1
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
2
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
3
|
Jung EK, Chu TH, Kim SA, Vo MC, Nguyen VT, Lee KH, Jung SH, Yoon M, Cho D, Lee JJ, Yoon TM. Efficacy of natural killer cell therapy combined with chemoradiotherapy in murine models of head and neck squamous cell carcinoma. Cytotherapy 2024; 26:242-251. [PMID: 38142382 DOI: 10.1016/j.jcyt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AIMS Natural killer (NK) cell-based cancer immunotherapy is effective when combined with other treatment modalities such as irradiation and chemotherapy. NK cell's antitumor function to treat solid tumor, including head and neck squamous cell carcinoma (HNSCC), has been targeted recently. This study assessed NK cell recruitment in response to chemoradiation therapy (CRT) in HNSCC. METHODS Ex vivo expansion of NK cell, flow cytometry, cell viability assay, cytotoxicity assay, immunohistochemistry, and animal model were performed. RESULTS Mouse NK cells were recruited to the tumor site by CRT in a nude mouse model. Furthermore, expanded and activated human NK cells (eNKs) were recruited to the tumor site in response to CRT, and CRT enhanced the anti-tumor activity of eNK in an NOD/SCID IL-2Rγnull mouse model. Various HNSCC cancer cell lines exhibited different NK cell ligand activation patterns in response to CRT that correlated with NK cell-mediated cytotoxicity. CONCLUSIONS Identifying the activation patterns of NK cell ligands during CRT might improve patient selection for adjuvant NK cell immunotherapy combined with CRT. This is the first study to investigate the NK cell's antitumor function and recruitment with CRT in HNSCC mouse model.
Collapse
Affiliation(s)
- Eun Kyung Jung
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Tan-Huy Chu
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea; Department of Hematology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Sun-Ae Kim
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Manh-Cuong Vo
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Van-Tan Nguyen
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Meesun Yoon
- Department of Radiation Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| | - Tae Mi Yoon
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeollanamdo, Korea.
| |
Collapse
|
4
|
Jeong J, Lim MK, Han EH, Lee SH, Lee S. Immune-enhancement effects of Angelica gigas Nakai extracts via MAPK/NF-ƙB signaling pathways in cyclophosphamide-induced immunosuppressed mice. Food Sci Biotechnol 2023; 32:1573-1584. [PMID: 37637834 PMCID: PMC10449711 DOI: 10.1007/s10068-023-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
This study investigated the immune-enhancement effects of Angelica gigas Nakai extract (ANE) and its yeast-fermented extract (FAN) in cyclophosphamide (CPP)-induced immunosuppressed mice. Angelica gigas Nakai (AGN) increased the protein level of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) and immune-related cytokines in mouse splenocytes. AGN also restored CPP-induced suppression of NK cell activity and splenocyte proliferation. Furthermore, AGN activated the ERK and p38 MAPK/NF-κB signaling pathways in mouse splenocytes via phosphorylation of signaling molecules. These findings indicate that upregulation of cytokines and enzymes may be closely associated with the MAPK/NF-κB signaling pathways. In conclusion, AGN can restore CPP-induced immunosuppression in mice, although there was no significant difference in the immune-enhancing effect between ANE and FAN. It is suggested that AGN might have the potential to enhance immunity as an immunostimulant under immunosuppressed conditions. Therefore, it could be used as an effective agent or a dietary supplement for improving immunity. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01281-6.
Collapse
Affiliation(s)
- Jeongho Jeong
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Mi Kyung Lim
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Eun Hye Han
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Sang Ho Lee
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| | - Soyeon Lee
- R&D Center, Koreaeundan Healthcare Co., Ltd., 165, Manhae-Ro, Ansan-si, Gyeonggi-do 15405 Republic of Korea
| |
Collapse
|
5
|
Rodríguez-Agustín A, Casanova V, Grau-Expósito J, Sánchez-Palomino S, Alcamí J, Climent N. Immunomodulatory Activity of the Tyrosine Kinase Inhibitor Dasatinib to Elicit NK Cytotoxicity against Cancer, HIV Infection and Aging. Pharmaceutics 2023; 15:pharmaceutics15030917. [PMID: 36986778 PMCID: PMC10055786 DOI: 10.3390/pharmaceutics15030917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been extensively used as a treatment for chronic myeloid leukemia (CML). Dasatinib is a broad-spectrum TKI with off-target effects that give it an immunomodulatory capacity resulting in increased innate immune responses against cancerous cells and viral infected cells. Several studies reported that dasatinib expanded memory-like natural killer (NK) cells and γδ T cells that have been related with increased control of CML after treatment withdrawal. In the HIV infection setting, these innate cells are associated with virus control and protection, suggesting that dasatinib could have a potential role in improving both the CML and HIV outcomes. Moreover, dasatinib could also directly induce apoptosis of senescence cells, being a new potential senolytic drug. Here, we review in depth the current knowledge of virological and immunogenetic factors associated with the development of powerful cytotoxic responses associated with this drug. Besides, we will discuss the potential therapeutic role against CML, HIV infection and aging.
Collapse
Affiliation(s)
| | - Víctor Casanova
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Judith Grau-Expósito
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
| | - José Alcamí
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Núria Climent
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
- CIBER of Infectious Diseases (CIBERINFEC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-2275400 (ext. 3144); Fax: +34-93-2271775
| |
Collapse
|
6
|
Kim HI, Kim DS, Jung Y, Sung NY, Kim M, Han IJ, Nho EY, Hong JH, Lee JK, Boo M, Kim HL, Baik S, Jung KO, Lee S, Kim CS, Park J. Immune-Enhancing Effect of Sargassum horneri on Cyclophosphamide-Induced Immunosuppression in BALB/c Mice and Primary Cultured Splenocytes. Molecules 2022; 27:8253. [PMID: 36500343 PMCID: PMC9738764 DOI: 10.3390/molecules27238253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Sargassum horneri (SH) is a seaweed that has several features that benefit health. In this study, we investigated the immune-enhancing effect of SH, focusing on the role of spleen-mediated immune functions. Chromatographic analysis of SH identified six types of monosaccharide contents, including mannose, rhamnose glucose, galactose xylose and fucose. SH increased cell proliferation of primary cultured naïve splenocytes treated with or without cyclophosphamide (CPA), an immunosuppression agent. SH also reversed the CPA-induced decrease in Th1 cytokines. In vivo investigation revealed that SH administration can increase the tissue weight of major immune organs, such as the spleen and thymus. A similar effect was observed in CPA-injected immunosuppressed BALB/c mice. SH treatment increased the weight of the spleen and thymus, blood immune cell count and Th1 cytokine expression. Additionally, the YAC-1-targeting activities of natural killer cells, which are important in innate immunity, were upregulated upon SH treatment. Overall, our study demonstrates the immune-enhancing effect of SH, suggesting its potential as a medicinal or therapeutic agent for pathologic conditions involving immunosuppression.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Yunu Jung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Minjee Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - In-Jun Han
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Eun Yeong Nho
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Joon Ho Hong
- Nano Bio Research Center, Jeonnam Bioindustry Foundation, Jangsung 57248, Republic of Korea
| | - Jin-Kyu Lee
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye-Lin Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sangyul Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Li X, Wichai N, Wang J, Liu X, Yan H, Wang Y, Luo M, Zhou S, Wang K, Li L, Miao L. Regulation of innate and adaptive immunity using herbal medicine: benefits for the COVID-19 vaccination. ACUPUNCTURE AND HERBAL MEDICINE 2022; 2:196-206. [PMID: 37808346 PMCID: PMC9746255 DOI: 10.1097/hm9.0000000000000046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 08/18/2023]
Abstract
Vaccination is a major achievement that has become an effective prevention strategy against infectious diseases and active control of emerging pathogens worldwide. In response to the coronavirus disease 2019 (COVID-19) pandemic, several diverse vaccines against severe acute respiratory syndrome coronavirus 2 have been developed and deployed for use in a large number of individuals, and have been reported to protect against symptomatic COVID-19 cases and deaths. However, the application of vaccines has a series of limitations, including protective failure for variants of concern, unavailability of individuals due to immune deficiency, and the disappearance of immune protection for increasing infections in vaccinated individuals. These aspects raise the question of how to modulate the immune system that contributes to the COVID-19 vaccine protective effects. Herbal medicines are widely used for their immune regulatory abilities in clinics. More attractively, herbal medicines have been well accepted for their positive role in the COVID-19 prevention and suppression through regulation of the immune system. This review presents a brief overview of the strategy of COVID-19 vaccination and the response of the immune system to vaccines, the regulatory effects and mechanisms of herbal medicine in immune-related macrophages, natural killer cells, dendritic cells, and lymphocytes T and B cells, and how they help vaccines work. Later in the article, the potential role and application of herbal medicines in the most recent COVID-19 vaccination are discussed. This article provides new insights into herbal medicines as promising alternative supplements that may benefit from COVID-19 vaccination. Graphical abstract http://links.lww.com/AHM/A31.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nuttapong Wichai
- Faculty of Pharmacy, Mahasarakham University, Mahasarakham, Thailand
| | - Jiabao Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuping Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huimin Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyuan Zhou
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kai Wang
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Jackson GS, Todd KR, VAN DER Scheer JW, Walsh JJ, Dix GU, Martin Ginis KA, Little JP. Impact of an Acute Bout of Submaximal Aerobic Exercise on Circulating Leukocytes in Individuals with Spinal Cord Injury. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2022; 15:1085-1104. [PMID: 36158229 PMCID: PMC9458291 DOI: 10.70252/ypev5212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Individuals with spinal cord injury (SCI) may experience cardiovascular, musculoskeletal and organ function dysregulation. Sequelae include reduced catecholamine secretion and attenuated immune responses which may impact exercise-induced leukocytosis. The purpose of this study was to characterize major leukocyte subtypes following 30 minutes of acute, submaximal aerobic exercise, in line with updated international SCI exercise guidelines for adults. It was hypothesized that exercise would increase major leukocyte subtypes when compared to fasted baseline. Eight participants with SCI (incomplete n = 6; complete n = 2) completed a 30-minute bout of aerobic exercise on an arm cycle ergometer at 60% of their peak power output followed by 90 minutes of recovery, or a 2-hour seated control condition, in a randomized crossover design, separated by 7-14 days. Blood samples were taken at baseline, post exercise, and 90 minutes after exercise (with time matched control). Leukocyte subtypes were analyzed via flow cytometry and plasma catecholamines by ELISA. Several leukocytes increased from pre- to post-exercise (time X condition interaction; all P < 0.05; mean ± SD), including CD3+ Lymphocytes (19 ± 16%), CD4+ T helper (16 ± 13%), CD8+ T cytotoxic (24 ± 23%), CD3+/CD56+ natural killer T (31 ± 34%), and CD3-/CD56+ natural killer (63 ± 82%). CD16+/CD14dim monocytes decreased by 27 ± 38% following exercise to 90 minutes post-exercise. No changes were observed for catecholamines for either condition. Thirty minutes of acute submaximal aerobic exercise sufficiently increased most lymphocyte subsets with effector functions, while leading to decreased proinflammatory monocytes during the recovery phase. This exercise duration and intensity appear to be an appropriate option for modulating circulating immune cells in individuals with SCI.
Collapse
Affiliation(s)
- Garett S Jackson
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
| | - Kendra R Todd
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (BSSC), University of British Columbia, Vancouver, British Columbia, CANADA
| | - Jan W VAN DER Scheer
- The Healthcare Improvement Studies (THIS) Institute, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UNITED KINGDOM
| | - Jeremy J Walsh
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - Gabriel U Dix
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (BSSC), University of British Columbia, Vancouver, British Columbia, CANADA
| | - Kathleen A Martin Ginis
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre (BSSC), University of British Columbia, Vancouver, British Columbia, CANADA
- Department of Medicine, Division of Physical Medicine & Rehabilitation, University of British Columbia, Vancouver, British Columbia, CANADA
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, CANADA
| | - Jonathan P Little
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, British Columbia, CANADA
- Centre for Chronic Disease Prevention and Management, University of British Columbia, Kelowna, British Columbia, CANADA
| |
Collapse
|
9
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
Casado JA, Valeri A, Sanchez-Domínguez R, Vela P, Lopez A, Navarro S, Alberquilla O, Hanenberg H, Pujol R, Segovia JC, Minguillón J, Surrallés J, Diaz-de-Heredia C, Sevilla J, Rio P, Bueren JA. Upregulation of NKG2D ligands impairs hematopoietic stem cell function in Fanconi anemia. J Clin Invest 2022; 132:142842. [PMID: 35671096 PMCID: PMC9337828 DOI: 10.1172/jci142842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage–associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D–NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D–NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA.
Collapse
Affiliation(s)
- Jose A Casado
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Antonio Valeri
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Rebeca Sanchez-Domínguez
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Paula Vela
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Andrea Lopez
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Susana Navarro
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Omaira Alberquilla
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Helmut Hanenberg
- Department of Pediatrics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Roser Pujol
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jose C Segovia
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Jordi Minguillón
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Julián Sevilla
- Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Paula Rio
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Juan A Bueren
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| |
Collapse
|
11
|
Zanetti M, Xian S, Dosset M, Carter H. The Unfolded Protein Response at the Tumor-Immune Interface. Front Immunol 2022; 13:823157. [PMID: 35237269 PMCID: PMC8882736 DOI: 10.3389/fimmu.2022.823157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Maurizio Zanetti, ; orcid.org/0000-0001-6346-8776
| | - Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Wang B, Varela-Eirin M, Brandenburg SM, Hernandez-Segura A, van Vliet T, Jongbloed EM, Wilting SM, Ohtani N, Jager A, Demaria M. Pharmacological CDK4/6 inhibition reveals a p53-dependent senescent state with restricted toxicity. EMBO J 2022; 41:e108946. [PMID: 34985783 PMCID: PMC8922251 DOI: 10.15252/embj.2021108946] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a state of stable growth arrest and a desired outcome of tumor suppressive interventions. Treatment with many anti‐cancer drugs can cause premature senescence of non‐malignant cells. These therapy‐induced senescent cells can have pro‐tumorigenic and pro‐disease functions via activation of an inflammatory secretory phenotype (SASP). Inhibitors of cyclin‐dependent kinases 4/6 (CDK4/6i) have recently proven to restrain tumor growth by activating a senescence‐like program in cancer cells. However, the physiological consequence of exposing the whole organism to pharmacological CDK4/6i remains poorly characterized. Here, we show that exposure to CDK4/6i induces non‐malignant cells to enter a premature state of senescence dependent on p53. We observe in mice and breast cancer patients that the CDK4/6i‐induced senescent program activates only a partial SASP enriched in p53 targets but lacking pro‐inflammatory and NF‐κB‐driven components. We find that CDK4/6i‐induced senescent cells do not acquire pro‐tumorigenic and detrimental properties but retain the ability to promote paracrine senescence and undergo clearance. Our results demonstrate that SASP composition is exquisitely stress‐dependent and a predictor for the biological functions of different senescence subsets.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marta Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Simone M Brandenburg
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Thijmen van Vliet
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Elisabeth M Jongbloed
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Naoko Ohtani
- Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| |
Collapse
|
13
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
14
|
Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front Immunol 2021; 12:607669. [PMID: 34234770 PMCID: PMC8256162 DOI: 10.3389/fimmu.2021.607669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most abundant immune cells in the uterine mucosa both before and during pregnancy. Circumstantial evidence suggests they play important roles in regulating placental development but exactly how they contribute to the successful outcome of pregnancy is still unclear. Uterine ILCs (uILCs) include subsets of tissue-resident natural killer (NK) cells and ILCs, and until recently the phenotype and functions of uILCs were poorly defined. Determining the specific roles of each subset is intrinsically challenging because of the rapidly changing nature of the tissue both during the menstrual cycle and pregnancy. Single-cell RNA sequencing (scRNAseq) and high dimensional flow and mass cytometry approaches have recently been used to analyse uILC populations in the uterus in both humans and mice. This detailed characterisation has significantly changed our understanding of the heterogeneity within the uILC compartment. It will also enable key clinical questions to be addressed including whether specific uILC subsets are altered in infertility, miscarriage and pregnancy disorders such as foetal growth restriction and pre-eclampsia. Here, we summarise recent advances in our understanding of the phenotypic and functional diversity of uILCs in non-pregnant endometrium and first trimester decidua, and review how these cells may contribute to successful placental development.
Collapse
Affiliation(s)
- Oisín Huhn
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Laura Esposito
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Moffett
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge, Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
| | - Andrew M. Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience University of Cambridge, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
16
|
Ponath V, Hoffmann N, Bergmann L, Mäder C, Alashkar Alhamwe B, Preußer C, Pogge von Strandmann E. Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22042189. [PMID: 33671836 PMCID: PMC7926927 DOI: 10.3390/ijms22042189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
NKp30 (Natural Cytotoxicity Receptor 1, NCR1) is a powerful cytotoxicity receptor expressed on natural killer (NK) cells which is involved in tumor cell killing and the regulation of antitumor immune responses. Ligands for NKp30, including BAG6 and B7-H6, are upregulated in virus-infected and tumor cells but rarely detectable on healthy cells. These ligands are released by tumor cells as part of the cellular secretome and interfere with NK cell activity. BAG6 is secreted via the exosomal pathway, and BAG6-positive extracellular vesicles (EV-BAG6) trigger NK cell cytotoxicity and cytokine release, whereas the soluble protein diminishes NK cell activity. However, the extracellular format and activity of B7-H6 remain elusive. Here, we used HEK293 as a model cell line to produce recombinant ligands and to study their impact on NK cell activity. Using this system, we demonstrate that soluble B7-H6 (sB7-H6), like soluble BAG6 (sBAG6), inhibits NK cell-mediated target cell killing. This was associated with a diminished cell surface expression of NKG2D and NCRs (NKp30, NKp40, and NKp46). Strikingly, a reduced NKp30 mRNA expression was observed exclusively in response to sBAG6. Of note, B7-H6 was marginally released in association with EVs, and EVs collected from B7-H6 expressing cells did not stimulate NK cell-mediated killing. The molecular analysis of EVs on a single EV level using nano flow cytometry (NanoFCM) revealed a similar distribution of vesicle-associated tetraspanins within EVs purified from wildtype, BAG6, or B7-H6 overexpressing cells. NKp30 is a promising therapeutic target to overcome NK cell immune evasion in cancer patients, and it is important to unravel how extracellular NKp30 ligands inhibit NK cell functions.
Collapse
|
17
|
Pierce S, Geanes ES, Bradley T. Targeting Natural Killer Cells for Improved Immunity and Control of the Adaptive Immune Response. Front Cell Infect Microbiol 2020; 10:231. [PMID: 32509600 PMCID: PMC7248265 DOI: 10.3389/fcimb.2020.00231] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are critical for targeting and killing tumor, virus-infected and stressed cells as a member of the innate immune system. Recently, NK cells have also emerged as key regulators of adaptive immunity and have become a prominent therapeutic target for cancer immunotherapy and infection control. NK cells display a diverse array of phenotypes and function. Determining how NK cells develop and are regulated is critical for understanding their role in both innate and adaptive immunity. In this review we discuss current research approaches into NK cell adaptive immunity and how these cells are being harnessed for improving cancer and vaccination outcomes.
Collapse
Affiliation(s)
- Stephen Pierce
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Eric S Geanes
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Todd Bradley
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States.,Departments of Pediatrics and Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Pediatrics, University of Missouri Kansas City Medical School, Kansas City, MO, United States
| |
Collapse
|
18
|
Wang S, Wang X, Cheng Y, Ouyang W, Sang X, Liu J, Su Y, Liu Y, Li C, Yang L, Jin L, Wang Z. Autophagy Dysfunction, Cellular Senescence, and Abnormal Immune-Inflammatory Responses in AMD: From Mechanisms to Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3632169. [PMID: 31249643 PMCID: PMC6556250 DOI: 10.1155/2019/3632169] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Age-related macular degeneration (AMD) is a blinding disease caused by multiple factors and is the primary cause of vision loss in the elderly. The morbidity of AMD increases every year. Currently, there is no effective treatment option for AMD. Intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is currently the most widely used therapy, but it only aims at neovascularization, which is an intermediate pathological phenomenon of wet AMD, not at the etiological treatment. Anti-VEGF therapy can only temporarily delay the degeneration process of wet AMD, and AMD is easy to relapse after drug withdrawal. Therefore, it is urgent to deepen our understanding of the pathophysiological processes underlying AMD and to identify integrated or new strategies for AMD prevention and treatment. Recent studies have found that autophagy dysfunction in retinal pigment epithelial (RPE) cells, cellular senescence, and abnormal immune-inflammatory responses play key roles in the pathogenesis of AMD. For many age-related diseases, the main focus is currently the clearing of senescent cells (SNCs) as an antiaging treatment, thereby delaying diseases. However, in AMD, there is no relevant antiaging application. This review will discuss the pathogenesis of AMD and how interactions among RPE autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses are involved in AMD, and it will summarize the three antiaging strategies that have been developed, with the aim of providing important information for the integrated prevention and treatment of AMD and laying the ground work for the application of antiaging strategies in AMD treatment.
Collapse
Affiliation(s)
- Shoubi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Weijie Ouyang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahui Liu
- Department of Ophthalmology, Dongguan People's Hospital, Dongguan 523059, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Liu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
19
|
de Jonge K, Ebering A, Nassiri S, Maby-El Hajjami H, Ouertatani-Sakouhi H, Baumgaertner P, Speiser DE. Circulating CD56 bright NK cells inversely correlate with survival of melanoma patients. Sci Rep 2019; 9:4487. [PMID: 30872676 PMCID: PMC6418246 DOI: 10.1038/s41598-019-40933-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
The roles of NK cells in human melanoma remain only partially understood. We characterized NK cells from peripheral blood ex vivo by flow cytometry obtained from late stage (III/IV) melanoma patients. Interestingly, we found that the abundance of CD56bright NK cells negatively correlate with overall patient survival, together with distant metastases, in a multivariate cox regression analysis. The patients' CD56bright NK cells showed upregulation of CD11a, CD38 and CD95 as compared to healthy controls, pointing to an activated phenotype as well as a possible immune regulatory role in melanoma patients. After stimulation in vitro, CD56bright NK cells produced less TNFα and GMCSF in patients than controls. Furthermore, IFNγ production by the CD56bright NK cells correlated inversely with overall survival. Our results highlight that abundance and function of CD56bright NK cells are associated with melanoma patient survival, emphasizing the potential of NK cell subsets for biomarker discovery and future therapeutic targeting.
Collapse
Affiliation(s)
- Kaat de Jonge
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Anna Ebering
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Sina Nassiri
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Swiss Institute of Bioinformatics (SIB), Bâtiment Génopode, Lausanne, Switzerland
| | | | | | - Petra Baumgaertner
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.
- Department of Oncology, University Hospital Center (CHUV), Lausanne, Switzerland.
| |
Collapse
|
20
|
Endogenous DAMPs, Category I: Constitutively Expressed, Native Molecules (Cat. I DAMPs). DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7122936 DOI: 10.1007/978-3-319-78655-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This chapter provides the reader with a collection of endogenous DAMPs in terms of constitutively expressed native molecules. The first class of this category refers to DAMPs, which are passively released from necrotic cells, and includes the most prominent subclasses of high mobility group box I and heat shock proteins. Further subclasses of DAMPs that are passively released from necrotic cells include S100 proteins, nucleic acids, histones, pro-forms of interleukin-1-family members, mitochondria-derived N-formylated peptides, F-actin, and heme. A particular subclass of these passively released DAMPs are molecules, which indirectly activate the inflammasome, including adenosine-5′-triphosphate, monosodium urate crystals, cholesterol crystals, some lipolytic species, and beta-amyloid. All these passively released DAMPs are characterized by their capability to promote necroinflammatory responses. The second class of this Category I refers to molecules, which are exposed on the surface of stressed cells. They include the subclass of phagocytosis-facilitating molecules such as calreticulin, as well as the subclass of MHC-I-related molecules such as MHC-I-related molecule A and B. These DAMPs are capable of inducing the activation of innate lymphoid cells and unconventional T cells. One of these DAMPs, the major histocompatibility complex I-related molecule A, is shown to act as a bona fide transplantation antigen. In sum, the endogenous constitutively expressed native molecules represent an impressive category of DAMPs with extraordinary properties, which play a critical role in the pathogenesis of many human diseases.
Collapse
|
21
|
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017; 6. [PMID: 29227245 PMCID: PMC5724991 DOI: 10.7554/elife.31274] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.
Collapse
Affiliation(s)
- Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katherine Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Taihei Yamada
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Laura Woods
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Obstetrics & Gynaecology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan Joris Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Enk J, Levi A, Weisblum Y, Yamin R, Charpak-Amikam Y, Wolf DG, Mandelboim O. HSV1 MicroRNA Modulation of GPI Anchoring and Downstream Immune Evasion. Cell Rep 2017; 17:949-956. [PMID: 27760325 PMCID: PMC5081403 DOI: 10.1016/j.celrep.2016.09.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/28/2016] [Accepted: 09/22/2016] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) is a ubiquitous human pathogen that utilizes variable mechanisms to evade immune surveillance. The glycosylphosphatidylinositol (GPI) anchoring pathway is a multistep process in which a myriad of different proteins are covalently attached to a GPI moiety to be presented on the cell surface. Among the different GPI-anchored proteins there are many with immunological importance. We present evidence that the HSV1-encoded miR H8 directly targets PIGT, a member of the protein complex that covalently attaches proteins to GPI in the final step of GPI anchoring. This results in a membrane down-modulation of several different immune-related, GPI-anchored proteins, including ligands for natural killer-activating receptors and the prominent viral restriction factor tetherin. Thus, we suggest that by utilizing just one of dozens of miRNAs encoded by HSV1, the virus can counteract the host immune response at several key points. HSV1 miR H8 targets PIGT of the GPI anchoring pathway Expression of the anti-viral protein tetherin is reduced and viral spread enhanced Expression of GPI-anchored activating NK cell ligands is reduced Recognition and elimination by NK cells decrease
Collapse
Affiliation(s)
- Jonatan Enk
- The Lautenberg Center of General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Assi Levi
- Photodermatosis Clinic and Laser Unit, Dermatology Department, Rabin Medical Center, Petah Tikva 4941492, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Rachel Yamin
- The Lautenberg Center of General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Yoav Charpak-Amikam
- The Lautenberg Center of General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Ofer Mandelboim
- The Lautenberg Center of General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
23
|
Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol 2017; 109:5-15. [PMID: 29054534 DOI: 10.1016/j.exger.2017.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. One of the main risk factors for CVD is age, however the biological processes that occur in the heart during ageing are poorly understood. It is therefore important to understand the fundamental mechanisms driving heart ageing to enable the development of preventions and treatments targeting these processes. Cellular senescence is often described as the irreversible cell-cycle arrest which occurs in somatic cells. Emerging evidence suggests that cellular senescence plays a key role in heart ageing, however the cell-types involved and the underlying mechanisms are not yet elucidated. In this review we discuss the current understanding of how mechanisms known to contribute to senescence impact on heart ageing and CVD. Finally, we evaluate recent data suggesting that targeting senescent cells may be a viable therapy to counteract the ageing of the heart.
Collapse
Affiliation(s)
- Rhys Anderson
- The Randall Division, King's College London, London, UK; Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Gavin D Richardson
- Cardiovascular Research Centre, Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Medrano RF, Hunger A, Mendonça SA, Barbuto JAM, Strauss BE. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 2017; 8:71249-71284. [PMID: 29050360 PMCID: PMC5642635 DOI: 10.18632/oncotarget.19531] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-α and IFN-β, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-α/β share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-α/β, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-α/β has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-α/β have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied.
Collapse
Affiliation(s)
- Ruan F.V. Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samir Andrade Mendonça
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Alexandre M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cell and Molecular Therapy Center, NUCEL-NETCEM, University of São Paulo, São Paulo, Brazil
| | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
25
|
Jaing C, Rowland RRR, Allen JE, Certoma A, Thissen JB, Bingham J, Rowe B, White JR, Wynne JW, Johnson D, Gaudreault NN, Williams DT. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses. Sci Rep 2017; 7:10115. [PMID: 28860602 PMCID: PMC5579198 DOI: 10.1038/s41598-017-10186-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
African swine fever virus (ASFV) is a macrophage-tropic virus responsible for ASF, a transboundary disease that threatens swine production world-wide. Since there are no vaccines available to control ASF after an outbreak, obtaining an understanding of the virus-host interaction is important for developing new intervention strategies. In this study, a whole transcriptomic RNA-Seq method was used to characterize differentially expressed genes in pigs infected with a low pathogenic ASFV isolate, OUR T88/3 (OURT), or the highly pathogenic Georgia 2007/1 (GRG). After infection, pigs infected with OURT showed no or few clinical signs; whereas, GRG produced clinical signs consistent with acute ASF. RNA-Seq detected the expression of ASFV genes from the whole blood of the GRG, but not the OURT pigs, consistent with the pathotypes of these strains and the replication of GRG in circulating monocytes. Even though GRG and OURT possess different pathogenic properties, there was significant overlap in the most upregulated host genes. A small number of differentially expressed microRNAs were also detected in GRG and OURT pigs. These data confirm previous studies describing the response of macrophages and lymphocytes to ASFV infection, as well as reveal unique gene pathways upregulated in response to infection with GRG.
Collapse
Affiliation(s)
- Crystal Jaing
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America.
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jonathan E Allen
- Computation Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Andrea Certoma
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - James B Thissen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - John Bingham
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Brenton Rowe
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - John R White
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - James W Wynne
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Dayna Johnson
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - David T Williams
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
26
|
Ying G, Wang J, Kumar V, Zajonc DM. Crystal structure of Qa-1a with bound Qa-1 determinant modifier peptide. PLoS One 2017; 12:e0182296. [PMID: 28767728 PMCID: PMC5540586 DOI: 10.1371/journal.pone.0182296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
Qa-1 is a non-classical Major Histocompatibility (MHC) class I molecule that generally presents hydrophobic peptides including Qdm derived from the leader sequence of classical MHC I molecules for immune surveillance by NK cells. Qa-1 bound peptides derived from the TCR Vβ8.2 of activated T cells also activates CD8+ regulatory T cells to control autoimmunity and maintain self-tolerance. Four allotypes of Qa-1 (Qa-1a-d) are expressed that are highly conserved in sequence but have several variations that could affect peptide binding to Qa-1 or TCR recognition. Here, we determined the structure of Qa-1a with bound Qdm peptide. While the overall structure is very similar to that of Qa-1b, there are several amino acid differences around the peptide binding platform that could affect TCR recognition. Most notably, two amino acid substitutions are found in the pocket P2, which binds the anchor residue Met2 of the Qdm peptide. These residues affect both the size and shape of the binding pocket, as well as affect the charge at physiologic pH, suggesting Qa-1a and Qa-1b could present slightly distinct peptide reservoirs, which could presumably be recognized by different populations of CD8+ T cells.
Collapse
Affiliation(s)
- Ge Ying
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
| | - Vipin Kumar
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California, United States of America
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
27
|
Jelenčić V, Lenartić M, Wensveen FM, Polić B. NKG2D: A versatile player in the immune system. Immunol Lett 2017; 189:48-53. [PMID: 28414183 DOI: 10.1016/j.imlet.2017.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
Abstract
NKG2D is known as a potent activating receptor of the immune system. It is expressed on a multitude of immune cells, including NK cells and different subsets of T cells. NKG2D recognizes various MHC I-like ligands that are induced on target cells exposed to stressors such as viral infection, DNA damage and oncological transformation. NKG2D drives or facilitates cytotoxic and cytokine responses towards cells expressing its ligands to eliminate the threat. Therefore, NKG2D is usually classified as a sensor that translates cellular stress into activation signals for immune cells. However, more recently it has become evident that NKG2D plays a role beyond direct killing of target cells. Lack of NKG2D affects development of NK cells in the bone marrow, resulting in hyperreactive NK cells. NKG2D deficiency on CD8 T cells affects the ability of effector cells to produce cytokines in response to T cell receptor engagement and reduces their capacity to establish immunological memory. Although NKG2D is not expressed on B cells subsets, lack of this receptor in hematopoietic precursors affects B cell development. Homing of mature B2 cells is altered in NKG2D-deficient mice and they have a strong reduction in peripheral B1a cell numbers, resulting in increased susceptibility to bacterial infections. The exact molecular mechanisms via which NKG2D mediates these versatile functions is still being explored, but appears to depend on the control of activation thresholds, either in hematopoietic precursors or mature immune cell subsets. In this review, we will elaborate on the underappreciated developmental and regulatory roles of NKG2D.
Collapse
Affiliation(s)
- Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Experimental Immunology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
28
|
Song Y, Gan Y, Wang Q, Meng Z, Li G, Shen Y, Wu Y, Li P, Yao M, Gu J, Tu H. Enriching the Housing Environment for Mice Enhances Their NK Cell Antitumor Immunity via Sympathetic Nerve-Dependent Regulation of NKG2D and CCR5. Cancer Res 2017; 77:1611-1622. [PMID: 28082402 DOI: 10.1158/0008-5472.can-16-2143] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/05/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Mice housed in an enriched environment display a tumor-resistant phenotype due to eustress stimulation. However, the mechanisms underlying enriched environment-induced protection against cancers remain largely unexplained. In this study, we observed a significant antitumor effect induced by enriched environment in murine pancreatic cancer and lung cancer models. This effect remained intact in T/B lymphocyte-deficient Rag1-/- mice, but was nearly eliminated in natural killer (NK) cell-deficient Beige mice or in antibody-mediated NK-cell-depleted mice, suggesting a predominant role of NK cells in enriched environment-induced tumor inhibition. Exposure to enriched environment enhanced NK-cell activity against tumors and promoted tumoral infiltration of NK cells. Enriched environment increased the expression levels of CCR5 and NKG2D (KLRK1) in NK cells; blocking their function effectively blunted the enriched environment-induced enhancement of tumoral infiltration and cytotoxic activity of NK cells. Moreover, blockade of β-adrenergic signaling or chemical sympathectomy abolished the effects of enriched environment on NK cells and attenuated the antitumor effect of enriched environment. Taken together, our results provide new insight into the mechanism by which eustress exerts a beneficial effect against cancer. Cancer Res; 77(7); 1611-22. ©2017 AACR.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihong Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuling Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Head and Neck Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufeng Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 2017; 22:786-795. [PMID: 28111332 DOI: 10.1016/j.drudis.2017.01.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Organismal aging is a multifactorial process characterized by the onset of degenerative conditions and cancer. One of the key drivers of aging is cellular senescence, a state of irreversible growth arrest induced by many pro-tumorigenic stresses. Senescent cells accumulate late in life and at sites of age-related pathologies, where they contribute to disease onset and progression through complex cell and non-cell autonomous effects. Here, we summarize the mechanisms by which cellular senescence can promote aging, and we offer an extensive description of current potential pharmacological interventions for senescent cells, highlighting limitations and suggesting alternatives.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marco Demaria
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| |
Collapse
|
30
|
T cell receptor repertoire usage in cancer as a surrogate marker for immune responses. Semin Immunopathol 2017; 39:255-268. [PMID: 28074285 DOI: 10.1007/s00281-016-0614-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Characterizing the interaction of cancer cells with the host adaptive immune system is critical for understanding tumor immunology and the modus operandi of immunotherapeutic interventions to treat cancer. As the key cellular effectors of adaptive immunity, T cells are endowed with specialized receptors (the T cell receptor; TCR), to recognize and to eliminate cancer cells. The diversity of the TCR repertoire results from specialized genetic diversification mechanisms that generate an incredible variability allowing recognizing extensive collections of antigens. Based on the attainment and function of the TCR, the TCR repertoire is a mirror of the human immune response, and the dynamic changes of its usage can be assumed as a promising biomarker to monitor immunomodulatory therapies. Recent advances in multiplexed PCR amplification and massive parallel sequencing technologies have facilitated the characterization of TCR repertoires at high resolution even when only biomaterial of limited quantity and quality, such as formalin-fixed paraffin-embedded (FFPE) archived tissues, is available. Here, we review the concept framework and current experimental approaches to characterize the TCR repertoire usage in cancer including inherent technical and biological challenges.
Collapse
|
31
|
Frankel T, Lanfranca MP, Zou W. The Role of Tumor Microenvironment in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:51-64. [PMID: 29275464 DOI: 10.1007/978-3-319-67577-0_4] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The field of tumor immunology and immunotherapy has undergone a renaissance in the past decade do in large part to a better understanding of the tumor immune microenvironment. After suffering countless successes and setbacks in the twentieth century, immunotherapy has now come to the forefront of cancer research and is recognized as an important tool in the anti-tumor armamentarium. The goal of therapy is to aid the immune system in recognition and destruction of tumor cells by enhancing its ability to react to tumor antigens. This traditionally has been accomplished by induction of adaptive immunity through vaccination or through passive delivery of immunologic effectors as in the case of adoptive cell transfer. The recent discovery of immune "checkpoints" whose purpose is to suppress immune activity and prevent auto-immunity has created a new angle by which reactivity to tumors can be enhanced. Blockers of these checkpoints have yielded impressive clinical results and have recently been approved for use in a wide variety of malignancies. With data showing increasing rates of not only treatment response, but complete remissions, immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer.
Collapse
Affiliation(s)
- Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Sagiv A, Burton DGA, Moshayev Z, Vadai E, Wensveen F, Ben-Dor S, Golani O, Polic B, Krizhanovsky V. NKG2D ligands mediate immunosurveillance of senescent cells. Aging (Albany NY) 2016; 8:328-44. [PMID: 26878797 PMCID: PMC4789586 DOI: 10.18632/aging.100897] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis.
Collapse
Affiliation(s)
- Adi Sagiv
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominick G A Burton
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Present address: School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Zhana Moshayev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ezra Vadai
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Bojan Polic
- School of Medicine, University of Rijeka, Croatia
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
King MA, Leon LR, Morse DA, Clanton TL. Unique cytokine and chemokine responses to exertional heat stroke in mice. J Appl Physiol (1985) 2016; 122:296-306. [PMID: 27909226 DOI: 10.1152/japplphysiol.00667.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023] Open
Abstract
In heat stroke, cytokines are believed to play important roles in multiorgan dysfunction and recovery of damaged tissue. The time course of the cytokine response is well defined in passive heat stroke (PHS), but little is known about exertional heat stroke (EHS). In this study we used a recently developed mouse EHS model to measure the responses of circulating cytokines/chemokines and cytokine gene expression in muscle. A very rapid increase in circulating IL-6 was observed at maximum core temperature (Tc,max) that peaked at 0.5 h of recovery and disappeared by 3 h. IL-10 was not elevated at any time. This contrasts with PHS where both IL-6 and IL-10 peak at 3 h of recovery. Keratinocyte chemoattractant (KC), granulocyte-colony-stimulating factor (G-CSF), macrophage inflammatory protein (MIP)-2, MIP-1β, and monocyte chemoattractive factor-1 also demonstrated near peak responses at 0.5 h. Only G-CSF and KC remained elevated at 3 h. Muscle mRNA for innate immune cytokines (IL-6, IL-10, IL-1β, but not TNF-α) were greatly increased in diaphragm and soleus compared with similar measurements in PHS. We hypothesized that these altered cytokine responses in EHS may be due to a lower Tc,max achieved in EHS or a lower overall heat load. However, when these variables were controlled for, they could not account for the differences between EHS and PHS. We conclude that moderate exercise, superimposed on heat exposure, alters the pattern of circulating cytokine and chemokine production and muscle cytokine expression in EHS. This response may comprise an endocrine reflex to exercise in heat that initiates survival pathways and early onset tissue repair mechanisms. NEW & NOTEWORTHY Immune modulators called cytokines are released following extreme hyperthermia leading to heat stroke. It is not known whether exercise in hyperthermia, leading to EHS, influences this response. Using a mouse model of EHS, we discovered a rapid accumulation of interleukin-6 and other cytokines involved in immune cell trafficking. This response may comprise a protective mechanism for early induction of cell survival and tissue repair pathways needed for recovery from thermal injury.
Collapse
Affiliation(s)
- Michelle A King
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Deborah A Morse
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, The University of Florida; and
| |
Collapse
|
34
|
Rao CV, Asch AS, Yamada HY. Emerging links among Chromosome Instability (CIN), cancer, and aging. Mol Carcinog 2016; 56:791-803. [PMID: 27533343 DOI: 10.1002/mc.22539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/14/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022]
Abstract
Aneuploidy was predicted to cause cancer. To test the prediction, various Chromosome Instability (CIN) mice models that carry transgenic mutations in mitotic regulators have been created. The availability of these mice has aided researchers in discovering connections between CIN, cancer, and aging. This review will focus on recent interdisciplinary findings regarding how CIN and aneuploidy affect carcinogenesis, immune dysfunction, and aging. High CIN can be generated in vivo by various intrinsic alterations (e.g., gene mutation, epigenetic modification) and extrinsic/environmental challenges (e.g., biological, chemical, biophysical), while immune surveillance, cell death, and natural turnover can remove cells with CIN. CIN itself is mutagenic and may cause further cellular mutations, which can be carcinogenic. Mitotically damaged cells can activate senescence-related tumor suppressors (e.g., p21WAF1 , p27KIP1 , p16INK4A ), which may lead to tissue-level senescence/aging through inflammatory paracrine mechanisms called Senescence-Associated Secretory Phenotype (SASP) and Senescence Inflammatory Response (SIR). Organs with high CIN show altered gene expressions in both organ-specific and non-specific manners. Organ-specific gene expression signatures include activation of oncogenic pathways. Non-organ-specific gene expression signatures include metabolic changes and downregulations in immune functions. Immune surveillance normally targets senescent cells and tetraploid cells, a form of aneuploidy, for elimination. However, with partial immune dysfunction, immune surveillance is weakened with systemic CIN. In this case, more senescent cells and aneuploid cells survive, which further leads to an inflammatory, pro-tumorigenic, and senescent/aging microenvironment. We also discuss how we may intervene in this sequence of events to prevent CIN- or age-related carcinogenesis and/or some aspects of tissue aging. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, Center for Cancer Prevention and Drug Development, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma.,Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Adam S Asch
- Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Hiroshi Y Yamada
- Department of Medicine, Center for Cancer Prevention and Drug Development, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma.,Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
35
|
Antonangeli F, Soriani A, Ricci B, Ponzetta A, Benigni G, Morrone S, Bernardini G, Santoni A. Natural killer cell recognition of in vivo drug-induced senescent multiple myeloma cells. Oncoimmunology 2016; 5:e1218105. [PMID: 27853638 DOI: 10.1080/2162402x.2016.1218105] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
Recognition of tumor cells by the immune system is a key step in cancer eradication. Melphalan is an alkylating agent routinely used in the treatment of patients with multiple myeloma (MM), but at therapeutic doses it leads to an immunosuppressive state due to lymphopenia. Here, we used a mouse model of MM to investigate the ability of in vivo treatment with low doses of melphalan to modulate natural killer (NK) cell activity, which have been shown to play a major role in the control of MM growth. Melphalan treatment was able to enhance the surface expression of the stress-induced NKG2D ligands RAE-1 and MULT-1, and of the DNAM-1 ligand PVR (CD155) on MM cells, leading to better tumor cell recognition and killing by NK cells, as highlighted by NK cell increased degranulation triggered by melphalan-treated tumor cells. Remarkably, NK cell population was not affected by the melphalan dose used, but rather displayed activation features as indicated by CD107a and CD69 expression. Furthermore, we showed that low doses of melphalan fail to induce tumor cell apoptosis, but promote the in vivo establishment of a senescent tumor cell population, harboring high levels of the stress-induced ligands RAE-1 and PVR. Taken together our data support the concept of using chemotherapy in order to boost antitumor innate immune responses and report the possibility to induce cellular senescence of tumor cells in vivo.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome , Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome , Rome, Italy
| | - Biancamaria Ricci
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome , Rome, Italy
| | - Andrea Ponzetta
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome , Rome, Italy
| | - Giorgia Benigni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome , Rome, Italy
| | - Stefania Morrone
- Department of Experimental Medicine, Sapienza University of Rome , Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli IS, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli IS, Italy
| |
Collapse
|
36
|
Mahmood S, Upreti D, Sow I, Amari A, Nandagopal S, Kung SK. Bidirectional interactions of NK cells and dendritic cells in immunotherapy: current and future perspective. Immunotherapy 2016; 7:301-8. [PMID: 25804481 DOI: 10.2217/imt.14.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
NK cells and dendritic cells (DC) are innate cellular components that regulate adaptive immune responses in the immune surveillance of cancer and infections. Interactions of NK and DC are bidirectional. In this mini review, we summarized how NK cells regulate immature DC editing and maturation, how DC regulate NK-cell functions reciprocally in the NK-DC crosstalk, and the importance of NK-DC crosstalk in antitumor immunity. Enhancing NK-DC crosstalk by cellular factor(s), antibodies or creating a microenvironment that promote NK activations, DC maturation and NK-DC crosstalk will provide new insights into future development of DC-based immunotherapy.
Collapse
Affiliation(s)
- Sajid Mahmood
- Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba R3E 0T5, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Diversity is the basis of fitness selection. Although the genome of an individual is considered to be largely stable, there is theoretical and experimental evidence--both in model organisms and in humans--that genetic mosaicism is the rule rather than the exception. The continuous generation of cell variants, their interactions and selective pressures lead to life-long tissue dynamics. Individuals may thus enjoy 'clonal health', defined as a clonal composition that supports healthy morphology and physiology, or suffer from clonal configurations that promote disease, such as cancer. The contribution of mosaicism to these processes starts during embryonic development. In this Opinion article, we argue that the road to cancer might begin during these early stages.
Collapse
Affiliation(s)
- Luis C Fernández
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares-CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco X Real
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, and at the Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, 28029 Madrid, Spain
| |
Collapse
|
38
|
Pogge von Strandmann E, Shatnyeva O, Hansen HP. NKp30 and its ligands: emerging players in tumor immune evasion from natural killer cells. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:314. [PMID: 26697474 DOI: 10.3978/j.issn.2305-5839.2015.09.08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
| | - Olga Shatnyeva
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Katlinskaya YV, Carbone CJ, Yu Q, Fuchs SY. Type 1 interferons contribute to the clearance of senescent cell. Cancer Biol Ther 2015; 16:1214-9. [PMID: 26046815 DOI: 10.1080/15384047.2015.1056419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The major known function of cytokines that belong to type I interferons (IFN, including IFNα and IFNβ) is to mount the defense against viruses. This function also protects the genetic information of host cells from alterations in the genome elicited by some of these viruses. Furthermore, recent studies demonstrated that IFN also restrict proliferation of damaged cells by inducing cell senescence. Here we investigated the subsequent role of IFN in elimination of the senescent cells. Our studies demonstrate that endogenous IFN produced by already senescent cells contribute to increased expression of the natural killer (NK) receptor ligands, including MIC-A and ULBP2. Furthermore, neutralization of endogenous IFN or genetic ablation of its receptor chain IFNAR1 compromises the recognition of senescent cells and their clearance in vitro and in vivo. We discuss the role of IFN in protecting the multi-cellular host from accumulation of damaged senescent cells and potential significance of this mechanism in human cancers.
Collapse
Affiliation(s)
- Yuliya V Katlinskaya
- a Department of Biomedical Sciences ; School of Veterinary Medicine ; University of Pennsylvania ; Philadelphia , PA USA
| | | | | | | |
Collapse
|
40
|
Senescent cells: SASPected drivers of age-related pathologies. Biogerontology 2014; 15:627-42. [PMID: 25217383 DOI: 10.1007/s10522-014-9529-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022]
Abstract
The progression of physiological ageing is driven by intracellular aberrations including telomere attrition, genomic instability, epigenetic alterations and loss of proteostasis. These in turn damage cells and compromise their functionality. Cellular senescence, a stable irreversible cell-cycle arrest, is elicited in damaged cells and prevents their propagation in the organism. Under normal conditions, senescent cells recruit the immune system which facilitates their removal from tissues. Nevertheless, during ageing, tissue-residing senescent cells tend to accumulate, and might negatively impact their microenvironment via profound secretory phenotype with pro-inflammatory characteristics, termed senescence-associated secretory phenotype (SASP). Indeed, senescent cells are mostly abundant at sites of age-related pathologies, including degenerative disorders and malignancies. Interestingly, studies on progeroid mice indicate that selective elimination of senescent cells can delay age-related deterioration. This suggests that chronic inflammation induced by senescent cells might be a main driver of these pathologies. Importantly, senescent cells accumulate as a result of deficient immune surveillance, and their removal is increased upon the use of immune stimulatory agents. Insights into mechanisms of senescence surveillance could be combined with current approaches for cancer immunotherapy to propose new preventive and therapeutic strategies for age-related diseases.
Collapse
|
41
|
Casey SC, Li Y, Felsher DW. An essential role for the immune system in the mechanism of tumor regression following targeted oncogene inactivation. Immunol Res 2014; 58:282-91. [PMID: 24791942 PMCID: PMC4201505 DOI: 10.1007/s12026-014-8503-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumors are genetically complex and can have a multitude of mutations. Consequently, it is surprising that the suppression of a single oncogene can result in rapid and sustained tumor regression, illustrating the concept that cancers are often "oncogene addicted." The mechanism of oncogene addiction has been presumed to be largely cell autonomous as a consequence of the restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and/or cellular senescence. Interestingly, it has recently become apparent that upon oncogene inactivation, the immune response is critical in mediating the phenotypic consequences of oncogene addiction. In particular, CD4(+) T cells have been suggested to be essential to the remodeling of the tumor microenvironment, including the shutdown of host angiogenesis and the induction of cellular senescence in the tumor. However, adaptive and innate immune cells are likely involved. Thus, the effectors of the immune system are involved not only in tumor initiation, tumor progression, and immunosurveillance, but also in the mechanism of tumor regression upon targeted oncogene inactivation. Hence, oncogene inactivation may be an effective therapeutic approach because it both reverses the neoplastic state within a cancer cell and reactivates the host immune response that remodels the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, 269 Campus Drive, CCSR 1105, Stanford, CA, 94305-5151, USA
| | | | | |
Collapse
|
42
|
Cerboni C, Fionda C, Soriani A, Zingoni A, Doria M, Cippitelli M, Santoni A. The DNA Damage Response: A Common Pathway in the Regulation of NKG2D and DNAM-1 Ligand Expression in Normal, Infected, and Cancer Cells. Front Immunol 2014; 4:508. [PMID: 24432022 PMCID: PMC3882864 DOI: 10.3389/fimmu.2013.00508] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/21/2013] [Indexed: 12/03/2022] Open
Abstract
NKG2D and DNAM-1 are two activating receptors, present on the surface of NK cells and other cells of the immune system. Their ligands – MICA, MICB, ULBP1-6 for NKG2D, PVR/CD155 and Nectin-2/CD112 for DNAM-1 – can be constitutively expressed at low levels in some normal cells, but they are more often defined as “stress-induced,” since different stimuli can positively regulate their expression. In this review, we describe the molecular mechanisms involved in the up-regulation of NKG2D and DNAM-1 ligands under different physiological and pathological “stress” conditions, including mitosis, viral infections, and cancer. We will focus on the DNA damage response, as recent advances in the field have uncovered its important role as a common signaling pathway in the regulation of both NKG2D and DNAM-1 ligand expression in response to very diverse conditions and stimuli.
Collapse
Affiliation(s)
- Cristina Cerboni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome , Rome , Italy ; Mediterranean Neurological Institute , Pozzilli , Italy
| |
Collapse
|