1
|
Ozcelik G, Koca MS, Sunbul B, Yilmaz-Atay F, Demirhan F, Tiryaki B, Cilenk K, Selvi S, Ozturk N. Interactions of drosophila cryptochrome. Photochem Photobiol 2024; 100:1339-1358. [PMID: 38314442 DOI: 10.1111/php.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
In this study, we investigate the intricate regulatory mechanisms underlying the circadian clock in Drosophila, focusing on the light-induced conformational changes in the cryptochrome (DmCry). Upon light exposure, DmCry undergoes conformational changes that prompt its binding to Timeless and Jetlag proteins, initiating a cascade crucial for the starting of a new circadian cycle. DmCry is subsequently degraded, contributing to the desensitization of the resetting mechanism. The transient and short-lived nature of DmCry protein-protein interactions (PPIs), leading to DmCry degradation within an hour of light exposure, presents a challenge for comprehensive exploration. To address this, we employed proximity-dependent biotinylation techniques, combining engineered BioID (TurboID) and APEX (APEX2) enzymes with mass spectrometry. This approach enabled the identification of the in vitro DmCry interactome in Drosophila S2 cells, uncovering several novel PPIs associated with DmCry. Validation of these interactions through a novel co-immunoprecipitation technique enhances the reliability of our findings. Importantly, our study suggests the potential of this method to reveal additional circadian clock- or magnetic field-dependent PPIs involving DmCry. This exploration of the DmCry interactome not only advances our understanding of circadian clock regulation but also establishes a versatile framework for future investigations into light- and time-dependent protein interactions in Drosophila.
Collapse
Affiliation(s)
- Gozde Ozcelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mehmet Serdar Koca
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Buket Sunbul
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fatma Yilmaz-Atay
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Feride Demirhan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Busra Tiryaki
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Kevser Cilenk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Saba Selvi
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
2
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
Schneps CM, Dunleavy R, Crane BR. Dissecting the Interaction between Cryptochrome and Timeless Reveals Underpinnings of Light-Dependent Recognition. Biochemistry 2024:10.1021/acs.biochem.3c00630. [PMID: 38294880 PMCID: PMC11289166 DOI: 10.1021/acs.biochem.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Circadian rhythms are determined by cell-autonomous transcription-translation feedback loops that entrain to environmental stimuli. In the model circadian clock of Drosophila melanogaster, the clock is set by the light-induced degradation of the core oscillator protein timeless (TIM) by the principal light-sensor cryptochrome (CRY). The cryo-EM structure of CRY bound to TIM revealed that within the extensive CRY:TIM interface, the TIM N-terminus binds into the CRY FAD pocket, in which FAD and the associated phosphate-binding loop (PBL) undergo substantial rearrangement. The TIM N-terminus involved in CRY binding varies in isoforms that facilitate the adaptation of flies to different light environments. Herein, we demonstrate, through peptide binding assays and pulsed-dipolar electron spin resonance (ESR) spectroscopy, that the TIM N-terminal peptide alone exhibits light-dependent binding to CRY and that the affinity of the interaction depends on the initiating methionine residue. Extensions to the TIM N-terminus that mimic less light-sensitive variants have substantially reduced interactions with CRY. Substitutions of CRY residues that couple to the flavin rearrangement in the CRY:TIM complex have dramatic effects on CRY light activation. CRY residues Arg237 on α8, Asn253, and Gln254 on the PBL are critical for the release of the CRY autoinhibitory C-terminal tail (CTT) and subsequent TIM binding. These key light-responsive elements of CRY are well conserved throughout Type I cryptochromes of invertebrates but not by cryptochromes of chordates and plants, which likely utilize a distinct light-activation mechanism.
Collapse
Affiliation(s)
| | - Robert Dunleavy
- Cornell University, Department of Chemistry & Chemical Biology, Ithaca, NY 14853
| | - Brian R. Crane
- Cornell University, Department of Chemistry & Chemical Biology, Ithaca, NY 14853
| |
Collapse
|
4
|
McElroy KE, Audino JA, Serb JM. Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum. Mol Biol Evol 2023; 40:msad263. [PMID: 38039155 PMCID: PMC10733189 DOI: 10.1093/molbev/msad263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Collapse
Affiliation(s)
- Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jorge A Audino
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Vu HH, Behrmann H, Hanić M, Jeyasankar G, Krishnan S, Dannecker D, Hammer C, Gunkel M, Solov'yov IA, Wolf E, Behrmann E. A marine cryptochrome with an inverse photo-oligomerization mechanism. Nat Commun 2023; 14:6918. [PMID: 37903809 PMCID: PMC10616196 DOI: 10.1038/s41467-023-42708-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Cryptochromes (CRYs) are a structurally conserved but functionally diverse family of proteins that can confer unique sensory properties to organisms. In the marine bristle worm Platynereis dumerilii, its light receptive cryptochrome L-CRY (PdLCry) allows the animal to discriminate between sunlight and moonlight, an important requirement for synchronizing its lunar cycle-dependent mass spawning. Using cryo-electron microscopy, we show that in the dark, PdLCry adopts a dimer arrangement observed neither in plant nor insect CRYs. Intense illumination disassembles the dimer into monomers. Structural and functional data suggest a mechanistic coupling between the light-sensing flavin adenine dinucleotide chromophore, the dimer interface, and the C-terminal tail helix, with a likely involvement of the phosphate binding loop. Taken together, our work establishes PdLCry as a CRY protein with inverse photo-oligomerization with respect to plant CRYs, and provides molecular insights into how this protein might help discriminating the different light intensities associated with sunlight and moonlight.
Collapse
Affiliation(s)
- Hong Ha Vu
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Heide Behrmann
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Maja Hanić
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany
| | - Gayathri Jeyasankar
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Shruthi Krishnan
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Dennis Dannecker
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Constantin Hammer
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Monika Gunkel
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26111, Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| | - Elmar Behrmann
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany.
| |
Collapse
|
6
|
Calloni G, Vabulas RM. The structural and functional roles of the flavin cofactor FAD in mammalian cryptochromes. Front Mol Biosci 2023; 9:1081661. [PMID: 36660433 PMCID: PMC9845712 DOI: 10.3389/fmolb.2022.1081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
The importance of circadian rhythms in human health and disease calls for a thorough understanding of the underlying molecular machinery, including its key components, the flavin adenine dinucleotide (FAD)-containing flavoproteins cryptochrome 1 and 2. Contrary to their Drosophila counterparts, mammalian cryptochromes are direct suppressors of circadian transcription and act independently of light. Light-independence poses the question regarding the role of the cofactor FAD in mammalian cryptochromes. The weak binding of the cofactor in vitro argues against its relevance and might be a functionless evolutionary remnant. From the other side, the FAD-binding pocket constitutes the part of mammalian cryptochromes directly related to their ubiquitylation by the ubiquitin ligase Fbxl3 and is the target for protein-stabilizing small molecules. Increased supplies of FAD stabilize cryptochromes in cell culture, and the depletion of the FAD precursor riboflavin with simultaneous knock-down of riboflavin kinase affects the expression of circadian genes in mice. This review presents the classical and more recent studies in the field, which help to comprehend the role of FAD for the stability and function of mammalian cryptochromes.
Collapse
Affiliation(s)
| | - R. Martin Vabulas
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany,*Correspondence: R. Martin Vabulas,
| |
Collapse
|
7
|
Ramírez-Gamboa D, Díaz-Zamorano AL, Meléndez-Sánchez ER, Reyes-Pardo H, Villaseñor-Zepeda KR, López-Arellanes ME, Sosa-Hernández JE, Coronado-Apodaca KG, Gámez-Méndez A, Afewerki S, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Photolyase Production and Current Applications: A Review. Molecules 2022; 27:5998. [PMID: 36144740 PMCID: PMC9505440 DOI: 10.3390/molecules27185998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The photolyase family consists of flavoproteins with enzyme activity able to repair ultraviolet light radiation damage by photoreactivation. DNA damage by the formation of a cyclobutane pyrimidine dimer (CPD) and a pyrimidine-pyrimidone (6-4) photoproduct can lead to multiple affections such as cellular apoptosis and mutagenesis that can evolve into skin cancer. The development of integrated applications to prevent the negative effects of prolonged sunlight exposure, usually during outdoor activities, is imperative. This study presents the functions, characteristics, and types of photolyases, their therapeutic and cosmetic applications, and additionally explores some photolyase-producing microorganisms and drug delivery systems.
Collapse
Affiliation(s)
- Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Ana Gámez-Méndez
- Department of Basic Sciences, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte, San Pedro Garza Garcia 66238, Mexico
| | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
8
|
Lin C, Schneps CM, Chandrasekaran S, Ganguly A, Crane BR. Mechanistic insight into light-dependent recognition of Timeless by Drosophila Cryptochrome. Structure 2022; 30:851-861.e5. [PMID: 35397203 DOI: 10.1016/j.str.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Cryptochrome (CRY) entrains the fly circadian clock by binding to Timeless (TIM) in light. Undocking of a helical C-terminal tail (CTT) in response to photoreduction of the CRY flavin cofactor gates TIM recognition. We present a generally applicable select western-blot-free tagged-protein interaction (SWFTI) assay that allowed the quantification of CRY binding to TIM in dark and light. The assay was used to study CRY variants with residue substitutions in the flavin pocket and correlate their TIM affinities with CTT undocking, as measured by pulse-dipolar ESR spectroscopy and evaluated by molecular dynamics simulations. CRY variants with the CTT removed or undocked bound TIM constitutively, whereas those incapable of photoreduction bound TIM weakly. In response to the flavin redox state, two conserved histidine residues contributed to a robust on/off switch by mediating CTT interactions with the flavin pocket and TIM. Our approach provides an expeditious means to quantify the interactions of difficult-to-produce proteins.
Collapse
Affiliation(s)
- Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Connor M Schneps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Abir Ganguly
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Ozturk N. Light-dependent reactions of animal circadian photoreceptor cryptochrome. FEBS J 2021; 289:6622-6639. [PMID: 34750956 DOI: 10.1111/febs.16273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Circadian rhythms are endogenous autonomous 24-h oscillations that are generated by a transcription-translation feedback loop (TTFL). In the positive arm of the TTFL, two transcription factors activate the expression of two genes of the negative arm as well as circadian clock-regulated genes. The circadian clocks are reset through photoreceptor proteins by sunlight in the early morning to keep synchrony with the geological clock. Among animal circadian photoreceptors, Drosophila Cryptochrome (DmCRY) has some unique properties because Drosophila has a single cryptochrome (CRY) that appears to have functions which are specific to organs or tissues, or even to a subset of cells. In mammals, CRYs are not photoreceptors but function in the TTFL, while insects have a light-insensitive mammalian-like CRY or a Drosophila-like photoreceptor CRY (or both). Here, we postulate that as being just one CRY in Drosophila, DmCRY might play different roles in different tissues/organs in a context-dependent manner. In addition to being a circadian photoreceptor/protein, attributing also a magnetoreception function to DmCRY has increased its workload. Considering that DmCRY senses photons as a photoreceptor but also can regulate many different events in a light-dependent manner, differential protein-protein interactions (PPIs) of DmCRY might play a critical role in the generation of such diverse outputs. Therefore, we need to add novel approaches in addition to the current ones to study multiple and context-dependent functions of DmCRY by adopting recently developed techniques. Successful identification of transient/fast PPIs on a scale of minutes would enhance our understanding of light-dependent and/or magnetoreception-associated reactions.
Collapse
Affiliation(s)
- Nuri Ozturk
- Molecular Biology and Genetics, Gebze Technical University, Turkey
| |
Collapse
|
10
|
Tanaka N, Mogi Y, Fujiwara T, Yabe K, Toyama Y, Higashiyama T, Yoshida Y. CZON-cutter - a CRISPR-Cas9 system for multiplexed organelle imaging in a simple unicellular alga. J Cell Sci 2021; 134:jcs258948. [PMID: 34633046 DOI: 10.1242/jcs.258948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
The unicellular alga Cyanidioschyzon merolae has a simple cellular structure; each cell has one nucleus, one mitochondrion, one chloroplast and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Naoto Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kannosuke Yabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yukiho Toyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yamato Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
An M, Qu C, Miao J, Sha Z. Two class II CPD photolyases, PiPhr1 and PiPhr2, with CPD repair activity from the Antarctic diatom Phaeodactylum tricornutum ICE-H. 3 Biotech 2021; 11:377. [PMID: 34367869 DOI: 10.1007/s13205-021-02927-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Two gene of class II photolyases, PiPhr1 (1833 bp) and PiPhr2 (1809 bp), from the Antarctic diatom Phaeodactylum tricornutum ICE-H were cloned, the recombinant proteins expressed and purified. The molecular weight of the recombinant photolyases were determined to be 68 kDa with a pI of 9.04 and 68.82 with a pI of 7.31, respectively. Activity studies showed that both the recombinant enzymes were involved in the repair DNA damaged by UV light, that is they were most likely photolyases involved in photorepair of DNA. Further confirmation of this function was demonstrated by the increased expression of PiPhr1 and PiPhr2 after exposure to UV radiation, blue light and dark conditions by qRT-PCR. In summary, PiPhr1 and PiPhr2 were up regulated by UVB irradiation and blue light at 0.5 h and 3 h. Longtime (3 h) exposure to dark also increased the expression of PiPhr1 and PiPhr2. In vitro photoreactivation assays showed that PiPhr1 and PiPhr2 could repair CPDs utilizing blue light. This is the first time CPD Class II photolyase has been reported from Antarctic diatom. These results will add to the knowledge of the diatom CPF family and assist in understanding the functional role of these genes in Antarctic diatoms. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02927-0.
Collapse
Affiliation(s)
- Meiling An
- College of Life Sciences, Qingdao University, Qingdao, 266071 China
| | - Changfeng Qu
- First Institute of Oceanography, Ministry of Natural Resource, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinlai Miao
- First Institute of Oceanography, Ministry of Natural Resource, Qingdao, 266061 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Zhenxia Sha
- College of Life Sciences, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
12
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
13
|
Chandrasekaran S, Schneps CM, Dunleavy R, Lin C, DeOliveira CC, Ganguly A, Crane BR. Tuning flavin environment to detect and control light-induced conformational switching in Drosophila cryptochrome. Commun Biol 2021; 4:249. [PMID: 33637846 PMCID: PMC7910608 DOI: 10.1038/s42003-021-01766-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Light-induction of an anionic semiquinone (SQ) flavin radical in Drosophila cryptochrome (dCRY) alters the dCRY conformation to promote binding and degradation of the circadian clock protein Timeless (TIM). Specific peptide ligation with sortase A attaches a nitroxide spin-probe to the dCRY C-terminal tail (CTT) while avoiding deleterious side reactions. Pulse dipolar electron-spin resonance spectroscopy from the CTT nitroxide to the SQ shows that flavin photoreduction shifts the CTT ~1 nm and increases its motion, without causing full displacement from the protein. dCRY engineered to form the neutral SQ serves as a dark-state proxy to reveal that the CTT remains docked when the flavin ring is reduced but uncharged. Substitutions of flavin-proximal His378 promote CTT undocking in the dark or diminish undocking in the light, consistent with molecular dynamics simulations and TIM degradation activity. The His378 variants inform on recognition motifs for dCRY cellular turnover and strategies for developing optogenetic tools. Chandrasekaran et al. engineered the Drosophila circadian clock protein Cryptochrome (dCRY) to form the neutral semiquinone, which serves as a dark-state proxy. They find that the C-terminal tail of dCRY remains docked when the flavin ring is reduced but uncharged. dCRY His378 variants provide insights into the recognition motifs for dCRY turnover and strategies for optogenetic tools.
Collapse
Affiliation(s)
| | - Connor M Schneps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Robert Dunleavy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Abir Ganguly
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Bolte P, Einwich A, Seth PK, Chetverikova R, Heyers D, Wojahn I, Janssen-Bienhold U, Feederle R, Hore P, Dedek K, Mouritsen H. Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: no signs of light-dependent activation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1870571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Petra Bolte
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Pranav K. Seth
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Raisa Chetverikova
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Dominik Heyers
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Irina Wojahn
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Department of Neuroscience, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Hore
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
15
|
Nie G, Liu X, Zhou X, Song Q, Fu M, Xu F, Wang X. Functional analysis of a novel cryptochrome gene ( GbCRY1) from Ginkgo biloba. PLANT SIGNALING & BEHAVIOR 2021; 16:1850627. [PMID: 33258712 PMCID: PMC7849775 DOI: 10.1080/15592324.2020.1850627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Cryptochrome (CRY) is a blue light receptor that is widely distributed in animals, plants, and microorganisms. CRY as a coding gene of cryptochrome that regulates the organism gene expression and plays an important role in organism growth and development. In this study, we identified four photolyase/cryptochrome (PHR/CRY) members from the genome of Ginkgo biloba. Phylogenetic tree analysis showed that the Ginkgo PHR/CRY family members were closely related to Arabidopsis thaliana and Solanum lycopersicum. We isolated a cryptochrome gene, GbCRY1, from G. biloba and analyzed its structure and function. GbCRY1 shared high similarity with AtCRY1 from A. thaliana. GbCRY1 expression level was higher in stems and leaves and lower in roots, male strobili, female strobili. GbCRY1 expression level fluctuated periodically within 24 h, gradually increased in the dark, and decreased under blue light. The newly germinated ginkgo seedlings were cultured under dark, white light, and blue light conditions. The blue light normally induced photomorphogenesis of ginkgo seedlings, which included hypocotyl elongation inhibition, leaf expansion inhibition, and chlorophyll formation. Treating dark-adapted ginkgo leaves with blue light could induce stomatal opening. At the same time, blue light reduced the expression level of GbCRY1 in the process of inducing photomorphogenesis and stoma opening. Our results provide evidence that GbCRY1 expression is affected by space, circadian cycle and light, and also proves that GbCRY1 is related to ginkgo circadian clock, photomorphogenesis and stoma opening process.
Collapse
Affiliation(s)
- Gongping Nie
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Qiling Song
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Xuefeng Wang
- College of Art, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
16
|
Kolarski D, Miller S, Oshima T, Nagai Y, Aoki Y, Kobauri P, Srivastava A, Sugiyama A, Amaike K, Sato A, Tama F, Szymanski W, Feringa BL, Itami K, Hirota T. Photopharmacological Manipulation of Mammalian CRY1 for Regulation of the Circadian Clock. J Am Chem Soc 2021; 143:2078-2087. [PMID: 33464888 PMCID: PMC7863067 DOI: 10.1021/jacs.0c12280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
CRY1
and CRY2 proteins are highly conserved components of the circadian
clock that controls daily physiological rhythms. Disruption of CRY
functions are related to many diseases, including circadian sleep
phase disorder. Development of isoform-selective and spatiotemporally
controllable tools will facilitate the understanding of shared and
distinct functions of CRY1 and CRY2. Here, we developed CRY1-selective
compounds that enable light-dependent manipulation of the circadian
clock. From phenotypic chemical screening in human cells, we identified
benzophenone derivatives that lengthened the circadian period. These
compounds selectively interacted with the CRY1 photolyase homology
region, resulting in activation of CRY1 but not CRY2. The benzophenone
moiety rearranged a CRY1 region called the “lid loop”
located outside of the compound-binding pocket and formed a unique
interaction with Phe409 in the lid loop. Manipulation of this key
interaction was achieved by rationally designed replacement of the
benzophenone with a switchable azobenzene moiety whose cis–trans isomerization can be controlled by light. The metastable cis form exhibited sufficiently high half-life in aqueous
solutions and structurally mimicked the benzophenone unit, enabling
reversible period regulation over days by cellular irradiation with
visible light. This study revealed an unprecedented role of the lid
loop in CRY-compound interaction and paves the way for spatiotemporal
regulation of CRY1 activity by photopharmacology for molecular understanding
of CRY1-dependent functions in health and disease.
Collapse
Affiliation(s)
- Dušan Kolarski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Tsuyoshi Oshima
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Yugo Aoki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Piermichele Kobauri
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Ashutosh Srivastava
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuma Amaike
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Florence Tama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan.,Computational Structural Biology Unit, RIKEN-Center for Computational Science, Hyogo 650-0047, Japan
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
17
|
Miles JA, Davies TA, Hayman RD, Lorenzen G, Taylor J, Anjarwalla M, Allen SJR, Graham JWD, Taylor PC. A Case Study of Eukaryogenesis: The Evolution of Photoreception by Photolyase/Cryptochrome Proteins. J Mol Evol 2020; 88:662-673. [PMID: 32979052 PMCID: PMC7560933 DOI: 10.1007/s00239-020-09965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotes, is still poorly understood. Herein, we show how a detailed all-kingdom phylogenetic analysis overlaid with a map of key biochemical features can provide valuable clues. The photolyase/cryptochrome family of proteins are well known to repair DNA in response to potentially harmful effects of sunlight and to entrain circadian rhythms. Phylogenetic analysis of photolyase/cryptochrome protein sequences from a wide range of prokaryotes and eukaryotes points to a number of horizontal gene transfer events between ancestral bacteria and ancestral eukaryotes. Previous experimental research has characterised patterns of tryptophan residues in these proteins that are important for photoreception, specifically a tryptophan dyad, a canonical tryptophan triad, an alternative tryptophan triad, a tryptophan tetrad and an alternative tetrad. Our results suggest that the spread of the different triad and tetrad motifs across the kingdoms of life accompanied the putative horizontal gene transfers and is consistent with multiple bacterial contributions to eukaryogenesis.
Collapse
Affiliation(s)
- Jennifer A Miles
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Thomas A Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Robert D Hayman
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Georgia Lorenzen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jamie Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Mubeena Anjarwalla
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sammie J R Allen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - John W D Graham
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Paul C Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
18
|
Sokolowska E, Viitanen R, Misiewicz Z, Mennesson M, Saarnio S, Kulesskaya N, Kängsep S, Liljenbäck H, Marjamäki P, Autio A, Callan SA, Nuutila P, Roivainen A, Partonen T, Hovatta I. The circadian gene Cryptochrome 2 influences stress-induced brain activity and depressive-like behavior in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12708. [PMID: 33070440 DOI: 10.1111/gbb.12708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
Cryptochrome 2 (Cry2) is a core clock gene important for circadian regulation. It has also been associated with anxiety and depressive-like behaviors in mice, but the previous findings have been conflicting in terms of the direction of the effect. To begin to elucidate the molecular mechanisms of this association, we carried out behavioral testing, PET imaging, and gene expression analysis of Cry2-/- and Cry2+/+ mice. Compared to Cry2+/+ mice, we found that Cry2-/- mice spent less time immobile in the forced swim test, suggesting reduced despair-like behavior. Moreover, Cry2-/- mice had lower saccharin preference, indicative of increased anhedonia. In contrast, we observed no group differences in anxiety-like behavior. The behavioral changes were accompanied by lower metabolic activity of the ventro-medial hypothalamus, suprachiasmatic nuclei, ventral tegmental area, anterior and medial striatum, substantia nigra, and habenula after cold stress as measured by PET imaging with a glucose analog. Although the expression of many depression-associated and metabolic genes was upregulated or downregulated by cold stress, we observed no differences between Cry2-/- and Cry2+/+ mice. These findings are consistent with other studies showing that Cry2 is required for normal emotional behavior. Our findings confirm previous roles of Cry2 in behavior and extend them by showing that the effects on behavior may be mediated by changes in brain metabolism.
Collapse
Affiliation(s)
- Ewa Sokolowska
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | | | - Zuzanna Misiewicz
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Marie Mennesson
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Suvi Saarnio
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Natalia Kulesskaya
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Sanna Kängsep
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | - Anu Autio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Saija-Anita Callan
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Timo Partonen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Vanderstraeten J, Gailly P, Malkemper EP. Light entrainment of retinal biorhythms: cryptochrome 2 as candidate photoreceptor in mammals. Cell Mol Life Sci 2020; 77:875-884. [PMID: 31982933 PMCID: PMC11104904 DOI: 10.1007/s00018-020-03463-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
Abstract
The mechanisms that synchronize the biorhythms of the mammalian retina with the light/dark cycle are independent of those synchronizing the rhythms in the central pacemaker, the suprachiasmatic nucleus. The identity of the photoreceptor(s) responsible for the light entrainment of the retina of mammals is still a matter of debate, and recent studies have reported contradictory results in this respect. Here, we suggest that cryptochromes (CRY), in particular CRY 2, are involved in that light entrainment. CRY are highly conserved proteins that are a key component of the cellular circadian clock machinery. In plants and insects, they are responsible for the light entrainment of these biorhythms, mediated by the light response of their flavin cofactor (FAD). In mammals, however, no light-dependent role is currently assumed for CRY in light-exposed tissues, including the retina. It has been reported that FAD influences the function of mammalian CRY 2 and that human CRY 2 responds to light in Drosophila, suggesting that mammalian CRY 2 keeps the ability to respond to light. Here, we hypothesize that CRY 2 plays a role in the light entrainment of retinal biorhythms, at least in diurnal mammals. Indeed, published data shows that the light intensity dependence and the wavelength sensitivity commonly reported for that light entrainment fits the light sensitivity and absorption spectrum of light-responsive CRY. We propose experiments to test our hypothesis and to further explore the still-pending question of the function of CRY 2 in the mammalian retina.
Collapse
Affiliation(s)
- Jacques Vanderstraeten
- Faculty of Medicine, School of Public Health, Environmental and Work Health Research Center, Université Libre de Bruxelles, CP593, Route de Lennik, 808, 1070, Brussels, Belgium.
- , Avenue Constant Montald, 11, 1200, Brussels, Belgium.
| | - Philippe Gailly
- Faculty of Medicine, Institute of Neuroscience (IONS), Cellular and Molecular Pole (CEMO), Catholic University of Louvain, Avenue Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - E Pascal Malkemper
- Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, Bonn, 53175, Germany
| |
Collapse
|
20
|
Xu J, Gao B, Shi MR, Yu H, Huang LY, Chen P, Li YH. Copulation Exerts Significant Effects on mRNA Expression of Cryptochrome Genes in a Moth. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:3. [PMID: 30817821 PMCID: PMC6394973 DOI: 10.1093/jisesa/iez016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 05/12/2023]
Abstract
It is recognized that the behavioral rhythms of organisms are controlled by the circadian clock, while the reverse direction, i.e., whether changes in physiology and behavior react to the internal rhythms, is unclear. Cryptochromes (CRYs) are photolyase-like flavoproteins with blue-light receptor function and other functions on circadian clock and migration in animals. Here, we cloned the full-length cDNA of CRY1 and CRY2 in Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae). Sl-CRYs show high similarity to orthologs from other insects, and their conserved regions contain a DNA photolyase domain and a FAD-binding seven domain. The expression levels of both genes were relatively low during the larval stage, which increased during the pupal stage and then peaked at the adult stage. The expression of Sl-CRY1 and Sl-CRY2 showed differences between males and females and between scotophase and photophase. Further, our study demonstrated that copulation has a significant effect on the expression of Sl-CRYs. More interestingly, the changes in the expression of Sl-CRY1 and Sl-CRY2 due to copulation showed the same trend in both sexes, in which the expression levels of both genes in copulated males and females decreased in the subsequent scotophase after copulation and then increased significantly in the following photophase. Considering the nature of the dramatic changes in reproductive behavior and physiology after copulation in S. litura, we propose that the changes in the expression of Sl-CRYs after copulation could have some function in the reproductive process.
Collapse
Affiliation(s)
- Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Min-Rui Shi
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Ling-Yan Huang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Peng Chen
- Yunnan Academy of Forestry, Kunming, China
| | - Yong-He Li
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| |
Collapse
|
21
|
|
22
|
Opposite Carcinogenic Effects of Circadian Clock Gene BMAL1. Sci Rep 2018; 8:16023. [PMID: 30375470 PMCID: PMC6207783 DOI: 10.1038/s41598-018-34433-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
The circadian clock confers daily rhythmicity on many biochemical and physiological functions and its disruption is associated with increased risks of developing obesity, diabetes, heart disease and cancer. Although, there are studies on the role of Bmal1 in carcinogenesis using germline, conditional or tissue-specific knockouts, it is still not well understood how BMAL1 gene affects cancer-related biological events at the molecular level. We, therefore, took an in vitro approach to understand the contribution of BMAL1 in this molecular mechanism using human breast epithelial cell lines by knocking out BMAL1 gene with CRISPR technology. We preferred epithelial cells over fibroblasts as the most of cancers originate from epithelial cells. After obtaining BMAL1 knockouts by targeting the gene at two different sites from non-tumorigenic MCF10A and invasive tumorigenic MDA-MB-231 cells, we analysed apoptosis and invasion properties of the cell lines as representative events in tumor development. BMAL1 disruption sensitized both cell lines to a bulky-DNA adduct forming agent (cisplatin) and a double-strand break-inducing agent (doxorubicin), while it enhanced the invasive properties of MDA-MB-231 cells. These results show that the disruption of clock genes may have opposing carcinogenic effects.
Collapse
|
23
|
Ode KL, Ueda HR. Design Principles of Phosphorylation-Dependent Timekeeping in Eukaryotic Circadian Clocks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028357. [PMID: 29038116 DOI: 10.1101/cshperspect.a028357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The circadian clock in cyanobacteria employs a posttranslational oscillator composed of a sequential phosphorylation-dephosphorylation cycle of KaiC protein, in which the dynamics of protein structural changes driven by temperature-compensated KaiC's ATPase activity are critical for determining the period. On the other hand, circadian clocks in eukaryotes employ transcriptional feedback loops as a core mechanism. In this system, the dynamics of protein accumulation and degradation affect the circadian period. However, recent studies of eukaryotic circadian clocks reveal that the mechanism controlling the circadian period can be independent of the regulation of protein abundance. Instead, the circadian substrate is often phosphorylated at multiple sites at flexible protein regions to induce structural changes. The phosphorylation is catalyzed by kinases that induce sequential multisite phosphorylation such as casein kinase 1 (CK1) with temperature-compensated activity. We propose that the design principles of phosphorylation-dependent circadian-period determination in eukaryotes may share characteristics with the posttranslational oscillator in cyanobacteria.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
COOK GEOFFREYM, GRUEN ANNAE, MORRIS JOHN, PANKEY MSABRINA, SENATORE ADRIANO, KATZ PAULS, WATSON WINSORH, NEWCOMB JAMESM. Sequences of Circadian Clock Proteins in the Nudibranch Molluscs Hermissenda crassicornis, Melibe leonina, and Tritonia diomedea. THE BIOLOGICAL BULLETIN 2018; 234:207-218. [PMID: 29949437 PMCID: PMC6180908 DOI: 10.1086/698467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While much is known about the genes and proteins that make up the circadian clocks in vertebrates and several arthropod species, much less is known about the clock genes in many other invertebrates, including nudibranchs. The goal of this project was to identify the RNA and protein products of putative clock genes in the central nervous system of three nudibranchs, Hermissenda crassicornis, Melibe leonina, and Tritonia diomedea. Using previously published transcriptomes (Hermissenda and Tritonia) and a new transcriptome (Melibe), we identified nudibranch orthologs for the products of five canonical clock genes: brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1, circadian locomotor output cycles kaput, non-photoreceptive cryptochrome, period, and timeless. Additionally, orthologous sequences for the products of five related genes-aryl hydrocarbon receptor nuclear translocator like, photoreceptive cryptochrome, cryptochrome DASH, 6-4 photolyase, and timeout-were determined. Phylogenetic analyses confirmed that the nudibranch proteins were most closely related to known orthologs in related invertebrates, such as oysters and annelids. In general, the nudibranch clock proteins shared greater sequence similarity with Mus musculus orthologs than Drosophila melanogaster orthologs, which is consistent with the closer phylogenetic relationships recovered between lophotrochozoan and vertebrate orthologs. The suite of clock-related genes in nudibranchs includes both photoreceptive and non-photoreceptive cryptochromes, as well as timeout and possibly timeless. Therefore, the nudibranch clock may resemble the one exhibited in mammals, or possibly even in non-drosopholid insects and oysters. The latter would be evidence supporting this as the ancestral clock for bilaterians.
Collapse
Key Words
- ARNTL, aryl hydrocarbon receptor nuclear translocator like
- BMAL1, brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1
- CLOCK, circadian locomotor output cycles kaput
- CNS, central nervous system
- CRY DASH, cryptochrome DASH
- FAD, flavin adenine dinucleotide
- G+I, gamma-distributed and invariant
- ML, maximum likelihood
- MSA, multiple sequence alignments
- NCBI, National Center for Biotechnology Information
- NPCRY, non-photoreceptive cryptochrome
- PAC, Per-Arnt-Sim-associated C-terminal
- PAS, Per-Arnt-Sim
- PCRY, photoreceptive cryptochrome
- PHR, 6-4 photolyase
- TSA, transcriptome shotgun assembly
- bHLH, basic helix-loop-helix
Collapse
Affiliation(s)
- GEOFFREY M. COOK
- Department of Biology and Health Science, New England College, Henniker, New Hampshire 03242
| | - ANNA E. GRUEN
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - JOHN MORRIS
- Department of Biology and Health Science, New England College, Henniker, New Hampshire 03242
| | - M. SABRINA PANKEY
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - ADRIANO SENATORE
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
- Present address: Department of Biology, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | - PAUL S. KATZ
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - WINSOR H. WATSON
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - JAMES M. NEWCOMB
- Department of Biology and Health Science, New England College, Henniker, New Hampshire 03242
| |
Collapse
|
25
|
Gaucher J, Montellier E, Sassone-Corsi P. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle. Trends Cell Biol 2018; 28:368-379. [DOI: 10.1016/j.tcb.2018.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
|
26
|
Rosensweig C, Reynolds KA, Gao P, Laothamatas I, Shan Y, Ranganathan R, Takahashi JS, Green CB. An evolutionary hotspot defines functional differences between CRYPTOCHROMES. Nat Commun 2018; 9:1138. [PMID: 29556064 PMCID: PMC5859286 DOI: 10.1038/s41467-018-03503-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/30/2022] Open
Abstract
Mammalian circadian clocks are driven by a transcription/translation feedback loop composed of positive regulators (CLOCK/BMAL1) and repressors (CRYPTOCHROME 1/2 (CRY1/2) and PER1/2). To understand the structural principles of regulation, we used evolutionary sequence analysis to identify co-evolving residues within the CRY/PHL protein family. Here we report the identification of an ancestral secondary cofactor-binding pocket as an interface in repressive CRYs, mediating regulation through direct interaction with CLOCK and BMAL1. Mutations weakening binding between CLOCK/BMAL1 and CRY1 lead to acceleration of the clock, suggesting that subtle sequence divergences at this site can modulate clock function. Divergence between CRY1 and CRY2 at this site results in distinct periodic output. Weaker interactions between CRY2 and CLOCK/BMAL1 at this pocket are strengthened by co-expression of PER2, suggesting that PER expression limits the length of the repressive phase in CRY2-driven rhythms. Overall, this work provides a model for the mechanism and evolutionary variation of clock regulatory mechanisms. The molecular mechanisms that define the periodicity or rate of the circadian clock are not well understood. Here the authors use a multidisciplinary approach and identify a mechanism for period regulation that depends on the affinity of the core clock proteins for one another.
Collapse
Affiliation(s)
- Clark Rosensweig
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Neurobiology, Northwestern University, 2205 Tech Drive, Pancoe 2230, Evanston, IL, 60208, USA
| | - Kimberly A Reynolds
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.,The Green Center for Systems Biology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Peng Gao
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Isara Laothamatas
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Yongli Shan
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Rama Ranganathan
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.,The Green Center for Systems Biology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.,The Center for the Physics of Evolving Systems, Biochemistry and Molecular Biology, The Institute for Molecular Engineering, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
27
|
Garbazza C, Benedetti F. Genetic Factors Affecting Seasonality, Mood, and the Circadian Clock. Front Endocrinol (Lausanne) 2018; 9:481. [PMID: 30190706 PMCID: PMC6115502 DOI: 10.3389/fendo.2018.00481] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
In healthy humans, seasonality has been documented in psychological variables, chronotype, sleep, feeding, metabolic and autonomic function, thermoregulation, neurotransmission, and hormonal response to stimulation, thus representing a relevant factor to account for, especially when considering the individual susceptibility to disease. Mood is largely recognized as one of the central aspects of human behavior influenced by seasonal variations. This historical notion, already mentioned in ancient medical reports, has been recently confirmed by fMRI findings, which showed that seasonality in human cognitive brain functions may influence affective control with annual variations. Thus, seasonality plays a major role in mood disorders, affecting psychopathology, and representing the behavioral correlate of a heightened sensitivity to factors influencing circannual rhythms in patients. Although the genetic basis of seasonality and seasonal affective disorder (SAD) has not been established so far, there is growing evidence that factors affecting the biological clock, such as gene polymorphisms of the core clock machinery and seasonal changes of the light-dark cycle, exert a marked influence on the behavior of patients affected by mood disorders. Here we review recent findings about the effects of individual gene variants on seasonality, mood, and psychopathological characteristics.
Collapse
Affiliation(s)
- Corrado Garbazza
- Centre for Chronobiology, University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- *Correspondence: Corrado Garbazza
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
28
|
Biscontin A, Wallach T, Sales G, Grudziecki A, Janke L, Sartori E, Bertolucci C, Mazzotta G, De Pittà C, Meyer B, Kramer A, Costa R. Functional characterization of the circadian clock in the Antarctic krill, Euphausia superba. Sci Rep 2017; 7:17742. [PMID: 29255161 PMCID: PMC5735174 DOI: 10.1038/s41598-017-18009-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022] Open
Abstract
Antarctic krill (Euphausia superba) is a key species in Southern Ocean ecosystem where it plays a central role in the Antarctic food web. Available information supports the existence of an endogenous timing system in krill enabling it to synchronize metabolism and behavior with an environment characterized by extreme seasonal changes in terms of day length, food availability, and surface ice extent. A screening of our transcriptome database “KrillDB” allowed us to identify the putative orthologues of 20 circadian clock components. Mapping of conserved domains and phylogenetic analyses strongly supported annotations of the identified sequences. Luciferase assays and co-immunoprecipitation experiments allowed us to define the role of the main clock components. Our findings provide an overall picture of the molecular mechanisms underlying the functioning of the endogenous circadian clock in the Antarctic krill and shed light on their evolution throughout crustaceans speciation. Interestingly, the core clock machinery shows both mammalian and insect features that presumably contribute to an evolutionary strategy to cope with polar environment’s challenges. Moreover, despite the extreme variability characterizing the Antarctic seasonal day length, the conserved light mediated degradation of the photoreceptor EsCRY1 suggests a persisting pivotal role of light as a Zeitgeber.
Collapse
Affiliation(s)
- Alberto Biscontin
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany.,Department of Biology, University of Padova, 35121, Padova, Italy
| | - Thomas Wallach
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Gabriele Sales
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Astrid Grudziecki
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Leonard Janke
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany
| | - Elena Sartori
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | | | | | - Bettina Meyer
- Alfred Wegener Polar Biological Oceanography, 27570, Bremerhaven, Germany.,Carl von Ossietzky University of Oldenburg, Institute for Chemistry and Biology of the Marine Environment, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129, Oldenburg, Germany
| | - Achim Kramer
- Charité-Universitätsmedizin Berlin, Laboratory of Chronobiology, D-10117, Berlin, Germany.
| | - Rodolfo Costa
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
29
|
Abstract
Connections between mammalian circadian and cell division cycles have been postulated since the early 20th century, and epidemiological and genetic studies have linked disruption of circadian clock function to increased risk of several types of cancer. In the past decade, it has become clear that circadian clock components influence cell growth and transformation in a cell-autonomous manner. Furthermore, several molecular mechanistic connections have been described in which clock proteins participate in sensing DNA damage, modulating DNA repair, and influencing the ubiquitination and degradation of key players in oncogenesis (c-MYC) and tumor suppression (p53).
Collapse
Affiliation(s)
- Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
30
|
Chapman EC, O’Dell AR, Meligi NM, Parsons DR, Rotchell JM. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol Int 2017; 34:1300-1314. [DOI: 10.1080/07420528.2017.1363224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emma C. Chapman
- School of Environmental Sciences, University of Hull, Hull, UK
| | | | - Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | | | | |
Collapse
|
31
|
Zhang M, Wang L, Zhong D. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Arch Biochem Biophys 2017; 632:158-174. [PMID: 28802828 DOI: 10.1016/j.abb.2017.08.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Photolyase, a flavoenzyme containing flavin adenine dinucleotide (FAD) molecule as a catalytic cofactor, repairs UV-induced DNA damage of cyclobutane pyrimidine dimer (CPD) and pyrimidine-pyrimidone (6-4) photoproduct using blue light. The FAD cofactor, conserved in the whole protein superfamily of photolyase/cryptochromes, adopts a unique folded configuration at the active site that plays a critical functional role in DNA repair. Here, we review our comprehensive characterization of the dynamics of flavin cofactor and its repair photocycles by different classes of photolyases on the most fundamental level. Using femtosecond spectroscopy and molecular biology, significant advances have recently been made to map out the entire dynamical evolution and determine actual timescales of all the catalytic processes in photolyases. The repair of CPD reveals seven electron-transfer (ET) reactions among ten elementary steps by a cyclic ET radical mechanism through bifurcating ET pathways, a direct tunneling route mediated by the intervening adenine and a two-step hopping path bridged by the intermediate adenine from the cofactor to damaged DNA, through the conserved folded flavin at the active site. The unified, bifurcated ET mechanism elucidates the molecular origin of various repair quantum yields of different photolyases from three life kingdoms. For 6-4 photoproduct repair, a similar cyclic ET mechanism operates and a new cyclic proton transfer with a conserved histidine residue at the active site of (6-4) photolyases is revealed.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
32
|
Nießner C, Winklhofer M. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:499-507. [PMID: 28612234 PMCID: PMC5522499 DOI: 10.1007/s00359-017-1189-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
The radical-pair hypothesis of magnetoreception has gained a lot of momentum, since the flavoprotein cryptochrome was postulated as a structural candidate to host magnetically sensitive chemical reactions. Here, we first discuss behavioral tests using radio-frequency magnetic fields (0.1-10 MHz) to specifically disturb a radical-pair-based avian magnetic compass sense. While disorienting effects of broadband RF magnetic fields have been replicated independently in two competing labs, the effects of monochromatic RF magnetic fields administered at the electronic Larmor frequency (~1.3 MHz) are disparate. We give technical recommendations for future RF experiments. We then focus on two candidate magnetoreceptor proteins in birds, Cry1a and Cry1b, two splice variants of the same gene (Cry1). Immunohistochemical studies have identified Cry1a in the outer segments of the ultraviolet/violet-sensitive cone photoreceptors and Cry1b in the cytosol of retinal ganglion cells. The identification of the host neurons of these cryptochromes and their subcellular expression patterns presents an important advance, but much work lies ahead to gain some functional understanding. In particular, interaction partners of cryptochrome Cry1a and Cry1b remain to be identified. A candidate partner for Cry4 was previously suggested, but awaits independent replication.
Collapse
Affiliation(s)
- Christine Nießner
- Ernst Strüngmann Institute for Neuroscience, Deutschordenstr 46, 60528, Frankfurt am Main, Germany
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, School of Mathematics and Science, University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
33
|
Hirano A, Braas D, Fu YH, Ptáček LJ. FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice. Cell Rep 2017; 19:255-266. [PMID: 28402850 PMCID: PMC5423466 DOI: 10.1016/j.celrep.2017.03.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals.
Collapse
Affiliation(s)
- Arisa Hirano
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Daniel Braas
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, CA 94143, USA; Weill Neuroscience of Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, CA 94143, USA; Weill Neuroscience of Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Arthaut LD, Jourdan N, Mteyrek A, Procopio M, El-Esawi M, d’Harlingue A, Bouchet PE, Witczak J, Ritz T, Klarsfeld A, Birman S, Usselman RJ, Hoecker U, Martino CF, Ahmad M. Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle. PLoS One 2017; 12:e0171836. [PMID: 28296892 PMCID: PMC5351967 DOI: 10.1371/journal.pone.0171836] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Cryptochromes are evolutionarily conserved blue-light absorbing flavoproteins which participate in many important cellular processes including in entrainment of the circadian clock in plants, Drosophila and humans. Drosophila melanogaster cryptochrome (DmCry) absorbs light through a flavin (FAD) cofactor that undergoes photoreduction to the anionic radical (FAD•-) redox state both in vitro and in vivo. However, recent efforts to link this photoconversion to the initiation of a biological response have remained controversial. Here, we show by kinetic modeling of the DmCry photocycle that the fluence dependence, quantum yield, and half-life of flavin redox state interconversion are consistent with the anionic radical (FAD•-) as the signaling state in vivo. We show by fluorescence detection techniques that illumination of purified DmCry results in enzymatic conversion of molecular oxygen (O2) to reactive oxygen species (ROS). We extend these observations in living cells to demonstrate transient formation of superoxide (O2•-), and accumulation of hydrogen peroxide (H2O2) in the nucleus of insect cell cultures upon DmCry illumination. These results define the kinetic parameters of the Drosophila cryptochrome photocycle and support light-driven electron transfer to the flavin in DmCry signaling. They furthermore raise the intriguing possibility that light-dependent formation of ROS as a byproduct of the cryptochrome photocycle may contribute to its signaling role.
Collapse
Affiliation(s)
- Louis-David Arthaut
- UMR CNRS 8256 (B2A), IBPS, Université Paris VI, Paris, France
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida, United States of America
| | | | - Ali Mteyrek
- GCRN team, Brain Plasticity Unit, UMR 8249 CNRS/ESPCI Paris, PSL Research University, Paris, France
| | - Maria Procopio
- UMR CNRS 8256 (B2A), IBPS, Université Paris VI, Paris, France
- Department of Physics and Astronomy, University of California, Irvine, California, United States of America
| | - Mohamed El-Esawi
- UMR CNRS 8256 (B2A), IBPS, Université Paris VI, Paris, France
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | | - Jacques Witczak
- UMR CNRS 8256 (B2A), IBPS, Université Paris VI, Paris, France
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California, Irvine, California, United States of America
| | - André Klarsfeld
- GCRN team, Brain Plasticity Unit, UMR 8249 CNRS/ESPCI Paris, PSL Research University, Paris, France
| | - Serge Birman
- GCRN team, Brain Plasticity Unit, UMR 8249 CNRS/ESPCI Paris, PSL Research University, Paris, France
| | - Robert J. Usselman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Cologne, Germany
| | - Carlos F. Martino
- Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, Florida, United States of America
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Université Paris VI, Paris, France
- Department of Biology, Xavier University, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Zhang M, Wang L, Zhong D. Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Photochem Photobiol 2017; 93:78-92. [PMID: 27991674 DOI: 10.1111/php.12695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/05/2016] [Indexed: 01/26/2023]
Abstract
Photolyase, a photomachine discovered half a century ago for repair of sun-induced DNA damage of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), has been characterized extensively in biochemistry (function), structure and dynamics since 1980s. The molecular mechanism and repair photocycle have been revealed at the most fundamental level. Using femtosecond spectroscopy, we have mapped out the entire dynamical evolution and determined all actual timescales of the catalytic processes. Here, we review our recent efforts in studies of the dynamics of DNA repair by photolyases. The repair of CPDs in three life kingdoms includes seven electron transfer (ET) reactions among 10 elementary steps through initial bifurcating ET pathways, a direct tunneling route and a two-step hopping path both through an intervening adenine from the cofactor to CPD, with a conserved folded structure at the active site. The repair of 6-4PPs is challenging and requires similar ET reactions and a new cyclic proton transfer with a conserved histidine residue at the active site of (6-4) photolyases. Finally, we also summarize our efforts on multiple intraprotein ET of photolyases in different redox states and such mechanistic studies are critical to the functional mechanism of homologous cryptochromes of blue-light photoreceptors.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physics, The Ohio State University, Columbus, OH.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH.,Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH
| | - Lijuan Wang
- Department of Physics, The Ohio State University, Columbus, OH.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH.,Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH
| | - Dongping Zhong
- Department of Physics, The Ohio State University, Columbus, OH.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH.,Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH
| |
Collapse
|
36
|
Ozturk N. Phylogenetic and Functional Classification of the Photolyase/Cryptochrome Family. Photochem Photobiol 2017; 93:104-111. [PMID: 27864885 DOI: 10.1111/php.12676] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
The photolyase/cryptochrome (PHR/CRY) family is a large group of proteins with similar structure but very diverge functions such as DNA repair, circadian clock resetting and regulation of transcription. As a result of advances in the biochemistry of the CRY/PHR family and identification of new members, several adjustments have been made to the classification of this protein family. For example, a new class of PHRs, Class III, has been proposed. Furthermore, CRYs have been suggested to function as photosensory proteins in the primordial eye of sponge larvae. Additionally, a magnetosensory function has been attributed to certain CRYs. Recent advances in the field enabled us to propose a comprehensive classification scheme and nomenclatural system for this family. This review focuses on the computational and biochemical classifications of the PHR/CRY family. Several examples show that computational analysis can give a hinge about the function of newly discovered members before performing any biochemical study.
Collapse
Affiliation(s)
- Nuri Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
37
|
Ode KL, Ukai H, Susaki EA, Narumi R, Matsumoto K, Hara J, Koide N, Abe T, Kanemaki MT, Kiyonari H, Ueda HR. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1. Mol Cell 2017; 65:176-190. [DOI: 10.1016/j.molcel.2016.11.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
38
|
Wu P, Li YL, Cheng J, Chen L, Zhu X, Feng ZG, Zhang JS, Chu WY. Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi). BMC Genomics 2016; 17:1008. [PMID: 27931190 PMCID: PMC5146901 DOI: 10.1186/s12864-016-3373-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/02/2016] [Indexed: 12/11/2022] Open
Abstract
Background Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish. Results In the present study, the molecular clock components (clock, arntl1/2, cry1/2/3, cry-dash, npas2, nr1d1/2, per1/2/3, rorα and tim genes) and their daily transcription levels were characterized in slow and fast muscles of Chinese perch (Siniperca chuatsi). Among the 15 clock genes, nrld2 and per3 had no daily rhythmicity in slow muscles, and cry2/3 and tim displayed no daily rhythmicity in fast muscles of the adult fish. In the slow muscles, the highest expression of the most clock paralogs occurred at the dark period except arntl1, nr1d1, nr1d2 and tim. With the exception of nr1d2 and tim, the other clock genes had an acrophase at the light period in fast muscles. The circadian expression of the myogenic regulatory factors (mrf4 and myf5), mstn and pnca showed either a positive or a negative correlation with the transcription pattern of the clock genes in both types of muscles. Conclusions It was the first report to unravel the molecular clock components of the slow and fast muscles in vertebrates. The expressional pattern differences of the clock genes between the two types of muscle fibers suggest that the clock system may play key roles on muscle type-specific tissue maintenance and function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3373-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Yu-Long Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Jia Cheng
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Lin Chen
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China
| | - Zhi-Guo Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, China
| | - Jian-She Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China. .,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| | - Wu-Ying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, 410003, China. .,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
39
|
Kovanen L, Donner K, Kaunisto M, Partonen T. CRY1 and CRY2 genetic variants in seasonality: A longitudinal and cross-sectional study. Psychiatry Res 2016; 242:101-110. [PMID: 27267441 DOI: 10.1016/j.psychres.2016.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022]
Abstract
Cryptochromes are key components of the circadian clocks that generate and maintain seasonal variations. The aim of our study was to analyze the associations of CRY1 and CRY2 genetic variants with the problematicity of seasonal variations, and whether the problematicity of seasonal variations changed during the follow-up of 11 years. Altogether 21 CRY1 and 16 CRY2 single-nucleotide polymorphisms (SNPs) were genotyped and analyzed in 5910 individuals from a Finnish nationwide population-based sample who had filled in the self-report on the seasonal variations in mood and behavior in the year 2000. In the year 2011, 3356 of these individuals filled in the same self-report on the seasonal variations in mood and behavior. Regression models were used to test whether any of the SNPs associated with the problematicity of seasonal variations or with a change in the problematicity from 2000 to 2011. In the longitudinal analysis, CRY2 SNP rs61884508 was protective from worsening of problematicity of seasonal variations. In the cross-sectional analysis, CRY2 SNP rs72902437 showed evidence of association with problematicity of seasonal variations, as did SNP rs1554338 (in the MAPK8IP1 and downstream of CRY2).
Collapse
Affiliation(s)
- Leena Kovanen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mari Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
40
|
Abstract
Circadian rhythms are self-sustained, approximately 24-h rhythms of physiology and behavior. These rhythms are entrained to an exactly 24-h period by the daily light-dark cycle. Remarkably, mice lacking all rod and cone photoreceptors still demonstrate photic entrainment, an effect mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells utilize melanopsin (OPN4) as their photopigment. Distinct from the ciliary rod and cone opsins, melanopsin appears to function as a stable photopigment utilizing sequential photon absorption for its photocycle; this photocycle, in turn, confers properties on ipRGCs such as sustained signaling and resistance from photic bleaching critical for an irradiance detection system. The retina itself also functions as a circadian pacemaker that can be autonomously entrained to light-dark cycles. Recent experiments have demonstrated that another novel opsin, neuropsin (OPN5), is required for this entrainment, which appears to be mediated by a separate population of ipRGCs. Surprisingly, the circadian clock of the mammalian cornea is also light entrainable and is also neuropsin-dependent for this effect. The retina thus utilizes a surprisingly broad array of opsins for mediation of different light-detection tasks.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109.,Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195.,Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195;
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109
| |
Collapse
|
41
|
Sancar A. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). Angew Chem Int Ed Engl 2016; 55:8502-27. [PMID: 27337655 DOI: 10.1002/anie.201601524] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/27/2023]
Abstract
Ultraviolet light damages DNA by converting two adjacent thymines into a thymine dimer which is potentially mutagenic, carcinogenic, or lethal to the organism. This damage is repaired by photolyase and the nucleotide excision repair system in E. coli by nucleotide excision repair in humans. The work leading to these results is presented by Aziz Sancar in his Nobel Lecture.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
42
|
Sancar A. Mechanismen der DNA-Reparatur durch Photolyasen und Exzisionsnukleasen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics; University of North Carolina School of Medicine; Chapel Hill North Carolina USA
| |
Collapse
|
43
|
Bolte P, Bleibaum F, Einwich A, Günther A, Liedvogel M, Heyers D, Depping A, Wöhlbrand L, Rabus R, Janssen‐Bienhold U, Mouritsen H. Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons. PLoS One 2016; 11:e0147819. [PMID: 26953791 PMCID: PMC4783096 DOI: 10.1371/journal.pone.0147819] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/08/2016] [Indexed: 01/24/2023] Open
Abstract
Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism.
Collapse
Affiliation(s)
- Petra Bolte
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - Florian Bleibaum
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - Angelika Einwich
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - Anja Günther
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | | | - Dominik Heyers
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - Anne Depping
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University, Oldenburg, Germany
| | | | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
44
|
Profile of Tomas Lindahl, Paul Modrich, and Aziz Sancar, 2015 Nobel Laureates in Chemistry. Proc Natl Acad Sci U S A 2015; 113:242-5. [PMID: 26715755 DOI: 10.1073/pnas.1521829112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
45
|
Abstract
Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.
Collapse
Affiliation(s)
- Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
46
|
Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B. Fairy "tails": flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci 2015; 2:23. [PMID: 26042223 PMCID: PMC4436894 DOI: 10.3389/fmolb.2015.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their “host” protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.
Collapse
Affiliation(s)
- Gabriel Thieulin-Pardo
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Luisana Avilan
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Mila Kojadinovic
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Brigitte Gontero
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
47
|
Papp SJ, Huber AL, Jordan SD, Kriebs A, Nguyen M, Moresco JJ, Yates JR, Lamia KA. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. eLife 2015; 4. [PMID: 25756610 PMCID: PMC4352707 DOI: 10.7554/elife.04883] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/10/2015] [Indexed: 11/13/2022] Open
Abstract
The circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2) evolved from photolyases, bacterial light-activated DNA repair enzymes. In this study, we report that while they have lost DNA repair activity, Cry1/2 adapted to protect genomic integrity by responding to DNA damage through posttranslational modification and coordinating the downstream transcriptional response. We demonstrate that genotoxic stress stimulates Cry1 phosphorylation and its deubiquitination by Herpes virus associated ubiquitin-specific protease (Hausp, a.k.a Usp7), stabilizing Cry1 and shifting circadian clock time. DNA damage also increases Cry2 interaction with Fbxl3, destabilizing Cry2. Thus, genotoxic stress increases the Cry1/Cry2 ratio, suggesting distinct functions for Cry1 and Cry2 following DNA damage. Indeed, the transcriptional response to genotoxic stress is enhanced in Cry1-/- and blunted in Cry2-/- cells. Furthermore, Cry2-/- cells accumulate damaged DNA. These results suggest that Cry1 and Cry2, which evolved from DNA repair enzymes, protect genomic integrity via coordinated transcriptional regulation.
Collapse
Affiliation(s)
- Stephanie J Papp
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - Anne-Laure Huber
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - Sabine D Jordan
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - Anna Kriebs
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - Madelena Nguyen
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - James J Moresco
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - John R Yates
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| | - Katja A Lamia
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, United States
| |
Collapse
|
48
|
Mitsui H, Maeda T, Yamaguchi C, Tsuji Y, Watari R, Kubo Y, Okano K, Okano T. Overexpression in yeast, photocycle, and in vitro structural change of an avian putative magnetoreceptor cryptochrome4. Biochemistry 2015; 54:1908-17. [PMID: 25689419 DOI: 10.1021/bi501441u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cryptochromes (CRYs) have been found in a wide variety of living organisms and can function as blue light photoreceptors, circadian clock molecules, or magnetoreceptors. Non-mammalian vertebrates have CRY4 in addition to the CRY1 and CRY2 circadian clock components. Though the function of CRY4 is not well understood, chicken CRY4 (cCRY4) may be a magnetoreceptor because of its high level of expression in the retina and light-dependent structural changes in retinal homogenates. To further characterize the photosensitive nature of cCRY4, we developed an expression system using budding yeast and purified cCRY4 at yields of submilligrams of protein per liter with binding of the flavin adenine dinucleotide (FAD) chromophore. Recombinant cCRY4 dissociated from anti-cCRY4 C1 mAb, which recognizes the C-terminal region of cCRY4, in a light-dependent manner and showed a light-dependent change in its trypsin digestion pattern, suggesting that cCRY4 changes its conformation with light irradiation in the absence of other retinal factors. Combinatorial analyses with UV-visible spectroscopy and immunoprecipitation revealed that there is chromophore reduction in the cCRY4 photocycle and formation of a flavosemiquinone radical intermediate that is likely accompanied by a conformational change in the carboxyl-terminal region. Thus, cCRY4 seems to be an intrinsically photosensitive and photoswitchable molecule and may exemplify a vertebrate model of cryptochrome with possible function as a photosensor and/or magnetoreceptor.
Collapse
Affiliation(s)
- Hiromasa Mitsui
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Toshinori Maeda
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Chiaki Yamaguchi
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yusuke Tsuji
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ryuji Watari
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoko Kubo
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
49
|
Wang J, Du X, Pan W, Wang X, Wu W. Photoactivation of the cryptochrome/photolyase superfamily. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Crane BR, Young MW. Interactive features of proteins composing eukaryotic circadian clocks. Annu Rev Biochem 2015; 83:191-219. [PMID: 24905781 DOI: 10.1146/annurev-biochem-060713-035644] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research into the molecular mechanisms of eukaryotic circadian clocks has proceeded at an electrifying pace. In this review, we discuss advances in our understanding of the structures of central molecular players in the timing oscillators of fungi, insects, and mammals. A series of clock protein structures demonstrate that the PAS (Per/Arnt/Sim) domain has been used with great variation to formulate the transcriptional activators and repressors of the clock. We discuss how posttranslational modifications and external cues, such as light, affect the conformation and function of core clock components. Recent breakthroughs have also revealed novel interactions among clock proteins and new partners that couple the clock to metabolic and developmental pathways. Overall, a picture of clock function has emerged wherein conserved motifs and structural platforms have been elaborated into a highly dynamic collection of interacting molecules that undergo orchestrated changes in chemical structure, conformational state, and partners.
Collapse
Affiliation(s)
- Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853;
| | | |
Collapse
|