while they function together as a complex to enhance DCL1 activity. PRL1, a conserved WD-40 protein, is required for plant development and immune responses. However, its functional mechanisms are not well understood. Here, we show the positive impact of PRL1 on the accumulation of miRNAs and siRNAs, which are key regulators of plant growth and immunity. PRL1 interacts with multiple DCLs (the processors of miRNAs and siRNAs) and is required for their optimal activities, suggesting that PRL1 acts as a general factor to facilitate the production of miRNAs and siRNAs. In addition, PRL1 is an RNA-binding protein, binds pri-miRNAs in vivo and positively influences the levels of pri-miRNAs levels without affecting the promoter activities of genes encoding pri-miRNAs. These results suggest that PRL1 may also stabilize pri-miRNAs. We further show that RPL1 and its interactor CDC5 (a DNA-binding protein) synergistically regulate pri-miRNA levels, resulting in enhanced effects on miRNA accumulation, although they function together as a complex to facilitate DCL1 activity.
Collapse
Affiliation(s)
- Shuxin Zhang
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences & Key Laboratory of Agricultural Genomics, Ministry of Agriculture, Beijing, China
- * E-mail: (YL); (BY)
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (YL); (BY)
| |
Collapse
|
10
|
Koh KW, Lu HC, Chan MT. Virus resistance in orchids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:26-38. [PMID: 25438783 DOI: 10.1016/j.plantsci.2014.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/07/2014] [Accepted: 04/17/2014] [Indexed: 06/04/2023]
Abstract
Orchid plants, Phalaenopsis and Dendrobium in particular, are commercially valuable ornamental plants sold worldwide. Unfortunately, orchid plants are highly susceptible to viral infection by Cymbidium mosaic virus (CymMV) and Odotoglossum ringspot virus (ORSV), posing a major threat and serious economic loss to the orchid industry worldwide. A major challenge is to generate an effective method to overcome plant viral infection. With the development of optimized orchid transformation biotechnological techniques and the establishment of concepts of pathogen-derived resistance (PDR), the generation of plants resistant to viral infection has been achieved. The PDR concept involves introducing genes that is(are) derived from the virus into the host plant to induce RNA- or protein-mediated resistance. We here review the fundamental mechanism of the PDR concept, and illustrate its application in protecting against viral infection of orchid plants.
Collapse
Affiliation(s)
- Kah Wee Koh
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Hsiang-Chia Lu
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Várallyay É, Oláh E, Havelda Z. Independent parallel functions of p19 plant viral suppressor of RNA silencing required for effective suppressor activity. Nucleic Acids Res 2014; 42:599-608. [PMID: 24062160 PMCID: PMC3874164 DOI: 10.1093/nar/gkt846] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 11/12/2022] Open
Abstract
Plant viruses ubiquitously mediate the induction of miR168 trough the activities of viral suppressors of RNA silencing (VSRs) controlling the accumulation of ARGONAUTE1 (AGO1), one of the main components of RNA silencing based host defence system. Here we used a mutant Tombusvirus p19 VSR (p19-3M) disabled in its main suppressor function, small interfering RNA (siRNA) binding, to investigate the biological role of VSR-mediated miR168 induction. Infection with the mutant virus carrying p19-3M VSR resulted in suppressed recovery phenotype despite the presence of free virus specific siRNAs. Analysis of the infected plants revealed that the mutant p19-3M VSR is able to induce miR168 level controlling the accumulation of the antiviral AGO1, and this activity is associated with the enhanced accumulation of viral RNAs. Moreover, saturation of the siRNA-binding capacity of p19 VSR mediated by defective interfering RNAs did not influence the miR168-inducing activity. Our data indicate that p19 VSR possesses two independent silencing suppressor functions, viral siRNA binding and the miR168-mediated AGO1 control, both of which are required to efficiently cope with the RNA-silencing based host defence. This finding suggests that p19 VSR protein evolved independent parallel capacities to block the host defence at multiple levels.
Collapse
Affiliation(s)
- Éva Várallyay
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. út 4, Gödöllő H-2100, Hungary
| | - Enikő Oláh
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. út 4, Gödöllő H-2100, Hungary
| | - Zoltán Havelda
- Agricultural Biotechnology Center, Institute for Plant Biotechnology, Plant Developmental Biology Group, Szent-Györgyi A. út 4, Gödöllő H-2100, Hungary
| |
Collapse
|
12
|
Zhang S, Xie M, Ren G, Yu B. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci U S A 2013; 110:17588-93. [PMID: 24101471 PMCID: PMC3808604 DOI: 10.1073/pnas.1310644110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CDC5 is a MYB-related protein that exists in plants, animals, and fungi. In Arabidopsis, CDC5 regulates both growth and immunity through unknown mechanisms. Here, we show that CDC5 from Arabidopsis positively regulates the accumulation of microRNAs (miRNAs), which control many biological processes including development and adaptations to environments in plants. CDC5 interacts with both the promoters of genes encoding miRNAs (MIR) and the DNA-dependent RNA polymerase II. As a consequence, lack of CDC5 reduces the occupancy of polymerase II at MIR promoters, as well as MIR promoter activities. In addition, CDC5 is associated with the DICER-LIKE1 complex, which generates miRNAs from their primary transcripts and is required for efficient miRNA production. These results suggest that CDC5 may have dual roles in miRNA biogenesis: functioning as a positive transcription factor of MIR and/or acting as a component of the DICER-LIKE1 complex to enhance primary miRNA processing.
Collapse
Affiliation(s)
- Shuxin Zhang
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| | - Meng Xie
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| | - Guodong Ren
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| |
Collapse
|
13
|
Mitter N, Koundal V, Williams S, Pappu H. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS One 2013; 8:e76276. [PMID: 24143182 PMCID: PMC3797105 DOI: 10.1371/journal.pone.0076276] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral defense and viral pathogenicity.
Collapse
Affiliation(s)
- Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, the University of Queensland, St. Lucia, Australia
| | - Vikas Koundal
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Sarah Williams
- Institute for Molecular Biology, The University of Queensland, St Lucia, Australia
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
14
|
Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance. EMBO J 2013; 32:1250-64. [PMID: 23572080 PMCID: PMC3642681 DOI: 10.1038/emboj.2013.72] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/08/2013] [Indexed: 11/08/2022] Open
Abstract
Epigenetically regulated heterochromatin domains govern essential cellular activities. A key feature of heterochromatin domains is the presence of hypoacetylated nucleosomes, which are methylated on lysine 9 of histone H3 (H3K9me). Here, we investigate the requirements for establishment, spreading and maintenance of heterochromatin using fission yeast centromeres as a paradigm. We show that establishment of heterochromatin on centromeric repeats is initiated at modular 'nucleation sites' by RNA interference (RNAi), ensuring the mitotic stability of centromere-bearing minichromosomes. We demonstrate that the histone deacetylases Sir2 and Clr3 and the chromodomain protein Swi6(HP1) are required for H3K9me spreading from nucleation sites, thus allowing formation of extended heterochromatin domains. We discovered that RNAi and Sir2 along with Swi6(HP1) operate in two independent pathways to maintain heterochromatin. Finally, we demonstrate that tethering of Sir2 is pivotal to the maintenance of heterochromatin at an ectopic locus in the absence of RNAi. These analyses reveal that Sir2, together with RNAi, are sufficient to ensure heterochromatin integrity and provide evidence for sequential establishment, spreading and maintenance steps in the assembly of centromeric heterochromatin.
Collapse
|
15
|
Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 2012; 44:157-64. [PMID: 22231482 PMCID: PMC3848608 DOI: 10.1038/ng.1039] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/17/2011] [Indexed: 12/02/2022]
Abstract
Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope, and longevity of chromatin-targeted dsRNA effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of H3K9 trimethylation, with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from among all 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9 methylation, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.
Collapse
Affiliation(s)
- Sam Guoping Gu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
16
|
Elhassan MO, Christie J, Duxbury MS. Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance. J Biol Chem 2011; 287:5267-77. [PMID: 22174421 DOI: 10.1074/jbc.m111.318865] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents.
Collapse
Affiliation(s)
- Mohamed O Elhassan
- Clinical Surgery, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, United Kingdom
| | | | | |
Collapse
|
17
|
|
18
|
Ketting RF. The many faces of RNAi. Dev Cell 2011; 20:148-61. [PMID: 21316584 DOI: 10.1016/j.devcel.2011.01.012] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/20/2011] [Accepted: 01/25/2011] [Indexed: 12/14/2022]
Abstract
Small non-coding RNAs, through association with Argonaute protein family members, have a variety of functions during the development of an organism. Although there is increased mechanistic understanding of the RNA interference (RNAi) pathways surrounding these small RNAs, how their effects are modulated by subcellular compartmentalization and cross-pathway functional interactions is only beginning to be explored. This review examines the current understanding of these aspects of RNAi pathways and the biological functions of these pathways.
Collapse
Affiliation(s)
- René F Ketting
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Lin KY, Cheng CP, Chang BCH, Wang WC, Huang YW, Lee YS, Huang HD, Hsu YH, Lin NS. Global analyses of small interfering RNAs derived from Bamboo mosaic virus and its associated satellite RNAs in different plants. PLoS One 2010; 5:e11928. [PMID: 20689857 PMCID: PMC2914070 DOI: 10.1371/journal.pone.0011928] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 07/08/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited. Here, we report on the small RNA profiles associated with infection with Bamboo mosaic virus (BaMV) and its two satellite RNAs (satBaMVs) in Nicotiana benthamiana and Arabidopsis thaliana. METHODOLOGY/PRINCIPAL FINDINGS Leaves of N. benthamiana or A. thaliana inoculated with water, BaMV alone or co-inoculated with interfering or noninterfering satBaMV were collected for RNA extraction, then large-scale Solexa sequencing. Up to about 20% of total siRNAs as BaMV-specific siRNAs were accumulated in highly susceptible N. benthamiana leaves inoculated with BaMV alone or co-inoculated with noninterfering satBaMV; however, only about 0.1% of vsiRNAs were produced in plants co-infected with interfering satBaMV. The abundant region of siRNA distribution along BaMV and satBaMV genomes differed by host but not by co-infection with satBaMV. Most of the BaMV and satBaMV siRNAs were 21 or 22 nt, of both (+) and (-) polarities; however, a higher proportion of 22-nt BaMV and satBaMV siRNAs were generated in N. benthamiana than in A. thaliana. Furthermore, the proportion of non-viral 24-nt siRNAs was greatly increased in N. benthamiana after virus infection. CONCLUSIONS/SIGNIFICANCE The overall composition of vsiRNAs and satsiRNAs in the infected plants reflect the combined action of virus, satRNA and different DCLs in host plants. Our findings suggest that the structure and/or sequence demands of various DCLs in different hosts may result in differential susceptibility to the same virus. DCL2 producing 24-nt siRNAs under biotic stresses may play a vital role in the antiviral mechanism in N. benthamiana.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Ping Cheng
- Department of Life Science, Tzu Chi University, Hualien, Taiwan
| | | | - Wei-Chi Wang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
Dosage-Dependent Gene Expression from Direct Repeat Locus in Rice Developed by Site-Specific Gene Integration. Mol Biotechnol 2010; 45:15-23. [DOI: 10.1007/s12033-009-9235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Linder P, Owttrim GW. Plant RNA helicases: linking aberrant and silencing RNA. TRENDS IN PLANT SCIENCE 2009; 14:344-52. [PMID: 19446493 DOI: 10.1016/j.tplants.2009.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 05/06/2023]
Abstract
RNA helicases are ATPases that are capable of rearranging RNA and ribonucleoprotein (RNP) structure, and they can potentially function in any aspect of RNA metabolism. The RNA helicase gene family of plant genomes is larger and more diverse than genome families observed in other systems and provides an ideal model for investigation of the physiological importance of RNA secondary structure rearrangement in plant development. Numerous plant RNA helicases are associated with a variety of physiological functions, but this review will focus on the thirteen RNA helicases associated with the metabolism of aberrant and silencing RNAs. The results emphasize the crucial role RNA helicase activity has in the regulation of mRNA quality control and gene expression in plant development.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, 1 Rue Michel Servet, CH-1211 Geneve 4, Switzerland
| | | |
Collapse
|
22
|
Jaag HM, Nagy PD. Silencing of Nicotiana benthamiana Xrn4p exoribonuclease promotes tombusvirus RNA accumulation and recombination. Virology 2009; 386:344-52. [PMID: 19232421 DOI: 10.1016/j.virol.2009.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/08/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
The cytosolic 5'-to-3' exoribonuclease Xrn1p plays a major role in recombination and degradation of Tomato bushy stunt tombusvirus (TBSV) replicon (rep)RNA in yeast, a model host (Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., and Nagy, P.D., 2005. Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10545-10550.). To test if the plant cytosolic 5'-to-3' exoribonuclease Xrn4p, similar to the yeast Xrn1p, could also affect TBSV recombination, in this paper, we silenced XRN4 in Nicotiana benthamiana, an experimental host. The accumulation of tombusvirus genomic RNA and repRNA increased by 50% and 220%, respectively, in XRN4-silenced N. benthamiana. We also observed up to 125-fold increase in the emergence of new recombinants and partly degraded viral RNAs in the silenced plants. Using a cell-free assay based on a yeast extract, which supports authentic replication and recombination of TBSV, we demonstrate that the purified recombinant Xrn1p efficiently inhibited the accumulation of recombinants and partly degraded viral RNAs. Altogether, the data from a plant host and cell-free system confirm a central role for the plant cytosolic 5'-to-3' exoribonuclease in TBSV replication, recombination and viral RNA degradation.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY40546, USA
| | | |
Collapse
|
23
|
Havelda Z, Várallyay E, Válóczi A, Burgyán J. Plant virus infection-induced persistent host gene downregulation in systemically infected leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:278-88. [PMID: 18397378 DOI: 10.1111/j.1365-313x.2008.03501.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding of virus infection-induced alterations in host plant gene expression and metabolism leading to the development of virus disease symptoms is both scientifically and economically important. Here, we show that viruses belonging to various RNA virus families are able to induce efficient host gene mRNA downregulation (shut-off) in systemically infected leaves. We demonstrate that the host gene mRNA shut-off overlaps spatially with virus-occupied sectors, indicating the direct role of virus accumulation in this phenomenon. The establishment of shut-off was not directly connected to active viral replication or the RNA-silencing machinery. Importantly, the induced shut-off phenomenon persisted for several weeks, resulting in severe deficiency of mRNA for important housekeeping genes in the infected plants. Interestingly, we found that some other RNA viruses do not induce or only slightly induce the shut-off phenomenon for the same set of genes, implicating genetic determination in this process. Nuclear run-on experiments suggest that plant viruses, similarly to animal viruses, mediate suppression of host mRNA synthesis in the nucleus. By investigating various host-virus interactions, we revealed a correlation between the intensity of the shut-off phenomenon and the severity of disease symptoms. Our data suggest that efficient and persistent downregulation of host genes may be an important component of symptom development in certain host-virus interactions.
Collapse
Affiliation(s)
- Zoltán Havelda
- Agricultural Biotechnology Center, Plant Virology Group, Szent-Györgyi Albert út 4, Gödöllo, H-2001, Hungary.
| | | | | | | |
Collapse
|
24
|
Pikaard CS, Haag JR, Ream T, Wierzbicki AT. Roles of RNA polymerase IV in gene silencing. TRENDS IN PLANT SCIENCE 2008; 13:390-7. [PMID: 18514566 PMCID: PMC2679257 DOI: 10.1016/j.tplants.2008.04.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 05/22/2023]
Abstract
Eukaryotes typically have three multi-subunit enzymes that decode the nuclear genome into RNA: DNA-dependent RNA polymerases I, II and III (Pol I, II and III). Remarkably, higher plants have five multi-subunit nuclear RNA polymerases: the ubiquitous Pol I, II and III, which are essential for viability; plus two non-essential polymerases, Pol IVa and Pol IVb, which specialize in small RNA-mediated gene silencing pathways. There are numerous examples of phenomena that require Pol IVa and/or Pol IVb, including RNA-directed DNA methylation of endogenous repetitive elements, silencing of transgenes, regulation of flowering-time genes, inducible regulation of adjacent gene pairs, and spreading of mobile silencing signals. Although biochemical details concerning Pol IV enzymatic activities are lacking, genetic evidence suggests several alternative models for how Pol IV might function.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA.
| | | | | | | |
Collapse
|
25
|
Zhang X, Du P, Lu L, Xiao Q, Wang W, Cao X, Ren B, Wei C, Li Y. Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs. Virology 2008; 374:351-60. [PMID: 18280529 DOI: 10.1016/j.virol.2007.12.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/22/2007] [Accepted: 12/22/2007] [Indexed: 01/10/2023]
Abstract
RNA silencing and suppression of silencing are host and virus interactions for defense and counter-defense. Here, we explored the function effect of HC-Pro encoded by Sugarcane mosaic virus (SCMV) on the suppression of RNA silencing. siRNA northern blotting assay indicated that the replication of SCMV was regulated by host RNA silencing machinery. Co-expression assay demonstrated that the HC-Pro encoded by SCMV suppressed the RNA silencing induced by sense RNA and dsRNA. Transitive RNA silencing assay showed that HC-Pro down-regulated the accumulation of 3' secondary siRNA, but not 5' secondary and primary siRNA. Meanwhile, the 2b gene of Tomato aspermy cucumovirus (Tav) evidently down-regulated the accumulation of 5' secondary siRNA. Importantly, we found that HC-Pro and Tav2b down-regulated the accumulation of RDR6 mRNA. Thus, HC-Pro, an RNA silencing suppressor encoded by SCMV, regulates the accumulation of different siRNAs and has more than one target in the RNA silencing pathway.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vogler H, Kwon MO, Dang V, Sambade A, Fasler M, Ashby J, Heinlein M. Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 2008; 4:e1000038. [PMID: 18389061 PMCID: PMC2270343 DOI: 10.1371/journal.ppat.1000038] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 03/06/2008] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.
Collapse
Affiliation(s)
- Hannes Vogler
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Myoung-Ok Kwon
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vy Dang
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Adrian Sambade
- Institut Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), Strasbourg, France
| | - Monika Fasler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jamie Ashby
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
| | - Manfred Heinlein
- Department of Plant Physiology, Botanical Institute, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Institut Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), Strasbourg, France
| |
Collapse
|
27
|
Abstract
Plant-virus interaction studies, for long, plagued by asynchronous/failed infections, have improved since the usage of Agrobacterium as a delivery agent for viral genomes. Popularly known as "agroinoculation," this method has revolutionized plant virology studies, leading to identification of viruses as casual agents of disease, viral genome mutagenesis and recombination analyses, and virus-induced gene silencing (VIGS) applications. We present here a brief overview of the recent applications of this method and a detailed protocol for agroinoculation and VIGS used in our laboratory.
Collapse
|
28
|
Cheng CP, Jaag HM, Jonczyk M, Serviene E, Nagy PD. Expression of the Arabidopsis Xrn4p 5'-3' exoribonuclease facilitates degradation of tombusvirus RNA and promotes rapid emergence of viral variants in plants. Virology 2007; 368:238-48. [PMID: 17688902 DOI: 10.1016/j.virol.2007.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 02/05/2023]
Abstract
Rapid RNA virus evolution is a major problem due to the devastating diseases caused by human, animal and plant-pathogenic RNA viruses. A previous genome-wide screen for host factors affecting recombination in Tomato bushy stunt tombusvirus (TBSV), a small monopartite plant virus, identified Xrn1p 5'-3' exoribonuclease of yeast, a model host, whose absence led to increased appearance of recombinants [Serviene, E., Shapka, N., Cheng, C.P., Panavas, T., Phuangrat, B., Baker, J., Nagy, P.D., (2005). Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl. Acad. Sci. U. S. A. 102 (30), 10545-10550]. In this paper, we tested if over-expression of Xrn1p in yeast or expression of the analogous Xrn4p cytoplasmic 5'-3' exoribonuclease, which has similar function in RNA degradation in Arabidopsis as Xrn1p in yeast, in Nicotiana benthamiana could affect the accumulation of tombusvirus RNA. We show that over-expression of Xrn1p led to almost complete degradation of TBSV RNA replicons in yeast, suggesting that Xrn1p is involved in TBSV degradation. Infection of N. benthamiana expressing AtXrn4p with Cucumber necrosis tombusvirus (CNV) led to enhanced viral RNA degradation, suggesting that the yeast and the plant cytoplasmic 5'-3' exoribonuclease play similar roles. We also observed rapid emergence of novel CNV genomic RNA variants formed via deletions of 5' terminal sequences in N. benthamiana expressing AtXrn4p. Three of the newly emerging 5' truncated CNV variants were infectious in N. benthamiana protoplasts, whereas one CNV variant caused novel symptoms and moved systemically in N. benthamiana plants. Altogether, this paper establishes that a single plant gene can contribute to the emergence of novel viral variants.
Collapse
Affiliation(s)
- Chi-Ping Cheng
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
29
|
Woodhouse MR, Freeling M, Lisch D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 2007; 4:e339. [PMID: 16968137 PMCID: PMC1563492 DOI: 10.1371/journal.pbio.0040339] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 08/16/2006] [Indexed: 11/19/2022] Open
Abstract
Paramutation and transposon silencing are two epigenetic phenomena that have intrigued and puzzled geneticists for decades. Each involves heritable changes in gene activity without changes in DNA sequence. Here we report the cloning of a gene whose activity is required for the maintenance of both silenced transposons and paramutated color genes in maize. We show that this gene, Mop1 (Mediator of paramutation1) codes for a putative RNA-dependent RNA polymerase, whose activity is required for the production of small RNAs that correspond to the MuDR transposon sequence. We also demonstrate that although Mop1 is required to maintain MuDR methylation and silencing, it is not required for the initiation of heritable silencing. In contrast, we present evidence that a reduction in the transcript level of a maize homolog of the nucleosome assembly protein 1 histone chaperone can reduce the heritability of MuDR silencing. Together, these data suggest that the establishment and maintenance of MuDR silencing have distinct requirements.
Collapse
Affiliation(s)
- Margaret Roth Woodhouse
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Damon Lisch
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|